1
|
Qian X, Jiang Y, Yang Y, Zhang Y, Xu N, Xu B, Pei K, Yu Z, Wu W. Recent advances of miR-23 in human diseases and growth development. Noncoding RNA Res 2025; 11:220-233. [PMID: 39896346 PMCID: PMC11787465 DOI: 10.1016/j.ncrna.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/17/2024] [Accepted: 12/29/2024] [Indexed: 02/04/2025] Open
Abstract
MicroRNA (miRNA) is broadly manifested in eukaryotes and serves as a critical function in biological development and disease occurrence. With the rapid advancement of experimental research tools, researchers have discovered functional correlations among different miRNA isoforms and clusters within the same miRNA family. As a highly conserved member in the miR-23-27-24 cluster, miR-23 exhibits different isoforms and participates in various essential development. Although the miR-23-27-24 cluster has overlapping target sites, their differential expression can demonstrate independent biological functions. Furthermore, the untapped effects of miR-23 on organisms, whether as a functional cluster or a single regulator, has not been systematically elucidated yet. In this review article, we analyze the genomic location of miR-23 and its sequence variances among its isoforms or family members while summarizing its regulatory functions in metabolic diseases, immune responses, cardiovascular diseases, cancer, organ development as well as nervous system function. This review highlights the significant role of miR-23 as a biomarker for disease diagnosis and a key regulatory factor in pathogenesis, which can help us comprehend the diverse functions of miRNAs and provide a theoretical reference for the functional differences among miRNA isoforms.
Collapse
Affiliation(s)
- Xu Qian
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yongwei Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yadi Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yukun Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Na Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bin Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ke Pei
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhi Yu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wei Wu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| |
Collapse
|
2
|
Chen Z, Xia X, Yao M, Yang Y, Ao X, Zhang Z, Guo L, Xu X. The dual role of mesenchymal stem cells in apoptosis regulation. Cell Death Dis 2024; 15:250. [PMID: 38582754 PMCID: PMC10998921 DOI: 10.1038/s41419-024-06620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Mesenchymal stem cells (MSCs) are widely distributed pluripotent stem cells with powerful immunomodulatory capacity. MSCs transplantation therapy (MSCT) is widely used in the fields of tissue regeneration and repair, and treatment of inflammatory diseases. Apoptosis is an important way for tissues to maintain cell renewal, but it also plays an important role in various diseases. And many studies have shown that MSCs improves the diseases by regulating cell apoptosis. The regulation of MSCs on apoptosis is double-sided. On the one hand, MSCs significantly inhibit the apoptosis of diseased cells. On the other hand, MSCs also promote the apoptosis of tumor cells and excessive immune cells. Furthermore, MSCs regulate apoptosis through multiple molecules and pathways, including three classical apoptotic signaling pathways and other pathways. In this review, we summarize the current evidence on the regulation of apoptosis by MSCs.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of General Surgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Xuewei Xia
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400042, China
| | - Mengwei Yao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Yang
- Department of Rheumatology and Immunology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiang Ao
- Department of orthopedics, The 953th Hospital of PLA, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, 857000, China
| | - Zhaoqi Zhang
- Department of Neurosurgery, The 906th Hospital of PLA, Ningbo, 315040, Zhejiang, China
| | - Li Guo
- Endocrinology Department, First Affiliated Hospital, Army Medical University, Chongqing, 400038, China.
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
3
|
Bei Y, Wang H, Liu Y, Su Z, Li X, Zhu Y, Zhang Z, Yin M, Chen C, Li L, Wei M, Meng X, Liang X, Huang Z, Cao RY, Wang L, Li G, Cretoiu D, Xiao J. Exercise-Induced miR-210 Promotes Cardiomyocyte Proliferation and Survival and Mediates Exercise-Induced Cardiac Protection against Ischemia/Reperfusion Injury. RESEARCH (WASHINGTON, D.C.) 2024; 7:0327. [PMID: 38410280 PMCID: PMC10895486 DOI: 10.34133/research.0327] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Exercise can stimulate physiological cardiac growth and provide cardioprotection effect in ischemia/reperfusion (I/R) injury. MiR-210 is regulated in the adaptation process induced by exercise; however, its impact on exercise-induced physiological cardiac growth and its contribution to exercise-driven cardioprotection remain unclear. We investigated the role and mechanism of miR-210 in exercise-induced physiological cardiac growth and explored whether miR-210 contributes to exercise-induced protection in alleviating I/R injury. Here, we first observed that regular swimming exercise can markedly increase miR-210 levels in the heart and blood samples of rats and mice. Circulating miR-210 levels were also elevated after a programmed cardiac rehabilitation in patients that were diagnosed of coronary heart diseases. In 8-week swimming model in wild-type (WT) and miR-210 knockout (KO) rats, we demonstrated that miR-210 was not integral for exercise-induced cardiac hypertrophy but it did influence cardiomyocyte proliferative activity. In neonatal rat cardiomyocytes, miR-210 promoted cell proliferation and suppressed apoptosis while not altering cell size. Additionally, miR-210 promoted cardiomyocyte proliferation and survival in human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and AC16 cell line, indicating its functional roles in human cardiomyocytes. We further identified miR-210 target genes, cyclin-dependent kinase 10 (CDK10) and ephrin-A3 (EFNA3), that regulate cardiomyocyte proliferation and apoptosis. Finally, miR-210 KO and WT rats were subjected to swimming exercise followed by I/R injury. We demonstrated that miR-210 crucially contributed to exercise-driven cardioprotection against I/R injury. In summary, this study elucidates the role of miR-210, an exercise-responsive miRNA, in promoting the proliferative activity of cardiomyocytes during physiological cardiac growth. Furthermore, miR-210 plays an essential role in mediating the protective effects of exercise against cardiac I/R injury. Our findings suggest exercise as a potent nonpharmaceutical intervention for inducing miR-210, which can alleviate I/R injury and promote cardioprotection.
Collapse
Affiliation(s)
- Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Hongyun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Yang Liu
- Department of Cardiology, Shanghai Tongji Hospital,
Tongji University School of Medicine, Shanghai 200065, China
| | - Zhuhua Su
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Xinpeng Li
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
- School of Environmental and Chemical Engineering,
Shanghai University, Shanghai 200444, China
| | - Yujiao Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Ziyi Zhang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Mingming Yin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Chen Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Lin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Meng Wei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Xiangmin Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
| | - Xuchun Liang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Zhenzhen Huang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Richard Yang Cao
- Cardiac Rehabilitation Program, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital,
Fudan University/Shanghai Clinical Research Center, Shanghai 200031, China
| | - Lei Wang
- Department of Rehabilitation Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dragos Cretoiu
- Department of Medical Genetics,
Carol Davila University of Medicine and Pharmacy, Bucharest 020031, Romania
- Materno-Fetal Assistance Excellence Unit, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest 011062, Romania
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Coronel-Hernández J, Delgado-Waldo I, Cantú de León D, López-Camarillo C, Jacobo-Herrera N, Ramos-Payán R, Pérez-Plasencia C. HypoxaMIRs: Key Regulators of Hallmarks of Colorectal Cancer. Cells 2022; 11:1895. [PMID: 35741024 PMCID: PMC9221210 DOI: 10.3390/cells11121895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Hypoxia in cancer is a thoroughly studied phenomenon, and the logical cause of the reduction in oxygen tension is tumor growth itself. While sustained hypoxia leads to death by necrosis in cells, there is an exquisitely regulated mechanism that rescues hypoxic cells from their fatal fate. The accumulation in the cytoplasm of the transcription factor HIF-1α, which, under normoxic conditions, is marked for degradation by a group of oxygen-sensing proteins known as prolyl hydroxylases (PHDs) in association with the von Hippel-Lindau anti-oncogene (VHL) is critical for the cell, as it regulates different mechanisms through the genes it induces. A group of microRNAs whose expression is regulated by HIF, collectively called hypoxaMIRs, have been recognized. In this review, we deal with the hypoxaMIRs that have been shown to be expressed in colorectal cancer. Subsequently, using data mining, we analyze a panel of hypoxaMIRs expressed in both normal and tumor tissues obtained from TCGA. Finally, we assess the impact of these hypoxaMIRs on cancer hallmarks through their target genes.
Collapse
Affiliation(s)
- Jossimar Coronel-Hernández
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
- Functional Genomics Laboratory, Biomedicine Unit, FES-IZTACALA, UNAM, Tlalnepantla 54090, Mexico
| | - Izamary Delgado-Waldo
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
| | - David Cantú de León
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| | - Nadia Jacobo-Herrera
- Biochemistry Unit, Institute of Medical Sciences and Nutrition, Salvador Zubirán, Tlalpan, Mexico City 14080, Mexico;
| | - Rosalío Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan City 80030, Mexico;
| | - Carlos Pérez-Plasencia
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
- Functional Genomics Laboratory, Biomedicine Unit, FES-IZTACALA, UNAM, Tlalnepantla 54090, Mexico
| |
Collapse
|
5
|
Lionetti V, Sareen N, Dhingra S. Editorial: The Analysis of Nanovesicles, Biomaterials and Chemical Compounds: Assisting the Promotion of Angiogenesis and Enhancing Tissue Engineering Strategies. Front Cardiovasc Med 2022; 9:904738. [PMID: 35557531 PMCID: PMC9089304 DOI: 10.3389/fcvm.2022.904738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Vincenzo Lionetti
| | - Niketa Sareen
- Unit of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Sanjiv Dhingra
- Regenerative Medicine Program, Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Sanjiv Dhingra
| |
Collapse
|
6
|
Xu Z, Lin L, Fan Y, Huselstein C, De Isla N, He X, Chen Y, Li Y. Secretome of Mesenchymal Stem Cells from Consecutive Hypoxic Cultures Promotes Resolution of Lung Inflammation by Reprogramming Anti-Inflammatory Macrophages. Int J Mol Sci 2022; 23:ijms23084333. [PMID: 35457151 PMCID: PMC9032661 DOI: 10.3390/ijms23084333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
The secretome from hypoxia-preconditioned mesenchymal stem cells (MSCs) has been shown to promote resolution of inflammation and alleviate acute lung injury (ALI) through its immunomodulatory function. However, the effects of consecutive hypoxic culture on immunomodulatory function of the MSCs secretome are largely unclarified. Here, we intend to investigate the effects of consecutive hypoxia on therapeutic efficacy of conditioned medium derived from MSCs (MSCs-CM) in alleviating ALI. Human umbilical cord-derived MSCs (UC-MSCs) were consecutively cultured in 21% O2 (Nor-MSCs) or in 1% O2 (Hypo-MSCs) from passage 0. Their conditioned medium (Nor-CM and Hypo-CM respectively) was collected and administered into ALI models. Our findings confirmed that Hypo-MSCs exhibited increased proliferation ability and decreased cell senescence compared with Nor-MSCs. Consecutive hypoxia promoted UC-MSCs to secrete immunomodulatory cytokines, such as insulin-like growth factor 1(IGF1), IL10, TNFα-stimulated gene 6(TSG6), TGFβ, and prostaglandin E2 (PGE2). Both Nor-CM and Hypo-CM could effectively limit lung inflammation, promote efferocytosis and modulate anti-inflammatory polarization of lung macrophages in ALI models. Moreover, the effects of Hypo-CM were more potent than Nor-CM. Taken together, our findings indicate that consecutive hypoxic cultures could not only promote both proliferation and quality of UC-MSCs, but also enhance the therapeutic efficacy of their secretome in mitigating lung inflammation by promoting efferocytosis and anti-inflammatory polarization of macrophages.
