1
|
Zhang S, Xu Z, Wang Z, Fei X, Li Z, Zhu L, Martinez L, Wang J, Liu Q. Changes in gut microbiome following anti-tuberculosis treatment: a prospective cohort from eastern China. BMC Infect Dis 2025; 25:453. [PMID: 40169991 PMCID: PMC11963514 DOI: 10.1186/s12879-025-10800-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/13/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND The treatment of people with tuberculosis necessitates the administration of both broad-spectrum and narrow-spectrum antibiotics for a minimum duration of six months. Prolonged antibiotic therapy may result in dysregulation of the gut microbiota, potentially influencing the onset and progression of tuberculosis. There is a paucity of studies focus on the characteristics of gut microbiota changes at various time points during tuberculosis treatment. This study aims to elucidate the relationship between the composition of gut microbiota and their stage within anti-tuberculosis therapy. METHODS A multi-center, observational prospective cohort study was conducted at four designated hospitals in Jiangsu Province in eastern China. The Gastrointestinal Symptom Rating Scale was employed to evaluate the gastrointestinal discomfort experienced during anti-tuberculosis treatment. Fecal samples were collected at baseline before initiating anti-tuberculosis therapy and at the end of 2 months and 6 months during treatment. Total microbial genomic DNA was extracted and sequenced. Rarefaction curves and alpha diversity indices including observed operational taxonomic units, Chao1 richness and Shannon index were calculated. RESULTS From October 2020 to December 2022, a total of 204 people with tuberculosis were diagnosed. Among these, 85 people with tuberculosis provided baseline, 2-month, and 6-month fecal samples. The average age was 41.8 ± 15.193 years, with a gender ratio of 77 males to 8 females. Only 28.2% of the cohort reported being free of gastrointestinal symptoms during anti-tuberculosis treatment. Anti-tuberculosis treatment significantly reduced gut microbiota diversity, with a transient decrease in alpha diversity indices observed after two months. A higher alpha diversity in baseline (Shannon index with mean ± standard deviation (SD) 2.92 ± 0.93 vs. 2.50 ± 0.84, P = 0.0014, inverse Simpson's index with 11.9 ± 8.66 vs. 7.87 ± 6.42, P = 0.0012), compared with people with tuberculosis after 2 months of treatment. No significant differences were identified between 2 months of treatment and at the end of treatment microbiota diversity (Shannon index 2.50 ± 0.84 vs 2.58 ± 0.81, P = 0.55, inverse Simpson's index 7.87 ± 6.42 vs 11.90 ± 8.66, P = 0.43). CONCLUSIONS Findings from our study show that anti-tuberculosis treatment has profound effects on people with tuberculosis gastrointestinal function and the gut microbiota, particularly during the intensive phase of therapy. After the intensive treatment phase, the gut microbiota has partially recovered, but it is an extremely slow process.
Collapse
Affiliation(s)
- Simin Zhang
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, PR China
- Department of Social Medicine and Health Education, National Vaccine Innovation Platform, School of Public Health, Nanjing Medical University, Nanjing, PR China
| | - Zhipeng Xu
- Department of Pathogen Biology, National Vaccine Innovation Platform, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, PR China
| | - Zhan Wang
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, PR China
| | - Xinru Fei
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, PR China
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, PR China
| | - Zhongqi Li
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, PR China
| | - Limei Zhu
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, PR China
| | - Leonardo Martinez
- Department of Epidemiology, School of Public Health, Boston University, Boston, MA, USA
| | - Jianming Wang
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, PR China.
| | - Qiao Liu
- Department of Epidemiology, Key Laboratory of Public Health Safety and Emergency Prevention and Control Technology of Higher Education Institutions in Jiangsu Province, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, PR China.
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, PR China.
