1
|
Hossam Abdelmonem B, Kamal LT, Wardy LW, Ragheb M, Hanna MM, Elsharkawy M, Abdelnaser A. Non-coding RNAs: emerging biomarkers and therapeutic targets in cancer and inflammatory diseases. Front Oncol 2025; 15:1534862. [PMID: 40129920 PMCID: PMC11931079 DOI: 10.3389/fonc.2025.1534862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/17/2025] [Indexed: 03/26/2025] Open
Abstract
Non-coding RNAs (ncRNAs) have a significant role in gene regulation, especially in cancer and inflammatory diseases. ncRNAs, such as microRNA, long non-coding RNAs, and circular RNAs, alter the transcriptional, post-transcriptional, and epigenetic gene expression levels. These molecules act as biomarkers and possible therapeutic targets because aberrant ncRNA expression has been directly connected to tumor progression, metastasis, and response to therapy in cancer research. ncRNAs' interactions with multiple cellular pathways, including MAPK, Wnt, and PI3K/AKT/mTOR, impact cellular processes like proliferation, apoptosis, and immune responses. The potential of RNA-based therapeutics, such as anti-microRNA and microRNA mimics, to restore normal gene expression is being actively studied. Additionally, the tissue-specific expression patterns of ncRNAs offer unique opportunities for targeted therapy. Specificity, stability, and immune responses are obstacles to the therapeutic use of ncRNAs; however, novel strategies, such as modified oligonucleotides and targeted delivery systems, are being developed. ncRNA profiling may result in more individualized and successful treatments as precision medicine advances, improving patient outcomes and creating early diagnosis and monitoring opportunities. The current review aims to investigate the roles of ncRNAs as potential biomarkers and therapeutic targets in cancer and inflammatory diseases, focusing on their mechanisms in gene regulation and their implications for non-invasive diagnostics and targeted therapies. A comprehensive literature review was conducted using PubMed and Google Scholar, focusing on research published between 2014 and 2025. Studies were selected based on rigorous inclusion criteria, including peer-reviewed status and relevance to ncRNA roles in cancer and inflammatory diseases. Non-English, non-peer-reviewed, and inconclusive studies were excluded. This approach ensures that the findings presented are based on high-quality and relevant sources.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- Basic Sciences Department, Faculty of Physical Therapy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Lereen T. Kamal
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Lilian Waheed Wardy
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- Research and Development Department, Eva Pharma for Pharmaceuticals Industries, Cairo, Egypt
| | - Manon Ragheb
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
- School of Medicine, New Giza University (NGU), Giza, Egypt
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Mohamed Elsharkawy
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
2
|
Hsueh KC, Lee HL, Ho KH, Chang LC, Yang SF, Chien MH. Disease-Associated Risk Variants and Expression Levels of the lncRNA, CDKN2B-AS1, Are Associated With the Progression of HCC. J Cell Mol Med 2025; 29:e70496. [PMID: 40105653 PMCID: PMC11921468 DOI: 10.1111/jcmm.70496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
The most susceptible loci of hepatocellular carcinoma (HCC) identified by genome-wide association studies are located in non-coding regions. The antisense non-coding RNA at the INK4 locus (ANRIL), also known as cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1), is a long non-coding (lnc)RNA situated within and antisense to genes encoding CDKN2A/B on chromosome 9p21.3. Single-nucleotide polymorphisms (SNPs) within CDKN2B-AS1 are associated with several cancer types, but their impacts on HCC remain unclear. In this study, we investigated the effects of CDKN2B-AS1 SNPs on both the susceptibility to HCC and its clinicopathological development. Five CDKN2B-AS1 SNP loci-rs564398 (T/C), rs1333048 (A/C), rs1537373 (G/T), rs2151280 (A/G) and rs8181047 (G/A)-were analysed using a TaqMan allelic discrimination assay for genotyping in a cohort of 810 HCC patients and 1190 healthy controls. Under the dominant model, HCC patients with at least one minor C-allele of rs564398 showed a lower risk of liver cirrhosis (odds ratio (OR) = 0.677). Additionally, HCC patients with the GT + TT genotype of rs1537373 had a reduced risk of developing large tumours (T3 + T4) and advanced clinical stages (III/IV), particularly in the male population (OR = 0.644 and 0.679). Furthermore, data from The Cancer Genome Atlas revealed that CDKN2B-AS1 expression levels were elevated in HCC tissues compared to normal tissues and were correlated with advanced T stages, high histological grades and poor prognoses. Our findings suggest that CDKN2B-AS1 levels and its polymorphic variants at rs564398 and rs1537373 may influence the clinicopathological development and progression of HCC in a Taiwanese population.
Collapse
Affiliation(s)
- Kuan-Chun Hsueh
- Division of General Surgery, Department of Surgery, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsiang-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Lun-Ching Chang
- Department of Mathematics and Statistics, Florida Atlantic University, Boca Raton, Florida, USA
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Manska S, Hagemann A, Magana J, Rossetto CC, Verma SC. Characterization of Human Cytomegalovirus (HCMV) Long Non-Coding RNA1.2 During Lytic Replication. Viruses 2025; 17:149. [PMID: 40006904 PMCID: PMC11860937 DOI: 10.3390/v17020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
During lytic replication of human cytomegalovirus (HCMV), the most abundant viral transcripts are long non-coding RNAs (lncRNAs). Viral lncRNAs can have a variety of functions, some of which are necessary for viral production and the modulation of host processes during infection. HCMV produces four lncRNAs, Beta2.7 (RNA2.7), RNA4.9, RNA5.0 and RNA1.2. While there has been research on these viral lncRNAs, many of their functions remain uncharacterized. To determine the function of RNA1.2, we explored its requirement during lytic infection by generating viral mutants containing either a full or partial deletion of the RNA1.2 locus. Within permissive fibroblasts, the RNA1.2 deletion mutants showed no defects in viral DNA synthesis, transcript expression, protein production, or generation of viral progeny. Further investigation to identify potential cellular and viral protein binding partners of RNA1.2 was performed using liquid chromatography-mass spectrometry (LC-MS). A significant number of cellular proteins were identified and associated with RNA1.2. Specifically those associated with the innate immune response, mitochondrial processes, and cell cycle regulation. While RNA1.2 is dispensable for lytic replication, these findings suggest it may play a pivotal role in modulating the host response.
Collapse
Affiliation(s)
| | | | | | | | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA; (S.M.); (A.H.); (J.M.); (C.C.R.)
| |
Collapse
|
4
|
Samir A, Abdeldaim A, Mohammed A, Ali A, Alorabi M, Hussein MM, Bakr YM, Ibrahim AM, Abdelhafiz AS. Analysis of four long non-coding RNAs for hepatocellular carcinoma screening and prognosis by the aid of machine learning techniques. Sci Rep 2024; 14:29582. [PMID: 39609501 PMCID: PMC11604705 DOI: 10.1038/s41598-024-80926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a significant health burden in Egypt, largely attributable to the endemic prevalence of hepatitis B and C viruses. Early identification of HCC remains a challenge due to the lack of widespread screening among at-risk populations. The objective of this study was to assess the utility of machine learning in predicting HCC by analyzing the combined expression of lncRNAs and conventional laboratory biomarkers. Plasma levels of four lncRNAs (LINC00152, LINC00853, UCA1, and GAS5) were quantified in a cohort of 52 HCC patients and 30 age-matched controls. The individual diagnostic performance of each lncRNA was assessed using ROC curve analysis. Subsequently, a machine learning model was constructed using Python's Scikit-learn platform to integrate these lncRNAs with additional clinical laboratory parameters for HCC diagnosis. Individual lncRNAs exhibited moderate diagnostic accuracy, with sensitivity and specificity ranging from 60 to 83% and 53-67%, respectively. In contrast, the machine learning model demonstrated superior performance, achieving 100% sensitivity and 97% specificity. Notably, a higher LINC00152 to GAS5 expression ratio significantly correlated with increased mortality risk. The integration of lncRNA biomarkers with conventional laboratory data within a machine learning framework demonstrates significant potential for developing a precise and cost-effective diagnostic tool for HCC. To enhance the model's robustness and prognostic capabilities, future studies should incorporate larger cohorts and explore a wider array of lncRNAs.