Collapse
Affiliation(s)
- Zhihong Xu
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; (Z.X.); (L.L.); (Y.F.); (X.H.); (Y.C.)
| | - Lulu Lin
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; (Z.X.); (L.L.); (Y.F.); (X.H.); (Y.C.)
| | - Yuxuan Fan
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; (Z.X.); (L.L.); (Y.F.); (X.H.); (Y.C.)
| | - Céline Huselstein
- UMR 7365 CNRS, Medical School, University of Lorraine, 54505 Nancy, France; (C.H.); (N.D.I.)
| | - Natalia De Isla
- UMR 7365 CNRS, Medical School, University of Lorraine, 54505 Nancy, France; (C.H.); (N.D.I.)
| | - Xiaohua He
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; (Z.X.); (L.L.); (Y.F.); (X.H.); (Y.C.)
| | - Yun Chen
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; (Z.X.); (L.L.); (Y.F.); (X.H.); (Y.C.)
| | - Yinping Li
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; (Z.X.); (L.L.); (Y.F.); (X.H.); (Y.C.)
- Correspondence: ; Tel.: +86-27-6875-8727; Fax: +86-27-6875-9222
| |
Collapse
|
7
|
Zaccagnini G, Greco S, Voellenkle C, Gaetano C, Martelli F. miR-210 hypoxamiR in Angiogenesis and Diabetes. Antioxid Redox Signal 2022; 36:685-706. [PMID: 34521246 DOI: 10.1089/ars.2021.0200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: microRNA-210 (miR-210) is the master hypoxia-inducible miRNA (hypoxamiR) since it has been found to be significantly upregulated under hypoxia in a wide range of cell types. Recent advances: Gene ontology analysis of its targets indicates that miR-210 modulates several aspects of cellular response to hypoxia. Due to its high pleiotropy, miR-210 not only plays a protective role by fine-tuning mitochondrial metabolism and inhibiting red-ox imbalance and apoptosis, but it can also promote cell proliferation, differentiation, and migration, substantially contributing to angiogenesis. Critical issues: As most miRNAs, modulating different gene pathways, also miR-210 can potentially lead to different and even opposite effects, depending on the physio-pathological contexts in which it acts. Future direction: The use of miRNAs as therapeutics is a fast growing field. This review aimed at highlighting the role of miR-210 in angiogenesis in the context of ischemic cardiovascular diseases and diabetes in order to clarify the molecular mechanisms underpinning miR-210 action. Particular attention will be dedicated to experimentally validated miR-210 direct targets involved in cellular processes related to angiogenesis and diabetes mellitus, such as mitochondrial metabolism, redox balance, apoptosis, migration, and adhesion. Antioxid. Redox Signal. 36, 685-706.
Collapse
Affiliation(s)
- Germana Zaccagnini
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Simona Greco
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Christine Voellenkle
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| |
Collapse
|
8
|
Chen G, Huang G, Lin H, Wu X, Tan X, Chen Z. MicroRNA-425-5p modulates osteoporosis by targeting annexin A2. Immun Ageing 2021; 18:45. [PMID: 34879879 PMCID: PMC8653595 DOI: 10.1186/s12979-021-00256-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023]
Abstract
Abstract
Background
Studies have shown that the decrease of osteogenic differentiation of bone marrow mesenchymal stem cells (MSC) is an important mechanism of osteoporosis. The object of this study was to explore the role and mechanism of microRNA miR-425-5p in the differentiation of MSC.
Methods
The expression of miR-425-5p in MSC was detected by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Cell proliferation, cell cycle and apoptosis were detected by CCK-8 colorimetry and flow cytometry. The expression of TNF were detected by ELISA.
Results
Our data show that MiR-425-5p could modulate TNF-induced cell apoptosis, proliferation, and differentiation. ANXA2 is also the target of miR-425-5p and ANXA2 was involved in TNF-induced MSC cell apoptosis, proliferation, and differentiation. In addition, MiR-425-5p enhanced osteoporosis in mice.
Conclusion
MiR-425-5p might serve as a potential therapeutic target for the treatment of osteoporosis.
Collapse
|
9
|
Coronel-Hernández J, Salgado-García R, Cantú-De León D, Jacobo-Herrera N, Millan-Catalan O, Delgado-Waldo I, Campos-Parra AD, Rodríguez-Morales M, Delgado-Buenrostro NL, Pérez-Plasencia C. Combination of Metformin, Sodium Oxamate and Doxorubicin Induces Apoptosis and Autophagy in Colorectal Cancer Cells via Downregulation HIF-1α. Front Oncol 2021; 11:594200. [PMID: 34123772 PMCID: PMC8187873 DOI: 10.3389/fonc.2021.594200] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 04/30/2021] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide in both sexes. Current therapies include surgery, chemotherapy, and targeted therapy; however, prolonged exposure to chemical agents induces toxicity in patients and drug resistance. So, we implemented a therapeutic strategy based on the combination of doxorubicin, metformin, and sodium oxamate called triple therapy (Tt). We found that Tt significantly reduced proliferation by inhibiting the mTOR/AKT pathway and promoted apoptosis and autophagy in CRC derived cells compared with doxorubicin. Several autophagy genes were assessed by western blot; ULK1, ATG4, and LC3 II were overexpressed by Tt. Interestingly, ULK1 was the only one autophagy-related protein gradually overexpressed during Tt administration. Thus, we assumed that there was a post-transcriptional mechanism mediating by microRNAs that regulate UKL1 expression during autophagy activation. Through bioinformatics approaches, we ascertained that ULK1 could be targeted by mir-26a, which is overexpressed in advanced stages of CRC. In vitro experiments revealed that overexpression of mir-26a decreased significantly ULK1, mRNA, and protein expression. Contrariwise, the Tt recovered ULK1 expression by mir-26a decrease. Due to triple therapy repressed mir-26a expression, we hypothesized this drug combination could be involved in mir-26a transcription regulation. Consequently, we analyzed the mir-26a promoter sequence and found two HIF-1α transcription factor recognition sites. We developed two different HIF-1α stabilization models. Both showed mir-26a overexpression and ULK1 reduction in hypoxic conditions. Immunoprecipitation experiments were performed and HIF-1α enrichment was observed in mir-26a promoter. Surprisingly, Tt diminished HIF-1α detection and restored ULK1 mRNA expression. These results reveal an important regulation mechanism controlled by the signaling that activates HIF-1α and that in turn regulates mir-26a transcription.
Collapse
Affiliation(s)
- Jossimar Coronel-Hernández
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-Iztacala, UNAM, Tlalnepantla, Mexico,Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico
| | | | - David Cantú-De León
- Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico
| | | | | | | | | | | | | | - Carlos Pérez-Plasencia
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, FES-Iztacala, UNAM, Tlalnepantla, Mexico,Laboratorio de Genómica, Instituto Nacional de Cancerología, Tlalpan, Mexico,*Correspondence: Carlos Pérez-Plasencia,
| |
Collapse
|
10
|
Wu TY, Leng Q, Tian LQ. The microRNA-210/Casp8ap2 Axis Alleviates Hypoxia-Induced Myocardial Injury by Regulating Apoptosis and Autophagy. Cytogenet Genome Res 2021; 161:132-142. [PMID: 33882492 DOI: 10.1159/000512254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 10/13/2020] [Indexed: 11/19/2022] Open
Abstract
Coronary heart disease (CHD) is a serious condition comprising atherosclerosis-mediated ischaemic and hypoxic myocardial injury. This study aimed to investigate the mechanism of the miR-210/Casp8ap2 signalling pathway in hypoxic myocardial cells. mRNA and protein expression levels were determined by quantitative real-time PCR and western blotting, respectively. MTT was used to evaluate cell survival, and flow cytometry was used to assess apoptosis and the cell cycle distribution. The interaction between miR-210 and -Casp8ap2 was detected by dual-luciferase reporter assay. As a result, overexpression of miR-210 significantly inhibited apoptosis and reduced the proportion of cells in G1 phase. Moreover, miR-210 suppressed autophagy by upregulating p62 levels and reducing the LC3-II/I ratio in hypoxic cardiomyocytes. miR-210 regulated apoptosis and autophagy by directly targeting Casp8ap2. Furthermore, the expression levels of Casp8ap2, Cleaved caspase 8, Cleaved caspase 3and Beclin-1 were all decreased in response to miR-210. In short, our results suggest that miR-210 exerts anti-apoptotic and anti-autophagic effects in hypoxic cardiomyocytes, which alleviates myocardial injury in response to hypoxia.
Collapse
Affiliation(s)
- Ting-Yu Wu
- Department of Geriatrics, Wuhan No.1 Hospital, Wuhan, China
| | - Qin Leng
- Department of Cardiovascular Medicine, Wuhan No.1 Hospital, Wuhan, China
| | - Li-Qun Tian
- Department of Cardiovascular Medicine, Wuhan No.1 Hospital, Wuhan, China
| |
Collapse
|
11
|
He Y, Cai Y, Pai PM, Ren X, Xia Z. The Causes and Consequences of miR-503 Dysregulation and Its Impact on Cardiovascular Disease and Cancer. Front Pharmacol 2021; 12:629611. [PMID: 33762949 PMCID: PMC7982518 DOI: 10.3389/fphar.2021.629611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
microRNAs (miRs) are short, non-coding RNAs that regulate gene expression by mRNA degradation or translational repression. Accumulated studies have demonstrated that miRs participate in various biological processes including cell differentiation, proliferation, apoptosis, metabolism and development, and the dysregulation of miRs expression are involved in different human diseases, such as neurological, cardiovascular disease and cancer. microRNA-503 (miR-503), one member of miR-16 family, has been studied widely in cardiovascular disease and cancer. In this review, we summarize and discuss the studies of miR-503 in vitro and in vivo, and how miR-503 regulates gene expression from different aspects of pathological processes of diseases, including carcinogenesis, angiogenesis, tissue fibrosis and oxidative stress; We will also discuss the mechanisms of dysregulation of miR-503, and whether miR-503 could be applied as a diagnostic marker or therapeutic target in cardiovascular disease or cancer.
Collapse
Affiliation(s)
- Yanjing He
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Pearl Mingchu Pai
- Department of Medicine, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
- Department of Medicine, The University of Hong Kong - Queen Mary Hospital, Hong Kong, China
| | - Xinling Ren
- Department of Respiratory Medicine, Shenzhen University General Hospital, Shenzhen, China
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
12
|
Lin Y, Anderson JD, Rahnama LMA, Gu SV, Knowlton AA. Exosomes in disease and regeneration: biological functions, diagnostics, and beneficial effects. Am J Physiol Heart Circ Physiol 2020; 319:H1162-H1180. [PMID: 32986962 PMCID: PMC7792703 DOI: 10.1152/ajpheart.00075.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/30/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Exosomes are a subtype of extracellular vesicles. They range from 30 to 150 nm in diameter and originate from intraluminal vesicles. Exosomes were first identified as the mechanism for releasing unnecessary molecules from reticulocytes as they matured to red blood cells. Since then, exosomes have been shown to be secreted by a broad spectrum of cells and play an important role in the cardiovascular system. Different stimuli are associated with increased exosome release and result in different exosome content. The release of harmful DNA and other molecules via exosomes has been proposed as a mechanism to maintain cellular homeostasis. Because exosomes contain parent cell-specific proteins on the membrane and in the cargo that is delivered to recipient cells, exosomes are potential diagnostic biomarkers of various types of diseases, including cardiovascular disease. As exosomes are readily taken up by other cells, stem cell-derived exosomes have been recognized as a potential cell-free regenerative therapy to repair not only the injured heart but other tissues as well. The objective of this review is to provide an overview of the biological functions of exosomes in heart disease and tissue regeneration. Therefore, state-of-the-art methods for exosome isolation and characterization, as well as approaches to assess exosome functional properties, are reviewed. Investigation of exosomes provides a new approach to the study of disease and biological processes. Exosomes provide a potential "liquid biopsy," as they are present in most, if not all, biological fluids that are released by a wide range of cell types.
