1
|
Zhang M, Xiong W, Qiao R, Li M, Zhang C, Yang C, Zhu Y, He J, Ma Z. Irisin in the modulation of bone and cartilage homeostasis: a review on osteoarthritis relief potential. Front Physiol 2025; 16:1570157. [PMID: 40313878 PMCID: PMC12043700 DOI: 10.3389/fphys.2025.1570157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025] Open
Abstract
Osteoarthritis, a progressive and degenerative joint disease, disrupts the integrity of the entire joint structure, underscoring the urgency of identifying more effective therapeutic strategies and innovative targets. Among these, exercise therapy is considered a key component in the early management of osteoarthritis, functioning by stimulating the secretion of myokines from the skeletal muscle system. Irisin, a myokine predominantly secreted by skeletal muscle during exercise and encoded by the FNDC5 gene, has garnered attention for its regulatory effects on bone health. Emerging evidence suggests that irisin may play a protective role in osteoarthritis by promoting tissue homeostasis, enhancing subchondral bone density and microstructure, and inhibiting chondrocyte apoptosis. By improving chondrocyte viability, preserving extracellular matrix integrity, and maintaining homeostasis in osteoblasts, osteoclasts, and osteocytes, irisin emerges as a promising therapeutic target for osteoarthritis. This review delves into the role of irisin in osteoarthritis pathogenesis, highlighting its influence on cartilage and bone metabolism as well as its dynamic relationship with exercise. Additionally, this review suggests that further exploration on its specific molecular mechanisms, optimization of drug delivery systems, and strategic utilization of exercise-induced benefits will be pivotal in unlocking the full potential of irisin as a novel intervention for osteoarthritis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yan Zhu
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiaying He
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhigui Ma
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
2
|
Zhang Y, He X, Wang K, Xue Y, Hu S, Jin Y, Zhu G, Shi Q, Rui Y. Irisin alleviates obesity-induced bone loss by inhibiting interleukin 6 expression via TLR4/MyD88/NF-κB axis in adipocytes. J Adv Res 2025; 69:343-359. [PMID: 38626873 PMCID: PMC11954833 DOI: 10.1016/j.jare.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024] Open
Abstract
INTRODUCTION Obesity-induced bone loss affects the life quality of patients all over the world. Irisin, one of the myokines, plays an essential role in bone and fat metabolism. OBJECTIVE Investigate the effects of irisin on bone metabolism via adipocytes in the bone marrow microenvironment. METHODS In this study, we fed fibronectin type III domain-containing protein 5 (FNDC5, the precursor protein of irisin) knockout mice (FNDC5-/-) with a high-fat diet (HFD) for 10 weeks. The quality of bone mass was assessed by micro-CT analysis, histological staining, and dynamic bone formation. In vitro, the lipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was assayed by Oil Red O staining, and the osteogenic differentiation was assayed by alkaline phosphatase staining. Meanwhile, the gene expression in the BMSC-differentiated adipocytes by RNA sequence and the involved pathway of irisin were determined by western blot and qRT-PCR were performed. RESULTS The FNDC5-/- mice fed with a HFD showed an increased body weight, fat content of the bone marrow and bone, and a decreased bone formation compared with those with a standard diet (SD). In vitro, irisin inhibited the differentiation of BMSCs into adipocytes and alleviated the inhibition of osteogenesis derived from BMSCs by the adipocyte supernatant. RNA sequence and blocking experiment showed that irisin reduced the production of interleukin 6 (IL-6) in adipocytes through downregulating the TLR4/MyD88/NF-κB pathway. Immunofluorescence staining of bone marrow further confirmed an increased IL-6 expression in the FNDC5-/- mice fed with HFD compared with those fed with SD, which suffered serious bone loss. CONCLUSION Irisin downregulates activation of the TLR4/MyD88/NF-κB pathway, thereby reducing IL-6 production in adipocytes to enhance the osteogenesis of BMSCs. Thus, the rescue of osteogenesis of BMSCs, initially inhibited by IL-6, is a potential therapeutic target to mitigate obesity-induced osteoporosis.
Collapse
Affiliation(s)
- Yuanshu Zhang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214026, PR China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedics Institute of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Xu He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedics Institute of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Kai Wang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214026, PR China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedics Institute of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Yuan Xue
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214026, PR China
| | - Sihan Hu
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214026, PR China
| | - Yesheng Jin
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214026, PR China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedics Institute of Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Guoqing Zhu
- Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, PR China
| | - Qin Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedics Institute of Soochow University, Suzhou, Jiangsu 215006, PR China.
| | - Yongjun Rui
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214026, PR China.
| |
Collapse
|
3
|
Xing S, Ma Y, Song B, Bai M, Wang K, Song W, Cao T, Guo C, Zhang Y, Wang Z, Wang Y. Irisin reshapes bone metabolic homeostasis to delay age-related osteoporosis by regulating the multipotent differentiation of BMSCs via Wnt pathway. Front Mol Biosci 2025; 11:1524978. [PMID: 39840074 PMCID: PMC11746060 DOI: 10.3389/fmolb.2024.1524978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Bone aging is linked to changes in the lineage differentiation of bone marrow stem cells (BMSCs), which show a heightened tendency to differentiate into adipocytes instead of osteoblasts. The therapeutic potential of irisin in addressing age-related diseases has garnered significant attention. More significantly, irisin has the capacity to enhance bone mass recovery and sustain overall bone health. Its mechanism of action in preventing osteoporosis has generated considerable interest within the research community. Nonetheless, the targeting effect of irisin on age-related osteoporosis and its underlying molecular biological mechanisms remain unclear. Methods The specific role of irisin in osteogenic-adipogenic differentiation in young or aging BMSCs was evaluated by multiple cells staining and quantitative real-time PCR (RT-qPCR) analysis. RNA-seq and protein Western blotting excavated and validated the key pathway by which irisin influences the fate determination of aging BMSCs. The macroscopic and microscopic changes of bone tissue in aging mice were examined using Micro-computed tomography (Micro-CT) and morphological staining. Results It was noted that irisin affected the multilineage differentiation of BMSCs in a manner dependent on the dosage. Simultaneously, the Wnt signaling pathway might be a crucial mechanism through which irisin sustains the bone-fat balance in aging BMSCs and mitigates the decline in pluripotency. In vivo, irisin reduced bone marrow fat deposition in aging mice and effectively alleviating the occurrence of bone loss. Conclusion Irisin mediates the Wnt signaling pathway, thereby influencing the fate determination of BMSCs. In addition, it is essential for preserving metabolic equilibrium in the bone marrow microenvironment and significantly contributes to overall bone health. The findings provide new evidence for the use of iris extract in the treatment of age-related osteoporosis.
Collapse
Affiliation(s)
- Shangman Xing
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yifan Ma
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi’an, China
| | - Bing Song
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Medicine Research and Experimental center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Min Bai
- Ningxia Medical University College of Traditional Chinese Medicine, Yinchuan, China
| | - Kexin Wang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenjing Song
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Tingting Cao
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chao Guo
- Medicine Research and Experimental center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yanying Zhang
- Medicine Research and Experimental center, Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhandong Wang
- Clinical College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongfeng Wang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Gansu Medical University School of Basic Medicine, Pingliang, China
| |
Collapse
|
4
|
Li Z. Investigation of the molecular mechanism of quercetin in inhibiting ankylosing spondylitis ossification via the bone morphogenetic protein/smad signaling pathway. Med Mol Morphol 2024:10.1007/s00795-024-00417-9. [PMID: 39722109 DOI: 10.1007/s00795-024-00417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease involving the spine and bone joints, which is characterized by hyperosteogeny, ossification of ligaments, and ankylosis. Quercetin is a natural polyphenolic compound with various biological activities such as antioxidant, anti-inflammatory, and anti-tumor. It was to explore the effect of quercetin on AS ossification and its molecular mechanism. In vitro culture of AS mesenchymal stem cells was conducted. Cells were treated with 0, 10, 30, 60, and 80 μM quercetin, divided into control, 10 μM, 30 μM, 60 μM, and 80 μM groups. Alkaline phosphatase (ALP) staining, Alizarin Red staining, real-time quantitative polymerase chain reaction (qRT-PCR), and Western blot (WB) were employed to investigate the effect of quercetin on the expression of osteogenic-related genes and proteins. Additionally, bone morphogenetic protein (BMP) and Smad genes were knocked out to explore quercetin's regulation of BMP/Smad. In vivo experiments were conducted using 50 mice, including 10 in the normal group. An AS model was established in 36 mice, divided into negative control (n = 18, 0.9% saline) and quercetin groups (n = 18, quercetin). Safranin O-fast green (HE) staining and MicroCT scanning were performed before and 4 weeks after injection. In the 60 μM and 80 μM quercetin groups, ALP activity, Ca2+ deposition area, and relative protein/mRNA levels of BMP-1, BMP-2, Smad1, Smad4, and Smad5 in AS mesenchymal stem cells were significantly lower compared to the control, 10 μM, and 30 μM groups (P < 0.05). The 80 μM group exhibited lower levels than the 60 μM group (P < 0.05). In the siRNA + 80 μM group, the reduction in mRNA expression of BMP1, BMP2, Smad1, Smad4, and Smad5 was significantly greater compared to the siRNA group and the 80 μM group (P < 0.05). At 4 weeks post-injection, mice in the quercetin group showed significantly reduced severity of articular cartilage lesions, lymphocyte infiltration, and tissue edema, with no significant increase in sacroiliac joint fusion. Quercetin downregulates the expression of BMP and Smad-related proteins, inhibiting osteogenic differentiation of AS mesenchymal stem cells and effectively reducing ALP activity and Ca2+ deposition levels. These findings suggest that quercetin holds potential application value in the control and treatment of AS disease.
