1
|
Gaynullina DK, Shvetsova AA, Borzykh AA, Kiryukhina OO, Sirotina NS, Abramochkin DV, Tarasova OS. Hibernation enhances contractile responses of basilar artery in ground squirrels: The role of Rho-kinase and NO. Comp Biochem Physiol A Mol Integr Physiol 2025; 301:111796. [PMID: 39716717 DOI: 10.1016/j.cbpa.2024.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/08/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Hibernation is accompanied by dramatic decrease of blood flow in many organs due to the increase of their vascular resistances. We compared the responses of mesenteric, renal, and cerebral proximal resistance arteries in summer active (SA) and winter hibernating (WH) ground squirrels and studied the signaling pathways of Rho-kinase and NO. Wire myography and Western blotting were used to assess the arterial responses and protein abundances. Basal tone and contractile responses did not differ between SA and WH squirrels in mesenteric and renal arteries, but were greatly increased in basilar arteries of WH compared to SA. Rho-kinase inhibitor abolished the differences in basilar artery basal tone and contractile responses between WH and SA squirrels, while the content of Rho-kinase II protein in the cerebral arteries did not differ between the groups. NO-synthase inhibitor increased basal tone level and basilar artery contractile responses only in SA but not in WH animals, so that the intergroup differences disappeared. The responses of basilar artery to the NO-donor and eNOS protein content did not differ between the two groups, while nNOS protein content was reduced in WH compared to SA. Therefore, the increase of basilar artery basal tone and contractile responses in hibernating animals is due to the increase of procontractile influence of Rho-kinase and the decrease of anticontractile influence of NO. Localization of high resistance in the hibernating brain at the level of proximal resistance arteries may be important for rapid restoration of cerebral blood flow upon arousal from hibernation.
Collapse
Affiliation(s)
- Dina K Gaynullina
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.
| | - Anastasia A Shvetsova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Anna A Borzykh
- Laboratory of Muscle Physiology, State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Oxana O Kiryukhina
- Laboratory for the Study of Information Processes at the Cellular and Molecular Levels, Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Natalia S Sirotina
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia; Laboratory of Cardiac Electrophysiology, Chazov National Medical Research Center for Cardiology, Moscow, Russia
| | - Olga S Tarasova
- Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia; Department of Physiology and Pathology, Faculty of Basic Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
2
|
Song M, Zhang S, Yu W, Fan X. Gomisin N rescues cognitive impairment of Alzheimer's disease by targeting GSK3β and activating Nrf2 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155811. [PMID: 38924927 DOI: 10.1016/j.phymed.2024.155811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Oxidative stress is one of the earlier events causing neuronal dysfunction in Alzheimer's disease (AD). Gomisin N (GN), a lignin isolated from Schisandra chinensis, has anti-oxidative stress effects. There are currently no studies on the neuroprotective potential of GN in AD. In this study, two AD models were treated with GN for 8 weeks. The cognitive functions, amyloid deposition, and neuronal death were assessed. Additionally, the expressions of critical proteins in the GSK3β/Nrf2 signaling pathway were determined in vivo and in vitro. We showed that GN significantly upregulated the expressions of Nrf2, p-GSK3βSer9/GSK3β, NQO1 and HO-1 proteins in SHSY-5Y/APPswe cells after H2O2 injury, whereas the PI3K inhibitor LY294002 reversed the increase in the expressions of Nrf2, p-GSK3βSer9/GSK3β, NQO1 and HO-1 proteins induced by GN administration. In a further study, GN could significantly improve the learning and memory dysfunctions of the rat and mouse AD models, reduce the area of Aβ plaques in the hippocampus and cortex, and increase the number and function of neurons. Here, we first demonstrate the neuroprotective effects of GN on AD in vivo and in vitro. A possible mechanism by which GN prevents AD is proposed: GN significantly increased the expressions of Nrf2, p-GSK3Ser9/GSK3β and NQO1 proteins in the brain of AD animal models and promoted Nrf2 nuclear translocation, then activated Nrf2 downstream genes to combat oxidative stress in AD pathogenesis. GN might be a promising therapeutic agent for AD.
Collapse
Affiliation(s)
- Meiying Song
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Shanshan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Wangqin Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China.
| |
Collapse
|
3
|
Tang Y, Liu T, Sun S, Peng Y, Huang X, Wang S, Zhou Z. Role and Mechanism of Growth Differentiation Factor 15 in Chronic Kidney Disease. J Inflamm Res 2024; 17:2861-2871. [PMID: 38741613 PMCID: PMC11090192 DOI: 10.2147/jir.s451398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
GDF-15 is an essential member of the transforming growth factor-beta superfamily. Its functions mainly involve in tissue injury, inflammation, fibrosis, regulation of appetite and weight, development of tumor, and cardiovascular disease. GDF-15 is involved in various signaling pathways, such as MAPK pathway, PI3K/AKT pathway, STAT3 pathway, RET pathway, and SMAD pathway. In addition, several factors such as p53, ROS, and TNF-α participate the regulation of GDF-15. However, the specific mechanism of these factors regulating GDF-15 is still unclear and more research is needed to explore them. GDF-15 mainly improves the function of kidneys in CKD and plays an important role in the prediction of CKD progression and cardiovascular complications. In addition, the role of GDF-15 in the kidney may be related to the SMAD and MAPK pathways. However, the specific mechanism of these pathways remains unclear. Accordingly, more research on the specific mechanism of GDF-15 affecting kidney disease is needed in the future. In conclusion, GDF-15 may be a therapeutic target for kidney disease.