Collapse
Affiliation(s)
- Yun Lin
- Molecular and Cellular Cardiology, Cardiovascular Medicine, University of California, Davis, California
| | | | - Lily M A Rahnama
- Molecular and Cellular Cardiology, Cardiovascular Medicine, University of California, Davis, California
| | - Shenwen V Gu
- Molecular and Cellular Cardiology, Cardiovascular Medicine, University of California, Davis, California
| | - Anne A Knowlton
- Molecular and Cellular Cardiology, Cardiovascular Medicine, University of California, Davis, California
| |
Collapse
|
13
|
Wang F, Zhu J, Zheng J, Duan W, Zhou Z. miR‑210 enhances mesenchymal stem cell‑modulated neural precursor cell migration. Mol Med Rep 2020; 21:2405-2414. [PMID: 32323777 PMCID: PMC7185297 DOI: 10.3892/mmr.2020.11065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 03/15/2018] [Indexed: 11/06/2022] Open
Abstract
The migration of endogenous neural stem cells and neural precursor cells (NPCs) to sites of injury is essential for neuroregeneration following hypoxic‑ischemic events. Bone marrow‑derived mesenchymal stem cells (BMSCs) are a potential therapeutic source of cells following central nervous system damage; however, few studies have investigated the effects of BMSCs on cell migration. Thus, in the present study, the effects of BMSCs on NPC migration were investigated. In the present study, BMSCs and NPCs were isolated and cultured from mice. The effects of BMSCs on the migration of NPCs were analyzed using a Transwell cell migration assay. BMSCs were transfected with microRNA‑210 (miR‑210) mimics and inhibitors to examine the effects of the respective upregulation and downregulation of miR‑210 in BMSCs on the migration of NPCs. Then, miR‑210 expression in BMSCs were quantified and the expression levels of vascular endothelial growth factor‑C (VEGF‑C), brain derived neurotrophic factor (BDNF) and chemokine C‑C motif ligand 3 (CCL3) in the supernatant under hypoxic conditions were investigated via reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and ELISA. Subsequently, the expression of VEGF‑C, BDNF and CCL3 in BMSCs overexpressing miR‑210 or BMSCs suppressing miR‑210 was examined by RT‑qPCR and western blot analyses. BMSCs promoted the migration of NPC, particularly when pre‑cultured with BMSCs for 24 h and co‑cultured with NPCs for 24 h; the miR‑210 expression levels increased under hypoxic conditions. Additionally, the migration of NPCs was also increased when the BMSCs overexpressed miR‑210 compared with the BMSCs transfected with a negative control miR and BMSCs with downregulated miR‑210 levels. The expression levels of VEGF‑C increased in the BMSCs that overexpressed miR‑210 and were decreased in BMSCs transfected with a miR‑210 inhibitor. The results of the present study indicated that BMSCs promote the migration of NPCs. Overexpression of miR‑210 in BMSCs enhanced NPC migration and may be associated with increases in VEGF‑C expression levels.
Collapse
Affiliation(s)
- Faxiang Wang
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Jie Zhu
- Department of Neurology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, P.R. China
| | - Jian Zheng
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Wei Duan
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| | - Zhujuan Zhou
- Department of Neurology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, P.R. China
| |
Collapse
|
14
|
Rostami Z, Khorashadizadeh M, Naseri M. Immunoregulatory properties of mesenchymal stem cells: Micro-RNAs. Immunol Lett 2020; 219:34-45. [PMID: 31917251 DOI: 10.1016/j.imlet.2019.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that are excellent candidates for different cellular therapies due to their physiological properties such as immunoregulatory function. whetheare currently utilized for regenerative medication and treatment of a number of inflammatory illnesses given their ability to considerably impact tissue microenvironments via extracellular vesicles or toll-like receptor pathway modulation. MicroRNAs (miRNAs) are small noncoding RNAs that target the messenger RNA and play a critical role in different biological procedures, such as the development and reaction of the immune system. Moreover, miRNAs have recently been revealed to have serious functions in MSCs to regulate immunomodulatory properties. In this review, we study how the miRNAs pathway can modulate the immunoregulatory activity of MSCs by counting their interactions with immune cells and also discuss the possibility of using miRNA-based implications for MSC-based therapies.
Collapse
Affiliation(s)
- Zeinab Rostami
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran; Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Khorashadizadeh
- Medical Biotechnology (PhD), Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Naseri
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
15
|
Ribeiro TO, Silveira BM, Meira MC, Carreira ACO, Sogayar MC, Meyer R, Fortuna V. Investigating the potential of the secretome of mesenchymal stem cells derived from sickle cell disease patients. PLoS One 2019; 14:e0222093. [PMID: 31665139 PMCID: PMC6821040 DOI: 10.1371/journal.pone.0222093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
Sickle cell disease (SCD) is a monogenic red cell disorder associated with multiple vascular complications, microvessel injury and wound-healing deficiency. Although stem cell transplantation with bone marrow-derived mesenchymal stem cells (BMSC) can promote wound healing and tissue repair in SCD patients, therapeutic efficacy is largely dependent on the paracrine activity of the implanted BM stromal cells. Since in vitro expansion and culture conditions are known to modulate the innate characteristics of BMSCs, the present study investigated the effects of normoxic and hypoxic cell-culture preconditioning on the BMSC secretome, in addition to the expression of paracrine molecules that induce angiogenesis and skin regeneration. BMSCs derived from SCD patients were submitted to culturing under normoxic (norCM) and hypoxic (hypoCM) conditions. We found that hypoxically conditioned cells presented increased expression and secretion of several well-characterized trophic growth factors (VEGF, IL8, MCP-1, ANG) directly linked to angiogenesis and tissue repair. The hypoCM secretome presented stronger angiogenic potential than norCM, both in vitro and in vivo, as evidenced by HUVEC proliferation, survival, migration, sprouting formation and in vivo angiogenesis. After local application in a murine wound-healing model, HypoCM showed significantly improved wound closure, as well as enhanced neovascularization in comparison to untreated controls. In sum, the secretome of hypoxia-preconditioned BMSC has increased expression of trophic factors involved in angiogenesis and skin regeneration. Considering that these preconditioned media are easily obtainable, this strategy represents an alternative to stem cell transplantation and could form the basis of novel therapies for vascular regeneration and wound healing in individuals with sickle cell disease.
Collapse
Affiliation(s)
- Tiago O. Ribeiro
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Brysa M. Silveira
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Mercia C. Meira
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Ana C. O. Carreira
- Cell and Molecular Therapy Center NUCEL-NETCEM, School of Medicine, Internal Medicine Department, University of São Paulo, São Paulo, SP, Brazil
| | - Mari Cleide Sogayar
- Cell and Molecular Therapy Center NUCEL-NETCEM, School of Medicine, Internal Medicine Department, University of São Paulo, São Paulo, SP, Brazil
- Chemistry Institute, Biochemistry Department, University of São Paulo, São Paulo, SP, Brazil
| | - Roberto Meyer
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| | - Vitor Fortuna
- Health Science Institute, Federal University of Bahia, Salvador, BA, Brazil
| |
Collapse
|
16
|
Nasr MA, Salah RA, Abd Elkodous M, Elshenawy SE, El-Badri N. Dysregulated MicroRNA Fingerprints and Methylation Patterns in Hepatocellular Carcinoma, Cancer Stem Cells, and Mesenchymal Stem Cells. Front Cell Dev Biol 2019; 7:229. [PMID: 31681762 PMCID: PMC6811506 DOI: 10.3389/fcell.2019.00229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the top causes of cancer mortality worldwide. Although HCC has been researched extensively, there is still a need for novel and effective therapeutic interventions. There is substantial evidence that initiation of carcinogenesis in liver cirrhosis, a leading cause of HCC, is mediated by cancer stem cells (CSCs). CSCs were also shown to be responsible for relapse and chemoresistance in several cancers, including HCC. MicroRNAs (miRNAs) constitute important epigenetic markers that regulate carcinogenesis by acting post-transcriptionally on mRNAs, contributing to the progression of HCC. We have previously shown that co-culture of cancer cells with mesenchymal stem cells (MSCs) could induce the reprogramming of MSCs into CSC-like cells. In this review, we evaluate the available data concerning the epigenetic regulation of miRNAs through methylation and the possible role of this regulation in stem cell and somatic reprogramming in HCC.
Collapse
Affiliation(s)
- Mohamed A Nasr
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - M Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Shimaa E Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| | - Nagwa El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine (CESC), Zewail City of Science and Technology, 6th of October City, Egypt
| |
Collapse
|
17
|
MicroRNA-503 regulates hypoxia-induced cardiomyocytes apoptosis through PI3K/Akt pathway by targeting IGF-1R. Biochem Biophys Res Commun 2018; 506:1026-1031. [PMID: 30404731 DOI: 10.1016/j.bbrc.2018.10.160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/19/2018] [Accepted: 10/26/2018] [Indexed: 12/26/2022]
Abstract
Coronary heart disease is the second highest specific cause of death. H9c2 cardiomyocytes were subjected to hypoxia (1% O2) for 0, 6, 12, 24 and 48 h. Cell apoptosis and the activity of caspase3/7 was detected using ELISA; western blot was applied to determine the cleaved-caspase3 (c-caspase3), cleaved-PARP (c-PARP) and cytochrome C (Cyto C) expression after the inhibitor negative control (in-NC), miR-503 inhibitor, mimic negative control (mi-NC) and miR-503 mimic were transfected into cells for 48 h. Moreover, flow cytometry was applied to evaluate mitochondrial membrane potential. In addition, luciferase reporter gene assay was used for detection the relationship between miR-503 and insulin-like growth-factor-1 receptor (IGF-1R). Real-time PCR showed microRNA-503 (miR-503) was elevated in a time-dependent manner under hypoxia. MiR-503 inhibition prevented cell apoptosis and reduced caspase3/7 activity and the expression of c-caspase3 and c-PARP, prevented mitochondrial membrane potential collapse and reduced the cyto C level in cytosol. While, miR-503 overexpression showed a pro-apoptotic role and resulted in mitochondrial membrane potential loss. MiR-503 directly targets IGF-1R in H9c2 cardiomyocytes. The depletion of IGF-1R using a specific IGF-1R siRNA (siIGF-1R) abolished anti-apoptotic function of miR-503 inhibitor, and LY294002 showed a similar trend. In summary, miR-503 promoted cell apoptosis, caused mitochondrial membrane potential collapse and the emancipation of cyto C from mitochondrial through PI3K/Akt pathway via targeting IGF-1R in H9c2 cardiomyocytes.
Collapse
|
18
|
Zhao W, Shen G, Ren H, Liang D, Yu X, Zhang Z, Huang J, Qiu T, Tang J, Shang Q, Yu P, Wu Z, Jiang X. Therapeutic potential of microRNAs in osteoporosis function by regulating the biology of cells related to bone homeostasis. J Cell Physiol 2018; 233:9191-9208. [PMID: 30078225 DOI: 10.1002/jcp.26939] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are novel regulatory factors that play important roles in numerous cellular processes through the posttranscriptional regulation of gene expression. Recently, deregulation of the miRNA-mediated mechanism has emerged as an important pathological factor in osteoporosis. However, a detailed molecular mechanism between miRNAs and osteoporosis is still not available. In this review, the roles of miRNAs in the regulation of cells related to bone homeostasis as well as miRNAs that deregulate in human or animal are discussed. Moreover, the miRNAs that act as clusters in the biology of cells in the bone microenvironment and the difference of some important miRNAs for bone homeostasis between bone and other organs are mentioned. Overall, miRNAs that contribute to the pathogenesis of osteoporosis and their therapeutic potential are considered.