Collapse
Affiliation(s)
- Zhenyu Li
- Graduate School, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
5
|
Wang YT, Zheng SY, Jiang SD, Luo Y, Wu YX, Naranmandakh S, Li YS, Liu SG, Xiao WF. Irisin in degenerative musculoskeletal diseases: Functions in system and potential in therapy. Pharmacol Res 2024; 210:107480. [PMID: 39490914 DOI: 10.1016/j.phrs.2024.107480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Degenerative musculoskeletal diseases are a class of diseases related to the gradual structural and functional deterioration of muscles, joints, and bones, including osteoarthritis (OA), osteoporosis (OP), sarcopenia (SP), and intervertebral disc degeneration (IDD). As the proportion of aging people around the world increases, degenerative musculoskeletal diseases not only have a multifaceted impact on patients, but also impose a huge burden on the medical industry in various countries. Therefore, it is crucial to find key regulatory factors and potential therapeutic targets. Recent studies have shown that irisin plays an important role in degenerative musculoskeletal diseases, suggesting that it may become a key molecule in the prevention and treatment of degenerative diseases of the musculoskeletal system. Therefore, this review provides a comprehensive description of the release and basic functions of irisin, and summarizes the role of irisin in OA, OP, SP, and IDD from a cellular and tissue perspective, providing comprehensive basis for clinical application. In addition, we summarized the many roles of irisin as a key information molecule in bone-muscle-adipose crosstalk and a regulatory molecule involved in inflammation, senescence, and cell death, and proposed the interesting possibility of irisin in degenerative musculoskeletal diseases.
Collapse
Affiliation(s)
- Yu-Tong Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Sheng-Yuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shi-de Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha, Hunan, China
| | - Yu-Xiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, China
| | - Shinen Naranmandakh
- Department of chemistry, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Shu-Guang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Ohyama Y, Ohta Y, Sugama R, Minoda Y, Masuda S, Terai H, Nakamura H. Effect of recombinant irisin on recombinant human bone morphogenetic protein-2 induced osteogenesis and osteoblast differentiation. Biochem Biophys Res Commun 2024; 734:150787. [PMID: 39368373 DOI: 10.1016/j.bbrc.2024.150787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Osteoporotic fragility fractures substantially impact aging societies, necessitating long-term care and increasing healthcare costs. Myokine irisin, secreted by skeletal muscle, influences bone metabolism; however, a comprehensive understanding of the mechanisms by which irisin affects bone metabolism is still lacking. Therefore, this study aimed to explore the effects of irisin on osteogenesis and osteoblast differentiation triggered by bone morphogenetic protein-2 (BMP-2). We used 4-week-old male ICR mice and implanted polyethylene glycol pellets containing recombinant human BMP-2 (rh-BMP-2) into the left dorsal muscle pouch. Mice received weekly intraperitoneal injections of either phosphate-buffered saline or recombinant irisin (re-irisin). Ectopic bone formation was evaluated 3 weeks post-surgery using micro-computed tomography (μ-CT) and histological analysis. In vitro experiments, C2C12 cells were treated with or without rh-BMP-2 and re-irisin, and we assessed osteoblast differentiation markers, e.g., runt-related transcription factor 2, alkaline phosphatase, osteocalcin, and osteopontin, using real-time reverse transcription-polymerase chain reaction. The μ-CT analyses showed that re-irisin significantly increased bone mineral content and bone volume of ectopic bones newly formed by rh-BMP-2. The gene expressions of the osteoblast markers were significantly increased by rh-BMP-2 and further upregulated by re-irisin. The treatment of cyclic AMP response element-binding protein (CREB) small interfering RNA attenuated these effects, suggesting that CREB signaling pathway was involved in rh-BMP-2/re-irisin-induced osteoblastic differentiation. This study demonstrates the potential of irisin to enhance osteogenesis through BMP signaling, offering insights for osteoporosis treatment and highlighting irisin as a promising therapeutic target for improving bone health and extending a healthy lifespan.
Collapse
Affiliation(s)
- Yohei Ohyama
- Department of Orthopaedic Surgery, Osaka City University Graduate School of Medicine, Japan; Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Japan
| | - Yoichi Ohta
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Japan.
| | - Ryo Sugama
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Japan
| | - Yukihide Minoda
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Japan
| | - Sho Masuda
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Japan
| | - Hidetomi Terai
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Japan
| | - Hiroaki Nakamura
- Department of Orthopaedic Surgery, Osaka Metropolitan University Graduate School of Medicine, Japan
| |
Collapse
|
7
|
Li H, Luo D, Xie W, Ye W, Chen J, Alberton P, Zhang M, Feng E, Docheva D, Lin D. Irisin reduces senile osteoporosis by inducing osteocyte mitophagy through Ampk activation. iScience 2024; 27:111042. [PMID: 39559753 PMCID: PMC11570468 DOI: 10.1016/j.isci.2024.111042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/04/2024] [Accepted: 09/23/2024] [Indexed: 11/20/2024] Open
Abstract
Irisin, an exercise-induced myokine, is known to be able to regulate bone metabolism. However, the underlying mechanisms regarding the effects of irisin on senile osteoporosis have not been fully elucidated. Here, we demonstrated that irisin can inhibit bone mass loss and bone microarchitecture alteration in senile osteoporosis mouse model. In addition, irisin has effects on bone remodeling that is in favor of bone formation. Remarkably, irisin induced autophagy in osteocytes demonstrated by increased LC3-positive osteocytes, and increased autophagy-related genes and proteins. In vitro analysis revealed that Irisin can prevent mitochondrial oxidative damage. Furthermore, irisin can obviously induce osteocyte mitophagy and increased phosphorylation of Ampk and Ulk1. Inhibition of Ampk signaling recapitulated the biological effect of irisin loss, accompanied by the markedly lower expression of Ulk1. Taken together, our findings show that irisin reduces age-related bone loss by inducing osteocyte mitophagy via Ampk-dependent activation of Ulk1.
Collapse
Affiliation(s)
- Honghan Li
- Department of Orthopaedic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, P.R. China
| | - Deqing Luo
- Department of Orthopaedics, the 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, P.R. China
| | - Wei Xie
- Department of Orthopaedics, the 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, P.R. China
| | - Wenbin Ye
- Department of Orthopaedic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, P.R. China
| | - Jinlong Chen
- Department of Orthopaedic Surgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, P.R. China
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine, Clinic for General, Trauma and Reconstructive Surgery, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Mingzhu Zhang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, P.R. China
| | - Eryou Feng
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration Orthopaedic Hospital König-Ludwig-Haus & University of Wuerzburg, Wuerzburg, Germany
| | - Dasheng Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| |
Collapse
|
8
|
Pan W, He Y, Huang Y. Research advances on silence information regulator 6 as a potential therapeutic target for bone regeneration and repair. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:427-433. [PMID: 39183069 PMCID: PMC11375492 DOI: 10.3724/zdxbyxb-2023-0615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Segmental bone defects and nonunion of fractures caused by trauma, infection, tumor or systemic diseases with limited osteogenesis and prolonged bone healing cycles are challenging issues in orthopedic clinical practice. Therefore, identifying regulatory factors for bone tissue regeneration and metabolism is crucial for accelerating bone repair and reconstructing defective areas. Silence information regulator 6 (SIRT6), functioning as a deacetylase and nucleotide transferase, is extensively involved in the regulation of differentiation, apoptosis, metabolism, and inflammation in bone cells including osteoblasts and osteoclasts, and is considered to be an important factor in regulating bone metabolism. SIRT6 forms a complex with B lymphocyte-induced maturation protein 1 (Blimp1), down-regulates the expression of the nuclear factor κB (NF-κB) pathway, and promotes the expression of the ERα-FasL axis signal to inhibit osteoclast formation and maturation differentiation, thereby hindering bone resorption and increasing bone mass. In addition, SIRT6 activates the Akt-mTOR pathway to regulate the autophagy level and osteogenesis of bone marrow mesenchymal stem cells, inhibits glycolysis and reactive oxygen production in osteoblasts, promotes osteoblast differentiation through the CREB/CCN1/COX2 pathway and the bone morphogenetic protein (BMP) signaling pathway, enhances bone formation, and accelerates bone regeneration and repair of skeletal tissue. This article provides an overview of the research progress on SIRT6 in the pathophysiology of bone regeneration, revealing its potential as a novel therapeutic target for bone tissue repair to alleviate the progression of skeletal pathological diseases.
Collapse
Affiliation(s)
- Wenzheng Pan
- Department of Orthopedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Yong He
- Department of Orthopedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yue Huang
- Department of Orthopedics, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
9
|
Shen X, Chen Y, Zhang J, Yang M, Huang L, Luo J, Xu L. The association between circulating irisin levels and osteoporosis in women: a systematic review and meta-analysis of observational studies. Front Endocrinol (Lausanne) 2024; 15:1388717. [PMID: 39175571 PMCID: PMC11338845 DOI: 10.3389/fendo.2024.1388717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Objective This systematic review and meta-analysis aimed to investigate the association between circulating irisin levels and osteoporosis in women, exploring irisin's potential role in the pathophysiology and management of osteoporosis. Method We searched PubMed, Embase, Web of Science, Cochrane Library, CNKI, WanFang, and VIP databases up to January 2023. The inclusion criteria were observational studies reporting on circulating irisin levels in women. The standardized mean difference (SMD) and correlation coefficients with a 95% confidence interval (CI) were used as the main effect measures under a random-effects model. Heterogeneity was evaluated using the Cochrane Q statistic and the I2 statistics. Subgroup analysis and univariate meta-regression analysis were performed to identify the sources of heterogeneity. The quality of the included study was assessed by the Newcastle-Ottawa Score. The quality of evidence was evaluated using the GRADE system. Publication bias was assessed using Begg's and Egger's test, and the trim-and-fill method. Sensitivity analysis was performed to assess the stability of the results. Results Fifteen studies with a total of 2856 participants met the criteria. The analysis showed significantly lower irisin levels in postmenopausal osteoporotic women compared to non-osteoporotic controls (SMD = -1.66, 95% CI: -2.43 to -0.89, P < 0.0001; I2 = 98%, P < 0.00001) and in postmenopausal individuals with osteoporotic fractures than in non-fractures controls (SMD = -1.25, 95% CI: -2.15 to -0.34, P = 0.007; I2 = 97%, P < 0.00001). Correlation analysis revealed that irisin levels positively correlated with lumbar spine BMD (r = 0.37, 95% CI: 0.18 to 0.54), femoral BMD (r = 0.30, 95% CI: 0.18 to 0.42), and femoral neck BMD (r = 0.31, 95% CI: 0.14 to 0.47) in women. Despite significant heterogeneity, the robustness of the results was supported by using the random effects model and sensitivity analysis. Conclusion The current evidence suggests that lower irisin levels are significantly associated with osteoporosis and fracture in postmenopausal women, suggesting its utility as a potential biomarker for early detection of osteoporosis and therapeutic target. However, further high-quality prospective research controlling for confounding factors is needed to clarify the relationship between irisin levels and osteoporotic outcomes. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42023410264.