Collapse
Affiliation(s)
- Yifang Tang
- Department of Nephrology, the First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| | - Tao Liu
- Organ Transplantation Center, the First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| | - Youbo Peng
- Department of Nephrology, the First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| | - Xiaoxiao Huang
- Department of Nephrology, Xishuangbanna Dai Autonomous Prefecture People’s Hospital, Xishuangbanna, People’s Republic of China
| | - Shuangquan Wang
- Department of Nephrology, Xishuangbanna Dai Autonomous Prefecture People’s Hospital, Xishuangbanna, People’s Republic of China
| | - Zhu Zhou
- Department of Nephrology, the First Affiliated Hospital, Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
4
|
Sun R, Zhou Y, Liang J, Yang L, Fan Z, Wang H. Interference of MDM2 attenuates vascular endothelial dysfunction in hypertension partly through blocking Notch1/NLRP3 inflammasome pathway. Ann Anat 2024; 252:152183. [PMID: 37926401 DOI: 10.1016/j.aanat.2023.152183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Hypertension is a life-threatening disease mainly featured as vascular endothelial dysfunction. This study aims to explore the regulatory role of murine double minute 2 (MDM2) in hypertension and vascular damage. METHODS Mice were infused with angiotensin II (AngII) to establish a hypertension mouse model in vivo and AngII-stimulated HUVECs were constructed to simulate the damage of vascular endothelial cells in hypertension in vitro. The plasmids targeting to MDM2 was injected to mice or transfected to HUVECs. qRT-PCR and western blot were performed to detect corresponding gene expression in mice aorta. Blood pressure was measured. H&E and Masson staining were conducted to evaluate histological changes of aorta. Responses to the acetylcholine (ACh) and sodium nitroprusside (SNP) were assessed in aorta. ZO-1 expression and cell apoptosis were detected by immunofluorescence and TUNEL, respectively. Network formation ability was determined employing a tube formation. RESULTS MDM2 was upregulated in hypertensive mice. Knockdown of MDM2 inhibited AngII-induced high BP, histological damage, vascular relaxation to Ach, and promoted the levels of p-eNOS and ZO-1 in the aorta in hypertensive mice. MDM2 knockdown inactivated Notch1 signaling and NLRP3 inflammasome, while the inhibitory effect of MDM2 knockdown on NLRP3 inflammasome activation was partly restored by the activation of Notch1. Furthermore, knockdown of MDM2 relieved AngII-induced endothelial dysfunction in HUVECs, as well as suppressing AngII-promoted cell apoptosis. Whereas, the impacts generated by MDM2 knockdown were partly weakened by the activation of Notch1 signaling or NLRP3 inflammasome. CONCLUSION In summary, knockdown of MDM2 can attenuate vascular endothelial dysfunction in hypertension, which may be achieved through inhibiting the activation of Notch1 and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Rongyan Sun
- Department of General Practice, The First People's Hospital of Qujing City, Qujing, Yunnan 655000, China
| | - Yubo Zhou
- Department of breast surgery, The First People's Hospital of Qujing City, Qujing, Yunnan 655000, China
| | - Jiao Liang
- Department of General Practice, The First People's Hospital of Qujing City, Qujing, Yunnan 655000, China
| | - Lihong Yang
- Department of General Practice, The First People's Hospital of Qujing City, Qujing, Yunnan 655000, China
| | - Zhengjun Fan
- Department of Ultrasound, The First People's Hospital of Qujing City, Qujing, Yunnan 655000, China
| | - Huali Wang
- Department of Geriatric Medicine, The First People's Hospital of Qujing City, Qujing, Yunnan 655000, China.
| |
Collapse
|
5
|
Yun S, Kim S, Kim K. Cellular Membrane Components-Mediated Cancer Immunotherapeutic Platforms. Macromol Biosci 2023; 23:e2300159. [PMID: 37319369 DOI: 10.1002/mabi.202300159] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Immune cell engineering is an active field of ongoing research that can be easily applied to nanoscale biomedicine as an alternative to overcoming limitations of nanoparticles. Cell membrane coating and artificial nanovesicle technology have been reported as representative methods with an advantage of good biocompatibility for biomimetic replication of cell membrane characteristics. Cell membrane-mediated biomimetic technique provides properties of natural cell membrane and enables membrane-associated cellular/molecular signaling. Thus, coated nanoparitlces (NPs) and artificial nanovesicles can achieve effective and extended in vivo circulation, enabling execution of target functions. While coated NPs and artificial nanovesicles provide clear advantages, much work remains before clinical application. In this review, first a comprehensive overview of cell membrane coating techniques and artificial nanovesicles is provided. Next, the function and application of various immune cell membrane types are summarized.
Collapse
Affiliation(s)
- Seojeong Yun
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Sungjun Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| | - Kyobum Kim
- Department of Chemical & Biochemical Engineering, Dongguk University, Seoul, 04620, Republic of Korea
| |
Collapse
|
6
|
Bai W, Liu ZQ, He PY, Muhuyati. The role of IL-6, IL-10, TNF-α and PD-1 expression on CD4 T cells in atrial fibrillation. Heliyon 2023; 9:e18818. [PMID: 37636377 PMCID: PMC10448416 DOI: 10.1016/j.heliyon.2023.e18818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 07/04/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Backgrounds While not completely understood, the electrical, structural, and communication pathways that play a role in the onset and progression of atrial fibrillation (AF) seem to be connected to the intricate interplay between neurohormones and cellular mediators. Our study's objective was to examine how the expression profiles of the inflammatory cytokines interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor (TNF), and programmed death 1 (PD-1) changed in Cluster of Differentiation 4 (CD4) T cells depending on whether atrial fibrillation was paroxysmal or permanent. This analysis would provide new diagnostic markers for the detection and management of atrial fibrillation. Methods In a cross-sectional study, 60 healthy controls, 49 patients with persistent atrial fibrillation, and 50 patients with paroxysmal atrial fibrillation were compared. Serum biomarker levels are found using the ELISA method, which uses enzyme-linked immunosorbent assay. Echocardiography was used to assess heart function. Results Patients with atrial fibrillation had serum concentrations of IL-6, TNF-a, and IL-10 that were considerably higher than but PD-1 was lower those in the non-AF control group and those in patients with persistent atrial fibrillation. According to the diameter of LA and the serum level of NT-proB-type natriuretic peptide (NT-proBNP) is greater than that of patients with paroxysmal atrial fibrillation than control group. Patients with persistent atrial fibrillation had increased serum levels of low-density lipoprotein cholesterol (LDL-C) compared with those without atrial fibrillation. While PD-1 in patients with paroxysmal atrial fibrillation is closely related to C-reactive protein (CRP), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and very low density lipoprotein cholesterol. In addition, PD-1 in patients with persistent atrial fibrillation is closely related to IL-6, TNF-a, and IL-10. Conclusion Higher blood concentrations of NT-proBNP, IL-6, IL-10, TNF-, and LDL-C but low level of PD-1 are associated with progression from paroxysmal or chronic AF.