Collapse
Affiliation(s)
- Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Ren
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinjing Huang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ting Qiu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peiyuan Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zixian Wu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaobing Jiang
- Department of Spinal Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory Affiliated to National Key Discipline of Orthopaedic and Traumatology of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Wen Y, Chen R, Zhu C, Qiao H, Liu Y, Ji H, Miao J, Chen L, Liu X, Yang Y. MiR-503 suppresses hypoxia-induced proliferation, migration and angiogenesis of endothelial progenitor cells by targeting Apelin. Peptides 2018; 105:58-65. [PMID: 29800588 DOI: 10.1016/j.peptides.2018.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/15/2018] [Accepted: 05/20/2018] [Indexed: 01/08/2023]
Abstract
Endothelial progenitor cells (EPCs) are of great importance in the process of endogenous blood vessel repair to maintain endothelial integrity and have been applied in a wide range of models of ischemic diseases. MicroRNAs represent a class of non-protein coding endogenous RNAs with 19-24 nucleotides in length and serve an important role in multiple physiological and pathological processes, including angiogenesis. It has been reported that miR-503 reduces angiogenesis in tumorigenesis. However, to our knowledge, the precise role of miR-503 in the regulation of EPCs remains unclear. In the current study, we found that the expression of miR-503 was decreased in mouse bone marrow derived EPCs under the hypoxic condition. Importantly, upregulation of miR-503 suppressed the proliferation, migration and capillary-like tube formation of EPCs induced by hypoxia. Furthermore, a dual luciferase reporter assay showed that Apelin, an endogenous ligand of the G protein-coupled receptor APJ, was a direct target of miR-503 and overexpression of miR-503 significantly inhibited the protein level of Apelin in EPCs. Moreover, hypoxia treatment enhanced the expression of Apelin in EPCs. Meanwhile ectopic expression of Apelin promoted cellular proliferation, migration and tube formation of EPCs in vitro. In summary, our results indicate that miR-503 regulates proliferation, migration and angiogenesis of EPCs by targeting Apelin.
Collapse
Affiliation(s)
- Ya Wen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China; Laboratory of Neurology of Hebei Province, Shijiazhuang 050000 Hebei, PR China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China; Laboratory of Neurology of Hebei Province, Shijiazhuang 050000 Hebei, PR China
| | - Chunhua Zhu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China; Laboratory of Neurology of Hebei Province, Shijiazhuang 050000 Hebei, PR China
| | - Huimin Qiao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China; Laboratory of Neurology of Hebei Province, Shijiazhuang 050000 Hebei, PR China
| | - Ying Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China; Laboratory of Neurology of Hebei Province, Shijiazhuang 050000 Hebei, PR China
| | - Hui Ji
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China; Laboratory of Neurology of Hebei Province, Shijiazhuang 050000 Hebei, PR China
| | - Jiangyong Miao
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China; Laboratory of Neurology of Hebei Province, Shijiazhuang 050000 Hebei, PR China
| | - Linyu Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China; Laboratory of Neurology of Hebei Province, Shijiazhuang 050000 Hebei, PR China
| | - Xiaoxia Liu
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China; Laboratory of Neurology of Hebei Province, Shijiazhuang 050000 Hebei, PR China
| | - Yi Yang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang 050000 Hebei, PR China; Laboratory of Neurology of Hebei Province, Shijiazhuang 050000 Hebei, PR China.
| |
Collapse
|
20
|
Franchi F, Peterson KM, Paulmurugan R, Folmes C, Lanza IR, Lerman A, Rodriguez-Porcel M. Noninvasive Monitoring of the Mitochondrial Function in Mesenchymal Stromal Cells. Mol Imaging Biol 2017; 18:510-8. [PMID: 26865378 DOI: 10.1007/s11307-016-0929-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Mitochondria are a gatekeeper of cell survival and mitochondrial function can be used to monitor cell stress. Here we validate a pathway-specific reporter gene to noninvasively image the mitochondrial function of stem cells. PROCEDURES We constructed a mitochondrial sensor with the firefly luciferase (Fluc) reporter gene driven by the NQO1 enzyme promoter. The sensor was introduced in stem cells and validated in vitro and in vivo, in a mouse model of myocardial ischemia/reperfusion (IR). RESULTS The sensor activity showed an inverse relationship with mitochondrial function (R (2) = -0.975, p = 0.025) and showed specificity and sensitivity for mitochondrial dysfunction. In vivo, NQO1-Fluc activity was significantly higher in IR animals vs. controls, indicative of mitochondrial dysfunction, and was corroborated by ex vivo luminometry. CONCLUSIONS Reporter gene imaging allows assessment of the biology of transplanted mesenchymal stromal cells (MSCs), providing important information that can be used to improve the phenotype and survival of transplanted stem cells.
Collapse
Affiliation(s)
- Federico Franchi
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Karen M Peterson
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ramasamy Paulmurugan
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Clifford Folmes
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ian R Lanza
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Martin Rodriguez-Porcel
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
21
|
Fu X, He Y, Wang X, Peng D, Chen X, Li X, Wang Q. Overexpression of miR-21 in stem cells improves ovarian structure and function in rats with chemotherapy-induced ovarian damage by targeting PDCD4 and PTEN to inhibit granulosa cell apoptosis. Stem Cell Res Ther 2017; 8:187. [PMID: 28807003 PMCID: PMC5556338 DOI: 10.1186/s13287-017-0641-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Chemotherapy-induced premature ovarian failure (POF) is a severe complication affecting tumor patients at a childbearing age. Mesenchymal stem cells (MSCs) can partially restore the ovarian structure and function damaged by chemotherapy. miR-21 is a microRNA that can regulate cell apoptosis. This study discusses the repair effect and mechanism of MSCs overexpressing miR-21 on chemotherapy-induced POF. METHODS Rat MSCs and granulosa cells (GCs) were isolated in vitro. MSCs were transfected with miR-21 lentiviral vector (LV-miR-21) to obtain MSCs stably expressing miR-21 (miR-21-MSCs). The microenvironment of an ovary receiving chemotherapy was mimicked by adding phosphamide mustard (PM) into the cellular culture medium. The apoptosis rate and the mRNA and protein expression of target genes PTEN and PDCD4 were detected in MSCs. Apoptosis was induced by adding PM into the culture medium for GCs, which were cocultured with miR-21-MSCs. The apoptosis rate and the mRNA and protein expression of PTEN and PDCD4 were detected. The chemotherapy-induced POF model was built into rats by intraperitoneal cyclophosphamide injection. miR-21-MSCs were transplanted into the bilateral ovary. The rats were sacrificed at 15, 30, 45, and 60 days after the last injection. The ovarian weights, follicle count, estrous cycle, and sex hormone levels (estradiol (E2) and follicle-stimulating hormone (FSH)) were detected. Apoptosis of GCs was determined by TUNEL assay. The miR-21 and mRNA and protein expression of PTEN and PDCD4 were determined. RESULTS The apoptosis decreased in MSCs transfected with miR-21. The mRNA and protein expression of target genes PTEN and PDCD4 was downregulated. GCs cocultured with miR-21-MSCs showed a decreased apoptosis, an upregulation of miR-21, and a downregulation of PTEN and PDCD4. Following the injection of miR-21-MSCs, the ovarian weight and follicle counts increased; E2 levels increased while FSH levels decreased, with less severe apoptosis of GCs. The miR-21 expression in the ovaries was upregulated, while the mRNA expression and protein expression of PTEN and PDCD4 were downregulated. CONCLUSIONS Overexpression of miR-21 in MSCs promoted efficacy against chemotherapy-induced POF and its improvement of the repair effect was related to the inhibition of GC apoptosis by targeting PTEN and PDCD4.
Collapse
Affiliation(s)
- Xiafei Fu
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Yuanli He
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xuefeng Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Dongxian Peng
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoying Chen
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xinran Li
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qing Wang
- Department of Obstetrics and Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
22
|
Ti D, Hao H, Fu X, Han W. Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1305-1312. [PMID: 27864711 DOI: 10.1007/s11427-016-0240-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/16/2016] [Indexed: 12/23/2022]
Abstract
Clinical and experimental studies have highlighted the significance of inflammation in coordinating wound repair and regeneration. However, it remains challenging to control the inflammatory response and tolerance at systemic levels without causing toxicity to injured tissues. Mesenchymal stem cells (MSCs) possess potent immunomodulatory properties and facilitate tissue repair by releasing exosomes, which generate a suitable microenvironment for inflammatory resolution. Exosomes contain several effective bioactive molecules and act as a cell-cell communication vehicle to influence cellular activities in recipient cells. During this process, the horizontal transfer of exosomal microRNAs (miRNAs) to acceptor cells, where they regulate target gene expression, is of particular interest for understanding the basic biology of inflammation ablation, tissue homeostasis, and development of therapeutic approaches. In this review, we describe a signature of three specific miRNAs (miR-21, miR-146a, and miR-181) present in human umbilical cord MSC-derived exosomes (MSC-EXO) identified microarray chip analysis and focus on the inflammatory regulatory functions of these immune-related miRNAs. We also discuss the potential mechanisms contributing to the resolution of wound inflammation and tissue healing.
Collapse
Affiliation(s)
- Dongdong Ti
- Institute of Basic Medicine, College of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China
| | - Haojie Hao
- Institute of Basic Medicine, College of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaobing Fu
- Institute of Basic Medicine, College of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Weidong Han
- Institute of Basic Medicine, College of Life Sciences, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
23
|
Tse ACK, Li JW, Wang SY, Chan TF, Lai KP, Wu RSS. Hypoxia alters testicular functions of marine medaka through microRNAs regulation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:266-273. [PMID: 27768946 DOI: 10.1016/j.aquatox.2016.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
Hypoxia is a global environmental concern and poses a significant threat to aquatic ecosystems, including the sustainability of natural fish populations. The deleterious effects of hypoxia on fish reproductive fitness, as mediated by disruption of sex hormones and gene expression along the Brain-Pituitary-Gonad axis, have been well documented. Recently, we further demonstrated that the observed disruption of steroidogenesis in the ovary of marine medaka Oryzias melastigma is mediated through microRNAs (miRNAs). More importantly, we reported the transgenerational epigenetic effect of hypoxia on the male reproductive impairment of marine medaka. This study attempts to elucidate the function of miRNAs and its potential role in the transgenerational effect of hypoxia in the male medaka testis, using small RNA sequencing. A total of 558 miRNAs were found in the testis, of which 9 were significant upregulated and 5 were downregulated by hypoxia. Bioinformatics analysis further revealed that among the 2885 genes targeted by the hypoxia-responsive miRNAs, many are closely related to stress response, cell cycle, epigenetic modification, sugar metabolism and cell motion. Furthermore, the integrated analysis of transcriptome data and the result of target gene prediction demonstrated 108 genes and 65 genes were concordantly upregulated and downregulated, respectively. In which, euchromatic histone-lysine N-methyltransferase 2, the epigenetic regulator of transgenerational reproductive impairment caused by hypoxia, is found to be targeted by miR-125-5p. The present findings not only reveal that miRNAs are crucial downstream mediators of hypoxic stress in fish male gonad, but also shed light on the underlying epigenetic mechanism for the reproductive impairments of hypoxia on male fish, including the observed transgenerational effects.