Collapse
Affiliation(s)
- Ahmed Samir
- Department of biochemistry, Faculty of pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt.
| | - Amira Abdeldaim
- Department of biochemistry, Faculty of pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Ammar Mohammed
- Faculty of computer science, October University for Modern Sciences and Arts (MSA), Giza, Egypt
- Department of Computer Sciences, FGSSR, Cairo University, Giza, Egypt
| | - Asmaa Ali
- Department of Chest Diseases, Abbasia Chest Hospital, Ministry of Health and Population, Cairo, Egypt
| | - Mohamed Alorabi
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Medical Oncology, Shefaa Al Orman Oncology Hospital, Luxor, Egypt
| | - Mariam M Hussein
- Department of Clinical Oncology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Medical Oncology, Shefaa Al Orman Oncology Hospital, Luxor, Egypt
| | - Yasser Mabrouk Bakr
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | | | - Ahmed Samir Abdelhafiz
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
5
|
Moghassemi S, Dadashzadeh A, Sousa MJ, Vlieghe H, Yang J, León-Félix CM, Amorim CA. Extracellular vesicles in nanomedicine and regenerative medicine: A review over the last decade. Bioact Mater 2024; 36:126-156. [PMID: 38450204 PMCID: PMC10915394 DOI: 10.1016/j.bioactmat.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Small extracellular vesicles (sEVs) are known to be secreted by a vast majority of cells. These sEVs, specifically exosomes, induce specific cell-to-cell interactions and can activate signaling pathways in recipient cells through fusion or interaction. These nanovesicles possess several desirable properties, making them ideal for regenerative medicine and nanomedicine applications. These properties include exceptional stability, biocompatibility, wide biodistribution, and minimal immunogenicity. However, the practical utilization of sEVs, particularly in clinical settings and at a large scale, is hindered by the expensive procedures required for their isolation, limited circulation lifetime, and suboptimal targeting capacity. Despite these challenges, sEVs have demonstrated a remarkable ability to accommodate various cargoes and have found extensive applications in the biomedical sciences. To overcome the limitations of sEVs and broaden their potential applications, researchers should strive to deepen their understanding of current isolation, loading, and characterization techniques. Additionally, acquiring fundamental knowledge about sEVs origins and employing state-of-the-art methodologies in nanomedicine and regenerative medicine can expand the sEVs research scope. This review provides a comprehensive overview of state-of-the-art exosome-based strategies in diverse nanomedicine domains, encompassing cancer therapy, immunotherapy, and biomarker applications. Furthermore, we emphasize the immense potential of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Maria João Sousa
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hanne Vlieghe
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jie Yang
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Cecibel María León-Félix
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de La Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
6
|
Golam RM, Khalil MAF, Shaker OG, Ahmed TI, Elguaad MKA, Hassan EA, El-Ansary MRM, Ismail A, Kandil YI, Mohammed OA, Doghish AS. The clinical significance of long non-coding RNAs MALAT1 and CASC2 in the diagnosis of HCV-related hepatocellular carcinoma. PLoS One 2024; 19:e0303314. [PMID: 38739668 PMCID: PMC11090319 DOI: 10.1371/journal.pone.0303314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Globally, hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death due to a lack of early predictive and/or diagnostic tools. Thus, research for a new biomarker is important. LncRNAs play a functional role in target gene regulation and their deregulation is associated with several pathological conditions including HCC. OBJECTIVE This study aimed to explore the diagnostic potential of two LncRNAs MALAT1 and CASC2 in HCC compared to the routinely used diagnostic biomarker. MATERIALS AND METHODS The current study is a case-control study carried out at Fayoum University Hospital and conducted on 89 individuals. The study included three groups of 36 HCC patients on top of HCV(HCC/HCV), 33 HCV patients, and 20 healthy volunteers as a control group. All study subjects were subjected to radiological examinations. The determination of CBC was performed by the automated counter and liver function tests by the enzymatic method were performed. In addition, HCV RNA quantification and the expression level of two LncRNAs (MALAT1 and CASC2) were performed by qRT-PCR. RESULTS The results revealed a statistically significant difference between study groups regarding liver function tests with a higher mean in HCC/HCV group. Also, serum MALAT1 significantly up-regulated in HCV (11.2±2.8) and HCC/HCV (4.56±1.4) compared to the control group. Besides, serum CASC2 levels in the HCV group were significantly upregulated (14.9±3.6), while, downregulated in the HCC group (0.16± 0.03). Furthermore, The ROC analysis for diagnostic efficacy parameters indicated that CASC2 has higher accuracy (94.6%) and sensitivity (97.2%) for HCC diagnosis than AFP with an accuracy of (90.9%), sensitivity (69.4%), and MALAT1 showed an accuracy of (56.9%), sensitivity (72.2%). CONCLUSION Our study results indicated that CASC2 is a promising biomarker and is considered better and could help in HCC diagnosis on top of HCV than MALAT1 and the routine biomarker AFP.
Collapse
Affiliation(s)
- Rehab M. Golam
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Mahmoud A. F. Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Tarek I. Ahmed
- Department of Internal Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | | | - Essam A. Hassan
- Department of Tropical Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Mahmoud R. M. El-Ansary
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Yasser I. Kandil
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Sinai University–Kantara Branch, Ismailia, Egypt
| | - Osama A. Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
7
|
Wei L, He P, Tan Z, Zhao L, Lin C, Wei Z. Unveiling the role of the KLF4/Lnc18q22.2/ULBP3 axis in the tumorigenesis and immune escape of hepatocellular carcinoma under hypoxic condition. J Cell Mol Med 2024; 28:e18411. [PMID: 38780505 PMCID: PMC11114216 DOI: 10.1111/jcmm.18411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) represents a significant global health burden, necessitating an in-depth exploration of its molecular underpinnings to facilitate the development of effective therapeutic strategies. This investigation delves into the complex role of long non-coding RNAs (lncRNAs) in the modulation of hypoxia-induced HCC progression, with a specific emphasis on delineating and functionally characterizing the novel KLF4/Lnc18q22.2/ULBP3 axis. To elucidate the effects of hypoxic conditions on HCC cells, we established in vitro models under both normoxic and hypoxic environments, followed by lncRNA microarray analyses. Among the lncRNAs identified, Lnc18q22.2 was found to be significantly upregulated in HCC cells subjected to hypoxia. Subsequent investigations affirmed the oncogenic role of Lnc18q22.2, highlighting its critical function in augmenting HCC cell proliferation and migration. Further examination disclosed that Kruppel-like factor 4 (KLF4) transcriptionally governs Lnc18q22.2 expression in HCC cells, particularly under hypoxic stress. KLF4 subsequently enhances the tumorigenic capabilities of HCC cells through the modulation of Lnc18q22.2 expression. Advancing downstream in the molecular cascade, our study elucidates a novel interaction between Lnc18q22.2 and UL16-binding protein 3 (ULBP3), culminating in the stabilization of ULBP3 protein expression. Notably, ULBP3 was identified as a pivotal element, exerting dual functions by facilitating HCC tumorigenesis and mitigating immune evasion in hypoxia-exposed HCC cells. The comprehensive insights gained from our research delineate a hitherto unidentified KLF4/Lnc18q22.2/ULBP3 axis integral to the understanding of HCC tumorigenesis and immune escape under hypoxic conditions. This newly unveiled molecular pathway not only enriches our understanding of hypoxia-induced HCC progression but also presents novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Lifang Wei
- Health Management CenterThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Ping He
- School of Laboratory MedicineYoujiang Medical University for NationalitiesBaiseGuangxiChina
| | - Zhongqiu Tan
- Department of OncologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Lifeng Zhao
- Department of OncologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Cheng Lin
- Department of OncologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
| | - Zhongheng Wei
- Department of OncologyThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseGuangxiChina
- Guangxi Clinical Medical Research Center for Hepatobiliary DiseasesThe Affiliated Hospital of Youjiang Medical University for NationalitiesBaiseChina
| |
Collapse
|
8
|
Tang S, Chen F, Zhang J, Chang F, Lv Z, Li K, Li S, Hu Y, Yeh S. LncRNA-SERB promotes vasculogenic mimicry (VM) formation and tumor metastasis in renal cell carcinoma. J Biol Chem 2024; 300:107297. [PMID: 38641065 PMCID: PMC11126803 DOI: 10.1016/j.jbc.2024.107297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/03/2024] [Accepted: 03/31/2024] [Indexed: 04/21/2024] Open
Abstract
A growing body of evidence shows that vasculogenic mimicry (VM) is closely related to the invasion and metastasis of many tumor cells. Although the estrogen receptor (ER) can promote initiation and progression of renal cell carcinoma (RCC), how the downstream biomolecules are involved, and the detailed mechanisms of how ER expression is elevated in RCC remain to be further elucidated. Here, we discovered that long noncoding RNA (LncRNA)-SERB is highly expressed in tumor cells of RCC patients. We used multiple RCC cells and an in vivo mouse model for our study, and results indicated that LncRNA-SERB could boost RCC VM formation and cell invasion in vitro and in vivo. Although a previous report showed that ERβ can affect the VM formation in RCC, it is unclear which factor could upregulate ERβ. This is the first study to show LncRNA-SERB can be the upstream regulator of ERβ to control RCC progression. Mechanistically, LncRNA-SERB may increase ERβ via binding to the promoter area, and ERβ functions through transcriptional regulation of zinc finger E-box binding homeobox 1 (ZEB1) to regulate VM formation. These results suggest that LncRNA-SERB promotes RCC cell VM formation and invasion by upregulating the ERβ/ZEB1 axis and that therapeutic targeting of this newly identified pathway may better inhibit RCC progression.