Collapse
Affiliation(s)
- Wen Bai
- Department of Comprehensive Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Cardiovascular Center of the Urumqi Friendship Hospital, Urumqi, Xinjiang, China
| | - Zhi-Qiang Liu
- Department of Comprehensive Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Peng-Yi He
- Department of Comprehensive Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Muhuyati
- Department of Comprehensive Cardiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
7
|
Genkel V, Dolgushin I, Savochkina A, Nikushkina K, Baturina I, Minasova A, Sumerkina V, Pykhova L, Kupriyanov S, Kuznetsova A, Shaposhnik I. Innate and Adaptive Immunity-Related Markers as Predictors of the Short-Term Progression of Subclinical Atherosclerosis in Middle-Aged Patients. Int J Mol Sci 2023; 24:12205. [PMID: 37569579 PMCID: PMC10419170 DOI: 10.3390/ijms241512205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Assessment of inflammation is a promising approach to monitoring the progression of asymptomatic atherosclerosis. The aim of the present study was to investigate the predictive value of innate and adaptive immunity-related markers, in relation to the short-term progression of subclinical atherosclerosis. The study included 183 patients aged 40-64 years who underwent duplex scanning of the carotid and lower limb arteries at two visits with an interval of 12-24 months between examinations. Phenotyping of circulating lymphocytes and monocytes subpopulations were performed through flow cytometry. An increase in the number of circulating TLR4-positive intermediate monocytes (>447.0-467.0 cells/μL) was an independent predictor of the short-term progression of lower limb artery atherosclerosis (p < 0.0001) and polyvascular atherosclerosis (p = 0.003). The assessment of TLR4-positive monocytes significantly improved the prognostic model for the progression of lower limb arterial atherosclerosis (C-index 0.728 (0.642-0.815) versus 0.637 (0.539-0.735); p = 0.038). An increase in the number of circulating TLR4-positive intermediate monocytes was an independent predictor of the short-term progression of lower limb artery and polyvascular atherosclerosis. Their inclusion into models containing conventional risk factors significantly improved their prognostic effectiveness regarding lower limb artery atherosclerosis progression.
Collapse
Affiliation(s)
- Vadim Genkel
- Federal State Budgetary Educational Institution of Higher Education “South-Ural State Medical University” of the Ministry of Healthcare of the Russian Federation, 454092 Chelyabinsk, Russia; (I.D.); (A.S.); (K.N.); (I.B.); (A.M.); (V.S.); (L.P.); (S.K.); (A.K.); (I.S.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Gwon MA, Kim MJ, Kang HG, Joo YE, Jeon SB, Jeong PS, Kim SU, Sim BW, Koo DB, Song BS. Cadmium exposure impairs oocyte meiotic maturation by inducing endoplasmic reticulum stress in vitro maturation of porcine oocytes. Toxicol In Vitro 2023; 91:105615. [PMID: 37207789 DOI: 10.1016/j.tiv.2023.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Cadmium (Cd) is toxic metal that can induce various diseases, such as cardiovascular, nervous, and reproductive systems. This study investigated the effect of Cd exposure on porcine oocyte maturation and the underlying mechanism. Porcine cumulus-oocyte complexes were exposed various Cd concentration and tauroursodeoxycholic acid (TUDCA), an inhibitor of endoplasmic reticulum (ER) stress during in vitro maturation (IVM). After IVM, we evaluated meiotic maturation, ER stress, and oocyte quality by Cd exposure. Cd exposure inhibited cumulus cell expansion and meiotic maturation, increased oocyte degeneration, and induced ER stress. The levels of spliced XBP1 and ER stress-associated transcripts, markers of ER stress, were elevated in Cd-treated cumulus-oocyte complexes and denuded oocytes during IVM. Moreover, Cd-induced ER stress impaired oocyte quality by disrupting mitochondrial function and elevating intracellular reactive oxygen species levels while decreasing ER function. Interestingly, TUDCA supplementation significantly decreased the expression of ER stress-related genes and increased the quantity of ER compared with the Cd treatment. Additionally, TUDCA was also able to rescue excessive levels of ROS and restore normal mitochondrial function. Moreover, the addition of TUDCA under Cd exposure greatly ameliorated Cd-mediated detrimental effects on meiotic maturation and oocyte quality, including cumulus cell expansion and MII rate. These findings suggest that Cd exposure during IVM impairs the meiotic maturation of oocytes by inducing of ER stress.
Collapse
Affiliation(s)
- Min-Ah Gwon
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea; Department of Biotechnology, Daegu University, Gyeongsangbuk-do 38453, Republic of Korea
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Ye Eun Joo
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Se-Been Jeon
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Pil-Soo Jeong
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, Daegu University, Gyeongsangbuk-do 38453, Republic of Korea.
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Chungcheongbuk-do 28116, Republic of Korea.
| |
Collapse
|
9
|
Wei W, Geer MJ, Guo X, Dolgalev I, Sanjana NE, Neel BG. Genome-wide CRISPR/Cas9 screens reveal shared and cell-specific mechanisms of resistance to SHP2 inhibition. J Exp Med 2023; 220:e20221563. [PMID: 36820830 PMCID: PMC9998968 DOI: 10.1084/jem.20221563] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/14/2022] [Accepted: 01/20/2023] [Indexed: 02/24/2023] Open
Abstract
SHP2 (PTPN11) acts upstream of SOS1/2 to enable RAS activation. Allosteric SHP2 inhibitors (SHP2i) in the clinic prevent SHP2 activation, block proliferation of RTK- or cycling RAS mutant-driven cancers, and overcome "adaptive resistance." To identify SHP2i resistance mechanisms, we performed genome-wide CRISPR/Cas9 knockout screens on two SHP2i-sensitive cell lines, recovering genes expected to cause resistance (NF1, PTEN, CDKN1B, LZTR1, and RASA2) and novel targets (INPPL1, MAP4K5, epigenetic modifiers). We screened 14 additional lines with a focused CRISPR library targeting common "hits" from the genome-wide screens. LZTR1 deletion conferred resistance in 12/14 lines, followed by MAP4K5 (8/14), SPRED2/STK40 (6/14), and INPPL1 (5/14). INPPL1, MAP4K5, or LZTR1 deletion reactivated ERK signaling. INPPL1-mediated sensitization to SHP2i required its NPXY motif but not lipid phosphatase activity. MAP4K5 acted upstream of MEK through a kinase-dependent target(s); LZTR1 had cell-dependent effects on RIT and RAS stability. INPPL1, MAP4K5, or LZTR1 deletion also conferred SHP2i resistance in vivo. Defining the SHP2i resistance landscape could suggest effective combination approaches.