Collapse
Affiliation(s)
- Anna Chung-Kwan Tse
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Jing-Woei Li
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Simon Yuan Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.
| | - Ting-Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Keng Po Lai
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| | - Rudolf Shiu-Sun Wu
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China; State Key Laboratory in Marine Pollution, Hong Kong.
| |
Collapse
|
24
|
Agrawal R, Dale TP, Al-Zubaidi MA, Benny Malgulwar P, Forsyth NR, Kulshreshtha R. Pluripotent and Multipotent Stem Cells Display Distinct Hypoxic miRNA Expression Profiles. PLoS One 2016; 11:e0164976. [PMID: 27783707 PMCID: PMC5081191 DOI: 10.1371/journal.pone.0164976] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 10/04/2016] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs are reported to have a crucial role in the regulation of self-renewal and differentiation of stem cells. Hypoxia has been identified as a key biophysical element of the stem cell culture milieu however, the link between hypoxia and miRNA expression in stem cells remains poorly understood. We therefore explored miRNA expression in hypoxic human embryonic and mesenchymal stem cells (hESCs and hMSCs). A total of 50 and 76 miRNAs were differentially regulated by hypoxia (2% O2) in hESCs and hMSCs, respectively, with a negligible overlap of only three miRNAs. We found coordinate regulation of precursor and mature miRNAs under hypoxia suggesting their regulation mainly at transcriptional level. Hypoxia response elements were located upstream of 97% of upregulated hypoxia regulated miRNAs (HRMs) suggesting hypoxia-inducible-factor (HIF) driven transcription. HIF binding to the candidate cis-elements of specific miRNAs under hypoxia was confirmed by Chromatin immunoprecipitation coupled with qPCR. Role analysis of a subset of upregulated HRMs identified linkage to reported inhibition of differentiation while a downregulated subset of HRMs had a putative role in the promotion of differentiation. MiRNA-target prediction correlation with published hypoxic hESC and hMSC gene expression profiles revealed HRM target genes enriched in the cytokine:cytokine receptor, HIF signalling and pathways in cancer. Overall, our study reveals, novel and distinct hypoxia-driven miRNA signatures in hESCs and hMSCs with the potential for application in optimised culture and differentiation models for both therapeutic application and improved understanding of stem cell biology.
Collapse
Affiliation(s)
- Rahul Agrawal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India-110016
| | - Tina P. Dale
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, University of Keele, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7QB, United Kingdom
| | - Mohammed A. Al-Zubaidi
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, University of Keele, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7QB, United Kingdom
- College of Pharmacy, Al-Mustansiriyah University, Baghdad, Iraq
| | - Prit Benny Malgulwar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India-110029
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, University of Keele, Thornburrow Drive, Hartshill, Stoke-on-Trent, Staffordshire, ST4 7QB, United Kingdom
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, India-110016
| |
Collapse
|
25
|
CXCL13 inhibits microRNA-23a through PI3K/AKT signaling pathway in adipose tissue derived-mesenchymal stem cells. Biomed Pharmacother 2016; 83:876-880. [DOI: 10.1016/j.biopha.2016.07.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/29/2016] [Accepted: 07/31/2016] [Indexed: 01/08/2023] Open
|
26
|
Nollet E, Hoymans VY, Van Craenenbroeck AH, Vrints CJ, Van Craenenbroeck EM. Improving stem cell therapy in cardiovascular diseases: the potential role of microRNA. Am J Physiol Heart Circ Physiol 2016; 311:H207-18. [PMID: 27208159 DOI: 10.1152/ajpheart.00239.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/11/2016] [Indexed: 11/22/2022]
Abstract
The initial promising prospect of autologous bone marrow-derived stem cell therapy in the setting of cardiovascular diseases has been overshadowed by functional shortcomings of the stem cell product. As powerful epigenetic regulators of (stem) cell function, microRNAs are valuable targets for novel therapeutic strategies. Indeed, modulation of specific miRNA expression could contribute to improved therapeutic efficacy of stem cell therapy. First, this review elaborates on the functional relevance of miRNA dysregulation in bone marrow-derived progenitor cells in different cardiovascular diseases. Next, we provide a comprehensive overview of the current evidence on the effect of specific miRNA modulation in several types of progenitor cells on cardiac and/or vascular regeneration. By elaborating on the cardioprotective regulation of progenitor cells on cardiac miRNAs, more insight in the underlying mechanisms of stem cell therapy is provided. Finally, some considerations are made regarding the potential of circulating miRNAs as regulators of the miRNA signature of progenitor cells in cardiovascular diseases.
Collapse
Affiliation(s)
- Evelien Nollet
- Laboratory of Cellular and Molecular Cardiology, Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Antwerp, Belgium
| | - Vicky Y Hoymans
- Laboratory of Cellular and Molecular Cardiology, Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Antwerp, Belgium
| | - Amaryllis H Van Craenenbroeck
- Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Antwerp, Belgium; Department of Nephrology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium; and
| | - Christiaan J Vrints
- Laboratory of Cellular and Molecular Cardiology, Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Emeline M Van Craenenbroeck
- Laboratory of Cellular and Molecular Cardiology, Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, Department of Translational Pathophysiological Research, University of Antwerp, Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| |
Collapse
|
27
|
Bovy N, Blomme B, Frères P, Dederen S, Nivelles O, Lion M, Carnet O, Martial JA, Noël A, Thiry M, Jérusalem G, Josse C, Bours V, Tabruyn SP, Struman I. Endothelial exosomes contribute to the antitumor response during breast cancer neoadjuvant chemotherapy via microRNA transfer. Oncotarget 2016; 6:10253-66. [PMID: 25860935 PMCID: PMC4496353 DOI: 10.18632/oncotarget.3520] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/17/2015] [Indexed: 12/21/2022] Open
Abstract
The interaction between tumor cells and their microenvironment is an essential aspect of tumor development. Therefore, understanding how this microenvironment communicates with tumor cells is crucial for the development of new anti-cancer therapies. MicroRNAs (miRNAs) are small non-coding RNAs that inhibit gene expression. They are secreted into the extracellular medium in vesicles called exosomes, which allow communication between cells via the transfer of their cargo. Consequently, we hypothesized that circulating endothelial miRNAs could be transferred to tumor cells and modify their phenotype. Using exogenous miRNA, we demonstrated that endothelial cells can transfer miRNA to tumor cells via exosomes. Using miRNA profiling, we identified miR-503, which exhibited downregulated levels in exosomes released from endothelial cells cultured under tumoral conditions. The modulation of miR-503 in breast cancer cells altered their proliferative and invasive capacities. We then identified two targets of miR-503, CCND2 and CCND3. Moreover, we measured increased plasmatic miR-503 in breast cancer patients after neoadjuvant chemotherapy, which could be partly due to increased miRNA secretion by endothelial cells. Taken together, our data are the first to reveal the involvement of the endothelium in the modulation of tumor development via the secretion of circulating miR-503 in response to chemotherapy treatment.
Collapse
Affiliation(s)
- Nicolas Bovy
- Laboratory of Molecular Angiogenesis, GIGA-R, University of Liège, Belgium
| | - Benoît Blomme
- Laboratory of Molecular Angiogenesis, GIGA-R, University of Liège, Belgium
| | - Pierre Frères
- Laboratory of Human Genetics, GIGA-R, University of Liège, Belgium
| | - Stella Dederen
- Laboratory of Molecular Angiogenesis, GIGA-R, University of Liège, Belgium
| | - Olivier Nivelles
- Laboratory of Molecular Angiogenesis, GIGA-R, University of Liège, Belgium
| | - Michelle Lion
- Laboratory of Molecular Angiogenesis, GIGA-R, University of Liège, Belgium
| | - Oriane Carnet
- Laboratory of Tumor & Development Biology, GIGA-R, University of Liège, Belgium
| | - Joseph A Martial
- Laboratory of Molecular Angiogenesis, GIGA-R, University of Liège, Belgium
| | - Agnès Noël
- Laboratory of Tumor & Development Biology, GIGA-R, University of Liège, Belgium
| | - Marc Thiry
- Laboratory of Cell and Tissues Biology, University of Liège, Belgium
| | | | - Claire Josse
- Laboratory of Human Genetics, GIGA-R, University of Liège, Belgium
| | - Vincent Bours
- Laboratory of Human Genetics, GIGA-R, University of Liège, Belgium
| | | | - Ingrid Struman
- Laboratory of Molecular Angiogenesis, GIGA-R, University of Liège, Belgium
| |
Collapse
|
28
|
Antioxidants inhibit advanced glycosylation end-product-induced apoptosis by downregulation of miR-223 in human adipose tissue-derived stem cells. Sci Rep 2016; 6:23021. [PMID: 26964642 PMCID: PMC4786853 DOI: 10.1038/srep23021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/25/2016] [Indexed: 12/13/2022] Open
Abstract
Advanced glycosylation end products (AGEs) are endogenous inflammatory mediators that induce apoptosis of mesenchymal stem cells. A potential mechanism includes increased generation of reactive oxygen species (ROS). MicroRNA-223 (miR-223) is implicated in the regulation of cell growth and apoptosis in several cell types. Here, we tested the hypothesis that antioxidants N-acetylcysteine (NAC) and ascorbic acid 2-phosphate (AAP) inhibit AGE-induced apoptosis via a microRNA-dependent mechanism in human adipose tissue-derived stem cells (ADSCs). Results showed that AGE-HSA enhanced apoptosis and caspase-3 activity in ADSCs. AGE-HSA also increased ROS generation and upregulated the expression of miR-223. Interestingly, reductions in ROS generation and apoptosis, and upregulation of miR-223 were found in ADSCs treated with antioxidants NAC and AAP. Furthermore, miR-223 mimics blocked antioxidant inhibition of AGE-induced apoptosis and ROS generation. Knockdown of miR-223 amplified the protective effects of antioxidants on apoptosis induced by AGE-HSA. miR-223 acted by targeting fibroblast growth factor receptor 2. These results indicate that NAC and AAP suppress AGE-HSA-induced apoptosis of ADSCs, possibly through downregulation of miR-223.
Collapse
|
29
|
Abdelwahid E, Kalvelyte A, Stulpinas A, de Carvalho KAT, Guarita-Souza LC, Foldes G. Stem cell death and survival in heart regeneration and repair. Apoptosis 2016; 21:252-68. [PMID: 26687129 PMCID: PMC5200890 DOI: 10.1007/s10495-015-1203-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.