Collapse
MESH Headings
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Humans
- Kidney Neoplasms/pathology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/genetics
- Animals
- Mice
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- Gene Expression Regulation, Neoplastic
- Estrogen Receptor beta/metabolism
- Estrogen Receptor beta/genetics
- Cell Line, Tumor
- Zinc Finger E-box-Binding Homeobox 1/metabolism
- Zinc Finger E-box-Binding Homeobox 1/genetics
- Neoplasm Metastasis
- Mice, Nude
- Male
- Female
- Neoplasm Invasiveness
Collapse
Affiliation(s)
- Shuai Tang
- College of Medicine, Nankai University, Tianjin, China; Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China; Departments of Urology, Pathology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Fangmin Chen
- College of Medicine, Nankai University, Tianjin, China; Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China.
| | - Jianghui Zhang
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Fan Chang
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Zheng Lv
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Kai Li
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Song Li
- Department of Urology, Nankai University Affinity The Third Central Hospital, Tianjin, China; Department of Urology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Yixi Hu
- Departments of Urology, Pathology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Shuyuan Yeh
- Departments of Urology, Pathology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA; The Sex Hormone Research Center and Department of Urology, China Medical University/Hospital, Taichung, Taiwan.
| |
Collapse
|
9
|
Li X, Wu Y, Wang P, Li Y, Gu J, Zhang Y, Yan S, Hu P. LncRNA XXYLT1-AS2 promotes tumor progression via autophagy inhibition through ubiquitinated degradation of TFEB in hepatocellular carcinoma. Clin Transl Oncol 2024; 26:698-708. [PMID: 37540409 DOI: 10.1007/s12094-023-03294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
PURPOSE There is compelling evidence that long-stranded non-coding RNAs (lncRNAs) play an important role in the progression of hepatocellular carcinoma (HCC). The aim of this study was to investigate the role of lncRNA XXYLT1 antisense-2 (XXYLT1-AS2) in HCC progression. METHODS Real-time PCR was used to assess the levels of XXYLT1-AS2 in plasma from HCC and normal patients. Cell proliferation, apoptosis, migration, and invasion were monitored, and tumor xenografts were established to investigate the biological functions of XXYLT1-AS2 by gain-of-function and loss-of-function studies in vitro and in vivo, the expression of autophagy biomarkers and transcriptional factor EB (TFEB) was examined by immunoprecipitation, ubiquitination assays, and western blotting. Autophagy inhibitor, 3-methyladenine (3MA), and proteasome inhibitor, MG132, were used to verify the role of autophagy in HCC progression and the effect of XXYLT1-AS2 on TFEB ubiquitination, respectively. RESULTS In this study, we identified that lncRNA XXYLT1-AS2 is highly expressed in HCC plasma and promotes tumor growth in vivo. In functional studies, it was found that silent expression of XXYLT1-AS2 inhibited HCC proliferation, migration, invasion, and activated autophagy of HCC cells, which were attenuated by autophagy inhibitor, 3MA. Mechanistically, XXYLT1-AS2 decreased the protein level of TFEB through promoting its degradation by ubiquitin proteasome pathway. CONCLUSION XXYLT1-AS2 plays an oncogenic role in HCC progression through inhibition of autophagy via promoting the degradation of TFEB, and thus could be a novel target for HCC treatment.
Collapse
Affiliation(s)
- Xuejie Li
- Department of Laboratory Medicine, Jinzhou Medical University Graduate Training Base, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Yuqin Wu
- Central Operating Room, Taihe Hospital, Shiyan, 442000, Hubei, People's Republic of China
| | - Pingfeng Wang
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan City, 442000, Hubei, People's Republic of China
| | - Ying Li
- Blood Transfusion Department, Taihe Hospital, Shiyan, 442000, Hubei, People's Republic of China
| | - Jiangxue Gu
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Yuan Zhang
- Biomedical Engineering College, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| | - Shirong Yan
- Department of Laboratory Medicine, Jinzhou Medical University Graduate Training Base, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical Sciences, Hubei University of Medicine, No. 30, South Renmin Road, Shiyan City, 442000, Hubei, People's Republic of China.
| | - Pei Hu
- Department of Laboratory Medicine, Jinzhou Medical University Graduate Training Base, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China.
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, No. 32, South Renmin Road, Shiyan City, 442000, Hubei, People's Republic of China.
| |
Collapse
|
10
|
Mallela VR, Rajtmajerová M, Trailin A, Liška V, Hemminki K, Ambrozkiewicz F. miRNA and lncRNA as potential tissue biomarkers in hepatocellular carcinoma. Noncoding RNA Res 2024; 9:24-32. [PMID: 38075204 PMCID: PMC10700120 DOI: 10.1016/j.ncrna.2023.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/22/2023] [Accepted: 10/21/2023] [Indexed: 12/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is primary liver cancer, frequently diagnosed at advanced stages with limited therapeutic options. MicroRNAs (miRNAs) regulate target gene expression and through inhibitory competitive binding of miRNA influence cellular processes including carcinogenesis. Extensive evidence proved that certain miRNA's are specifically expressed in neoplastic tissues of HCC patients and are confirmed as important factors that can participate in the regulation of key signalling pathways in cancer cells. As such, miRNAs have a great potential in the clinical diagnosis and treatment of HCC and can improve the limitations of standard diagnosis and treatment. Long non-coding RNAs (lncRNAs) have a critical role in the development and progression of HCC. HCC-related lncRNAs have been demonstrated to exhibit abnormal expression and contribute to transformation process (such as proliferation, apoptosis, accelerated vascular formation, and gain of invasive potential) through their interaction with DNA, RNA, or proteins. LncRNAs can bind mRNAs to release their target mRNA and enable its translation. These lncRNA-miRNA networks regulate cancer cell expression and so its proliferation, apoptosis, invasion, metastasis, angiogenesis, epithelial-mesenchymal transition (EMT), drug resistance, and autophagy. In this narrative review, we focus on miRNA and lncRNA in HCC tumor tissue and their interaction as current tools, and biomarkers and therapeutic targets unravelled in recent years.
Collapse
Affiliation(s)
- Venkata Ramana Mallela
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Marie Rajtmajerová
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
- Department of Surgery, University Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00, Pilsen, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
- Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00, Pilsen, Czech Republic
| |
Collapse
|
11
|
Ge WJ, Huang H, Wang T, Zeng WH, Guo M, Ren CR, Fan TY, Liu F, Zeng X. Long non-coding RNAs in hepatocellular carcinoma. Pathol Res Pract 2023; 248:154604. [PMID: 37302276 DOI: 10.1016/j.prp.2023.154604] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Long noncoding RNAs (lncRNAs) refer to a class of RNAs greater than 200 nucleotides in length, most of which are considered unable to encode proteins, thus deemed to be junk genes formerly. But with emerging studies about lncRNAs coming out in recent years, it is much more clearly depicted that they can regulate gene expression at different levels, with various mechanisms, thus participating in diverse biological or pathological processes, including complicated tumor-associated pathways. Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer, the third leading cause of cancer-related mortality worldwide, which has been found to tightly associate with aberrant expression of a variety of lncRNAs regulating tumor proliferation, invasion, drug resistance, and so on, making it a potential novel tumor marker and therapeutic target. In this review, we highlight a few lncRNAs that are closely related to the occurrence and progression of HCC and try to cover their multifarious roles from different layers.