Collapse
Affiliation(s)
- Wei Wei
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Mitchell J. Geer
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Xinyi Guo
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Igor Dolgalev
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| | - Neville E. Sanjana
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
- Department of Biology, New York University, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Benjamin G. Neel
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, NYU Langone Health, New York, NY, USA
| |
Collapse
|
10
|
Luo L, Chen J, Wu Q, Yuan B, Hu C, Yang T, Wei H, Li T. Prenatally VPA exposure is likely to cause autistic-like behavior in the rats offspring via TREM2 down-regulation to affect the microglial activation and synapse alterations. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104090. [PMID: 36870407 DOI: 10.1016/j.etap.2023.104090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/17/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Microglial dysfunction has been reported in the valproic acid (VPA)-induced autism spectrum disorder (ASD) rat models. However, how does prenatal VPA exposure affect microglia remains to be elucidated. The triggering receptor expressed on myeloid cells 2 (TREM2) is revealed to be implicated in a range of microglia functions. However, reports on the association between TREM2 and VPA-induced ASD rat models are scarce. Our results showed that prenatal VPA exposure induced autistic-like behaviors, downregulated the levels of TREM2, up-regulated microglial activation, dysregulated microglial polarization, and altered synapse in offspring. TREM2 overexpression partly ameliorated microglia dysfunction and autistic-like behaviors in prenatal VPA-exposed rats. Our findings demonstrated that prenatally VPA exposure is likely to cause autistic-like behavior in the rat offspring via TREM2 down-regulation to affect the microglial activation, microglial polarization and synaptic pruning of microglia for the first time.
Collapse
Affiliation(s)
- Lijuan Luo
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jie Chen
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Qionghui Wu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Binlin Yuan
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Chaoqun Hu
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Ting Yang
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Hua Wei
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Tingyu Li
- Children's Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Nutrition and Health, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Department of Child Health Care, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Nix J, Marrella MA, Oliver MA, Rhoads M, Ealy AD, Biase FH. Cleavage kinetics is a better indicator of embryonic developmental competency than brilliant cresyl blue staining of oocytes. Anim Reprod Sci 2023; 248:107174. [PMID: 36502760 DOI: 10.1016/j.anireprosci.2022.107174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/08/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
In vitro production of embryos (IVP) is a valuable technology to produce embryos of high genetic value. Despite advances in IVP, the efficiency of culture systems remains low. One method to increase IVP success is the early selection of oocytes or embryos that may have greater developmental potential. Here, we investigated two methods of selection, namely BCB staining and cleavage kinetics, both individually and in conjunction, for improved developmental outcomes in vitro. We hypothesized that a synergistic use of both BCB staining and cleavage kinetics would result in identification of embryos of greater developmental potential. The selection of oocytes by BCB staining does select for those oocytes with higher developmental potential, as noted by a greater blastocyst development between BCB positive (32.6%) and BCB negative (22.0%) on day 8 post-fertilization. However, the utilization of BCB staining and cleavage kinetics in tandem resulted in a complete masking of the effect observed when using BCB alone. We obtained the highest proportion of blastocyst development per selection group using cleavage kinetics alone, in which 53.1% of embryos grouped as Fast produced a blastocyst, which was significantly different from the three other groups (Fast+, Slow, not cleaved). We observed, however, that the separation of embryos by cleavage kinetics did not predict their survival to cryopreservation. In conclusion, in standard culture systems, cleavage kinetics is an effective method for the selection of embryos with increased developmental potential to develop blastocysts, however, it may not be effective to select healthy embryos for transfer following cryopreservation.
Collapse
Affiliation(s)
- Jada Nix
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mackenzie A Marrella
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mary Ali Oliver
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle Rhoads
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Alan D Ealy
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.
| |
Collapse
|
12
|
Lorigo M, Cairrao E. UV-B filter octylmethoxycinnamate-induced vascular endothelial disruption on rat aorta: In silico and in vitro approach. CHEMOSPHERE 2022; 307:135807. [PMID: 35931261 DOI: 10.1016/j.chemosphere.2022.135807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Throughout human life, an extensive and varied range of emerging environmental contaminants, called endocrine disruptors (EDCs), cause adverse health effects, including in the cardiovascular (CV) system. Cardiovascular diseases (CVD) are worryingly one of the leading causes of all mortality and mobility worldwide. The UV-B filter octylmethoxycinnamate (also designated octinoxate, or ethylhexyl methoxycinnamate (CAS number: 5466-77-3)) is an EDC widely present in all personal care products. However, to date, there are no studies evaluating the OMC-induced effects on vasculature using animal models to improve human cardiovascular health. This work analysed the effects of OMC on rat aorta vasculature and explored the modes of action implicated in these effects. Our results indicated that OMC relaxes the rat aorta by endothelium-dependent mechanisms through the signaling pathways of cyclic nucleotides and by endothelium-independent mechanisms involving inhibition of L-Type voltage-operated Ca2+ channels (L-Type VOCC). Overall, OMC toxicity on rat aorta may produce hypotension via vasodilation due to excessive NO release and blockade of L-Type VOCC. Moreover, the OMC-induced endothelial dysfunction may also occur by promoting the endothelial release of endothelin-1. Therefore, our findings demonstrate that exposure to OMC alters the reactivity of the rat aorta and highlight that long-term OMC exposure may increase the risk of human CV diseases.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501, Covilhã, Portugal.
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal; FCS - UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal; C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501, Covilhã, Portugal.
| |
Collapse
|
13
|
Du Y, Wang H, Yang Y, Zhang J, Huang Y, Fan S, Gu C, Shangguan L, Lin X. Extracellular Vesicle Mimetics: Preparation from Top-Down Approaches and Biological Functions. Adv Healthc Mater 2022; 11:e2200142. [PMID: 35899756 DOI: 10.1002/adhm.202200142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/15/2022] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles (EVs) have attracted attention as delivery vehicles due to their structure, composition, and unique properties in regeneration and immunomodulation. However, difficulties during production and isolation processes of EVs limit their large-scale clinical applications. EV mimetics (EVMs), prepared via top-down strategies that improve the yield of nanoparticles while retaining biological properties similar to those of EVs have been used to address these limitations. Herein, the preparation of EVMs is reviewed and their characteristics in terms of structure, composition, targeting ability, cellular uptake mechanism, and immunogenicity, as well as their strengths, limitations, and future clinical application prospects as EV alternatives are summarized.
