1
|
Li Y, Wang X, Lin J, Wang R, Zhang B, Zhang X, He W, Gao F, Song D, Zhao K, Guan J. Natural flavonoid sinensetin inhibits cisplatin-induced pyroptosis and attenuates intestinal injury. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166637. [PMID: 36638874 DOI: 10.1016/j.bbadis.2023.166637] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
The demand of exploring strategies to enhance chemotherapy drug efficacy and alleviate adverse effects by using natural compounds is increasing. Sinensetin (SIN) is a kind of natural flavonoids with anti-inflammatory activities. However, its protective impact on chemotherapy-induced adverse effects has not been well demonstrated. Here, we found that SIN could inhibit Cisplatin-induced release of proinflammatory cellular contents and inflammatory cell death-pyroptosis. In addition, Cisplatin-induced activation of gasdermin E (GSDME), a critical mediator of chemotherapy-induced tissue injury, could also be reversed by SIN. Furthermore, SIN impaired Cisplatin-induced intracellular damages, including ROS release and DNA damages. Importantly, SIN was able to alleviate intestinal injury in Cisplatin-challenged mice, which was accompanied by the decrease of lytic cell death and immune cell infiltration. Of note, SIN administration did not reverse Cisplatin-caused tumor suppression in vivo. In conclusion, our result provides a potential application of SIN to reduce Cisplatin-caused adverse effects, without impairing its anti-tumor capacity.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China
| | - Xinyue Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China
| | - Jing Lin
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China
| | - Renling Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China
| | - Bo Zhang
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130000, China
| | - Xiaohao Zhang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130041, China
| | - Wenqi He
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China
| | - Feng Gao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China
| | - Deguang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China.
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 130062 Changchun, China.
| |
Collapse
|
2
|
Rehman F, Khan AJ, Sama ZU, Alobaid HM, Gilani MA, Safi SZ, Muhammad N, Rahim A, Ali A, Guo J, Arshad M, Emran TB. Surface engineered mesoporous silica carriers for the controlled delivery of anticancer drug 5-fluorouracil: Computational approach for the drug-carrier interactions using density functional theory. Front Pharmacol 2023; 14:1146562. [PMID: 37124235 PMCID: PMC10133552 DOI: 10.3389/fphar.2023.1146562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: Drug delivery systems are the topmost priority to increase drug safety and efficacy. In this study, hybrid porous silicates SBA-15 and its derivatives SBA@N and SBA@3N were synthesized and loaded with an anticancer drug, 5-fluorouracil. The drug release was studied in a simulated physiological environment. Method: These materials were characterized for their textural and physio-chemical properties by scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FTIR), small-angle X-ray diffraction (SAX), and nitrogen adsorption/desorption techniques. The surface electrostatics of the materials was measured by zeta potential. Results: The drug loading efficiency of the prepared hybrid materials was about 10%. In vitro drug release profiles were obtained in simulated fluids. Slow drug release kinetics was observed for SBA@3N, which released 7.5% of the entrapped drug in simulated intestinal fluid (SIF, pH 7.2) and 33% in simulated body fluid (SBF, pH 7.2) for 72 h. The material SBA@N presented an initial burst release of 13% in simulated intestinal fluid and 32.6% in simulated gastric fluid (SGF, pH 1.2), while about 70% of the drug was released within the next 72 h. Density functional theory (DFT) calculations have also supported the slow drug release from the SBA@3N material. The release mechanism of the drug from the prepared carriers was studied by first-order, second-order, Korsmeyer-Peppas, Hixson-Crowell, and Higuchi kinetic models. The drug release from these carriers follows Fickian diffusion and zero-order kinetics in SGF and SBF, whereas first-order, non-Fickian diffusion, and case-II transport were observed in SIF. Discussion: Based on these findings, the proposed synthesized hybrid materials may be suggested as a potential drug delivery system for anti-cancer drugs such as 5-fluorouracil.
Collapse
Affiliation(s)
- Fozia Rehman
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
- Institute of Chemistry, University of Campinas, UNICAMP, Campinas, São Paulo, Brazil
- *Correspondence: Fozia Rehman, ; Asif Jamal Khan,
| | - Asif Jamal Khan
- College of Urban and Environmental Sciences, Northwest University, Xi’an, Shaanxi, China
- *Correspondence: Fozia Rehman, ; Asif Jamal Khan,
| | - Zaib Us Sama
- Department of Chemistry, Islamia College, University of Peshawar, Peshawar, Pakistan
| | - Hussah M. Alobaid
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Islamabad, Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Nawshad Muhammad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Abdur Rahim
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi’an, China
| | - Muhammad Arshad
- Jhang Campus, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
3
|
Potential of the combination of Artemisia absinthium extract and cisplatin in inducing apoptosis cascades through the expression of p53, BAX, caspase 3 ratio, and caspase 9 in lung cancer cells (Calu-6). Eur J Integr Med 2022. [DOI: 10.1016/j.eujim.2022.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
García-Perdomo HA, Gómez-Ospina JC, Reis LO. Immunonutrition hope? Oral nutritional supplement on cancer treatment. Int J Clin Pract 2021; 75:e14625. [PMID: 34251725 DOI: 10.1111/ijcp.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES To determine the efficacy and safety of antitumoral nutritional supplement (Oncoxin® ), and to describe its mechanism of action. METHODS Scoping review according to the recommendations of the Joanna Briggs Institute included patients older than 18 years who have any kind of tumour and receive Oncoxin® as a supplement regarding the efficacy in terms of antitumoral properties, quality of life and survival, safety in terms of adverse events, and the mechanism of action. With no limit for language or setting, MEDLINE (Pubmed), EMBASE (Scopus), LILACS and the Cochrane Central Register of Controlled Trials (CENTRAL) were searched from database inception to May 2021. FINDINGS A promising increment of survival and quality of life in terms of Karnofsky and EORTC scales. Regarding the mechanism of action, studies suggest that it modifies inflammatory mediators' expression, as evidenced by the reduction of COX-2, IL-1β, IL-6, TNF-α, IL-1β, IL-12 and IFN-γ. Besides, it promotes an arrest in the progression of cells from G1 into S, along with an increase in p27 and a decrease in cyclin D1 and pRb. It decreases the levels of pro-inflammatory cytokines, it can also decrease cytokines with antitumor activity such as IFN-γ, which should be further explored in larger trials and the long term. INTERPRETATIONS AND IMPLICATIONS Current literature shows promising complementary effects of oral supplements to the standard treatment of cancer patients in diverse scenarios. It might help patients to deal with toxicities and adverse effects related to cancer treatment and improve their nutritional or clinical profiles.
Collapse
Affiliation(s)
- Herney Andrés García-Perdomo
- Division of Urology, Department of Surgery, School of Medicine, Universidad del Valle, Cali, Colombia
- UROGIV Research Group, School of Medicine, Universidad del Valle, Cali, Colombia
| | | | - Leonardo Oliveira Reis
- UroScience Laboratory, University of Campinas, Unicamp and Pontifical Catholic University of Campinas, PUC-Campinas, Sao Paulo, Brazil
| |
Collapse
|