1
|
Toprak U, Erlandson M, Baldwin D, Karcz S, Wan L, Coutu C, Gillott C, Hegedus DD. Identification of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix proteins and enzymes involved in peritrophic matrix chitin metabolism. INSECT SCIENCE 2016; 23:656-674. [PMID: 25846407 DOI: 10.1111/1744-7917.12225] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
The peritrophic matrix (PM) is essential for insect digestive system physiology as it protects the midgut epithelium from damage by food particles, pathogens, and toxins. The PM is also an attractive target for development of new pest control strategies due to its per os accessibility. To understand how the PM performs these functions, the molecular architecture of the PM was examined using genomic and proteomic approaches in Mamestra configurata (Lepidoptera: Noctuidae), a major pest of cruciferous oilseed crops in North America. Liquid chromatography-tandem mass spectrometry analyses of the PM identified 82 proteins classified as: (i) peritrophins, including a new class with a CBDIII domain; (ii) enzymes involved in chitin modification (chitin deacetylases), digestion (serine proteases, aminopeptidases, carboxypeptidases, lipases and α-amylase) or other reactions (β-1,3-glucanase, alkaline phosphatase, dsRNase, astacin, pantetheinase); (iii) a heterogenous group consisting of polycalin, REPATs, serpin, C-Type lectin and Lsti99/Lsti201 and 3 novel proteins without known orthologs. The genes encoding PM proteins were expressed predominantly in the midgut. cDNAs encoding chitin synthase-2 (McCHS-2), chitinase (McCHI), and β-N-acetylglucosaminidase (McNAG) enzymes, involved in PM chitin metabolism, were also identified. McCHS-2 expression was specific to the midgut indicating that it is responsible for chitin synthesis in the PM, the only chitinous material in the midgut. In contrast, the genes encoding the chitinolytic enzymes were expressed in multiple tissues. McCHS-2, McCHI, and McNAG were expressed in the midgut of feeding larvae, and NAG activity was present in the PM. This information was used to generate an updated model of the lepidopteran PM architecture.
Collapse
Affiliation(s)
- Umut Toprak
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Plant Protection, Faculty of Agriculture, University of Ankara, Ankara, Turkey
| | - Martin Erlandson
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Doug Baldwin
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Steve Karcz
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Lianglu Wan
- Plant Biotechnology Institute, National Research Council of Canada, Saskatoon, SK, Canada
| | - Cathy Coutu
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Cedric Gillott
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Dwayne D Hegedus
- Agriculture and Agri-Food Canada, Saskatoon, SK, Canada.
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
3
|
McTaggart SJ, Hannah T, Bridgett S, Garbutt JS, Kaur G, Boots M. Novel insights into the insect trancriptome response to a natural DNA virus. BMC Genomics 2015; 16:310. [PMID: 25924671 PMCID: PMC4415287 DOI: 10.1186/s12864-015-1499-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/27/2015] [Indexed: 01/31/2023] Open
Abstract
Background Little is known about invertebrate responses to DNA viruses. Here, we infect a commercially important pest moth species Plodia interpunctella with its naturally infecting DNA virus. We sequenced, assembled and annotated the complete transcriptome of the moth, and a partial transcriptome of the virus. We then tested for differential gene expression between moths that were exposed to the virus and controls. Results We found 51 genes that were differentially expressed in moths exposed to a DNA baculovirus compared to controls. Gene set enrichment analysis revealed that cuticle proteins were significantly overrepresented in this group of genes. Interestingly, 6 of the 7 differentially expressed cuticle proteins were downregulated, suggesting that baculoviruses are able to manipulate its host’s response. In fact, an additional 29 of the 51 genes were also downregulated in exposed compared with control animals, including a gram-negative binding protein. In contrast, genes involved in transposable element movement were upregulated after infection. Conclusions We present the first experiment to measure genome-wide gene expression in an insect after infection with a natural DNA virus. Our results indicate that cuticle proteins might be key genes underpinning the response to DNA viruses. Furthermore, the large proportion of genes that were downregulated after viral exposure suggests that this virus is actively manipulating the insect immune response. Finally, it appears that transposable element activity might increase during viral invasion. Combined, these results provide much needed host candidate genes that respond to DNA viral invaders.