Collapse
Affiliation(s)
- Yuan Du
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Hongyi Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yang Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jianfeng Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China
| | - Yue Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| | - Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| | - Liqing Shangguan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, 310020, China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.,Hangzhou OrigO Biotechnology Co. Ltd., Hangzhou, 311200, China
| |
Collapse
|
14
|
Louvet L, Lenglet G, Krautzberger AM, Mentaverri R, Hague F, Kowalewski C, Mahtal N, Lesieur J, Bonnet A, Andrique C, Gaucher C, Gomila C, Schrewe H, Tharaux P, Kamel S, Chaussain C, Six I. Vasorin plays a critical role in vascular smooth muscle cells and arterial functions. J Cell Physiol 2022; 237:3845-3859. [PMID: 35892191 PMCID: PMC9796581 DOI: 10.1002/jcp.30838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 01/01/2023]
Abstract
Within the cardiovascular system, the protein vasorin (Vasn) is predominantly expressed by vascular smooth muscle cells (VSMCs) in the coronary arteries and the aorta. Vasn knockout (Vasn-/- ) mice die within 3 weeks of birth. In the present study, we investigated the role of vascular Vasn expression on vascular function. We used inducible Vasn knockout mice (VasnCRE-ERT KO and VasnSMMHC-CRE-ERT2 KO , in which respectively all cells or SMCs only are targeted) to analyze the consequences of total or selective Vasn loss on vascular function. Furthermore, in vivo effects were investigated in vitro using human VSMCs. The death of VasnCRE-ERT KO mice 21 days after tamoxifen injection was concomitant with decreases in blood pressure, angiotensin II levels, and vessel contractibility to phenylephrine. The VasnSMMHC-CRE-ERT2 KO mice displayed concomitant changes in vessel contractibility in response to phenylephrine and angiotensin II levels. In vitro, VASN deficiency was associated with a shift toward the SMC contractile phenotype, an increase in basal intracellular Ca2+ levels, and a decrease in the SMCs' ability to generate a calcium signal in response to carbachol or phenylephrine. Additionally, impaired endothelium-dependent relaxation (due to changes in nitric oxide signaling) was observed in all Vasn knockout mice models. Our present findings highlight the role played by Vasn SMC expression in the maintenance of vascular functions. The mechanistic experiments suggested that these effects are mediated by SMC phenotype switching and changes in intracellular calcium homeostasis, angiotensin II levels, and NO signaling.
Collapse
Affiliation(s)
- Loïc Louvet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV)Picardie Jules Verne UniversityAmiensFrance
| | - Gaëlle Lenglet
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV)Picardie Jules Verne UniversityAmiensFrance
| | | | - Romuald Mentaverri
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV)Picardie Jules Verne UniversityAmiensFrance,Amiens University HospitalHuman Biology CenterAmiensFrance
| | - Frédéric Hague
- UR EA4667, UPJV, Laboratoire de Physiologie Cellulaire et MoléculairePicardie Jules Verne UniversityAmiensFrance
| | - Clara Kowalewski
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV)Picardie Jules Verne UniversityAmiensFrance
| | - Nassim Mahtal
- Université Paris Cité, Paris Cardiovascular CenterINSERMParisFrance
| | - Julie Lesieur
- Université Paris Cité, URP2496F‐92120MontrougeFrance
| | - Anne‐Laure Bonnet
- Université Paris Cité, URP2496F‐92120MontrougeFrance,AP‐HP, FHU DDS‐net, Services de médecine bucco‐dentaire (GH Sorbonne Université, GH Paris Nord Université de Paris, GH Henri Mondor)ParisFrance
| | | | - Céline Gaucher
- Université Paris Cité, URP2496F‐92120MontrougeFrance,AP‐HP, FHU DDS‐net, Services de médecine bucco‐dentaire (GH Sorbonne Université, GH Paris Nord Université de Paris, GH Henri Mondor)ParisFrance
| | - Cathy Gomila
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV)Picardie Jules Verne UniversityAmiensFrance
| | - Heinrich Schrewe
- Department of Developmental GeneticsMax Planck Institute for Molecular GeneticsBerlinGermany
| | | | - Said Kamel
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV)Picardie Jules Verne UniversityAmiensFrance,Amiens University HospitalHuman Biology CenterAmiensFrance
| | - Catherine Chaussain
- Université Paris Cité, URP2496F‐92120MontrougeFrance,AP‐HP, FHU DDS‐net, Services de médecine bucco‐dentaire (GH Sorbonne Université, GH Paris Nord Université de Paris, GH Henri Mondor)ParisFrance
| | - Isabelle Six
- UR 7517 UPJV, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV)Picardie Jules Verne UniversityAmiensFrance
| |
Collapse
|
15
|
Liu K, Sun Q, Liu Q, Li H, Zhang W, Sun C. Focus on immune checkpoint PD-1/PD-L1 pathway: New advances of polyphenol phytochemicals in tumor immunotherapy. Biomed Pharmacother 2022; 154:113618. [DOI: 10.1016/j.biopha.2022.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/19/2022] [Accepted: 08/27/2022] [Indexed: 11/02/2022] Open
|
16
|
Sawma T, Shaito A, Najm N, Sidani M, Orekhov A, El-Yazbi AF, Iratni R, Eid AH. Role of RhoA and Rho-associated kinase in phenotypic switching of vascular smooth muscle cells: Implications for vascular function. Atherosclerosis 2022; 358:12-28. [DOI: 10.1016/j.atherosclerosis.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022]
|
17
|
Role of Platelet in Parkinson’s Disease: Insights into Pathophysiology & Theranostic Solutions. Ageing Res Rev 2022; 80:101681. [DOI: 10.1016/j.arr.2022.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/19/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022]
|
18
|
Fu L, Shi Z, Chen B. Deleted in lymphocytic leukemia 2 induces retinoic acid receptor beta promoter methylation and mitogen activated kinase-like protein activation to enhance viability and mobility of colorectal cancer cells. Bioengineered 2022; 13:12847-12862. [PMID: 35611845 PMCID: PMC9275910 DOI: 10.1080/21655979.2022.2076482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abnormal expression of long non-coding RNAs (lncRNAs) is frequently linked to the pathogenesis of colorectal cancer (CRC). This work explored the function of lncRNA deleted in lymphocytic leukemia 2 (DLEU2) in CRC and the epigenetic mechanism. Candidate oncogenes in CRC were predicted using a GSE146587 dataset. DLEU2 was highly expressed in CRC according to the bioinformatic analysis and its high expression was detected in CRC cells compared to the normal colon epithelial cells (FHC). Downregulation of DLEU2 in CRC SW480 and HT29 cells suppressed viability, migration, invasiveness, and resistance to apoptosis of cells. The mRNA microarray analysis was performed to explore the key molecules mediated by DLEU2. Retinoic acid receptor beta (RARB) expression was elevated in cells after DLEU2 downregulation. The promoter methylation of RARB was enhanced in CRC cells compared to normal FHC cells. DLEU2 induced promoter methylation of RARB to downregulate its expression. Further silencing of RARB restored proliferation and invasiveness of cells blocked by sh-DLEU2. Upregulation of DLEU2 activated the mitogen activated kinase-like protein (MAPK) signaling pathway to trigger CRC progression. In conclusion, this study demonstrates that DLEU2 enhances viability and mobility of CRC cells by inducing RARB promoter methylation and activating the MAPK signaling pathway.