Collapse
Affiliation(s)
- Eltyeb Abdelwahid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, 303 E. Chicago Ave., Tarry 14-725, Chicago, IL, 60611, USA.
| | - Audrone Kalvelyte
- Department of Molecular Cell Biology, Vilnius University Institute of Biochemistry, Vilnius, Lithuania
| | - Aurimas Stulpinas
- Department of Molecular Cell Biology, Vilnius University Institute of Biochemistry, Vilnius, Lithuania
| | - Katherine Athayde Teixeira de Carvalho
- Cell Therapy and Biotechnology in Regenerative Medicine Research Group, Pequeno Príncipe Faculty, Pelé Pequeno Príncipe Institute, Curitiba, Paraná, 80250-200, Brazil
| | - Luiz Cesar Guarita-Souza
- Experimental Laboratory of Institute of Biological and Health Sciences of Pontifical Catholic University of Parana, Curitiba, Paraná, 80215-901, Brazil
| | - Gabor Foldes
- National Heart and Lung Institute, Imperial College London, Imperial Centre for Experimental and Translational Medicine, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
30
|
Zuo J, Wen M, Lei M, Peng X, Yang X, Liu Z. MiR-210 links hypoxia with cell proliferation regulation in human Laryngocarcinoma cancer. J Cell Biochem 2016; 116:1039-49. [PMID: 25639884 DOI: 10.1002/jcb.25059] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 12/18/2014] [Indexed: 12/22/2022]
Abstract
The microRNA hsa-miR-210 (miR-210) is associated with hypoxia; however its function has not fully identified. In the present study, we aim to detect its role concerning proliferation in Laryngocarcinoma. We found that miR-210 was highly expressed in hypoxia, which inhibited proliferation by inducing cell cycle arrest in G1/G0 as well as apoptosis. We further identified that miR-210 targeted fibroblast growth factor receptor-like 1 (FGFRL1). Down regulation of FGFRL1 decreased cell proliferation by promoting proportion of cells in G1/G0 phase and decreasing in S and G2/M phases. Moreover, overexpression of FGFRL1 effectively released the miR-210-induced suppression of SCC10A cell proliferation. Expression of miR-210 repressed tumor xenograft growth in vivo as well. Together, our findings reveal a new mechanism of adaptation to hypoxia that miR-210 inhibits the proliferation via inducing cell cycle arrest and apoptosis by the targeting of FGFRL1. J. Cell. Biochem. 116: 1039-1049, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jianhong Zuo
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518060, China; The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, 421001, China; School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | | | | | | | | | | |
Collapse
|
31
|
Mohd Ali N, Boo L, Yeap SK, Ky H, Satharasinghe DA, Liew WC, Ong HK, Cheong SK, Kamarul T. Probable impact of age and hypoxia on proliferation and microRNA expression profile of bone marrow-derived human mesenchymal stem cells. PeerJ 2016; 4:e1536. [PMID: 26788424 PMCID: PMC4715434 DOI: 10.7717/peerj.1536] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/05/2015] [Indexed: 12/25/2022] Open
Abstract
Decline in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSC) is often seen with older donors as compared to young. Although hypoxia is known as an approach to improve the therapeutic potential of MSC in term of cell proliferation and differentiation capacity, its effects on MSC from aged donors have not been well studied. To evaluate the influence of hypoxia on different age groups, MSC from young (<30 years) and aged (>60 years) donors were expanded under hypoxic (5% O2) and normal (20% O2) culture conditions. MSC from old donors exhibited a reduction in proliferation rate and differentiation potential together with the accumulation of senescence features compared to that of young donors. However, MSC cultured under hypoxic condition showed enhanced self-renewing and proliferation capacity in both age groups as compared to normal condition. Bioinformatic analysis of the gene ontology (GO) and KEGG pathway under hypoxic culture condition identified hypoxia-inducible miRNAs that were found to target transcriptional activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and apoptosis through the activation of multiple signaling pathways. Overall, differentially expressed miRNA provided additional information to describe the biological changes of young and aged MSCs expansion under hypoxic culture condition at the molecular level. Based on our findings, the therapeutic potential hierarchy of MSC according to donor’s age group and culture conditions can be categorized in the following order: young (hypoxia) > young (normoxia) > old aged (hypoxia) > old aged (normoxia).
Collapse
Affiliation(s)
- Norlaily Mohd Ali
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman , Cheras, Selangor , Malaysia
| | - Lily Boo
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman , Cheras, Selangor , Malaysia
| | - Swee Keong Yeap
- Institute of Bioscience, Universiti Putra Malaysia , Serdang, Selangor , Malaysia
| | - Huynh Ky
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Department of Agriculture Genetics and Breeding, College of Agriculture and Applied Biology, Cantho University, Cantho, Vietnam
| | - Dilan A Satharasinghe
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Woan Charn Liew
- Institute of Bioscience, Universiti Putra Malaysia , Serdang, Selangor , Malaysia
| | - Han Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman , Cheras, Selangor , Malaysia
| | - Soon Keng Cheong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Selangor, Malaysia; Cryocord Sdn Bhd, Cyberjaya, Malaysia
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Center of Excellence for Research and Learning (NOCERAL), Faculty of Medicine, Universiti Malaya , Kuala Lumpur , Malaysia
| |
Collapse
|
32
|
Kalinina N, Kharlampieva D, Loguinova M, Butenko I, Pobeguts O, Efimenko A, Ageeva L, Sharonov G, Ischenko D, Alekseev D, Grigorieva O, Sysoeva V, Rubina K, Lazarev V, Govorun V. Characterization of secretomes provides evidence for adipose-derived mesenchymal stromal cells subtypes. Stem Cell Res Ther 2015; 6:221. [PMID: 26560317 PMCID: PMC4642680 DOI: 10.1186/s13287-015-0209-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 02/18/2015] [Accepted: 10/20/2015] [Indexed: 12/15/2022] Open
Abstract
Introduction This study was aimed at deciphering the secretome of adipose-derived mesenchymal stromal cells (ADSCs) cultured in standard and hypoxic conditions to reveal proteins, which may be responsible for regenerative action of these cells. Methods Human ADSCs were isolated from 10 healthy donors and cultured for 3–4 passages. Cells were serum deprived and cell purity was assessed using multiple cell surface markers. Conditioned media was collected and analyzed using LC-MS with a focus on characterizing secreted proteins. Results Purity of the ADSC assessed as CD90+/CD73+/CD105+/CD45-/CD31- cells was greater than 99 % and viability was greater than 97 %. More than 600 secreted proteins were detected in conditioned media of ADSCs. Of these 100 proteins were common to all cultures and included key molecules involved in tissue regeneration such as collagens and collagen maturation enzymes, matrix metalloproteases, matricellular proteins, macrophage-colony stimulating factor and pigment epithelium derived factor. Common set of proteins also included molecules, which contribute to regenerative processes but were not previously associated with ADSCs. These included olfactomedin-like 3, follistatin-like 1 and prosaposin. In addition, ADSCs from the different subjects secreted proteins, which were variable between different cultures. These included proteins with neurotrophic activities, which were not previously associated with ADSCs, such as mesencephalic astrocyte-derived neurotrophic factor, meteorin and neuron derived neurotrophic factor. Hypoxia resulted in secretion of 6 proteins, the most prominent included EGF-like repeats and discoidin I-like domains 3, adrenomedullin and ribonuclease 4 of RNase A family. It also caused the disappearance of 8 proteins, including regulator of osteogenic differentiation cartilage-associated protein. Conclusions Human ADSCs with CD90+/CD73+/CD105+/CD45-/CD31-/PDGFRβ+/NG2+/CD146+(−) immunophenotype secrete a large array of proteins, the most represented group is comprised of extracellular matrix components. Number of secreted proteins is largely unaffected by prolonged hypoxia. Variability in the secretion of several proteins from cultured ADSCs of individual subjects suggests that these cells exist as a heterogeneous population containing functionally distinct subtypes, which differ in numbers between donors. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0209-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia Kalinina
- Faculty of Medicine, Lomonosov Moscow State University, 31-5, Lomonosovsky av, Moscow, 119191, Russia.
| | - Daria Kharlampieva
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow, 119435, Russia.
| | - Marina Loguinova
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow, 119435, Russia.
| | - Ivan Butenko
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow, 119435, Russia.
| | - Olga Pobeguts
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow, 119435, Russia.
| | - Anastasia Efimenko
- Faculty of Medicine, Lomonosov Moscow State University, 31-5, Lomonosovsky av, Moscow, 119191, Russia.
| | - Luidmila Ageeva
- Faculty of Medicine, Lomonosov Moscow State University, 31-5, Lomonosovsky av, Moscow, 119191, Russia.
| | - George Sharonov
- Faculty of Medicine, Lomonosov Moscow State University, 31-5, Lomonosovsky av, Moscow, 119191, Russia.
| | - Dmitry Ischenko
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow, 119435, Russia.
| | - Dmitry Alekseev
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow, 119435, Russia.
| | - Olga Grigorieva
- Faculty of Medicine, Lomonosov Moscow State University, 31-5, Lomonosovsky av, Moscow, 119191, Russia.
| | - Veronika Sysoeva
- Faculty of Medicine, Lomonosov Moscow State University, 31-5, Lomonosovsky av, Moscow, 119191, Russia.
| | - Ksenia Rubina
- Faculty of Medicine, Lomonosov Moscow State University, 31-5, Lomonosovsky av, Moscow, 119191, Russia.
| | - Vassiliy Lazarev
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow, 119435, Russia.
| | - Vadim Govorun
- Department of Molecular Biology and Genetics, SRI of Physical-Chemical Medicine, 1a, Malaya Pirogovskaya, Moscow, 119435, Russia.
| |
Collapse
|
33
|
Andreeva ER, Lobanova MV, Udartseva OO, Buravkova LB. Response of Adipose Tissue-Derived Stromal Cells in Tissue-Related O2 Microenvironment to Short-Term Hypoxic Stress. Cells Tissues Organs 2015; 200:307-15. [PMID: 26407140 DOI: 10.1159/000438921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2015] [Indexed: 12/19/2022] Open
Abstract
A microenvironment low in O2 ('physiological' hypoxia) governs the functions of perivascular multipotent mesenchymal stromal cells, defining their involvement in tissue physiological homeostasis and regenerative remodelling. Acute hypoxic stress is considered as one of the important factors inducing tissue damage. Here, we evaluate the influence of short-term hypoxia (1% O2 for 24 h) on perivascular adipose tissue-derived cells (ASCs) permanently expanded in tissue-related O2 (5%) microenvironment. After hypoxic exposure, ASCs retained high viability, stromal cell morphology and mesenchymal phenotype (CD73+, CD90+, CD105+ and CD45-). Mild oxidative damage was unveiled as elevation of reactive oxygen species and thiobarbituric acid-active products, while no reduction in the activity of the antioxidant enzymes catalase and glutathione peroxidase and a 20% statistically significant increase in superoxide dismutase activity was detected. Expression of hypoxia-inducible factor (HIF)-1α and HIF-3α isoforms was differently regulated. HIF-1α displayed transient up-regulation, with maximum levels 30 min after acute hypoxic exposure, while HIF-3α was significantly up-regulated after 24 h. Up-regulation of ERK7, MEK1 and c-fos, and down-regulation of MKK6, p53, CCNA2, CCNB1 and CCNB2 were observed after 24 h of oxygen deprivation. Acute hypoxic exposure did not affect the gene expression of other mitogen-activated protein kinases (MAPKs) and MAPK kinases, MAPK/ERK kinase-interacting proteins, MAPK-activated transcription factors and scaffolding proteins. Significant stimulation of vascular endothelial growth factor α and interleukin-6 production was detected in ASC-conditioned medium. Thus, tissue O2-adapted ASCs are resistant to hypoxic stress, which can ensure their effective involvement in the regeneration of tissue damage under significant oxygen deprivation.