Collapse
Affiliation(s)
- Xiaoyang Shen
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Yan Chen
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Jing Zhang
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Meina Yang
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Lu Huang
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Jiaqi Luo
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Liangzhi Xu
- Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Tao L, Wang J, Wang K, Liu Q, Li H, Xu S, Gu C, Zhu Y. Exerkine FNDC5/irisin-enriched exosomes promote proliferation and inhibit ferroptosis of osteoblasts through interaction with Caveolin-1. Aging Cell 2024; 23:e14181. [PMID: 38689463 PMCID: PMC11320359 DOI: 10.1111/acel.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Postmenopausal osteoporosis is a prevalent metabolic bone disorder characterized by a decrease in bone mineral density and deterioration of bone microstructure. Despite the high prevalence of this disease, no effective treatment for osteoporosis has been developed. Exercise has long been considered a potent anabolic factor that promotes bone mass via upregulation of myokines secreted by skeletal muscle, exerting long-term osteoprotective effects and few side effects. Irisin was recently identified as a novel myokine that is significantly upregulated by exercise and could increase bone mass. However, the mechanisms underlying exercise-induced muscle-bone crosstalk remain unclear. Here, we identified that polyunsaturated fatty acids (arachidonic acid and docosahexaenoic acid) are increased in skeletal muscles following a 10-week treadmill exercise programme, which then promotes the expression and release of FNDC5/irisin. In osteoblasts, irisin binds directly to Cav1, which recruits and interacts with AMP-activated protein kinase α (AMPKα) to activate the AMPK pathway. Nrf2 is the downstream target of the AMPK pathway and increases the transcription of HMOX1 and Fpn. HMOX1 is involved in regulating the cell cycle and promotes the proliferation of osteoblasts. Moreover, upregulation of Fpn in osteoblasts enhanced iron removal, thereby suppressing ferroptosis in osteoblasts. Additionally, we confirmed that myotube-derived exosomes are involved in the transportation of irisin and enter osteoblasts through caveolae-mediated endocytosis. In conclusion, our findings highlight the crucial role of irisin, present in myotube-derived exosomes, as a crucial regulator of exercise-induced protective effects on bone, which provides novel insights into the mechanisms underlying exercise-dependent treatment of osteoporosis.
Collapse
Affiliation(s)
- Lin Tao
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Jinpeng Wang
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Ke Wang
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Qichang Liu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Hongyang Li
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Site Xu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Chunjian Gu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| | - Yue Zhu
- Department of OrthopedicsFirst Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
11
|
Hu X, Wang Z, Wang W, Cui P, Kong C, Chen X, Lu S. Irisin as an agent for protecting against osteoporosis: A review of the current mechanisms and pathways. J Adv Res 2024; 62:175-186. [PMID: 37669714 PMCID: PMC11331170 DOI: 10.1016/j.jare.2023.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Osteoporosis is recognized as a skeletal disorder characterized by diminished bone tissue quality and density. Regular physical exercise is widely acknowledged to preserve and enhance bone health, but the detailed molecular mechanisms involved remain unclear. Irisin, a factor derived from muscle during exercise, influences bone and muscle. Since its discovery in 2012, irisin has been found to promote bone growth and reduce bone resorption, establishing a tangible link between muscle exertion and bone health. Consequently, the mechanism by which irisin prevents osteoporosis have attracted significant scientific interest. AIM OF THE REVIEW This study aims to elucidate the multifaceted relationship between exercise, irisin, and bone health. Focusing on irisin, a muscle-derived factor released during exercise, we seek to understand its role in promoting bone growth and inhibiting resorption. Through a review of current research article on irisin in osteoporosis, Our review provides a deep dive into existing research on influence of irisin in osteoporosis, exploring its interaction with pivotal signaling pathways and its impact on various cell death mechanisms and inflammation. We aim to uncover the molecular underpinnings of how irisin, secreted during exercise, can serve as a therapeutic strategy for osteoporosis. KEY SCIENTIFIC CONCEPTS OF THE REVIEW Irisin, secreted during exercise, plays a vital role in bridging muscle function to bone health. It not only promotes bone growth but also inhibits bone resorption. Specifically, Irisin fosters osteoblast proliferation, differentiation, and mineralization predominantly through the ERK, p38, and AMPK signaling pathways. Concurrently, it regulates osteoclast differentiation and maturation via the JNK, Wnt/β-catenin and RANKL/RANK/OPG signaling pathways. This review further delves into the profound significance of irisin in osteoporosis and its involvement in diverse cellular death mechanisms, including apoptosis, autophagy, ferroptosis, and pyroptosis.
Collapse
Affiliation(s)
- Xinli Hu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zheng Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Peng Cui
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Chao Kong
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Xiaolong Chen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing 100053, China; National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
12
|
Dong Y, Yuan H, Ma G, Cao H. Bone-muscle crosstalk under physiological and pathological conditions. Cell Mol Life Sci 2024; 81:310. [PMID: 39066929 PMCID: PMC11335237 DOI: 10.1007/s00018-024-05331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Anatomically connected bones and muscles determine movement of the body. Forces exerted on muscles are then turned to bones to promote osteogenesis. The crosstalk between muscle and bone has been identified as mechanotransduction previously. In addition to the mechanical features, bones and muscles are also secretory organs which interact closely with one another through producing myokines and osteokines. Moreover, besides the mechanical features, other factors, such as nutrition metabolism, physiological rhythm, age, etc., also affect bone-muscle crosstalk. What's more, osteogenesis and myogenesis within motor system occur almost in parallel. Pathologically, defective muscles are always detected in bone associated diseases and induce the osteopenia, inflammation and abnormal bone metabolism, etc., through biomechanical or biochemical coupling. Hence, we summarize the study findings of bone-muscle crosstalk and propose potential strategies to improve the skeletal or muscular symptoms of certain diseases. Altogether, functional improvement of bones or muscles is beneficial to each other within motor system.
Collapse
Affiliation(s)
- Yuechao Dong
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hongyan Yuan
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
13
|
Niyonzima YB, Wanjiru DK, Kadokawa H. Exercise-induced muscle hormone "irisin" controls luteinizing hormone and follicle-stimulating hormone secretion by bovine gonadotrophs. Anim Reprod Sci 2024; 266:107516. [PMID: 38823233 DOI: 10.1016/j.anireprosci.2024.107516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Irisin is a hormone secreted by muscle in response to exercise. The irisin receptor (IrisinR) is a heterodimer of integrin alpha V (ITGAV) and integrin beta 5 (ITGB5) subunits. Since irisin may mediate some beneficial effects of exercise on animal reproduction, we tested the hypothesis that bovine gonadotrophs express IrisinR and irisin stimulates luteinizing hormone (LH) and follicle stimulating hormone (FSH) secretion by gonadotrophs. Reverse transcription polymerase chain reaction was used to detect the mRNA expression of both ITGAV and ITGB5 in the anterior pituitary glands (APs) of post pubertal heifers and mouse gonadotroph cell line "LβT2." Western blotting was used to detect protein expression in bovine APs. Immunofluorescence microscopy, utilizing the same antibody, visualized IrisinR on the plasma membrane of majority of gonadotrophs. We prepared AP cells from healthy postpubertal heifers, cultured them for 3.5 d, and treated them with increasing concentrations (0, 0.01, 0.1, 1, or 10 nM) of irisin for 5 min before either no treatment or gonadotropin-releasing hormone (GnRH) stimulation. After 2 h, media were harvested for LH and FSH assays. Irisin (0.1-10 nM) stimulated basal LH and FSH secretion, and these stimulatory effects were inhibited by the extracellular signal-regulated kinase or SMAD pathway inhibitors. In the presence of GnRH, irisin at 0.01-1 nM stimulated LH and FSH secretion. A higher dose of irisin (10 nM), however, suppressed the GnRH-induced LH and FSH levels. In conclusion, bovine gonadotrophs expressed IrisinR, and irisin controlled LH and FSH secretion from bovine gonadotrophs.
Collapse
Affiliation(s)
- Yvan Bienvenu Niyonzima
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - Denis Karani Wanjiru
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan
| | - Hiroya Kadokawa
- Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi-shi, Yamaguchi-ken 1677-1, Japan.
| |
Collapse
|
14
|
Li SY, Xue ST, Li ZR. Osteoporosis: Emerging targets on the classical signaling pathways of bone formation. Eur J Pharmacol 2024; 973:176574. [PMID: 38642670 DOI: 10.1016/j.ejphar.2024.176574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/22/2024]
Abstract
Osteoporosis is a multifaceted skeletal disorder characterized by reduced bone mass and structural deterioration, posing a significant public health challenge, particularly in the elderly population. Treatment strategies for osteoporosis primarily focus on inhibiting bone resorption and promoting bone formation. However, the effectiveness and limitations of current therapeutic approaches underscore the need for innovative methods. This review explores emerging molecular targets within crucial signaling pathways, including wingless/integrated (WNT), bone morphogenetic protein (BMP), hedgehog (HH), and Notch signaling pathway, to understand their roles in osteogenesis regulation. The identification of crosstalk targets between these pathways further enhances our comprehension of the intricate bone metabolism cycle. In summary, unraveling the molecular complexity of osteoporosis provides insights into potential therapeutic targets beyond conventional methods, offering a promising avenue for the development of new anabolic drugs.