Collapse
Affiliation(s)
- Liang Fu
- Department of Anorectal Surgery, Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, P.R. China
| | - Zhitao Shi
- Department of General Surgery, Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi. P.R. China
| | - Bingxue Chen
- Department of General Surgery, Changzhou No. 2 Peoples' Hospital, Changzhou, P.R. China
| |
Collapse
|
19
|
Wang H, Du D, Huang J, Wang S, He X, Yuan S, Xiao J. GPR27 Regulates Hepatocellular Carcinoma Progression via MAPK/ERK Pathway. Cancer Manag Res 2022; 14:1165-1177. [PMID: 35330739 PMCID: PMC8938170 DOI: 10.2147/cmar.s335749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/08/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Orphan GPCRs (GPRs) play important roles in the malignant progression of cancer and have the potential to develop into anti-tumor drug targets. However, the biological processes and molecular mechanisms of GPR27 have not been properly assessed in cancer. Our objective was to reveal the effect of GPR27 on the progression of hepatocellular carcinoma (HCC). Methods GPR27 levels were detected in HCC cell lines using quantitative reverse transcriptase-polymerase chain reaction and Western blot analysis. Next, the changes of phenotypes after GPR27 knockdown or overexpression were evaluated using in vitro methods. Finally, the mechanism of GPR27 in HCC was tested using RNA-seq and in vivo mouse xenograft model. Results In the present study, we reported that suppression of GPR27 expression inhibited proliferation, colony formation, cell viability, and induced cell S phase arrest of HCC cells, whereas GPR27 overexpression led to the opposite outcomes. Moreover, suppression of GPR27 expression resulted in blocking MAPK/ERK signal pathway which indicated the inhibition of HCC cells proliferation. Further study in vivo confirmed that GPR27 can affect the proliferation of HCC cells through the MAPK/ERK pathway. Conclusion Taken together, the findings of the present study uncover biological functions of GPR27 in HCC cells, and delineate preliminary molecular mechanisms of GPR27 in modulating HCC development and progression.
Collapse
Affiliation(s)
- Hongxv Wang
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, People’s Republic of China
| | - Danyu Du
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jianwen Huang
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, People’s Republic of China
| | - Shuai Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xv He
- Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, People’s Republic of China
| | - Shengtao Yuan
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jing Xiao
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong, 519000, People’s Republic of China
| |
Collapse
|
20
|
Duan S, Chen X, Liu Y, Guo W, Liu W. Endoplasmic reticulum stress mediates parathyroid hormone-induced apoptosis in vascular smooth muscle cells. Ren Fail 2022; 44:126-136. [PMID: 35172689 PMCID: PMC8856047 DOI: 10.1080/0886022x.2022.2027248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vascular calcification is one of the most common complications of chronic kidney disease (CKD), which is closely associated with increased mortality and morbidity rates of CKD patients. It has been reported that increased parathyroid hormone (PTH) aggravates vascular calcification in CKD patients. However, the direct role of PTH in vascular smooth muscle cells (VSMCs) is less elucidated. Here, we present evidence that PTH promotes apoptosis of VSMCs and endoplasmic reticulum (ER) stress participates in this process. Human aorta vascular smooth muscle cells (HASMCs) were treated with different concentrations of PTH for various time. HASMC apoptosis was detected by flow cytometry. Expression of phosphorylated (p)-PERK, CHOP, IRE1, p-JNK, and cleaved caspase 3 was determined by Western blotting. We found that PTH induced HASMC apoptosis and increased the expression of cleaved caspase 3. Furthermore, PTH activated PERK-CHOP and IRE1-JNK ER stress pathways. Either inhibition of JNK by SP600125 or CHOP by siRNA ameliorated PTH-induced apoptosis in HASMCs. We therefore suggest that ER stress participates in PTH-induced apoptosis of VSMCs, which may be a possible mechanism of PTH-promoted vascular calcification in CKD patients.
Collapse
Affiliation(s)
- Shuzhong Duan
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, Beijing, China.,Department of Nephrology, Chengde Medical University Affiliated Hospital, Chengde, China
| | - Xinpan Chen
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, Beijing, China
| | - Yingjie Liu
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, Beijing, China
| | - Weikang Guo
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, Beijing, China
| | - Wenhu Liu
- Department of Nephrology, Beijing Friendship Hospital, Faculty of Kidney Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Rodrigues de Souza I, Savio de Araujo-Souza P, Morais Leme D. Genetic variants affecting chemical mediated skin immunotoxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:43-95. [PMID: 34979876 DOI: 10.1080/10937404.2021.2013372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The skin is an immune-competent organ and this function may be impaired by exposure to chemicals, which may ultimately result in immune-mediated dermal disorders. Interindividual variability to chemical-induced skin immune reactions is associated with intrinsic individual characteristics and their genomes. In the last 30-40 years, several genes influencing susceptibility to skin immune reactions were identified. The aim of this review is to provide information regarding common genetic variations affecting skin immunotoxicity. The polymorphisms selected for this review are related to xenobiotic-metabolizing enzymes (CYPA1 and CYPB1 genes), antioxidant defense (GSTM1, GSTT1, and GSTP1 genes), aryl hydrocarbon receptor signaling pathway (AHR and ARNT genes), skin barrier function transepidermal water loss (FLG, CASP14, and SPINK5 genes), inflammation (TNF, IL10, IL6, IL18, IL31, and TSLP genes), major histocompatibility complex (MHC) and neuroendocrine system peptides (CALCA, TRPV1, ACE genes). These genes present variants associated with skin immune responses and diseases, as well as variants associated with protecting skin immune homeostasis following chemical exposure. The molecular and association studies focusing on these genetic variants may elucidate their functional consequences and contribution in the susceptibility to skin immunotoxicity. Providing information on how genetic variations affect the skin immune system may reduce uncertainties in estimating chemical hazards/risks for human health in the future.