Collapse
Affiliation(s)
- Elena R Andreeva
- Cell Physiology Laboratory, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
34
|
Georgi N, Taipaleenmaki H, Raiss CC, Groen N, Portalska KJ, van Blitterswijk C, de Boer J, Post JN, van Wijnen AJ, Karperien M. MicroRNA Levels as Prognostic Markers for the Differentiation Potential of Human Mesenchymal Stromal Cell Donors. Stem Cells Dev 2015; 24:1946-55. [PMID: 25915705 DOI: 10.1089/scd.2014.0534] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ability of human mesenchymal stromal/stem cells (hMSCs) to differentiate into various mesenchymal cell lineages makes them a promising cell source for the use in tissue repair strategies. Since the differentiation potential of hMSCs differs between donors, it is necessary to establish biomarkers for the identification of donors with high differentiation potential. In this study, we show that microRNA (miRNA) expression levels are effective for distinguishing donors with high differentiation potential from low differentiation potential. Twenty hMSC donors were initially tested for marker expression and differentiation potential. In particular, the chondrogenic differentiation potential was evaluated on the basis of histological matrix formation, mRNA expression levels of chondrogenic marker genes, and quantitative glycosaminoglycan deposition. Three donors out of twenty were identified as donors with high chondrogenic potential, whereas nine showed moderate and eight showed low chondrogenic potential. Expression profiles of miRNAs involved in chondrogenesis and cartilage homeostasis were used for the distinction between high-performance hMSCs and low-performance hMSCs. Global mRNA expression profiles of the donors before the onset of chondrogenic differentiation revealed minor differences in gene expression between low and high chondrogenic performers. However, analysis of miRNA expression during a 7-day differentiation period identified miR-210 and miR-630 as positive regulators of chondrogenesis. In contrast, miR-181 and miR-34a, which are negative regulators of chondrogenesis, were upregulated during differentiation in low-performing donors. In conclusion, profiling of hMSC donors for a specific panel of miRNAs may have a prognostic value for selecting donors with high differentiation potential to improve hMSC-based strategies for tissue regeneration.
Collapse
Affiliation(s)
- Nicole Georgi
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Hanna Taipaleenmaki
- 2 Heisenberg-Group for Molecular Skeletal Biology, Department of Trauma-, Hand- and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Christian C Raiss
- 3 Nanobiophysics Group, Faculty of Science and Technology, MESA+Institute for Nanotechnology, University of Twente , Enschede, the Netherlands
| | - Nathalie Groen
- 4 Department of Tissue Regeneration, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Karolina Janaeczek Portalska
- 4 Department of Tissue Regeneration, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Clemens van Blitterswijk
- 4 Department of Tissue Regeneration, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Jan de Boer
- 4 Department of Tissue Regeneration, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Janine N Post
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| | - Andre J van Wijnen
- 5 Departments of Orthopedic Surgery and Biochemistry and Molecular Biology, Mayo Clinic , Rochester, Minnesota
| | - Marcel Karperien
- 1 Department of Developmental BioEngineering, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, the Netherlands
| |
Collapse
|
35
|
Sun G, Peng H. HIF-1α-induced microRNA-210 reduces hypoxia-induced osteoblast MG-63 cell apoptosis. Biosci Biotechnol Biochem 2015; 79:1232-9. [PMID: 26037388 DOI: 10.1080/09168451.2014.1003128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To better understand the ischemic-hypoxia-induced fracture healing impairment, we determined in this study the microRNA-210 expression in broken bone specimens and in osteoblasts under hypoxia and then determined the influence of microRNA-210 overexpression on the osteoblast cell proliferation and apoptosis. Results demonstrated that microRNA-210 expression was upregulated with an association with HIF-1α overexpression in clinical human catagmatic tissues and was upregulated HIF-1α-dependently in response to hypoxia in osteoblast MG-63 cells. CCK-8 assay indicated that microRNA-210 upregulation by microRNA-210 mimics reduced the chemotherapeutic 5-FU-induced osteoblast cell death, and colony formation assay demonstrated that microRNA-210 mimics promoted osteoblast cells growth. Moreover, the microRNA-210 mimics transfection inhibited the hypoxia-induced MG-63 cell apoptosis via inhibiting the activation of caspase 3 and caspase 9. Therefore, our research indicated a protective role of microRNA-210 in response to hypoxia. And microRNA-210 might serve as a protective role in bone fracture healing.
Collapse
Affiliation(s)
- Guanwen Sun
- a Orthopaedics Department , Renmin Hospital of Wuhan University , Wuhan , China
| | | |
Collapse
|
36
|
Park HH, Choi J, Lee HJ, Ryu J, Park JH, Rhee WJ, Park TH. Enhancement of human erythropoietin production in Chinese hamster ovary cells through supplementation of 30Kc19-30Kc6 fusion protein. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Chen Z, Dai T, Chen X, Tan L, Shi C. Activation and regulation of the granulation tissue derived cells with stemness-related properties. Stem Cell Res Ther 2015; 6:85. [PMID: 25925316 PMCID: PMC4446126 DOI: 10.1186/s13287-015-0070-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 10/23/2014] [Accepted: 03/30/2015] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Skin as the largest and easily accessible organ of the body represents an abundant source of adult stem cells. Among them, dermal stem cells hold great promise in tissue repair and the skin granulation tissue has been recently proposed as a promising source of dermal stem cells, but their biological characteristics have not been well investigated. METHODS The 5-bromo-2'-deoxyuridine (BrdU) lineage tracing approach was employed to chase dermal stem cells in vivo. Granulation tissue derived cells (GTCs) were isolated and their in vitro proliferation, self-renewing, migration, and multi-differentiation capabilities were assessed. Combined radiation and skin wound model was used to investigate the therapeutic effects of GTCs. MicroRNA-21 (miR-21) antagomir was used to antagonize miR-21 expression. Reactive oxygen species (ROS) were scavenged by N-acetyl cysteine (NAC). RESULTS The quiescent dermal stem/progenitor cells were activated to proliferate upon injury and enriched in granulation tissues. GTCs exhibited enhanced proliferation, colony formation and multi-differentiation capacities. Topical transplantation of GTCs into the combined radiation and skin wound mice accelerated wound healing and reduced tissue fibrosis. Blockade of the miR-21 expression in GTCs inhibited cell migration and differentiation, but promoted cell proliferation and self-renewing at least partially via a ROS dependent pathway. CONCLUSIONS The granulation tissue may represent an alternative adult stem cell source in tissue replacement therapy and miR-21 mediated ROS generation negatively regulates the stemness-related properties of granulation tissue derived cells.
Collapse
Affiliation(s)
- Zelin Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Tingyu Dai
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Xia Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Li Tan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| | - Chunmeng Shi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
38
|
GUO ZENG, LI CONGSHENG, WANG CHUNMIAO, XIE YANGJING, WANG AILING. CSE/H2S system protects mesenchymal stem cells from hypoxia and serum deprivation-induced apoptosis via mitochondrial injury, endoplasmic reticulum stress and PI3K/Akt activation pathways. Mol Med Rep 2015; 12:2128-34. [DOI: 10.3892/mmr.2015.3651] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 03/18/2015] [Indexed: 11/05/2022] Open
|
39
|
Andreeva ER, Pogodina MV, Buravkova LB. Hypoxic stress as an activation trigger of multipotent mesenchymal stromal cells. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s0362119715020024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Li T, Sun ZL, Xie QY. Protective effect of microRNA-30b on hypoxia/reoxygenation-induced apoptosis in H9C2 cardiomyocytes. Gene 2015; 561:268-75. [PMID: 25701595 DOI: 10.1016/j.gene.2015.02.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/30/2015] [Accepted: 02/14/2015] [Indexed: 12/23/2022]
Abstract
We examined the protective role of microRNA-30b (miR-30b) in ischemia-reperfusion (I/R)-induced injury in rat H9C2 cardiomyocytes. H9C2 cells were subjected to hypoxia-reoxygenation (H/R) treatment to simulate ischemia-reperfusion (I/R) injury. H9C2 cells were divided into: vehicle control (VC) group; scrambled inhibitors (INC) group; scrambled mimics (MNC) group; H/R+VC group; H/R+INC group; H/R+mimics group. H/R induced apoptosis was detected by flow cytometry and the pathways involved in miR-30b-mediated protection were examined by analyzing the expression of miR-30b, Bcl-2, Bax, Caspase-3, KRAS, p-AKT and total AKT in H9C2 cells. Overexpression of miR-30b mimic (H/R+mimics group) significantly increased Bcl-2 and Bcl-2/Bax levels and decreased Bax and Caspase-3 levels, compared with the H/R+VC group (all P<0.05). Consistent with this, the apoptosis rate was significantly decreased in the H/R+mimics group (P<0.05) compared with the H/R+VC group. Western blot analysis revealed that overexpression of miR-30b mimic resulted in significantly increase in AKT activation and decreased KRAS, compared to the H/R+VC group (both P<0.05). In conclusion, the H/R induced apoptosis decreased miR-30b expression, but over-expression of miR-30b inhibited H/R induced apoptosis. The observed miR-30b-mediated protection against H/R induced apoptosis involved the upregulation of Ras-PI3K-Akt pathway.
Collapse
Affiliation(s)
- Tong Li
- Department of Emergency, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Ze-Lin Sun
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qi Ying Xie
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
41
|
CXCL13 promotes the effect of bone marrow mesenchymal stem cells (MSCs) on tendon-bone healing in rats and in C3HIOT1/2 cells. Int J Mol Sci 2015; 16:3178-87. [PMID: 25647417 PMCID: PMC4346887 DOI: 10.3390/ijms16023178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/14/2015] [Accepted: 01/21/2015] [Indexed: 01/08/2023] Open
Abstract
Objectives: Mesenchymal stem cells (MSCs) are potential effective therapy for tissue repair and bone regeneration. In present study, the effects of CXC chemokine ligand-13 (CXCL13) were evaluated on tendon-bone healing of rats. Methods: Tendon bone healing of the rat model was established and biomechanical testing was performed at 2, 4, 8 weeks after surgery. Murine mesenchymal cell line (C3HIOT1/2 cells) was cultured. The expression of miRNA-23a was detected by real-time PCR. The protein expression of ERK1/2, JNK and p38 was detected by western blotting. MiR-23a mimic and inhibitor were used to overexpress or silence the expression of miR-23a. Results: MSCs significantly elevated the levels of ultimate load to failure, stiffness and stress in specimens of rats, the effects of which were enhanced by CXCL13. The expression of miR-23a was down-regulated and the protein of ERK1/2 level was up-regulated by CXCL13 treatment in both in vivo and in vitro experiments. ERK1/2 expression was elevated by overexpression of miR-23a and reduced by miR-23a inhibitor. Conclusions: These findings revealed that CXCL13 promoted the tendon-bone healing in rats with MSCs treatment, and implied that the activation of ERK1/2 via miR-23a was involved in the process of MSCs treated bone regeneration.