Collapse
Affiliation(s)
- Si-Yan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Si-Tu Xue
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| | - Zhuo-Rong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
15
|
Li N, Wang XL, Ge R, Wang Y, Tian XL, Zhu GQ, Zhou B. FNDC5 inhibits malignant growth of human cervical cancer cells via restraining PI3K/AKT pathway. J Cell Physiol 2024; 239:e31267. [PMID: 38558303 DOI: 10.1002/jcp.31267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Cervical cancer (CxCa) is the fourth most frequent cancer in women. This study aimed to determine the role and underlying mechanism of fibronectin type III domain-containing protein 5 (FNDC5) in inhibiting CxCa growth. Experiments were performed in human CxCa tissues, human CxCa cell lines (HeLa and SiHa), and xenograft mouse model established by subcutaneous injection of SiHa cells in nude mice. Bioinformatics analysis showed that CxCa patients with high FNDC5 levels have a longer overall survival period. FNDC5 expression was increased in human CxCa tissues, HeLa and SiHa cells. FNDC5 overexpression or FNDC5 protein not only inhibited proliferation, but also restrained invasion and migration of HeLa and SiHa cells. The effects of FNDC5 were prevented by inhibiting integrin with cilengitide, activating PI3K with recilisib or activating Akt with SC79. FNDC5 inhibited the phosphorylation of PI3K and Akt, which was attenuated by recilisib. PI3K inhibitor LY294002 showed similar effects to FNDC5 in HeLa and SiHa cells. Intravenous injection of FNDC5 (20 μg/day) for 14 days inhibited the tumor growth, and reduced the proliferation marker Ki67 expression and the Akt phosphorylation in the CxCa xenograft mouse model. These results indicate that FNDC5 inhibits the malignant phenotype of CxCa cells through restraining PI3K/Akt signaling. Upregulation of FNDC5 may play a beneficial role in retarding the tumor growth of CxCa.
Collapse
Affiliation(s)
- Na Li
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Xiao-Li Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Rui Ge
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yu Wang
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xiao-Lei Tian
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Guo-Qing Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Bing Zhou
- Department of Pathology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
16
|
Chen C, Song C, Liu B, Wang Y, Jia J, Pang K, Wang Y, Wang P. Activation of BMP4/SMAD pathway by HIF-1α in hypoxic environment promotes osteogenic differentiation of BMSCs and leads to ectopic bone formation. Tissue Cell 2024; 88:102376. [PMID: 38608407 DOI: 10.1016/j.tice.2024.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVE Heterotopic ossification (HO), also known as ossifying myositis, is a condition that produces abnormal bone and cartilage tissue in the soft tissues. Hypoxia inducible factor lα (HIF-lα) regulates the expression of various genes, which is closely related to the promotion of bone formation, and Drosophila mothers against decapentaplegic protein (SMAD) mediates the signal transduction in the Bone morphogenetic protein (BMP) signaling pathway, which affects the function of osteoblasts and osteoclasts, and thus plays a key role in the regulation of bone remodeling. We aimed to investigate the mechanism by which HIF-1α induces osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in a hypoxic environment. METHODS A cellular hypoxia model was constructed to verify the expression of HIF-1α, while alizarin red staining was performed to observe the osteogenic differentiation ability of bone marrow mesenchymal stem cells (BMSCs). Alizarin red staining was used to analyze the late mineralization ability of the cells. Western blot analysis was performed to analyze the expression levels of osteogenesis-related factors OCN, OPN proteins as well as the pathway proteins BMP4, p-Smad1/5/8, and Smad1. We also constructed a rat model of ectopic bone formation, observed ectopic ossification by X-ray, and verified the success of the rat model by ELISA of HIF-1α. HE staining was used to observe the matrix and trabecular structure of bone, and Masson staining was used to observe the collagen and trabecular structure of bone. Immunohistochemistry analyzed the expression of OCN and OPN in ectopic bone tissues, and WB analyzed the expression of pathway proteins BMP4, p-Smad1/5/8 and Smad1 in ectopic bone tissues to verify the signaling pathway of ectopic bone formation. RESULTS Our results indicate that hypoxic environment upregulates HIF-1a expression and activates BMP4/SMAD signaling pathway. This led to an increase in ALP content and enhanced expression of the osteogenesis-related factors OCN and OPN, resulting in enhanced osteogenic differentiation of BMSCs. The results of our in vivo experiments showed that rats inoculated with BMSCs overexpressing HIF-1α showed bony structures in tendon tissues, enhanced expression of the bone signaling pathways BMP4 and p-Smad1/5/8, and enhanced expression levels of the osteogenic-related factors OCN and OPN, resulting in the formation of ectopic bone. CONCLUSIONS These data further suggest a novel mechanistic view that hypoxic bone marrow BMSCs activate the BMP4/SMAD pathway by up-regulating the expression level of HIF-1α, thereby promoting the secretion of osteogenic factors leading to ectopic bone formation.
Collapse
Affiliation(s)
- Cong Chen
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Chunhao Song
- Department of Medical Imaging, Weihai Wendeng District People Hospital, Weihai 264200, China
| | - Bo Liu
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Yitao Wang
- Department of Laboratory, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Jun Jia
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Kai Pang
- Department of Operations Management, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Yuanhao Wang
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Peng Wang
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China.
| |
Collapse
|
17
|
Du ZY, Zhu HL, Chang W, Zhang YF, Ling Q, Wang KW, Zhang J, Zhang QB, Kan XL, Wang QN, Wang H, Zhou Y. Maternal prednisone exposure during pregnancy elevates susceptibility to osteoporosis in female offspring: The role of mitophagy/FNDC5 alteration in skeletal muscle. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133997. [PMID: 38508115 DOI: 10.1016/j.jhazmat.2024.133997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/22/2024]
Abstract
Maternal exposure to glucocorticoids has been associated with adverse outcomes in offspring. However, the consequences and mechanisms of gestational exposure to prednisone on susceptibility to osteoporosis in the offspring remain unclear. Here, we found that gestational prednisone exposure enhanced susceptibility to osteoporosis in adult mouse offspring. In a further exploration of myogenic mechanisms, results showed that gestational prednisone exposure down-regulated FNDC5/irisin protein expression and activation of OPTN-dependent mitophagy in skeletal muscle of adult offspring. Additional experiments elucidated that activated mitophagy significantly inhibited the expression of FNDC5/irisin in skeletal muscle cells. Likewise, we observed delayed fetal bone development, downregulated FNDC5/irisin expression, and activated mitophagy in fetal skeletal muscle upon gestational prednisone exposure. In addition, an elevated total m6A level was observed in fetal skeletal muscle after gestational prednisone exposure. Finally, gestational supplementation with S-adenosylhomocysteine (SAH), an inhibitor of m6A activity, attenuated mitophagy and restored FNDC5/irisin expression in fetal skeletal muscle, which in turn reversed fetal bone development. Overall, these data indicate that gestational prednisone exposure increases m6A modification, activates mitophagy, and decreases FNDC5/irisin expression in skeletal muscle, thus elevating osteoporosis susceptibility in adult offspring. Our results provide a new perspective on the earlier prevention and treatment of fetal-derived osteoporosis.
Collapse
Affiliation(s)
- Zun-Yu Du
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hua-Long Zhu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Wei Chang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Yu-Feng Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Qing Ling
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Kai-Wen Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Jin Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Quan-Bing Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiu-Li Kan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qu-Nan Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Hua Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China.
| | - Yun Zhou
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
18
|
Yang L, Chen H, Yang C, Hu Z, Jiang Z, Meng S, Liu R, Huang L, Yang K. Research progress on the regulatory mechanism of integrin-mediated mechanical stress in cells involved in bone metabolism. J Cell Mol Med 2024; 28:e18183. [PMID: 38506078 PMCID: PMC10951882 DOI: 10.1111/jcmm.18183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/14/2024] [Accepted: 02/04/2024] [Indexed: 03/21/2024] Open
Abstract
Mechanical stress is an internal force between various parts of an object that resists external factors and effects that cause an object to deform, and mechanical stress is essential for various tissues that are constantly subjected to mechanical loads to function normally. Integrins are a class of transmembrane heterodimeric glycoprotein receptors that are important target proteins for the action of mechanical stress stimuli on cells and can convert extracellular physical and mechanical signals into intracellular bioelectrical signals, thereby regulating osteogenesis and osteolysis. Integrins play a bidirectional regulatory role in bone metabolism. In this paper, relevant literature published in recent years is reviewed and summarized. The characteristics of integrins and mechanical stress are introduced, as well as the mechanisms underlying responses of integrin to mechanical stress stimulation. The paper focuses on integrin-mediated mechanical stress in different cells involved in bone metabolism and its associated signalling mechanisms. The purpose of this review is to provide a theoretical basis for the application of integrin-mediated mechanical stress to the field of bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Li Yang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Hong Chen
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Chanchan Yang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Zhengqi Hu
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Zhiliang Jiang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | - Shengzi Meng
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | | | - Lan Huang
- Department of Periodontology, Hospital of StomatologyZunyi Medical UniversityZunyiChina
| | | |
Collapse
|
19
|
Dong Q, Han Z, Gao M, Tian L. FNDC5/irisin ameliorates bone loss of type 1 diabetes by suppressing endoplasmic reticulum stress‑mediated ferroptosis. J Orthop Surg Res 2024; 19:205. [PMID: 38555440 PMCID: PMC10981808 DOI: 10.1186/s13018-024-04701-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Ferroptosis is known to play a crucial role in diabetic osteopathy. However, key genes and molecular mechanisms remain largely unclear. This study aimed to identify a crucial ferroptosis-related differentially expressed gene (FR-DEG) in diabetic osteopathy and investigate its potential mechanism. METHODS We identified fibronectin type III domain-containing protein 5 (FNDC5)/irisin as an essential FR-DEG in diabetic osteopathy using the Ferroptosis Database (FerrDb) and GSE189112 dataset. Initially, a diabetic mouse model was induced by intraperitoneal injection of streptozotocin (STZ), followed by intraperitoneal injection of irisin. MC3T3-E1 cells treated with high glucose (HG) were used as an in vitro model. FNDC5 overexpression plasmid was used to explore underlying mechanisms in vitro experiments. Femurs were collected for micro-CT scan, histomorphometry, and immunohistochemical analysis. Peripheral serum was collected for ELISA analysis. Cell viability was assessed using a CCK-8 kit. The levels of glutathione (GSH), malondialdehyde (MDA), iron, reactive oxygen species (ROS), and lipid ROS were detected by the corresponding kits. Mitochondria ultrastructure was observed through transmission electron microscopy (TEM). Finally, mRNA and protein expressions were examined by quantitative real-time PCR (qRT-PCR) and western blot analysis. RESULTS The expression of FNDC5 was found to be significantly decreased in both in vivo and in vitro models. Treatment with irisin significantly suppressed ferroptosis and improved bone loss. This was demonstrated by reduced lipid peroxidation and iron overload, increased antioxidant capability, as well as the inhibition of the ferroptosis pathway in bone tissues. Furthermore, in vitro studies demonstrated that FNDC5 overexpression significantly improved HG-induced ferroptosis and promoted osteogenesis. Mechanistic investigations revealed that FNDC5 overexpression mitigated ferroptosis in osteoblasts by inhibiting the eukaryotic initiation factor 2 alpha (eIF2α)/activated transcription factor 4 (ATF4)/C/EBP-homologous protein (CHOP) pathway. CONCLUSIONS Collectively, our study uncovered the important role of FNDC5/irisin in regulating ferroptosis of diabetic osteopathy, which might be a potential therapeutic target.