Collapse
Affiliation(s)
| | | | - Daniela Morais Leme
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, Brazil
| |
Collapse
|
22
|
|
23
|
Chen T, Chen S, Zheng X, Zhu Y, Huang Z, Jia L, OuYang L, Lei W. The pathological involvement of spinal cord EphB2 in visceral sensitization in male rats. Stress 2022; 25:166-178. [PMID: 35435121 DOI: 10.1080/10253890.2022.2054698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Patients with post-traumatic stress disorder (PTSD) are usually at an increased risk for chronic disorders, such as irritable bowel syndrome (IBS), characterized by hyperalgesia and allodynia, but its subsequent effect on visceral hyperalgesia and the mechanism remain unclear. The present study employed single prolonged stress (SPS), a model of PTSD-pain comorbidity, behavioral evaluation, intrathecal drug delivery, immunohistochemistry, Western blotting, and RT-PCR techniques. When detecting visceral sensitivity, the score of the abdominal withdrawal reflex (AWR) induced by graded colorectal distention (CRD) was used. The AWR score was reduced in the SPS day 1 group but increased in the SPS day 7 and SPS day 14 groups at 40 mmHg and 60 mmHg, and the score was increased significantly with EphrinB1-Fc administration. The EphB2+ cell density and EphB2 protein and mRNA levels were downregulated in the SPS day 1 group and then upregulated significantly in the SPS day 7 group; these changes were more noticeable with EphrinB1-Fc administration compared with the SPS-only group. The C-Fos-positive reaction induced by SPS was mainly localized in neurons of the spinal dorsal horn, in which the C-Fos-positive cell density and its protein and mRNA levels were upregulated on SPS days 7 and 14; these changes were statistically significant in the SPS + EphrinB1-Fc group compared with the SPS alone group. The present study confirmed the time window for the AWR value, EphB2 and C-Fos changes, and the effect of EphrinB1-Fc on these changes, which suggests that spinal cord EphB2 activation exacerbates visceral pain after SPS.
Collapse
Affiliation(s)
- Tao Chen
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Si Chen
- Department of Human Anatomy and Histology & Embryology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Xuefeng Zheng
- Neuroscience Laboratory for Cognitive and Developmental Disorders, Department of Anatomy, Medical College of Jinan University, Guangzhou, China
| | - Yaofeng Zhu
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ziyun Huang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Linju Jia
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Lisi OuYang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wanlong Lei
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Habibzadeh Mashatooki M, Ghalami-Choobar B. Improved drug delivery and competitive adsorption of paclitaxel and mitomycin C anticancer drugs on the Boron-nitride nanoparticles: A molecular dynamics insight. Phys Chem Chem Phys 2022; 24:6639-6654. [DOI: 10.1039/d1cp04006e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The competitive aggregated adsorption and molecular interactions between paclitaxel (PX) and mitomycin C (MMC) molecules on the surface of boron nitride nanosheet (BNNS) was investigated using molecular dynamics method. BNNS...
Collapse
|
25
|
Chao MW, Lin TE, HuangFu WC, Chang CD, Tu HJ, Chen LC, Yen SC, Sung TY, Huang WJ, Yang CR, Pan SL, Hsu KC. Identification of a dual TAOK1 and MAP4K5 inhibitor using a structure-based virtual screening approach. J Enzyme Inhib Med Chem 2021; 36:98-108. [PMID: 33167727 PMCID: PMC7655034 DOI: 10.1080/14756366.2020.1843452] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
The STE20 kinase family is a complex signalling cascade that regulates cytoskeletal organisation and modulates the stress response. This signalling cascade includes various kinase mediators, such as TAOK1 and MAP4K5. The dysregulation of the STE20 kinase pathway is linked with cancer malignancy. A small-molecule inhibitor targeting the STE20 kinase pathway has therapeutic potential. In this study, a structure-based virtual screening (SBVS) approach was used to identify potential dual TAOK1 and MAP4K5 inhibitors. Enzymatic assays confirmed three potential dual inhibitors (>50% inhibition) from our virtual screening, and analysis of the TAOK1 and MAP4K5 binding sites indicated common interactions for dual inhibition. Compound 1 revealed potent inhibition of colorectal and lung cancer cell lines. Furthermore, compound 1 arrested cancer cells in the G0/G1 phase, which suggests the induction of apoptosis. Altogether, we show that the STE20 signalling mediators TAOK1 and MAP4K5 are promising targets for drug research.
Collapse
Affiliation(s)
- Min-Wu Chao
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Master Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Chun HuangFu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Di Chang
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Huang-Ju Tu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Liang-Chieh Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, P. R. China
| | - Shih-Chung Yen
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, P. R. China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, P. R. China
| | - Tzu-Ying Sung
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Jan Huang
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shiow-Lin Pan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
26
|
Zhang J, Zhu Q, Zhang S, Wu J, Huang J, Li M, Wang X, Man MQ, Hu L. Double knockout of vitamin D receptor and its coactivator mediator complex subunit 1 unexpectedly enhances epidermal permeability barrier function in mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119131. [PMID: 34453978 DOI: 10.1016/j.bbamcr.2021.119131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Jing Zhang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China; Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin 300070, China
| | - Qianyu Zhu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China; Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin 300070, China
| | - Shuchang Zhang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China; Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin 300070, China
| | - Jiangmei Wu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China; Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin 300070, China
| | - Junkai Huang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China; Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin 300070, China
| | - Mengyan Li
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China; Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin 300070, China
| | - Xiaohua Wang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Lizhi Hu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin 300070, China; Department of Pathogen Biology and Immunology, Basic Medical College, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
27
|
Abstract
Clasmatodendrosis derives from the Greek for fragment (klasma), tree (dendron), and condition (- osis). Cajal first used the term in 1913: he observed disintegration of the distal cell processes of astrocytes, along with a fragmentation or beading of proximal processes closer to the astrocyte cell body. In contemporary clinical and experimental reports, clasmatodendrosis has been observed in models of cerebral ischemia and seizures (including status epilepticus), in elderly brains, in white matter disease, in hippocampal models and cell cultures associated with amyloid plaques, in head trauma, toxic exposures, demyelinating diseases, encephalitides and infection-associated encephalopathies, and in the treatment of cancer using immune effector cells. We examine evidence to support a claim that clasmatodendrotic astrocyte cell processes overtly bead (truncate) as a morphological sign of ongoing damage premortem. In grey and white matter and often in relationship to vascular lumina, beading becomes apparent with immunohistochemical staining of glial fibrillary acidic protein when specimens are examined at reasonably high magnification, but demonstration of distal astrocytic loss of processes may require additional marker study and imaging. Proposed mechanisms for clasmatodendrotic change have examined hypoxic-ischemic, osmotic-demyelinating, and autophagic models. In these models as well as in neuropathological reports, parenchymal swelling, vessel-wall leakage, or disturbed clearance of toxins can occur in association with clasmatodendrosis. Clasmatodendrotic features may serve as a marker for gliovascular dysregulation either acutely or chronically. We review correlative evidence for blood-brain barrier (BBB) dysfunction associated with astrocytic structural change, with attention to interactions between endothelial cells, pericytes, and astrocytic endfeet.