Collapse
Affiliation(s)
- Wen-Jun Ge
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Huan Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Tao Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei-Hong Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Min Guo
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Chen-Ran Ren
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ting-Yu Fan
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fang Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
12
|
Lu S, Liu X, Wu C, Zhang J, Stalin A, Huang Z, Tan Y, Wu Z, You L, Ye P, Fu C, Zhang X, Wu J. Identification of an immune-related 6-lncRNA panel with a good performance for prognostic prediction in hepatocellular carcinoma by integrated bioinformatics analysis. Medicine (Baltimore) 2023; 102:e33990. [PMID: 37478241 PMCID: PMC10662904 DOI: 10.1097/md.0000000000033990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/23/2023] [Indexed: 07/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most malignant tumors with a poor prognosis. The long non-coding RNA (lncRNA) has been found to have great potential as a prognostic biomarker or therapeutic target for cancer patients. However, the prognostic value and tumor immune infiltration of lncRNAs in HCC has yet to be fully elucidated. To identify prognostic biomarkers of lncRNA in HCC by integrated bioinformatics analysis and explore their functions and relationship with tumor immune infiltration. The prognostic risk assessment model for HCC was constructed by comprehensively using univariate/multivariate Cox regression analysis, Kaplan-Meier survival analysis, and the least absolute shrinkage and selection operator regression analysis. Subsequently, the accuracy, independence, and sensitivity of our model were evaluated, and a nomogram for individual prediction in the clinic was constructed. Tumor immune microenvironment (TIME), immune checkpoints, and human leukocyte antigen alleles were compared in high- and low-risk patients. Finally, the functions of our lncRNA signature were examined using Gene Ontology, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and gene set enrichment analysis. A 6-lncRNA panel of HCC consisting of RHPN1-AS1, LINC01224, CTD-2510F5.4, RP1-228H13.5, LINC01011, and RP11-324I22.4 was eventually identified, and show good performance in predicting the survivals of patients with HCC and distinguishing the immunomodulation of TIME of high- and low-risk patients. Functional analysis also suggested that this 6-lncRNA panel may play an essential role in promoting tumor progression and immune regulation of TIME. In this study, 6 potential lncRNAs were identified as the prognostic biomarkers in HCC, and the regulatory mechanisms involved in HCC were initially explored.
Collapse
Affiliation(s)
- Shan Lu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhihong Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhishan Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Leiming You
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Peizhi Ye
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changgeng Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomeng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Yin Q, Ma H, Bamunuarachchi G, Zheng X, Ma Y. Long Non-Coding RNAs, Cell Cycle, and Human Breast Cancer. Hum Gene Ther 2023; 34:481-494. [PMID: 37243445 PMCID: PMC10398747 DOI: 10.1089/hum.2023.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 05/28/2023] Open
Abstract
The long non-coding RNAs (lncRNAs) constitute an important class of the human transcriptome. The discovery of lncRNAs provided one of many unexpected results of the post-genomic era and uncovered a huge number of previously ignored transcriptional events. In recent years, lncRNAs are known to be linked with human diseases, with particular focus on cancer. Growing evidence has indicated that dysregulation of lncRNAs in breast cancer (BC) is strongly associated with the occurrence, development, and progress. Increasing numbers of lncRNAs have been found to interact with cell cycle progression and tumorigenesis in BC. The lncRNAs can exert their effect as a tumor suppressor or oncogene and regulate tumor development through direct or indirect regulation of cancer-related modulators and signaling pathways. What is more, lncRNAs are excellent candidates for promising therapeutic targets in BC due to the features of high tissue and cell-type specific expression. However, the underlying mechanisms of lncRNAs in BC still remain largely undefined. Here, we concisely summarize and sort out the current understanding of research progress in relationships of the roles for lncRNA in regulating the cell cycle. We also summarize the evidence for aberrant lncRNA expression in BC, and the potential for lncRNA to improve BC therapy is also discussed. Together, lncRNAs can be considered as exciting therapeutic candidates whose expression can be altered to impede BC progression.
Collapse
Affiliation(s)
- Qinan Yin
- Precision Medicine Laboratory, College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Haodi Ma
- Precision Medicine Laboratory, College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Gayan Bamunuarachchi
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Xuewei Zheng
- Precision Medicine Laboratory, College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Yan Ma
- Spatial Navigation and Memory Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Han XY, Li X, Zhao RY, Ma HZ, Yu M, Niu XD, Jin HJ, Wang YF, Liu DM, Cai H. Comprehensive analysis of prognostic value and immunotherapy prospect of brain cytoplasmic RNA1 in hepatocellular carcinoma. World J Gastrointest Oncol 2023; 15:644-664. [PMID: 37123057 PMCID: PMC10134208 DOI: 10.4251/wjgo.v15.i4.644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/18/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND The expression of brain cytoplasmic RNA1 (BCYRN1) is linked to the clinicopathology and prognosis of several types of cancers, among which hepatocellular carcinoma (HCC) is one of the most frequent types of cancer worldwide.
AIM To explore the prognostic value and immunotherapeutic potential of BCYRN1 in HCC by bioinformatics and meta-analysis.
METHODS Information was obtained from the Cancer Genome Atlas database. First, the correlation between BCYRN1 expression and prognosis and clinicopathologic characteristics of HCC patients was explored. Univariate and multivariate regression analyses were employed to examine the relationship between BCYRN1 and HCC prognosis. Secondly, potential functions and pathways were explored by means of enrichment analysis of differentially-expressed genes. The relationships between BCYRN1 expression and tumor microenvironment, immune cell infiltration, immune checkpoint, drug sensitivity and immunotherapy effect were also investigated. Finally, three major databases were searched and used to conduct a meta-analysis on the relationship between BCYRN1 expression and patient prognosis.
RESULTS BCYRN1 expression was significantly higher in HCC compared to normal tissues and was linked to a poor prognosis and clinicopathological characteristics. Enrichment analysis showed that BCYRN1 regulates the extracellular matrix and transmission of signaling molecules, participates in the metabolism of nutrients, such as proteins, and participates in tumor-related pathways. BCYRN1 expression was linked to the tumor microenvironment, immune cell infiltration, drug sensitivity and the efficacy of immunotherapy. Furthermore, the meta-analysis in this study showed that BCYRN1 overexpression was related to a worse outcome in HCC patients.
CONCLUSION Overexpression of BCYRN1 relates to poor prognosis and may be a potential prognostic factor and immunotherapeutic target in HCC.
Collapse
Affiliation(s)
- Xiao-Yong Han
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Graduate School, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Xiong Li
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Graduate School, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Rang-Yin Zhao
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hai-Zhong Ma
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Miao Yu
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Xiang-Dong Niu
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Hao-Jie Jin
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Yong-Feng Wang
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- The First Clinical College of Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - De-Ming Liu
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| | - Hui Cai
- Gansu General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou 730000, Gansu Province, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
15
|
Tuo H, Liu R, Wang Y, Yang W, Liu Q. Hypoxia-induced lncRNA MRVI1-AS1 accelerates hepatocellular carcinoma progression by recruiting RNA-binding protein CELF2 to stabilize SKA1 mRNA. World J Surg Oncol 2023; 21:111. [PMID: 36973749 PMCID: PMC10044719 DOI: 10.1186/s12957-023-02993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) perform a vital role during the progression of hepatocellular carcinoma (HCC). Here, we aimed to identify a novel lncRNA involved in HCC development and elucidate the underlying molecular mechanism. METHODS The RT-qPCR and TCGA dataset analysis were applied to explore the expressions of MRVI1-AS1 in HCC tissues and cell lines. Statistical analysis was applied to analyze the clinical significance of MRVI1-AS1 in HCC. The functions of MRVI1-AS1 in HCC cells metastasis and growth were explored by transwell assays, wound healing assay, MTT assay, EdU assay, the intravenous transplantation tumor model, and the subcutaneous xenograft tumor model. Microarray mRNA expression analysis, dual luciferase assays, and actinomycin D treatment were used to explore the downstream target of MRVI1-AS1 in HCC cells. RIP assay was applied to assess the direct interactions between CELF2 and MRVI1-AS1 or SKA1 mRNA. Rescue experiments were employed to validate the functional effects of MRVI1-AS1, CELF2, and SKA1 on HCC cells. RESULTS MRVI1-AS1 was found to be dramatically upregulated in HCC and the expression was strongly linked to tumor size, venous infiltration, TNM stage, as well as HCC patients' outcome. Cytological experiments and animal experiments showed that MRVI1-AS1 promoted HCC cells metastasis and growth. Furthermore, SKA1 was identified as the downstream targeted mRNA of MRVI1-AS1 in HCC cells, and MRVI1-AS1 increased SKA1 expression by recruiting CELF2 protein to stabilize SKA1 mRNA. In addition, we found that MRVI1-AS1 expression was stimulated by hypoxia through a HIF-1-dependent manner, which meant that MRVI1-AS was a direct downstream target gene of HIF-1 in HCC. CONCLUSION In a word, our findings elucidated that hypoxia-induced MRVI1-AS1 promotes metastasis and growth of HCC cells via recruiting CELF2 protein to stabilize SKA1 mRNA, pointing to MRVI1-AS1 as a promising clinical application target for HCC therapy.