Collapse
Affiliation(s)
- Qianqian Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China
- Clinical Research Center for Metabolic Disease, Gansu Province, Lanzhou, 730000, China
| | - Ziqi Han
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China
- Clinical Research Center for Metabolic Disease, Gansu Province, Lanzhou, 730000, China
| | - Mingdong Gao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
- Clinical Research Center for Metabolic Disease, Gansu Province, Lanzhou, 730000, China
- Department of Pediatrics, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Limin Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China.
- Department of Endocrinology, Gansu Provincial Hospital, Lanzhou, 730000, China.
- Clinical Research Center for Metabolic Disease, Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
20
|
Chen X, Xu C, Geng T, Geng Y, Li Z, Li Y, Wu P, Lei N, Zhuang X, Zhao S. Injectable Self-Healing Oxidized Starch/Gelatin Hybrid Hydrogel for Preventing Aseptic Loosening of Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5368-5381. [PMID: 38270092 DOI: 10.1021/acsami.3c12605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Aseptic loosening presents a formidable challenge within the realm of bone tissue engineering, playing a pivotal role in the occurrence of joint replacement failures. The development of therapeutic materials characterized by an optimal combination of mechanical properties and biocompatibility is imperative to ensure the enduring functionality of bone implants over extended periods. In this context, this study introduced an injectable, temperature-sensitive irisin/oxidized starch/gelatin hybrid hydrogel (I-OG) system. The hierarchical cross-linked structure endows the I-OG hydrogel with controlled and adjustable physical and chemical properties, making it easy to adapt to different clinical environments. This hydrogel exhibits satisfactory injectable properties, excellent biocompatibility, and good temperature sensitivity. The sol-gel point of the I-OG hydrogel, close to the body temperature, allows it to cushion the shaking of the implant and maintain an intact state during compression of bone tissue. Significantly, the I-OG hydrogel effectively filled the gap between the implant and bone tissue, successfully inhibiting aseptic loosening induced by titanium particles, a result that confirmed the slow release of the irisin protein from the gel. Collectively, the findings from this study strongly support the proposition that functional hydrogels, typified by the I-OG system, hold substantial promise as an accessible and efficient treatment strategy for mitigating aseptic loosening.
Collapse
Affiliation(s)
- Xi Chen
- Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck 23562, Germany
| | - Chang Xu
- Department of Cardiovascular Surgery, Central Hospital of Dalian University of Technology, Dalian 116089, China
| | - Tianxiang Geng
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo 0316, Norway
| | - Yi Geng
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Tongji University, Shanghai 200443, P. R. China
| | - Zhenghui Li
- Department of Neurosurgery, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, P. R. China
| | - Yanqing Li
- School of Life Sciences, Henan University, Kaifeng, Henan 475000, P. R. China
| | - Peng Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University, Shanghai 201106, P. R. China
| | - Ningning Lei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xijing Zhuang
- Department of Cardiovascular Surgery, Central Hospital of Dalian University of Technology, Dalian 116089, China
| | - Sijia Zhao
- Department of Dermatologic Surgery, Shanghai Skin Disease Hospital, Tongji University, Shanghai 200443, P. R. China
| |
Collapse
|
21
|
Shao M, Wang Q, Lv Q, Zhang Y, Gao G, Lu S. Advances in the research on myokine-driven regulation of bone metabolism. Heliyon 2024; 10:e22547. [PMID: 38226270 PMCID: PMC10788812 DOI: 10.1016/j.heliyon.2023.e22547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
The traditional view posits that bones and muscles interact primarily through mechanical coupling. However, recent studies have revealed that myokines, proteins secreted by skeletal muscle cells, play a crucial role in the regulation of bone metabolism. Myokines are widely involved in bone metabolism, influencing bone resorption and formation by interacting with factors related to bone cell secretion or influencing bone metabolic pathways. Here, we review the research progress on the myokine regulation of bone metabolism, discuss the mechanism of myokine regulation of bone metabolism, explore the pathophysiological relationship between sarcopenia and osteoporosis, and provide future perspectives on myokine research, with the aim of identify potential specific diagnostic markers and therapeutic entry points.
Collapse
Affiliation(s)
- MingHong Shao
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - QiYang Wang
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - QiuNan Lv
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - YuQiong Zhang
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - GuoXi Gao
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Sheng Lu
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
22
|
Zhao Z, Yan K, Guan Q, Guo Q, Zhao C. Mechanism and physical activities in bone-skeletal muscle crosstalk. Front Endocrinol (Lausanne) 2024; 14:1287972. [PMID: 38239981 PMCID: PMC10795164 DOI: 10.3389/fendo.2023.1287972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024] Open
Abstract
Bone and skeletal muscle work in coordination to maintain the function of the musculoskeletal system, in which skeletal muscle contraction drives the movement of the bone lever system while bone provides insert sites for skeletal muscle through the bone-muscle junction. Existing evidence suggests that factors secreted by skeletal muscle and bone mediate the interaction between the two tissues. Herein, we focused on the relationship between skeletal muscle and bone and the underlying mechanism of the interaction. Exercise can promote bone strength and secrete osteocalcin and insulin-like growth factor I into the blood, thus improving muscle quality. In addition, exercise can also promote myostatin, interleukin-6, Irisin, and apelin in muscles to enter the blood so that they can act on bones to maintain the balance between bone absorption and bone formation. There is a special regulatory axis interleukin-6/osteocalcin between myokines and osteokines, which is mainly influenced by exercise. Therefore, we pay attention to the important factors in the bone-muscle intersection that are affected by exercise, which were found or their functions were expanded, which strengthened the connection between organs of the whole body, highlighting the importance of exercise and contributing to the diagnosis, prevention, and treatment of osteoporosis and sarcopenia in the clinic.
Collapse
Affiliation(s)
- Zhonghan Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qiao Guan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qiang Guo
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can Zhao
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
23
|
Fan S, Tan Y, Yuan X, Liu C, Wu X, Dai T, Ni S, Wang J, Weng Y, Zhao H. Regulation of the immune microenvironment by pioglitazone-loaded polylactic glycolic acid nanosphere composite scaffolds to promote vascularization and bone regeneration. J Tissue Eng 2024; 15:20417314241231452. [PMID: 38361536 PMCID: PMC10868507 DOI: 10.1177/20417314241231452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
Osteogenesis is caused by multiple factors, and the inflammatory response, osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), regeneration of blood vessels, and other factors must be considered in bone tissue engineering. To effectively repair bone defect, it is important to decrease excessive inflammation, enhance the differentiation of mesenchymal stem cells into osteoblasts, and stimulate angiogenesis. Herein, nano-attapulgite (ATP), polyvinyl alcohol (PVA), and gelatin (GEL) scaffolds were produced using 3D printing technology and pioglitazone (PIO)-containing polylactic acid-glycolic acid (PLGA) nanospheres were added. In both in vitro and in vivo studies, material scaffolds with PIO-loaded polylactic acid-glycolic acid nanospheres could reduce the inflammatory response by encouraging macrophage polarization from M1 to M2 and promoting the osteogenic differentiation of BMSCs by activating the BMP2/Smad/RUNX2 signal pathway to repair bone defects. The vascularization of human umbilical vein endothelial cells (HUVECs) through the PI3K/AKT/HIF1-/VEGF pathway was also encouraged. In vivo research using PIO-containing PLGA nanospheres revealed massive collagen deposition in skin models. These findings indicate a potentially effective scaffold for bone healing, when PLGA nanospheres-which contain the drug PIO-are combined with ATP/PVA/GEL scaffolds.