Collapse
|
42
|
Ciccarelli M, Rusciano M, Sorriento D, Maione AS, Soprano M, Iaccarino G, Illario M. Messages from the Border: Novel Insights in Signal Transduction Pathways Involved in Tumor Invasion and Metastasis. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jct.2015.62022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Xing Y, Hou J, Guo T, Zheng S, Zhou C, Huang H, Chen Y, Sun K, Zhong T, Wang J, Li H, Wang T. microRNA-378 promotes mesenchymal stem cell survival and vascularization under hypoxic-ischemic conditions in vitro. Stem Cell Res Ther 2014; 5:130. [PMID: 25418617 PMCID: PMC4446090 DOI: 10.1186/scrt520] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 11/12/2014] [Indexed: 12/18/2022] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) transplantation has been demonstrated to be an effective strategy for the treatment of cardiovascular disease. However, the low survival rate of MSCs at local diseased tissue reduces the therapeutic efficacy. We therefore investigated the influence of MicroRNA-378 (miR-378) transfection on MSCs survival and vascularization under hypoxic-ischemic condition in vitro. Methods MSCs were isolated from bone marrow of Sprague–Dawley rats and cultured in vitro. The third passage of MSCs were divided into the miR-378 group and control group. For the miR-378 group, cells were transfected with miR-378 mimic. Both groups experienced exposure to hypoxia (1% O2) and serum deprivation for 24 hours, using normoxia (20% O2) as a negative control during the process. After 24 hours of reoxygenation (20% O2), cell proliferation and apoptosis were evaluated. Expressions of apoptosis and angiogenesis related genes were detected. Both groups were further co-cultured with human umbilical vein endothelial cells to promote vascular differentiation for another 6 hours. Vascular density was assessed thereafter. Results Compared with the control group, MSCs transfected with miR-378 showed more rapid growth. Their proliferation rates were much higher at 72 h and 96 h under hypoxic condition (257.33% versus 246.67%, P <0.01; 406.84% versus 365.39%, P <0.05). Cell apoptosis percentage in the miR-378 group was significantly declined under normoxic and hypoxic condition (0.30 ± 0.10% versus 0.50 ± 0.10%, P <0.05; 0.60 ± 0.40% versus 1.70 ± 0.20%, P <0.01). The miR-378 group formed a larger number of vascular branches on matrigel. BCL2 level was decreased accompanied with an upregulated expression of BAX in the two experimental groups under the hypoxic environment. BAX expression was reduced in the miR-378 group under the hypoxic environment. In the miR-378 group, there was a decreased expression of tumor necrosis factor-α on protein level and a reduction of TUSC-2 under normoxic environment. Their expressions were both downregulated under hypoxic environment. For the angiogenesis related genes, enhanced expressions of vascular endothelial growth factorα, platelet derived growth factor-β and transforming growth factor-β1 could be detected both in normoxic and hypoxic-ischemic conditions. Conclusion MiR-378 transfection could effectively promote MSCs survival and vascularization under hypoxic-ischemic condition in vitro.
Collapse
|
44
|
Bao B, Azmi AS, Ali S, Zaiem F, Sarkar FH. Metformin may function as anti-cancer agent via targeting cancer stem cells: the potential biological significance of tumor-associated miRNAs in breast and pancreatic cancers. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:59. [PMID: 25333034 DOI: 10.3978/j.issn.2305-5839.2014.06.05] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/27/2014] [Indexed: 12/13/2022]
Abstract
Metformin is one of the most used diabetic drugs for the management of type II diabetes mellitus (DM) in the world. Increased numbers of epidemiological and clinical studies have provided convincing evidence supporting the role of metformin in the development and progression of a variety of human tumors including breast and pancreatic cancer. Substantial pre-clinical evidence from in vitro and in vivo experimental studies strongly suggests that metformin has an anti-cancer activity mediated through the regulation of several cell signaling pathways including activation of AMP kinase (AMPK), and other direct and indirect mechanisms; however, the detailed mechanism(s) has not yet been fully understood. The concept of cancer stem cells (CSCs) has gained significant attention in recent years due its identification and defining its clinical implications in many different tumors including breast cancer and pancreatic cancer. In this review, we will discuss the protective role of metformin in the development of breast and pancreatic cancers. We will further discuss the role of metformin as an anti-cancer agent, which is in part mediated through targeting CSCs. Finally, we will discuss the potential role of metformin in the modulation of tumor-associated or CSC-associated microRNAs (miRNAs) as part of the novel mechanism of action of metformin in the development and progression of breast and pancreatic cancers.
Collapse
Affiliation(s)
- Bin Bao
- 1 Department of Pathology, 2 Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Asfar S Azmi
- 1 Department of Pathology, 2 Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Shadan Ali
- 1 Department of Pathology, 2 Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Feras Zaiem
- 1 Department of Pathology, 2 Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Fazlul H Sarkar
- 1 Department of Pathology, 2 Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
45
|
Xu X, Kriegel AJ, Jiao X, Liu H, Bai X, Olson J, Liang M, Ding X. miR-21 in ischemia/reperfusion injury: a double-edged sword? Physiol Genomics 2014; 46:789-97. [PMID: 25159851 DOI: 10.1152/physiolgenomics.00020.2014] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) are endogenous, small RNA molecules that suppress expression of targeted mRNA. miR-21, one of the most extensively studied miRNAs, is importantly involved in divergent pathophysiological processes relating to ischemia/reperfusion (I/R) injury, such as inflammation and angiogenesis. The role of miR-21 in renal I/R is complex, with both protective and pathological pathways being regulated by miR-21. Preconditioning-induced upregulation of miR-21 contributes to the protection against subsequent renal I/R injury through the targeting of genes such as the proapoptotic gene programmed cell death 4 and interactions between miR-21 and hypoxia-inducible factor. Conversely, long-term elevation of miR-21 may be detrimental to the organ by promoting the development of renal interstitial fibrosis following I/R injury. miR-21 is importantly involved in several pathophysiological processes related to I/R injury including inflammation and angiogenesis as well as the biology of stem cells that could be used to treat I/R injury; however, the effect of miR-21 on these processes in renal I/R injury remains to be studied.
Collapse
Affiliation(s)
- Xialian Xu
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaoyan Jiao
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Hong Liu
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China
| | - Xiaowen Bai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jessica Olson
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Xiaoqiang Ding
- Division of Nephrology, Fudan University Zhongshan Hospital, Shanghai, Peoples Republic of China; Institutes of Biomedical Sciences of Shanghai Medical School, Fudan University, Shanghai, Peoples Republic of China; Kidney and Dialysis Institute of Shanghai, Shanghai, Peoples Republic of China; and Kidney and Blood Purification Laboratory of Shanghai, Shanghai, Peoples Republic of China
| |
Collapse
|
46
|
Buravkova LB, Andreeva ER, Gogvadze V, Zhivotovsky B. Mesenchymal stem cells and hypoxia: where are we? Mitochondrion 2014; 19 Pt A:105-12. [PMID: 25034305 DOI: 10.1016/j.mito.2014.07.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 07/09/2014] [Indexed: 12/23/2022]
Abstract
Multipotent mesenchymal stromal cells (MSCs) are involved in the organization and maintenance of tissue integrity. MSCs have also attracted attention as a promising tool for cell therapy and regenerative medicine. However, their usage is limited due to cell impairment induced by an extremely harsh microenvironment during transplantation ex vivo. The microenvironment of MSCs in tissue depots is characterized by rather low oxygen consumption, demonstrating that MSCs might be quite resistant to oxygen limitation. However, accumulated data revealed that the response of MSCs to hypoxic conditions is rather controversial, demonstrating both damaging and ameliorating effects. Here, we make an attempt to summarize recent knowledge on the survival of MSCs under low oxygen conditions of varying duration and severity and to elucidate the mechanisms of MSC resistance/sensitivity to hypoxic impact.
Collapse
Affiliation(s)
- L B Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia; Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - E R Andreeva
- Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - V Gogvadze
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden
| | - B Zhivotovsky
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden.
| |
Collapse
|
47
|
Liu S, Yin F, Zhang J, Wicha MS, Chang AE, Fan W, Chen L, Fan M, Li Q. Regulatory Roles of miRNA in the Human Neural Stem Cell Transformation to Glioma Stem Cells. J Cell Biochem 2014; 115:1368-80. [PMID: 24519663 DOI: 10.1002/jcb.24786] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 04/30/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Shuang Liu
- Department of Neurosurgery; Navy General Hospital PLA; Beijing 100048 China
| | - Feng Yin
- Department of Neurosurgery; Navy General Hospital PLA; Beijing 100048 China
| | - Jianning Zhang
- Department of Neurosurgery; Navy General Hospital PLA; Beijing 100048 China
| | - Max S. Wicha
- University of Michigan Medical School; Ann Arbor; Michigan 48109 USA
| | - Alfred E. Chang
- University of Michigan Medical School; Ann Arbor; Michigan 48109 USA
| | - Wenhong Fan
- Department of Brain Protection & Plasticity Research; Beijing Institute of Basic Medical Sciences; Beijing 100850 China
| | - Ling Chen
- Department of Neurosurgery; Chinese PLA (People’s Liberation Army) General Hospital; Beijing 100853 China
| | - Ming Fan
- Department of Brain Protection & Plasticity Research; Beijing Institute of Basic Medical Sciences; Beijing 100850 China
| | - Qiao Li
- University of Michigan Medical School; Ann Arbor; Michigan 48109 USA
| |
Collapse
|
48
|
miRNA Expression in Mesenchymal Stem Cells. CURRENT PATHOBIOLOGY REPORTS 2014. [DOI: 10.1007/s40139-014-0045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Dong J, Cui X, Jiang Z, Sun J. MicroRNA-23a modulates tumor necrosis factor-alpha-induced osteoblasts apoptosis by directly targeting Fas. J Cell Biochem 2014; 114:2738-45. [PMID: 23804233 DOI: 10.1002/jcb.24622] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 06/20/2013] [Indexed: 01/18/2023]
Abstract
Tumor necrosis factor (TNF)-alpha is a key cytokine regulator of bone and mediates inflammatory bone loss. The molecular signaling that regulates bone loss downstream of TNF-alpha is poorly defined. Recent studies implicated an important role of microRNAs (miRNAs) in TNF-alpha-mediated bone metabolism, including osteoblasts differentiation, osteoclasts differentiation and apoptosis. However, there are very few studies on the complex regulation of miRNAs during TNF-alpha-induced osteoblasts apoptosis. In the present study, the clonal murine osteoblastic cell line, MC3T3-E1, was used. We screened for differentially expressed miRNAs during TNF-alpha induced MC3T3-E1 cell apoptosis and identified microRNA-23a as a potential inhibitor of apoptosis. To delineate the role of microRNA-23a in apoptosis, we respectively silenced and overexpressed microRNA-23a in MC3T3-E1 cells. We found that microRNA-23a depletion significantly enhances TNF-alpha-induced MC3T3-E1 cell apoptosis and over-expressing microRNA-23a remarkably attenuates this phenomenon. Mechanistic studies showed that microRNA-23a inhibits Fas expression through a microRNA-23a-binding site within the 3'-untranslational region of Fas. The post-transcriptional repression of Fas was further confirmed by luciferase reporter assay. These results showed that microRNA-23a, an important protecting factor, plays a significant role in the process of TNF-alpha induced MC3T3-E1 cell apoptosis, by regulating Fas expression.
Collapse
Affiliation(s)
- Jun Dong
- Department of Orthopaedics, Provincial Hospital Affiliated to Shandong University, Jinan, P.R. China
| | | | | | | |
Collapse
|
50
|
Clark EA, Kalomoiris S, Nolta JA, Fierro FA. Concise review: MicroRNA function in multipotent mesenchymal stromal cells. Stem Cells 2014; 32:1074-82. [PMID: 24860868 PMCID: PMC10668871 DOI: 10.1002/stem.1623] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multipotent mesenchymal stromal cells (MSCs) are ideal candidates for different cellular therapies due to their simple isolation, extensive expansion potential, and low immunogenicity. For various therapeutic approaches, such as bone and cartilage repair, MSCs are expected to contribute by direct differentiation to replace the damaged tissue, while many other applications rely on the secretion of paracrine factors which modulate the immune response and promote angiogenesis. MicroRNAs (miRNAs), which target messenger RNA for cleavage or translational repression, have recently been shown to play critical functions in MSC to regulate differentiation, paracrine activity, and other cellular properties such as proliferation, survival, and migration. The global miRNA expression profile of MSC varies according to the tissue of origin, species, and detection methodology, while also certain miRNAs are consistently found in all types of MSC. The function in MSC of more than 60 different miRNAs has been recently described, which is the subject of this review. A special emphasis is given to miRNAs that have demonstrated a function in MSC in vivo. We also present in detail miRNAs with overlapping effects (i.e., common target genes) and discuss future directions to deepen our understanding of miRNA biology in MSC. These recent discoveries have opened the possibility of modulating miRNAs in MSC, in order to enhance their proregenerative, therapeutic potential.
Collapse
|