Collapse
Affiliation(s)
- Hang Tuo
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Runkun Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Yufeng Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Wei Yang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.
| |
Collapse
|
16
|
Dong L, Zhou S, Bai X, He X. Construction of a prognostic model for HCC based on ferroptosis-related lncRNAs expression and its potential to predict the response and irAEs of immunotherapy. Front Pharmacol 2023; 14:1090895. [PMID: 36992841 PMCID: PMC10040586 DOI: 10.3389/fphar.2023.1090895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Ferroptosis is an iron-dependent programmed cell death process, and studies have confirmed that it plays an important regulatory role in the occurrence and development of various malignancies including hepatocellular carcinoma (HCC). In addition, the role of abnormally expressed long non-coding RNAs (lncRNAs) in regulating and driving the occurrence and development of HCC has attracted more and more attention. However, there is still a lack of research on the role of ferroptosis-related lncRNAs in the prognosis prediction of HCC patients.Method: In this study, we used the Pearson test method to analyze the association between differentially expressed lncRNAs and ferroptosis-related genes in HCC and normal tissues obtained from The Cancer Genome Atlas (TCGA), and found 68 aberrantly expressed and prognosis-related ferroptosis-related lncRNAs. Based on this, we established an HCC prognostic model composed of 12 ferroptosis-related lncRNAs. In addition, HCC patients were divided into a high-risk group and a low-risk group according to the risk score of this 12 ferroptosis-related lncRNAs prognostic model. Gene enrichment analysis indicated that ferroptosis-related lncRNA-based expression signatures may regulate HCC immune microenvironment signaling pathways through ferroptosis, chemical carcinogenesis-reactive oxygen species, and NK cell-mediated cytotoxicity pathways. In addition, immune cell correlation analysis showed that there were significant differences in immune infiltrating cell subtypes, such as Th cells, macrophages, monocytes, and Treg cells between the two groups. In addition, the expression of multiple immune checkpoint molecules was found to be significantly increased in the high-risk group (eg, PD1, CTLA-4, CD86, etc.).Results: Our research provides a new method for predicting prognosis using a ferroptosis-related lncRNA expression signature prognostic model in hepatocellular carcinoma. And it provides new tools for predicting patient response and adverse effects of immunotherapy.Conclusion: In conclusion, ferroptosis-related lncRNA expression signatures can be used to construct a prognostic prediction model to predict the overall survival of HCC patients, and can be used as an independent influencing factor for prognosis. Further analysis showed that ferroptosis-related lncRNAs may affect the efficacy of immunotherapy in patients with HCC by altering the tumor microenvironment, so this model may serve as a new indicator of the response and irAEs of HCC to immunotherapy.
Collapse
Affiliation(s)
- Liangbo Dong
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, China
| | - Shengnan Zhou
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, China
| | - Xuesong Bai
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, China
| | - Xiaodong He
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, China
- *Correspondence: Xiaodong He,
| |
Collapse
|
17
|
Identification of Prognostic Biomarkers for Suppressing Tumorigenesis and Metastasis of Hepatocellular Carcinoma through Transcriptome Analysis. Diagnostics (Basel) 2023; 13:diagnostics13050965. [PMID: 36900109 PMCID: PMC10001411 DOI: 10.3390/diagnostics13050965] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Cancer is one of the deadliest diseases developed through tumorigenesis and could be fatal if it reaches the metastatic phase. The novelty of the present investigation is to explore the prognostic biomarkers in hepatocellular carcinoma (HCC) that could develop glioblastoma multiforme (GBM) due to metastasis. The analysis was conducted using RNA-seq datasets for both HCC (PRJNA494560 and PRJNA347513) and GBM (PRJNA494560 and PRJNA414787) from Gene Expression Omnibus (GEO). This study identified 13 hub genes found to be overexpressed in both GBM and HCC. A promoter methylation study showed these genes to be hypomethylated. Validation through genetic alteration and missense mutations resulted in chromosomal instability, leading to improper chromosome segregation, causing aneuploidy. A 13-gene predictive model was obtained and validated using a KM plot. These hub genes could be prognostic biomarkers and potential therapeutic targets, inhibition of which could suppress tumorigenesis and metastasis.
Collapse
|
18
|
Nucleus pulposus related lncRNA and mRNA expression profiles in intervertebral disc degeneration. Genomics 2023; 115:110570. [PMID: 36746221 DOI: 10.1016/j.ygeno.2023.110570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
In the present study, we aimed to have a comprehensive understanding of nucleus pulposus related long noncoding RNA (lncRNA) and mRNA expression profiles in intervertebral disc degeneration (IDD). In total, 2418 mRNAs and 528 lncRNAs were found to be differentially expressed in the IDD group compared with the Control group. Combining microarray datasets and sequencing data, 5 overlapping DEMs and 7 overlapping DELs were identified. NF-κB signaling pathway, PI3K-Akt signaling pathway and Wnt/β-catenin signaling pathway were strongly linked with enriched GO terms and KEGG pathways. The ceRNA network suggested that lnc-TMEM44-AS1-hsa-miR-206-HDAC4 may be one crucial axis in IDD. PPI network analysis was constructed with 309 nodes and 129 edges. And the highest connectivity degrees were ALB, APOB and CCL2. This study suggested that specific lncRNAs and ceRNA axes may be crucial in the development of IDD. It provides a new perspective for delaying IDD process and enhancing intervertebral disc repair.
Collapse
|
19
|
Basthi Mohan P, Rajpurohit S, Musunuri B, Bhat G, Lochan R, Shetty S. Exosomes in chronic liver disease. Clin Chim Acta 2023; 540:117215. [PMID: 36603656 DOI: 10.1016/j.cca.2022.117215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Chronic liver disease (CLD) is the major cause of mortality and morbidity, particularly in developing countries. Although there has been a significant advancement in the identification and treatment of liver diseases over time, clinical results are not satisfactory in advanced liver disease. Thus, it is crucial to develop certain technology for early detection, and curative therapies and to investigate the molecular mechanisms behind CLD's pathogenesis. The study of exosomes in CLD is a rapidly developing field. They are structurally membrane-derived nano vesicles released by various cells. In CLD, exosomes released from injured hepatic cells affect intercellular communication, creating a microenvironment conducive to the illness's development. They also carry liver cell-specific proteins and miRNAs, which can be used as diagnostic biomarkers and treatment targets for various liver diseases. End-stage liver disease can only be treated by a liver transplant, however, the low availability of compatible organs, high expenses of treatment, and surgical complications significantly lower patient survival rates. Early diagnosis and therapeutic intervention of CLD positively affect the likelihood of curative treatment and high patient survival rates. Considering the possibility that exosomes could be employed as tools for disease diagnostics and clinical intervention, The current study briefly summarizes the roles of exosomes and their cargo in diagnosing and treating liver diseases.
Collapse
Affiliation(s)
- Pooja Basthi Mohan
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Siddheesh Rajpurohit
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Balaji Musunuri
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Ganesh Bhat
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajiv Lochan
- Lead Consultant- Liver transplant Surgeon, Manipal Hospital, Old Airport Road, Bangalore, and Adjunct Professor Manipal Academy of Higher Education, India
| | - Shiran Shetty
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
20
|
Harkus U, Wankell M, Palamuthusingam P, McFarlane C, Hebbard L. Immune checkpoint inhibitors in HCC: Cellular, molecular and systemic data. Semin Cancer Biol 2022; 86:799-815. [PMID: 35065242 DOI: 10.1016/j.semcancer.2022.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer related deaths in the world, and for patients with advanced disease there are few therapeutic options available. The complex immunological microenvironment of HCC and the success of immunotherapy in several types of tumours, has raised the prospect of potential benefit for immune based therapies, such as immune checkpoint inhibitors (ICIs), in HCC. This has led to significant breakthrough research, numerous clinical trials and the rapid approval of multiple systemic drugs for HCC by regulatory bodies worldwide. Although some patients responded well to ICIs, many have failed to achieve significant benefit, while others showed unexpected and paradoxical deterioration. The aim of this review is to discuss the pathophysiology of HCC, the tumour microenvironment, key clinical trials evaluating ICIs in HCC, various resistance mechanisms to ICIs, and possible ways to overcome these impediments to improve patient outcomes.