Collapse
Affiliation(s)
- Shijie Fan
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yadong Tan
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Xiuchen Yuan
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Chun Liu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Xiaoyu Wu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Ting Dai
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Su Ni
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Jiafeng Wang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yiping Weng
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Hongbin Zhao
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
24
|
Zhou M, Wang K, Jin Y, Liu J, Wang Y, Xue Y, Liu H, Chen Q, Cao Z, Jia X, Rui Y. Explore novel molecular mechanisms of FNDC5 in ischemia-reperfusion (I/R) injury by analyzing transcriptome changes in mouse model of skeletal muscle I/R injury with FNDC5 knockout. Cell Signal 2024; 113:110959. [PMID: 37918465 DOI: 10.1016/j.cellsig.2023.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Irisin, a myokine derived from proteolytic cleavage of the fibronectin type III domain-containing protein 5 (FNDC5) protein, is crucial in protecting tissues and organs from ischemia-reperfusion (I/R) injury. However, the underlying mechanism of its action remains elusive. In this study, we investigated the expression patterns of genes associated with FNDC5 knockout to gain insights into its molecular functions. METHODS We employed a mouse model of skeletal muscle I/R injury with FNDC5 knockout to examine the transcriptional profiles using RNA sequencing. Differentially expressed genes (DEGs) were identified and subjected to further analyses, including gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein-protein interaction (PPI) network analysis, and miRNA-transcription factor network analysis. The bioinformatics findings were validated using qRT-PCR and Western blotting. RESULTS Comparative analysis of skeletal muscle transcriptomes between wild-type (WT; C57BL/6), WT-I/R, FNDC5 knockout (KO), and KO-I/R mice highlighted the significance of FNDC5 in both physiological conditions and I/R injury. Through PPI network analysis, we identified seven key genes (Col6a2, Acta2, Col4a5, Fap, Enpep, Mmp11, and Fosl1), which facilitated the construction of a TF-hub genes-miRNA regulatory network. Additionally, our results suggested that the PI3K-Akt pathway is predominantly involved in FNDC5 deletion-mediated I/R injury in skeletal muscle. Animal studies revealed reduced FNDC5 expression in skeletal muscle following I/R injury, and the gastrocnemius muscle with FNDC5 knockout exhibited larger infarct size and more severe tissue damage after I/R. Moreover, Western blot analysis confirmed the upregulation of Col6a2, Enpep, and Mmp11 protein levels following I/R, particularly in the KO-I/R group. Furthermore, FNDC5 deletion inhibited the PI3K-Akt signaling pathway. CONCLUSION This study demonstrates that FNDC5 deletion exacerbates skeletal muscle I/R injury, potentially involving the upregulation of Col6a2, Enpep, and Mmp11. Additionally, the findings suggest the involvement of the PI3K-Akt pathway in FNDC5 deletion-mediated skeletal muscle I/R injury, providing novel insights into the molecular mechanisms underlying FNDC5's role in this pathological process.
Collapse
Affiliation(s)
- Ming Zhou
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China.
| | - Kai Wang
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Yesheng Jin
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Jinquan Liu
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Yapeng Wang
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Yuan Xue
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Hao Liu
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Qun Chen
- Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhihai Cao
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Emergency, The Third Affiliated Hospital of Soochow University, Changzhou 213000, China
| | - Xueyuan Jia
- Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China
| | - Yongjun Rui
- Suzhou Medical College of Soochow University, Suzhou, China; Department of Orthopaedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi 214000, China.
| |
Collapse
|
25
|
Yang Y, Pullisaar H, Stunes AK, Nogueira LP, Syversen U, Reseland JE. Irisin reduces orthodontic tooth movement in rats by promoting the osteogenic potential in the periodontal ligament. Eur J Orthod 2023; 45:842-853. [PMID: 37209709 PMCID: PMC10687601 DOI: 10.1093/ejo/cjad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
OBJECTIVES Positive effects of irisin on osteogenic differentiation of periodontal ligament (PDL) cells have been identified previously, this study aims to examine its effect on orthodontic tooth movement (OTM) in vivo. MATERIALS AND METHODS The maxillary right first molars of male Wistar rats (n = 21) were moved mesially for 14 days, with submucosal injection of two dosages of irisin (0.1 or 1 μg) or phosphate-buffered saline (control) every third day. OTM was recorded by feeler gauge and micro-computed tomography (μCT). Alveolar bone and root volume were analysed using μCT, and plasma irisin levels by ELISA. Histological characteristics of PDL tissues were examined, and the expression of collagen type I, periostin, osteocalcin (OCN), von Willebrand factor (vWF) and fibronectin type III domain-containing protein 5 (FNDC5) in PDL was evaluated by immunofluorescence staining. RESULTS Repeated 1 μg irisin injections suppressed OTM on days 6, 9, and 12. No significant differences were observed in OTM in the 0.1 μg irisin group, or in bone morphometric parameters, root volume or plasma irisin, compared to control. Resorption lacunae and hyalinization were found at the PDL-bone interface on the compression side in the control, whereas they were scarce after irisin administration. The expression of collagen type I, periostin, OCN, vWF, and FNDC5 in PDL was enhanced by irisin administration. LIMITATIONS The feeler gauge method may overestimate OTM. CONCLUSIONS Submucosal irisin injection reduced OTM by enhancing osteogenic potential of PDL, and this effect was more significant on the compression side.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Helen Pullisaar
- Department of Orthodontics, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Astrid Kamilla Stunes
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Center for Oral Health Services and Research, Mid-Norway (TkMidt), Trondheim, Norway
| | | | - Unni Syversen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs University Hospital, 7030 Trondheim, Norway
| | - Janne Elin Reseland
- Department of Biomaterials, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
26
|
Hua X, Hou M, Deng L, Lv N, Xu Y, Zhu X, Yang H, Shi Q, Liu H, He F. Irisin-loaded electrospun core-shell nanofibers as calvarial periosteum accelerate vascularized bone regeneration by activating the mitochondrial SIRT3 pathway. Regen Biomater 2023; 11:rbad096. [PMID: 38173773 PMCID: PMC10761201 DOI: 10.1093/rb/rbad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/12/2023] [Accepted: 10/28/2023] [Indexed: 01/05/2024] Open
Abstract
The scarcity of native periosteum poses a significant clinical barrier in the repair of critical-sized bone defects. The challenge of enhancing regenerative potential in bone healing is further compounded by oxidative stress at the fracture site. However, the introduction of artificial periosteum has demonstrated its ability to promote bone regeneration through the provision of appropriate mechanical support and controlled release of pro-osteogenic factors. In this study, a poly (l-lactic acid) (PLLA)/hyaluronic acid (HA)-based nanofibrous membrane was fabricated using the coaxial electrospinning technique. The incorporation of irisin into the core-shell structure of PLLA/HA nanofibers (PLLA/HA@Irisin) achieved its sustained release. In vitro experiments demonstrated that the PLLA/HA@Irisin membranes exhibited favorable biocompatibility. The osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) was improved by PLLA/HA@Irisin, as evidenced by a significant increase in alkaline phosphatase activity and matrix mineralization. Mechanistically, PLLA/HA@Irisin significantly enhanced the mitochondrial function of BMMSCs via the activation of the sirtuin 3 antioxidant pathway. To assess the therapeutic effectiveness, PLLA/HA@Irisin membranes were implanted in situ into critical-sized calvarial defects in rats. The results at 4 and 8 weeks post-surgery indicated that the implantation of PLLA/HA@Irisin exhibited superior efficacy in promoting vascularized bone formation, as demonstrated by the enhancement of bone matrix synthesis and the development of new blood vessels. The results of our study indicate that the electrospun PLLA/HA@Irisin nanofibers possess characteristics of a biomimetic periosteum, showing potential for effectively treating critical-sized bone defects by improving the mitochondrial function and maintaining redox homeostasis of BMMSCs.
Collapse
Affiliation(s)
- Xi Hua
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
- Department of Orthopedics, Suzhou Wuzhong People’s Hospital, Suzhou, Jiangsu Province 215128, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Lei Deng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Nanning Lv
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
- Department of Orthopedic Surgery, Lianyungang Clinical College of Xuzhou Medical University, Lianyungang 222003, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Qin Shi
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Hao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Suzhou Medical College, Soochow University, Suzhou 215000, China
| |
Collapse
|
27
|
He X, Hu W, Zhang Y, Chen M, Ding Y, Yang H, He F, Gu Q, Shi Q. Cellular senescence in skeletal disease: mechanisms and treatment. Cell Mol Biol Lett 2023; 28:88. [PMID: 37891477 PMCID: PMC10612178 DOI: 10.1186/s11658-023-00501-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The musculoskeletal system supports the movement of the entire body and provides blood production while acting as an endocrine organ. With aging, the balance of bone homeostasis is disrupted, leading to bone loss and degenerative diseases, such as osteoporosis, osteoarthritis, and intervertebral disc degeneration. Skeletal diseases have a profound impact on the motor and cognitive abilities of the elderly, thus creating a major challenge for both global health and the economy. Cellular senescence is caused by various genotoxic stressors and results in permanent cell cycle arrest, which is considered to be the underlying mechanism of aging. During aging, senescent cells (SnCs) tend to aggregate in the bone and trigger chronic inflammation by releasing senescence-associated secretory phenotypic factors. Multiple signalling pathways are involved in regulating cellular senescence in bone and bone marrow microenvironments. Targeted SnCs alleviate age-related degenerative diseases. However, the association between senescence and age-related diseases remains unclear. This review summarises the fundamental role of senescence in age-related skeletal diseases, highlights the signalling pathways that mediate senescence, and discusses potential therapeutic strategies for targeting SnCs.
Collapse
Affiliation(s)
- Xu He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China
| | - Wei Hu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China
| | - Yuanshu Zhang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214026, People's Republic of China
| | - Mimi Chen
- Department of Orthopedics, Children Hospital of Soochow University, No. 92 Zhongnan Street, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Yicheng Ding
- Xuzhou Medical University, 209 Copper Mountain Road, Xuzhou, 221004, People's Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China
| | - Fan He
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China.
| | - Qiaoli Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China.
| | - Qin Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute of Soochow University, Medical College of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, People's Republic of China.