Collapse
|
28
|
Sohn JT. The Mechanisms Underlying Methylene Blue-Mediated Attenuation of Nitric Oxide-induced Vasodilatation. J Emerg Med 2021; 60:679. [PMID: 34016379 DOI: 10.1016/j.jemermed.2020.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/24/2020] [Accepted: 10/25/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Gyeongsang National University Hospital, Gyeongsangnam-do, Republic of Korea; Institute of Health Sciences, Gyeonsang National University, Jinju-si, Republic of Korea
| |
Collapse
|
29
|
Alswady-Hoff M, Erdem JS, Phuyal S, Knittelfelder O, Sharma A, Fonseca DDM, Skare Ø, Slupphaug G, Zienolddiny S. Long-Term Exposure to Nanosized TiO 2 Triggers Stress Responses and Cell Death Pathways in Pulmonary Epithelial Cells. Int J Mol Sci 2021; 22:ijms22105349. [PMID: 34069552 PMCID: PMC8161419 DOI: 10.3390/ijms22105349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/03/2023] Open
Abstract
There is little in vitro data available on long-term effects of TiO2 exposure. Such data are important for improving the understanding of underlying mechanisms of adverse health effects of TiO2. Here, we exposed pulmonary epithelial cells to two doses (0.96 and 1.92 µg/cm2) of TiO2 for 13 weeks and effects on cell cycle and cell death mechanisms, i.e., apoptosis and autophagy were determined after 4, 8 and 13 weeks of exposure. Changes in telomere length, cellular protein levels and lipid classes were also analyzed at 13 weeks of exposure. We observed that the TiO2 exposure increased the fraction of cells in G1-phase and reduced the fraction of cells in G2-phase, which was accompanied by an increase in the fraction of late apoptotic/necrotic cells. This corresponded with an induced expression of key apoptotic proteins i.e., BAD and BAX, and an accumulation of several lipid classes involved in cellular stress and apoptosis. These findings were further supported by quantitative proteome profiling data showing an increase in proteins involved in cell stress and genomic maintenance pathways following TiO2 exposure. Altogether, we suggest that cell stress response and cell death pathways may be important molecular events in long-term health effects of TiO2.
Collapse
Affiliation(s)
- Mayes Alswady-Hoff
- National Institute of Occupational Health, NO-0033 Oslo, Norway; (M.A.-H.); (J.S.E.); (S.P.); (Ø.S.)
| | - Johanna Samulin Erdem
- National Institute of Occupational Health, NO-0033 Oslo, Norway; (M.A.-H.); (J.S.E.); (S.P.); (Ø.S.)
| | - Santosh Phuyal
- National Institute of Occupational Health, NO-0033 Oslo, Norway; (M.A.-H.); (J.S.E.); (S.P.); (Ø.S.)
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, NO-0316 Oslo, Norway
| | | | - Animesh Sharma
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (A.S.); (D.d.M.F.); (G.S.)
- Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Davi de Miranda Fonseca
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (A.S.); (D.d.M.F.); (G.S.)
- Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Øivind Skare
- National Institute of Occupational Health, NO-0033 Oslo, Norway; (M.A.-H.); (J.S.E.); (S.P.); (Ø.S.)
| | - Geir Slupphaug
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (A.S.); (D.d.M.F.); (G.S.)
- Proteomics and Metabolomics Core Facility (PROMEC), Norwegian University of Science and Technology and the Central Norway Regional Health Authority, NO-7491 Trondheim, Norway
| | - Shanbeh Zienolddiny
- National Institute of Occupational Health, NO-0033 Oslo, Norway; (M.A.-H.); (J.S.E.); (S.P.); (Ø.S.)
- Correspondence: ; Tel.: +47-23195284
| |
Collapse
|
30
|
Wang W, Ning J, He Y, Zhai L, Xiang F, Yao L, Ye L, Wu L, Ji T, Tang Z. Unveiling the mechanism of Astragalus membranaceus in the treatment of gastrointestinal cancers based on network pharmacology. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2020.101249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Transcriptome Analysis Reveals That Abeliophyllum distichum Nakai Extract Inhibits RANKL-Mediated Osteoclastogenensis Mainly Through Suppressing Nfatc1 Expression. BIOLOGY 2020; 9:biology9080212. [PMID: 32781784 PMCID: PMC7491199 DOI: 10.3390/biology9080212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Abeliophyllum distichum Nakai is known as a monotypic genus endemic to South Korea. Currently, several pharmacological studies have revealed that A. distichum extract exhibits diverse biological functions, including anti-cancer, anti-diabetic, anti-hypertensive, and anti-inflammatory activities. In this study, we present the anti-osteoporotic activity of A. distichum extract by inhibiting osteoclast formation. First, we show that the methanolic extract of the leaves of A. distichum, but not extracts of the branches or fruits, significantly inhibits receptor activator of the NF-κB ligand (RANKL)-induced osteoclast differentiation. Second, our transcriptome analysis revealed that the leaf extract (LE) blocks sets of RANKL-mediated osteoclast-related genes. Third, the LE attenuates the phosphorylation of extracellular signal-related kinase. Finally, treatment with the LE effectively prevents postmenopausal bone loss in ovariectomized mice and glucocorticoid-induced osteoporosis in zebrafish. Our findings show that the extract of A. distichum efficiently suppressed osteoclastogenesis by regulating osteoclast-related genes, thus offering a novel therapeutic strategy for osteoporosis.
Collapse
|