Collapse
Affiliation(s)
- Uasim Harkus
- Townsville University Hospital, Townsville, Queensland 4811, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland 4811, Australia
| | - Pranavan Palamuthusingam
- College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; Townsville University Hospital, Townsville, Queensland 4811, Australia; Mater Hospital, Townsville, Queensland 4811, Australia
| | - Craig McFarlane
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland 4811, Australia
| | - Lionel Hebbard
- Department of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, Australian Institute of Tropical Medicine and Health, James Cook University, Townsville, Queensland 4811, Australia; Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales 2145, Australia.
| |
Collapse
|
21
|
Genetic Polymorphisms of lncRNA LINC00673 as Predictors of Hepatocellular Carcinoma Progression in an Elderly Population. Int J Mol Sci 2022; 23:ijms232112737. [PMID: 36361527 PMCID: PMC9654806 DOI: 10.3390/ijms232112737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Long noncoding (lnc)RNAs are reported to be key regulators of tumor progression, including hepatocellular carcinoma (HCC). The lncRNA long intergenic noncoding RNA 00673 (LINC00673) was indicated to play an important role in HCC progression, but the impacts of genetic variants (single-nucleotide polymorphisms, SNPs) of LINC00673 on HCC remain unclear. A TaqMan allelic discrimination assay was performed to analyze the genotypes of three tagging SNPs, viz., rs9914618 G > A, rs6501551 A > G, and rs11655237 C > T, of LINC00673 in 783 HCC patients and 1197 healthy subjects. Associations of functional SNPs of LINC00673 with HCC susceptibility and clinicopathologic variables were analyzed by logistic regression models. After stratification by confounding factor, we observed that elderly patients (≥60 years) with the LINC00673 rs9914618 A allele had an increased risk of developing HCC under a codominant model (p = 0.025) and dominant model (p = 0.047). Moreover, elderly patients carrying the GA + AA genotype of rs9914618 exhibited a higher risk of having lymph node metastasis compared to those who were homozygous for the major allele (p = 0.013). Genotype screening of rs9914618 in HCC cell lines showed that cells carrying the AA genotype expressed higher LINC00673 levels compared to the cells carrying the GG genotype. Further analyses of clinical datasets from the Cancer Genome Atlas (TCGA) showed that LINC00673 expressions were upregulated in HCC tissues compared to normal tissues, and were correlated with advanced clinical stages and poorer prognoses. In conclusions, our results suggested that the LINC00673 rs9914618 polymorphism may be a promising HCC biomarker, especially in elderly populations.
Collapse
|
22
|
Lin X, Luo L, Zou Y, Chen J. Cancer stemness-associated LINC02475 serves as a novel biomarker for diagnosis and prognosis prediction of hepatocellular carcinoma. Front Genet 2022; 13:991936. [PMID: 36118852 PMCID: PMC9479154 DOI: 10.3389/fgene.2022.991936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Hepatocellular carcinoma (HCC) is a severe malignant tumor with high incidence and mortality. LncRNAs present broad clinical application prospects. Herein, we aim to identify a cancer stemness associated lncRNA and reveal its role in HCC diagnosis, prognosis evaluation, and progression. Methods: The cancer stemness-associated LINC02475 in HCC samples were identified using bioinformatics analysis. Cellular and molecular experiments were conducted to elucidate the role of LINC02475 in HCC. Results: The firm links between LINC02475 and HCC stemness and prognosis were demonstrated by bioinformatics analysis of public cancer datasets. LINC02475 expression was elevated in HCC, performed well in the diagnosis, and independently predicts poor overall survival (hazard ratio = 1.389, 95% confidence interval = 1.047-1.843, p = 0.023), as well as progression-free survival (hazard ratio = 1.396, 95% confidence interval = 1.016-1.917, p = 0.040) of HCC patients. Moreover, LINC02475 enhanced the tumorigenic pathways necessary for cell stemness, DNA replication required for cell proliferation, epithelial-mesenchymal transition involved in metastasis, and DNA damage repair pathways that drove cell radioresistance and cisplatin resistance, thus promoting HCC progression. Conclusion: Cancer stemness-associated LINC02475 independently predicted a poor prognosis and promoted HCC progression by enhancing stemness, proliferation, metastasis, radioresistance, and chemoresistance. Our study lays a foundation for the clinical application of LINC02475 as a novel biomarker and target for the diagnosis, prognosis evaluation, as well as treatment of HCC.
Collapse
Affiliation(s)
- Xian Lin
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, China
| | - Yujiao Zou
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Chen
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
23
|
Wei W, Liu C, Wang M, Jiang W, Wang C, Zhang S. Prognostic Signature and Tumor Immune Landscape of N7-Methylguanosine-Related lncRNAs in Hepatocellular Carcinoma. Front Genet 2022; 13:906496. [PMID: 35938009 PMCID: PMC9354608 DOI: 10.3389/fgene.2022.906496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 01/15/2023] Open
Abstract
Despite great advances in the treatment of liver hepatocellular carcinoma (LIHC), such as immunotherapy, the prognosis remains extremely poor, and there is an urgent need to develop novel diagnostic and prognostic markers. Recently, RNA methylation-related long non-coding RNAs (lncRNAs) have been demonstrated to be novel potential biomarkers for tumor diagnosis and prognosis as well as immunotherapy response, such as N6-methyladenine (m6A) and 5-methylcytosine (m5C). N7-Methylguanosine (m7G) is a widespread RNA modification in eukaryotes, but the relationship between m7G-related lncRNAs and prognosis of LIHC patients as well as tumor immunotherapy response is still unknown. In this study, based on the LIHC patients' clinical and transcriptomic data from TCGA database, a total of 992 m7G-related lncRNAs that co-expressed with 22 m7G regulatory genes were identified using Pearson correlation analysis. Univariate regression analysis was used to screen prognostic m7G-related lncRNAs, and the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression were applied to construct a 9-m7G-related-lncRNA risk model. The m7G-related lncRNA risk model was validated to exhibit good prognostic performance through Kaplan-Meier analysis and ROC analysis. Together with the clinicopathological features, the m7G-related lncRNA risk score was found to be an independent prognostic factor for LIHC. Furthermore, the high-risk group of LIHC patients was unveiled to have a higher tumor mutation burden (TMB), and their tumor microenvironment was more prone to the immunosuppressive state and exhibited a lower response rate to immunotherapy. In addition, 47 anti-cancer drugs were identified to exhibit a difference in drug sensitivity between the high-risk and low-risk groups. Taken together, the m7G-related lncRNA risk model might display potential value in predicting prognosis, immunotherapy response, and drug sensitivity in LIHC patients.
Collapse
Affiliation(s)
- Wei Wei
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chao Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wei Jiang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Caihong Wang
- Department of Pathology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
24
|
The lncRNA PRINS-miRNA-mRNA Axis Gene Expression Profile as a Circulating Biomarker Panel in Psoriasis. Mol Diagn Ther 2022; 26:451-465. [PMID: 35761165 PMCID: PMC9276574 DOI: 10.1007/s40291-022-00598-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 10/29/2022]
Abstract
BACKGROUND The interaction between genes and the environment in psoriasis is firmly coupled by epigenetic modification. Epigenetic modifications are inherited variations in gene expression devoid of DNA sequence alterations. Non-coding RNAs are regarded as one of the epigenetic modifications that lead eventually to enduring heritable variations in gene expression. In the present study, we chose the lncRNA, Psoriasis-susceptibility-Related RNA Gene Induced by Stress (PRINS) known to have a regulatory role in psoriasis and deduced its axis of lncRNA-miRNA-mRNA through an in silico data analysis. We aimed to assess the expression levels of this lncRNA-miRNA-mRNA in patients with psoriasis to elucidate their possible roles in psoriasis management. METHODS We investigated the lncRNA-PRINS and its target microRNAs (miRNA124-3p, miRNA203a-5p, miRNA129-5p, miRNA146a-5p, miRNA9-5p) and partner genes (NPM, G1P3) expression levels in the plasma of 120 patients with psoriasis compared to 120 healthy volunteers using quantitative real-time polymerase chain reaction and correlated the results with the patients' clinicopathological data. Finally, we performed a function, disease, and pathway enrichment analysis for the LncRNA-miRNA-mRNA axis under study. RESULTS The lncRNA PRINS, G1P3, and NPM genes showed significantly under-expressed levels while all miRNAs included in the study showed significant over-expression in patients with psoriasis relative to controls. The lncRNA PRINS, G1P3, and NPM genes showed a significant direct correlation with each other and inverse significant correlations with all miRNAs under study. All the study biomarkers showed significant results for discriminating between patients with psoriasis and controls using a receiver operating curve analysis with sensitivity over 90% except for PRINS, which was 74.2%. The G1P3 gene showed a direct significant correlation with body mass index in patients with psoriasis (p = 0.009) and an inverse significant correlation with age (p = 0.034). The NPM gene showed a significant correlation with body mass index in patients with psoriasis (p = 0.002). CONCLUSIONS Based on our results, we suggest that restoring the altered PRINS-miRNA-mRNA axis gene expression levels might represent a tool to prevent psoriasis worsening, along with standard therapy. Thus, on the clinical practice level, the PRINS-miRNA-mRNA axis expression profile can be utilized in designing specific targeted therapy aimed at applying a personalized medicine approach among patients with psoriasis.