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, 214026, People's Republic of China.
| |
Collapse
|
28
|
Cao Z, Xue Y, Wang J. Screening diagnostic markers of osteoporosis based on ferroptosis of osteoblast and osteoclast. Aging (Albany NY) 2023; 15:9391-9407. [PMID: 37770229 PMCID: PMC10564410 DOI: 10.18632/aging.204945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Osteoporosis is a negative balance of bone metabolism caused by the lower bone formation of osteoblasts than the bone absorption of osteoclasts. Ferroptosis plays an important role in osteoporosis, but its effects on osteoblasts and osteoclasts are still unclear. METHODS First, we compared the osteogenic differentiation potential of MSCs and osteoclast differentiation potential of monocytes between osteoporosis mice and control. Then, we obtained gene expression profiles of MSCs and monocytes, and screened differentially expressed genes for enrichment analysis. Next, we cluster the patients with osteoporosis according to genes related to osteogenesis inhibition and osteoclast promotion. Finally, according to the expression of different subtypes of ferroptosis genes, diagnostic markers were screened and verified. RESULTS The osteogenic differentiation ability of MSCs in osteoporosis mice was decreased, while the osteoclast differentiation ability of monocytes was enhanced. The DEGs of MSCs are enriched in iron ion, oxygen binding and cytokine activity, while the DEGs of monocytes are enriched in iron ion transmembrane transport and ferroptosis. Compared with the osteogenic inhibition subtype, the osteoclast promoting subtype has a higher correlation with ferroptosis, and its functions are enriched in fatty acids, reactive oxygen species metabolism and oxidoreductase activity of metal ions. SLC40A1 may be the hub gene of ferroptosis in osteoporosis by promoting osteoclast differentiation. CONCLUSION Ferroptosis may inhibit bone formation and promote bone absorption through oxidative stress, thus leading to osteoporosis. The study of ferroptosis on osteoblasts and osteoclasts provides a new idea for the diagnosis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhihai Cao
- Department of Emergency, The Third Affiliated Hospital of Soochow University, Changzhou 213000, China
| | - Yuan Xue
- Department of Orthopaedic, Wuxi Ninth People’s Hospital of Soochow University, Wuxi 214000, China
| | - Jiaqian Wang
- Department of Orthopaedic, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
29
|
Liu Z, Wang Q, Zhang J, Qi S, Duan Y, Li C. The Mechanotransduction Signaling Pathways in the Regulation of Osteogenesis. Int J Mol Sci 2023; 24:14326. [PMID: 37762629 PMCID: PMC10532275 DOI: 10.3390/ijms241814326] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Bones are constantly exposed to mechanical forces from both muscles and Earth's gravity to maintain bone homeostasis by stimulating bone formation. Mechanotransduction transforms external mechanical signals such as force, fluid flow shear, and gravity into intracellular responses to achieve force adaptation. However, the underlying molecular mechanisms on the conversion from mechanical signals into bone formation has not been completely defined yet. In the present review, we provide a comprehensive and systematic description of the mechanotransduction signaling pathways induced by mechanical stimuli during osteogenesis and address the different layers of interconnections between different signaling pathways. Further exploration of mechanotransduction would benefit patients with osteoporosis, including the aging population and postmenopausal women.
Collapse
Affiliation(s)
- Zhaoshuo Liu
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qilin Wang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Junyou Zhang
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Sihan Qi
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yingying Duan
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Chunyan Li
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Ministry of Industry and Information Technology), Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
30
|
Yang Z, Wei J, Wang Y, Du Y, Song S, Li J, Su Z, Shi Y, Wu H. Irisin Ameliorates Renal Tubulointerstitial Fibrosis by Regulating the Smad4/β-Catenin Pathway in Diabetic Mice. Diabetes Metab Syndr Obes 2023; 16:1577-1593. [PMID: 37292142 PMCID: PMC10244207 DOI: 10.2147/dmso.s407734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/06/2023] [Indexed: 06/10/2023] Open
Abstract
Background The primary pathophysiology of diabetic kidney disease (DKD) is tubulointerstitial fibrosis (TIF), and an essential contributing element is excessive extracellular matrix deposition. Irisin is a polypeptide formed by splitting fibronectin type III domain containing 5 (FNDC5), which participates in a number of physiological and pathological processes. Methods The purpose of this article is to examine irisin's function in DKD and analyze both its in vitro and in vivo effects. The Gene Expression Omnibus (GEO) database was used to download GSE30122, GSE104954, and GSE99325. Analysis of renal tubule samples from nondiabetic and diabetic mice identified 94 differentially expressed genes (DEGs). The transforming growth factor beta receptor 2 (TGFBR2), irisin, and TGF-β1 were utilized as DEGs to examine the impact of irisin on TIF in diabetic kidney tissue, according to the datasets retrieved from the GEO database and Nephroseq database. Additionally, the therapeutic impact of irisin was also examined using Western blot, RT-qPCR, immunofluorescence, immunohistochemistry, and kits for detecting mouse biochemical indices. Results In vitro, the findings demonstrated that irisin not only down-regulated the expression of Smad4 and β-catenin but also reduced the expression of proteins linked to fibrosis, the epithelial-mesenchymal transition (EMT), and mitochondrial dysfunction in HK-2 cells maintained in high glucose (HG) environment. In vivo, overexpressed FNDC5 plasmid was injected into diabetic mice to enhance its expression. Our studies found that overexpressed FNDC5 plasmid not only reversed the biochemical parameters and renal morphological characteristics of diabetic mice but also alleviated EMT and TIF by inhibiting Smad4/β-catenin signaling pathway. Conclusion The above experimental results revealed that irisin could reduce TIF in diabetic mice via regulating the Smad4/β-catenin pathway.
Collapse
Affiliation(s)
- Zhaohua Yang
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Jinying Wei
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Yashu Wang
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Yunxia Du
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Shan Song
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Jiawei Li
- Basic Medical College, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Ziyuan Su
- Basic Medical College, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Yonghong Shi
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| | - Haijiang Wu
- Department of Pathology, Hebei Medical University, Shijiazhuang, 050017, People’s Republic of China
| |
Collapse
|
31
|
Xu H, Wang W, Liu X, Huang W, Zhu C, Xu Y, Yang H, Bai J, Geng D. Targeting strategies for bone diseases: signaling pathways and clinical studies. Signal Transduct Target Ther 2023; 8:202. [PMID: 37198232 DOI: 10.1038/s41392-023-01467-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/02/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
Since the proposal of Paul Ehrlich's magic bullet concept over 100 years ago, tremendous advances have occurred in targeted therapy. From the initial selective antibody, antitoxin to targeted drug delivery that emerged in the past decades, more precise therapeutic efficacy is realized in specific pathological sites of clinical diseases. As a highly pyknotic mineralized tissue with lessened blood flow, bone is characterized by a complex remodeling and homeostatic regulation mechanism, which makes drug therapy for skeletal diseases more challenging than other tissues. Bone-targeted therapy has been considered a promising therapeutic approach for handling such drawbacks. With the deepening understanding of bone biology, improvements in some established bone-targeted drugs and novel therapeutic targets for drugs and deliveries have emerged on the horizon. In this review, we provide a panoramic summary of recent advances in therapeutic strategies based on bone targeting. We highlight targeting strategies based on bone structure and remodeling biology. For bone-targeted therapeutic agents, in addition to improvements of the classic denosumab, romosozumab, and PTH1R ligands, potential regulation of the remodeling process targeting other key membrane expressions, cellular crosstalk, and gene expression, of all bone cells has been exploited. For bone-targeted drug delivery, different delivery strategies targeting bone matrix, bone marrow, and specific bone cells are summarized with a comparison between different targeting ligands. Ultimately, this review will summarize recent advances in the clinical translation of bone-targeted therapies and provide a perspective on the challenges for the application of bone-targeted therapy in the clinic and future trends in this area.
Collapse
Affiliation(s)
- Hao Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wentao Wang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Xin Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Chen Zhu
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Yaozeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, 215006, P. R. China.
- Orthopaedic Institute, Medical College, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
32
|
Yıldız K, Uzunçakmak SK, Halıcı Z, Özçelik C, Yazıcı A. A comparison of the associations between bone turnover markers and different sports fields: combat versus team sports. COMPARATIVE EXERCISE PHYSIOLOGY 2023. [DOI: 10.3920/cep220047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Sedentary life brings risks that include osteoporosis, while physical activity has many benefits for health in general and the skeletal system. Irisin is a hormone-like myokine regulated by mechanical force and it contributes to cortical and trabecular bone mineral density. This study aimed to investigate the effects of different types of sports on bone health by measuring elite athletes’ fibronectin type III domain 5 (FNDC5), N-terminal collagen type I extension propeptide (PINP), and C-terminal cross-linking telopeptide of type I collagen (CTXI) levels. Combat sports athletes, team sports athletes, and sedentary control subjects were enrolled. Serum levels of proteins were measured by ELISA. FNDC5 levels of elite athletes were higher compared to the sedentary controls (P=0.0014). The highest FNDC5 level was measured in wrestlers among all considered groups. The PINP levels of the athletes were also higher than those of the sedentary control group (P=0.1431). The highest PINP level was determined in boxers. The CTXI levels of the athletes were lower than those of the sedentary control (P<0.0001). The lowest CTXI level was seen in boxers. The FNDC5 and PINP levels of combat sports athletes were higher than those of team sports athletes (P=0.0134 and P=0.0262, respectively), while the CTXI levels of combat sports athletes were lower than those of team sports athletes (P<0.0001). Our results indicated that FNDC5, PINP, and CTXI levels are associated with physical activity. The effect of the exercises performed by athletes of specific sports on bone health has not been studied in much detail before. Combining different exercises for athletes of a particular sport may be more beneficial for bone health.
Collapse
Affiliation(s)
- K. Yıldız
- Department of Orthopaedics and Traumatology, Kafkas University, School of Medicine, Kars 36000, Turkey
| | | | - Z. Halıcı
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum 25240, Turkey
- Clinical Research, Development and Design Application, and Research Center, Atatürk University, Erzurum 25240, Turkey
| | - C. Özçelik
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum 25240, Turkey
| | - A.G. Yazıcı
- Kazım Karabekir Education, Faculty Sport Sciences, Atatürk University, Yakutiye/Erzurum 25240, Turkey
| |
Collapse
|
33
|
Zhang Y, Wang L, Kang H, Lin CY, Fan Y. Dose-dependent tandem responses of osteoblasts during osteogenesis. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
34
|
Lai E, Unniappan S. Irisin in domestic animals. Domest Anim Endocrinol 2023; 83:106787. [PMID: 36863302 DOI: 10.1016/j.domaniend.2023.106787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Irisin is a 112 amino acid peptide hormone cleaved from the fibronectin type III domain-containing protein. Irisin is highly conserved across vertebrates, suggesting evolutionarily conserved common functions among domestic animals. These functions include the browning of white adipose tissue and increased energy expenditure. Irisin has been detected and studied primarily in plasma, serum, and skeletal muscle, but has also been found in adipose tissue, liver, kidney, lungs, cerebrospinal fluid, breast milk, and saliva. This wider tissue presence of irisin suggests additional functions beyond its role as a myokine in regulating energy use. We are beginning to understand irisin in domestic animals. The goal of this review is to provide an up-to-date commentary on irisin structure, tissue distribution, and functions across vertebrates, especially mammals of importance in veterinary medicine. Irisin could be explored as a potential candidate for developing therapeutic agents and biomarkers in domestic animal endocrinology.