Collapse
Affiliation(s)
- Seanna J McTaggart
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories University of Edinburgh, Edinburgh, EH9 3JT, UK. .,Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Tidbury Hannah
- Centre for Environment, Fisheries and Aquaculture Science, The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, UK.
| | - Stephen Bridgett
- Edinburgh Genomics, Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Jennie S Garbutt
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories University of Edinburgh, Edinburgh, EH9 3JT, UK.
| | - Gaganjot Kaur
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada.
| | - Mike Boots
- Daphne du Maurier Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Cornwall, TR10 9EZ, UK.
| |
Collapse
|
4
|
Liu X, Li J, Guo W, Li R, Zhao D, Li X. A new type I peritrophic membrane protein from larval Holotrichia oblita (Coleoptera: Melolonthidae) binds to chitin. Int J Mol Sci 2014; 15:6831-42. [PMID: 24758927 PMCID: PMC4013664 DOI: 10.3390/ijms15046831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/20/2014] [Accepted: 04/03/2014] [Indexed: 12/03/2022] Open
Abstract
Peritrophic membranes (PMs) are composed of chitin and protein. Chitin and protein play important roles in the structural formation and function of the PM. A new type I PM protein, HoCBP76, was identified from the Holotrichia oblita. HoCBP76 was shown as a 62.3 kDa protein by SDS-PAGE analysis and appeard to be associated with the PM throughout its entire length. In H. oblita larvae, the midgut is the only tissue where HoCBP76 could be detected during the feeding period of the larvae. The predicted amino acid sequence indicates that it contains seven tandem chitin binding domains belonging to the peritrophin-A family. HoCBP76 has chitin binding activity and is strongly associated with the PM. The HoCBP76 was not a mucin-like glycoprotein, and the consensus of conserved cysteines appeared to be CX13–17CX5CX9CX12CX7C. Western blot analysis showed that the abundance of HoCBP76 in the anterior, middle and posterior regions of the midgut was similar, indicating that HoCBP76 was secreted by the whole midgut epithelium, and confirmed the H. oblita PM belonged to the Type I PM. Immunolocalization analysis showed that HoCBP76 was mainly localized in the PM. The HoCBP76 is the first PM protein found in the H. oblita; however, its biochemical and physiological functions require further investigation.
Collapse
Affiliation(s)
- Xiaomin Liu
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, Hebei, China.
| | - Jie Li
- Shijiazhuang Development and Reform Commission, Shijiazhuang 050011, Hebei, China.
| | - Wei Guo
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| | - Ruijun Li
- College of Plant Protection, Agricultural University of Hebei/Biological Control Centre of Plant Pathogens and Plant Pests of Hebei Province, Baoding 071001, Hebei, China.
| | - Dan Zhao
- College of Plant Protection, Agricultural University of Hebei/Biological Control Centre of Plant Pathogens and Plant Pests of Hebei Province, Baoding 071001, Hebei, China.
| | - Xinna Li
- College of Plant Protection, Agricultural University of Hebei/Biological Control Centre of Plant Pathogens and Plant Pests of Hebei Province, Baoding 071001, Hebei, China.
| |
Collapse
|
5
|
Molecular characterization of a peritrophic membrane protein from the silkworm, Bombyx mori. Mol Biol Rep 2012; 40:1087-95. [DOI: 10.1007/s11033-012-2151-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
|
6
|
Yin J, Feng H, Sun H, Xi J, Cao Y, Li K. Functional analysis of general odorant binding protein 2 from the meadow moth, Loxostege sticticalis L. (Lepidoptera: Pyralidae). PLoS One 2012; 7:e33589. [PMID: 22479417 PMCID: PMC3316592 DOI: 10.1371/journal.pone.0033589] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/16/2012] [Indexed: 11/18/2022] Open
Abstract
Odorant binding proteins play a crucial role in transporting semiochemicals across the sensillum lymph to olfactory receptors within the insect antennal sensilla. In this study, the general odorant binding protein 2 gene was cloned from the antennae of Loxostege sticticalis, using reverse transcription PCR and rapid amplification of cDNA ends. Recombinant LstiGOBP2 was expressed in Escherichia coli and purified by Ni ion affinity chromatography. Real-time PCR assays indicated that LstiGOBP2 mRNA is expressed mainly in adult antennae, with expression levels differing with developmental age. Ligand-binding experiments using N-phenyl-naphthylamine (1-NPN) as a fluorescent probe demonstrated that the LstiGOBP2 protein has binding affinity to a broad range of odorants. Most importantly, trans-11-tetradecen-1-yl acetate, the pheromone component of Loxostege sticticalis, and trans-2-hexenal and cis-3-hexen-1-ol, the most abundant plant volatiles in essential oils extracted from host plants, had high binding affinities to LstiGOBP2 and elicited strong electrophysiological responses from the antennae of adults.
Collapse
Affiliation(s)
- Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| | | | | | | | | | | |
Collapse
|