Collapse
|
25
|
Yang L, Zou T, Chen Y, Zhao Y, Wu X, Li M, Du F, Chen Y, Xiao Z, Shen J. Hepatitis B virus X protein mediated epigenetic alterations in the pathogenesis of hepatocellular carcinoma. Hepatol Int 2022; 16:741-754. [PMID: 35648301 DOI: 10.1007/s12072-022-10351-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a worldwide health problem. Hepatitis B virus X protein (HBx), a pleiotropic regulatory protein encoded by HBV, is necessary for the transcription of HBV covalently closed circular DNA (cccDNA) minichromosomes, and affects the epigenetic regulation of host cells. The epigenetic reprogramming of HBx on host cell genome is strongly involved in HBV-related HCC carcinogenesis. Here, we review the latest findings of the epigenetic regulation induced by HBx protein in hepatocellular carcinoma (HCC), including DNA methylation, histone modification and non-coding RNA expression. The influence of HBx on the epigenetic regulation of cccDNA is also summarized. In addition, preliminary studies of targeted drugs for epigenetic changes induced by HBx are also discussed. The exploration of epigenetic markers as potential targets will help to develop new prevention and/or treatment methods for HBx-related HCC.
Collapse
Affiliation(s)
- Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Tao Zou
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yao Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, 646000, China.
- South Sichuan Institute of Translational Medicine, Luzhou, 646000, China.
| |
Collapse
|
26
|
LINC02154 promotes the proliferation and metastasis of hepatocellular carcinoma by enhancing SPC24 promoter activity and activating the PI3K-AKT signaling pathway. Cell Oncol (Dordr) 2022; 45:447-462. [PMID: 35543858 DOI: 10.1007/s13402-022-00676-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Abnormal expression of long non-coding RNAs (lncRNAs) has been associated with the initiation and progression of hepatocellular carcinoma but, as yet, the clinicopathologic significance and potential role of Linc02154 in HCC remains to be determined. Here, we aimed to investigate the potential role and mode of action of Linc02154 in HCC. METHODS The expression of Linc02154 in 20 pairs of HCC/normal tissues and 7 HCC cell lines was detected by qRT-PCR. The localization of Linc02154 in HCC cells was detected using fluorescence in situ hybridization and nuclear-plasma separation assays. MTS, EdU incorporation, colony formation, flow cytometry, scratch wound-healing and transwell assays were performed to assess the role of Linc02154 in HCC cell proliferation, migration and invasion in vitro, and BALB/c nude mice xenografts were used to evaluate its role in vivo. RNA sequencing and Western blotting were used to evaluate the regulatory effect of Linc02154 on SPC24 gene expression. A dual-luciferase reporter assay was used to assess a putative interaction of Linc02154 with the SPC24 promoter. RESULTS We identified a new lncRNA, Linc02154, that is highly expressed in HCC cells and tissues of patients with a poor overall survival. Functional experiments revealed that exogenous Linc02154 expression in MHCC-97H and SK-Hep1 cells promoted their proliferation, migration and invasion in vitro and their tumorigenesis in vivo. Using a dual luciferase reporter assay we found that Linc02154 can enhance SPC24 promoter (-500 bp ~ -1000 region) activity. Exogenous over-expression of Linc02154 led to up-regulation of SPC24 by activating PI3K/AKT and its downstream signals, including cell cycle progression and EMT-associated gene expression. CONCLUSION Our data suggest that Linc02154 may serve as a valuable biomarker of HCC and as a potential therapeutic target.
Collapse
|
27
|
Braghini MR, Lo Re O, Romito I, Fernandez-Barrena MG, Barbaro B, Pomella S, Rota R, Vinciguerra M, Avila MA, Alisi A. Epigenetic remodelling in human hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:107. [PMID: 35331312 PMCID: PMC8943959 DOI: 10.1186/s13046-022-02297-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/19/2022] [Indexed: 04/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, being the sixth most commonly diagnosed cancer and the fourth leading cause of cancer-related death. As other heterogeneous solid tumours, HCC results from a unique synergistic combination of genetic alterations mixed with epigenetic modifications.In HCC the patterns and frequencies of somatic variations change depending on the nearby chromatin. On the other hand, epigenetic alterations often induce genomic instability prone to mutations. Epigenetics refers to heritable states of gene expression without alteration to the DNA sequence itself and, unlike genetic changes, the epigenetic modifications are reversible and affect gene expression more extensively than genetic changes. Thus, studies of epigenetic regulation and the involved molecular machinery are greatly contributing to the understanding of the mechanisms that underline HCC onset and heterogeneity. Moreover, this knowledge may help to identify biomarkers for HCC diagnosis and prognosis, as well as future new targets for more efficacious therapeutic approaches.In this comprehensive review we will discuss the state-of-the-art knowledge about the epigenetic landscape in hepatocarcinogenesis, including evidence on the diagnostic and prognostic role of non-coding RNAs, modifications occurring at the chromatin level, and their role in the era of precision medicine.Apart from other better-known risk factors that predispose to the development of HCC, characterization of the epigenetic remodelling that occurs during hepatocarcinogenesis could open the way to the identification of personalized biomarkers. It may also enable a more accurate diagnosis and stratification of patients, and the discovery of new targets for more efficient therapeutic approaches.
Collapse
Affiliation(s)
- Maria Rita Braghini
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Oriana Lo Re
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Ilaria Romito
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Barbara Barbaro
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Silvia Pomella
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Matias A Avila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy.
| |
Collapse
|
28
|
Zhang Z, Zhang W, Wang Y, Wan T, Hu B, Li C, Ge X, Lu S. Construction and Validation of a Ferroptosis-Related lncRNA Signature as a Novel Biomarker for Prognosis, Immunotherapy and Targeted Therapy in Hepatocellular Carcinoma. Front Cell Dev Biol 2022; 10:792676. [PMID: 35295858 PMCID: PMC8919262 DOI: 10.3389/fcell.2022.792676] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Recently, immunotherapy combined with targeted therapy has significantly prolonged the survival time and improved the quality of life of patients with hepatocellular carcinoma (HCC). However, HCC treatment remains challenging due to the high heterogeneity of this malignancy. Sorafenib, the first-line drug for the treatment of HCC, can inhibit the progression of HCC by inducing ferroptosis. Ferroptosis is associated with the formation of an immunosuppressive microenvironment in tumours. Moreover, long non-coding RNAs (lncRNAs) are strongly associated with ferroptosis and the progression of HCC. Discovery of ferroptosis-related lncRNAs (FR-lncRNAs) is critical for predicting prognosis and the effectiveness of immunotherapy and targeted therapies to improve the quality and duration of survival of HCC patients. Herein, all cases from The Cancer Genome Atlas (TCGA) database were divided into training and testing groups at a 6:4 ratio to construct and validate the lncRNA signatures. Least Absolute Shrinkage and Selection Operator (LASSO) regression and Cox regression analyses were used to screen the six FR-lncRNAs (including MKLN1-AS, LINC01224, LNCSRLR, LINC01063, PRRT3-AS1, and POLH-AS1). Kaplan–Meier (K–M) and receiver operating characteristic (ROC) curve analyses demonstrated the optimal predictive prognostic ability of the signature. Furthermore, a nomogram indicated favourable discrimination and consistency. For further validation, we used real-time quantitative polymerase chain reaction (qRT-PCR) to analyse the expression of LNCSRLR, LINC01063, PRRT3-AS1, and POLH-AS1 in HCC tissues. Moreover, we determined the ability of the signature to predict the effects of immunotherapy and targeted therapy in patients with HCC. Gene set enrichment analysis (GSEA) and somatic mutation analysis showed that ferroptosis-related pathways, immune-related pathways, and TP53 mutations may be strongly associated with the overall survival (OS) outcomes of HCC patients. Overall, our study suggests that a new risk model of six FR-lncRNAs has a significant prognostic value for HCC and that it could contribute to precise and individualised HCC treatment.