Collapse
Affiliation(s)
- E Lai
- Department of Veterinary Biomedical Sciences, Laboratory of Integrative Neuroendocrinology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - S Unniappan
- Department of Veterinary Biomedical Sciences, Laboratory of Integrative Neuroendocrinology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
35
|
Cellular and Molecular Mechanisms Associating Obesity to Bone Loss. Cells 2023; 12:cells12040521. [PMID: 36831188 PMCID: PMC9954309 DOI: 10.3390/cells12040521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Obesity is an alarming disease that favors the upset of other illnesses and enhances mortality. It is spreading fast worldwide may affect more than 1 billion people by 2030. The imbalance between excessive food ingestion and less energy expenditure leads to pathological adipose tissue expansion, characterized by increased production of proinflammatory mediators with harmful interferences in the whole organism. Bone tissue is one of those target tissues in obesity. Bone is a mineralized connective tissue that is constantly renewed to maintain its mechanical properties. Osteoblasts are responsible for extracellular matrix synthesis, while osteoclasts resorb damaged bone, and the osteocytes have a regulatory role in this process, releasing growth factors and other proteins. A balanced activity among these actors is necessary for healthy bone remodeling. In obesity, several mechanisms may trigger incorrect remodeling, increasing bone resorption to the detriment of bone formation rates. Thus, excessive weight gain may represent higher bone fragility and fracture risk. This review highlights recent insights on the central mechanisms related to obesity-associated abnormal bone. Publications from the last ten years have shown that the main molecular mechanisms associated with obesity and bone loss involve: proinflammatory adipokines and osteokines production, oxidative stress, non-coding RNA interference, insulin resistance, and changes in gut microbiota. The data collection unveils new targets for prevention and putative therapeutic tools against unbalancing bone metabolism during obesity.
Collapse
|
36
|
Minniti G, Pescinini-Salzedas LM, Minniti GADS, Laurindo LF, Barbalho SM, Vargas Sinatora R, Sloan LA, Haber RSDA, Araújo AC, Quesada K, Haber JFDS, Bechara MD, Sloan KP. Organokines, Sarcopenia, and Metabolic Repercussions: The Vicious Cycle and the Interplay with Exercise. Int J Mol Sci 2022; 23:13452. [PMID: 36362238 PMCID: PMC9655425 DOI: 10.3390/ijms232113452] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Sarcopenia is a disease that becomes more prevalent as the population ages, since it is directly linked to the process of senility, which courses with muscle atrophy and loss of muscle strength. Over time, sarcopenia is linked to obesity, being known as sarcopenic obesity, and leads to other metabolic changes. At the molecular level, organokines act on different tissues and can improve or harm sarcopenia. It all depends on their production process, which is associated with factors such as physical exercise, the aging process, and metabolic diseases. Because of the seriousness of these repercussions, the aim of this literature review is to conduct a review on the relationship between organokines, sarcopenia, diabetes, and other metabolic repercussions, as well the role of physical exercise. To build this review, PubMed-Medline, Embase, and COCHRANE databases were searched, and only studies written in English were included. It was observed that myokines, adipokines, hepatokines, and osteokines had direct impacts on the pathophysiology of sarcopenia and its metabolic repercussions. Therefore, knowing how organokines act is very important to know their impacts on age, disease prevention, and how they can be related to the prevention of muscle loss.
Collapse
Affiliation(s)
- Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | | | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
- School of Food and Technology of Marilia (FATEC), Marilia 17506-000, SP, Brazil
| | - Renata Vargas Sinatora
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Lance Alan Sloan
- Texas Institute for Kidney and Endocrine Disorders, Lufkin, TX 75904, USA
- Department of Internal Medicine, University of Texas Medical Branch-Galveston, Galveston, TX 75904, USA
| | - Rafael Santos de Argollo Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Jesselina F. dos Santos Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Hygino Muzzy Filho, 1001, Marilia 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marilia 17525-902, SP, Brazil
| | | |
Collapse
|
37
|
Liu S, Cui F, Ning K, Wang Z, Fu P, Wang D, Xu H. Role of irisin in physiology and pathology. Front Endocrinol (Lausanne) 2022; 13:962968. [PMID: 36225200 PMCID: PMC9549367 DOI: 10.3389/fendo.2022.962968] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/07/2022] [Indexed: 01/10/2023] Open
Abstract
Irisin, out-membrane part of fibronectin type III domain-containing 5 protein (FNDC5), was activated by Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) during physical exercise in skeletal muscle tissues. Most studies have reported that the concentration of irisin is highly associated with health status. For instance, the level of irisin is significantly lower in patients with obesity, osteoporosis/fractures, muscle atrophy, Alzheimer's disease, and cardiovascular diseases (CVDs) but higher in patients with cancer. Irisin can bind to its receptor integrin αV/β5 to induce browning of white fat, maintain glucose stability, keep bone homeostasis, and alleviate cardiac injury. However, it is unclear whether it works by directly binding to its receptors to regulate muscle regeneration, promote neurogenesis, keep liver glucose homeostasis, and inhibit cancer development. Supplementation of recombinant irisin or exercise-activated irisin might be a successful strategy to fight obesity, osteoporosis, muscle atrophy, liver injury, and CVDs in one go. Here, we summarize the publications of FNDC5/irisin from PubMed/Medline, Scopus, and Web of Science until March 2022, and we review the role of FNDC5/irisin in physiology and pathology.
Collapse
Affiliation(s)
- Shiqiang Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Fengqi Cui
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Kaiting Ning
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Zhen Wang
- Xi’an International Medical Center Hospital Affiliated to Northwest University, Xi’an, China
| | - Pengyu Fu
- Department of Physical Education, Northwestern Polytechnical University, Xi’an, China
| | - Dongen Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center of Special Environmental Biomechanics and Medical Engineering, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
38
|
Ning K, Wang Z, Zhang XA. Exercise-induced modulation of myokine irisin in bone and cartilage tissue—Positive effects on osteoarthritis: A narrative review. Front Aging Neurosci 2022; 14:934406. [PMID: 36062149 PMCID: PMC9439853 DOI: 10.3389/fnagi.2022.934406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a chronic degenerative musculoskeletal disease characterized by pathological changes in joint structures along with the incidence of which increases with age. Exercise is recommended for all clinical treatment guidelines of osteoarthritis, but the exact molecular mechanisms are still unknown. Irisin is a newly discovered myokine released mainly by skeletal muscle in recent years—a biologically active protein capable of being released into the bloodstream as an endocrine factor, the synthesis and secretion of which is specifically induced by exercise-induced muscle contraction. Although the discovery of irisin is relatively recent, its role in affecting bone density and cartilage homeostasis has been reported. Here, we review the production and structural characteristics of irisin and discuss the effects of the different types of exercise involved in the current study on irisin and the role of irisin in anti-aging. In addition, the role of irisin in the regulation of bone mineral density, bone metabolism, and its role in chondrocyte homeostasis and metabolism is reviewed. A series of studies on irisin have provided new insights into the mechanisms of exercise training in improving bone density, resisting cartilage degeneration, and maintaining the overall environmental homeostasis of the joint. These studies further contribute to the understanding of the role of exercise in the fight against osteoarthritis and will provide an important reference and aid in the development of the field of osteoarthritis prevention and treatment.
Collapse
|
39
|
Canto-Cetina T, Silva-Nicanor D, Coral-Vázquez RM, Cano-Martínez LJ, González Herrera L, García S, Lara Padilla E, Canto P. FNDC5/Irisin polymorphisms are associated with osteopenia in postmenopausal Mayan-Mestizo women. Climacteric 2022; 25:603-608. [PMID: 35866470 DOI: 10.1080/13697137.2022.2097866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE This study aimed to analyze the association between rs3480 and rs16835198 of FNDC5/Irisin and their haplotypes with variations in bone mineral density (BMD) and osteopenia/osteoporosis in postmenopausal Mayan-Mestizo women. METHODS We studied 547 postmenopausal women of Maya-Mestizo origin. BMD was measured in the lumbar spine and total hip by dual-energy X-ray absorptiometry. DNA was obtained from blood leukocytes. rs3480 and rs16835198 of FNDC5/Irisin were studied using real-time PCR allelic discrimination. Differences between the means of BMD according to genotype were analyzed with covariance. Allele frequency differences were assessed by χ2 and logistic regression was used to test for associations. Pairwise linkage disequilibrium between polymorphisms was calculated by direct correlation r2, and haplotype analysis was conducted. RESULTS Under a recessive model, we observed a significant association of rs3480 with the presence of osteopenia at the total hip and femoral neck (p = 0.008 and p = 0.003, respectively). For rs16835198, we found an association with osteopenia at the total hip and femoral neck in a dominant model (p = 0.043 and p = 0.009, respectively). CONCLUSIONS We found an association of rs3480 with risk to present osteopenia at the total hip and femoral neck, while rs16835198 was associated as a protector for presence of osteopenia only at the femoral neck.
Collapse
Affiliation(s)
- T Canto-Cetina
- Laboratorio de Biología de la Reproducción, Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Mérida Yucatán, México
| | - D Silva-Nicanor
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - R M Coral-Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México.,Subdirección de Enseñanza e Investigación, Centro Médico Nacional '20 de Noviembre', Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - L J Cano-Martínez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México.,Subdirección de Enseñanza e Investigación, Centro Médico Nacional '20 de Noviembre', Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - L González Herrera
- Laboratorio de Genética, Centro de Investigaciones Regionales 'Dr. Hideyo Noguchi', Mérida Yucatán, México
| | - S García
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional '20 de Noviembre', Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - E Lara Padilla
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - P Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de Ciudad de México, México.,Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición 'Salvador Zubirán', Ciudad de México, México
| |
Collapse
|
40
|
Irisin, An Exercise-induced Bioactive Peptide Beneficial for Health Promotion During Aging Process. Ageing Res Rev 2022; 80:101680. [PMID: 35793739 DOI: 10.1016/j.arr.2022.101680] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/11/2022]
|