Collapse
Affiliation(s)
- Ze Zhang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Wenwen Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Yafei Wang
- Medical School of Chinese People's Liberation Army (PLA), Beijing, China.,Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Tao Wan
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Bingyang Hu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Chonghui Li
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Xinlan Ge
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| | - Shichun Lu
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, Beijing, China.,Institute of Hepatobiliary Surgery of Chinese PLA, Beijing, China.,Key Laboratory of Digital Hepatobiliary Surgery, PLA, Beijing, China
| |
Collapse
|
29
|
Zhu X, Feng Y, He D, Wang Z, Huang F, Tu J. Clinical Value and Underlying Mechanisms of Upregulated LINC00485 in Hepatocellular Carcinoma. Front Oncol 2021; 11:654424. [PMID: 34290977 PMCID: PMC8288074 DOI: 10.3389/fonc.2021.654424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Aims This study aimed to reveal the functional role of LINC00485 in hepatocellular carcinoma (HCC). Materials & Methods 210 serum samples from Zhongnan Hospital of Wuhan University were employed to evaluate clinical value of LINC00485. Bioinformatics analysis was adopted to explore its potential mechanisms. Results LINC00485 was confirmed to be upregulated in HCC tissues and serum samples. Survival analysis and receiver operating characteristic curve revealed its prognostic and diagnostic roles. The combination of serum LINC00485 with AFP can remarkably improve diagnostic ability of HCC. Exploration of the underlying mechanism demonstrated that LINC00485 might exert pro-oncogenic activity by LINC00485—three miRNAs—four mRNAs network. Conclusions Our study unveiled that upregulated LINC00485 could act as a potential diagnostic and prognostic biomarker and provide a novel insight into the molecular mechanisms of LINC00485 in HCC pathogenesis.
Collapse
Affiliation(s)
- Xinyu Zhu
- Department of Laboratory Medicine, Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanlin Feng
- Department of Laboratory Medicine, Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dingdong He
- Department of Laboratory Medicine, Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zi Wang
- Department of Laboratory Medicine, Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fangfang Huang
- Department of Laboratory Medicine, Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiancheng Tu
- Department of Laboratory Medicine, Clinical Laboratory Medicine and Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Massey AE, Malik S, Sikander M, Doxtater KA, Tripathi MK, Khan S, Yallapu MM, Jaggi M, Chauhan SC, Hafeez BB. Clinical Implications of Exosomes: Targeted Drug Delivery for Cancer Treatment. Int J Mol Sci 2021; 22:ijms22105278. [PMID: 34067896 PMCID: PMC8156384 DOI: 10.3390/ijms22105278] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
Exosomes are nanoscale vesicles generated by cells for intercellular communication. Due to their composition, significant research has been conducted to transform these particles into specific delivery systems for various disease states. In this review, we discuss the common isolation and loading methods of exosomes, some of the major roles of exosomes in the tumor microenvironment, as well as discuss recent applications of exosomes as drug delivery vessels and the resulting clinical implications.
Collapse
Affiliation(s)
- Andrew E. Massey
- National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD 20892, USA;
| | - Shabnam Malik
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
| | - Mohammad Sikander
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
| | - Kyle A. Doxtater
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
| | - Manish K. Tripathi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
| | - Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
| | - Meena Jaggi
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
- Correspondence: (S.C.C.); (B.B.H.)
| | - Bilal B. Hafeez
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (S.M.); (M.S.); (K.A.D.); (M.K.T.); (S.K.); (M.M.Y.); (M.J.)
- Correspondence: (S.C.C.); (B.B.H.)
| |
Collapse
|
31
|
Xu H, Yang Y, Fan L, Deng L, Fan J, Li D, Li H, Zhao RC. Lnc13728 facilitates human mesenchymal stem cell adipogenic differentiation via positive regulation of ZBED3 and downregulation of the WNT/β-catenin pathway. Stem Cell Res Ther 2021; 12:176. [PMID: 33712067 PMCID: PMC7953623 DOI: 10.1186/s13287-021-02250-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/28/2021] [Indexed: 12/17/2022] Open
Abstract
Background Obesity has received increasing attention because of its widespread worldwide occurrence and many threats to health. Human adipose-derived mesenchymal stem cells (hADSCs) are a critical source of adipocytes. Long noncoding RNAs (lncRNAs) play pivotal roles in cell fate determination and differentiation. The objective of the present study was to identify and investigate the function and regulatory mechanism of lncRNAs on adipogenic differentiation of hADSCs. Methods We used lncRNA arrays to identify the prominent differentially expressed lncRNAs before and after hADSC adipogenic differentiation and verified their biological function through antisense oligonucleotide knockdown or lentivirus overexpression. The adipogenic differentiation of hADSCs was assessed by oil red O staining as well as the mRNA and protein levels of adipogenic marker genes through qRT-PCR and western blot. Bioinformatic tool LncPro and immunofluorescence was performed to uncover the interaction between lnc13728 and ZBED3. WNT/β-catenin signaling pathway was evaluated by western blot and immunofluorescence. Results The lncRNA arrays showed that lnc13728 expression was significantly upregulated after hADSC adipogenic differentiation and was correlated positively with the expression of the adipogenesis-related genes in human adipose tissue. Lnc13728 knockdown in hADSCs suppressed the expression of the adipogenesis-related genes at both mRNA and protein level and weakened lipid droplet production. Accordingly, lnc13728 overexpression enhanced hADSC adipogenic differentiation. Beyond that, lnc13728 co-localized with ZBED3 in the cytoplasm and regulated its expression positively. Downregulating ZBED3 had a negative effect on adipogenic differentiation, while the expression of WNT/β-catenin signaling pathway-related proteins was upregulated. Conclusions Lnc13728 promotes hADSC adipogenic differentiation possibly by positively regulating the expression of ZBED3 which plays a role in inhibiting the WNT/β-catenin pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02250-8.
Collapse
Affiliation(s)
- Haoying Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China
| | - Yanlei Yang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China
| | - Linyuan Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China
| | - Luchan Deng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China
| | - Junfen Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China
| | - Di Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China
| | - Hongling Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China.
| |
Collapse
|
32
|
Giovannini C, Fornari F, Piscaglia F, Gramantieri L. Notch Signaling Regulation in HCC: From Hepatitis Virus to Non-Coding RNAs. Cells 2021; 10:cells10030521. [PMID: 33804511 PMCID: PMC8000248 DOI: 10.3390/cells10030521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
The Notch family includes evolutionary conserved genes that encode for single-pass transmembrane receptors involved in stem cell maintenance, development and cell fate determination of many cell lineages. Upon activation by different ligands, and depending on the cell type, Notch signaling plays pleomorphic roles in hepatocellular carcinoma (HCC) affecting neoplastic growth, invasion capability and stem like properties. A specific knowledge of the deregulated expression of each Notch receptor and ligand, coupled with resultant phenotypic changes, is still lacking in HCC. Therefore, while interfering with Notch signaling might represent a promising therapeutic approach, the complexity of Notch/ligands interactions and the variable consequences of their modulations raises concerns when performed in undefined molecular background. The gamma-secretase inhibitors (GSIs), representing the most utilized approach for Notch inhibition in clinical trials, are characterized by important adverse effects due to the non-specific nature of GSIs themselves and to the lack of molecular criteria guiding patient selection. In this review, we briefly summarize the mechanisms involved in Notch pathway activation in HCC supporting the development of alternatives to the γ-secretase pan-inhibitor for HCC therapy.
Collapse
Affiliation(s)
- Catia Giovannini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
- Correspondence: ; Tel.: +39-051-2144903; Fax: +39-051-2143902
| | - Francesca Fornari
- Center for Applied Biomedical Research (CRBA), S.Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.G.)
- Department of Medical and Surgical Science (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Laura Gramantieri
- Division of Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.G.)
| |
Collapse
|