| |
Collapse
|
2
|
Du W, Zhao Y, Zhang C, Zhang L, Zhou L, Sun Z, Huang X, Zhang N, Liu Z, Li K, Che N. Association of bacteriomes with drug susceptibility in lesions of pulmonary tuberculosis patients. Heliyon 2024; 10:e37583. [PMID: 39309911 PMCID: PMC11414563 DOI: 10.1016/j.heliyon.2024.e37583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Understanding how the bacteriomes in tuberculous lesions can be influenced by the susceptibility of Mycobacterium tuberculosis (MTB) can provide valuable information for preventing and treating drug resistant tuberculosis (DR-TB). High-throughput 16S rRNA sequencing was employed to analyze the bacteriome in pulmonary TB lesions from 14 patients with DR-TB and 47 patients with drug sensitive tuberculosis (DS-TB), along with 18 normal lung tissues (NT) from 18 lung cancer patients serving as the bacterial baseline. The phylogenetic investigation of communities by reconstruction of unobserved states2 (PICRUSt2) algorithm was utilized to predict bacterial metabolic functions. The major phyla of pulmonary bacteriomes included Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Fusobacteria. Alpha diversity indices, including ACE, Chao1, Shannon and OTU observed, all demonstrated different bacterial communities of DS-TB samples from that of NT samples; while only Shannon indicated difference between DR-TB and NT samples. The analysis of similarity (ANOSIM) showed significantly different bacterial communities within TB lesions compared to NT samples (R = 0.418, p = 0.001). However, difference was not observed between DR-TB and DS-TB samples (ANOSIM, R = 0.069, p = 0.173). The bacterial profiles within each DR-TB individual appeared unique, with no obvious clusters corresponding to drug-resistant phenotypes. Nevertheless, indicator genera identified in DR-TB and DS-TB lesions demonstrated distinctive micro-ecological environments. Most COG functions were enriched in TB lesions, and the most significant one was [J] translation, ribosomal structure and biogenesis. The distinct enrichment patterns of bacterial enzymes in DR-TB and DS-TB lesions suggest that pulmonary bacterial activities can be modulated by the susceptibility of MTB bacilli. This study provides fresh perspectives and strategies for the precise diagnosis and assessment of drug resistance tuberculosis.
Collapse
Affiliation(s)
- Weili Du
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Yingli Zhao
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Chen Zhang
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Li Zhang
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Lijuan Zhou
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Zuyu Sun
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Xiaojie Huang
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Nana Zhang
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Zichen Liu
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Kun Li
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| | - Nanying Che
- Department of Pathology, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beiguandajie 9#, Tongzhou Dist, Beijing, 101149, China
| |
Collapse
|
3
|
Lin Y, Liang Z, Cai X, Luo Y, Wu B, Feng Y, Cai Z, Liang X, Tan S. Dynamic changes of respiratory microbiota associated with treatment outcome in drug-sensitive and drug-resistant pulmonary tuberculosis. Ann Clin Microbiol Antimicrob 2024; 23:83. [PMID: 39252020 PMCID: PMC11385506 DOI: 10.1186/s12941-024-00742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Respiratory microbiota is closely related to tuberculosis (TB) initiation and progression. However, the dynamic changes of respiratory microbiota during treatment and its association with TB progression remains unclear. METHODS A total of 16 healthy individuals and 16 TB patients (10 drug-sensitive TB (DS-TB) and 6 drug-resistant TB (DR-TB)) were recruited. Sputum samples were collected at baseline for all anticipants and after anti-TB treatment at Month-6 for TB patients. High throughput 16 S RNA sequencing was used to characterize the respiratory microbiota composition. RESULTS Compared to the healthy individuals, TB patients exhibited lower respiratory microbiota diversity (p < 0.05). This disruption was alleviated after anti-TB treatment, especially for DS-TB patients. Parvimonas spp. numbers significantly increased after six months of anti-TB treatment in both DS-TB and DR-TB patients (p < 0.05). Rothia spp. increase during treatment was associated with longer sputum-culture conversion time and worse pulmonary lesion absorption (p < 0.05). Besides, Moraxella spp. prevalence was associated with longer sputum-culture conversion time, while Gemella spp. increase was associated with worsening resolving of pulmonary lesions (p < 0.05). CONCLUSION Dynamic changes of respiratory microbiota during anti-TB treatment is closely related to TB progression. The involvement of critical microorganisms, such as Parvimonas spp., Rothia spp., Moraxella, and Gemella spp., appears to be associated with pulmonary inflammatory conditions, particularly among DR-TB. These microorganisms could potentially serve as biomarkers or even as targets for therapeutic intervention to enhance the prognosis of tuberculosis patients.
Collapse
Affiliation(s)
- Yuan Lin
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis Internal Medicine, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, Guangdong, 510095, P.R. China
| | - Zhuozhi Liang
- School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Xingshan Cai
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Medical Laboratory, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, Guangdong, 510095, P.R. China
| | - Yang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Medical Laboratory, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, Guangdong, 510095, P.R. China
| | - Bitong Wu
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis Internal Medicine, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, Guangdong, 510095, P.R. China
| | - Yongzhong Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis Internal Medicine, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, Guangdong, 510095, P.R. China
| | - Zhiqun Cai
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis Internal Medicine, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, Guangdong, 510095, P.R. China
| | - Xiaopeng Liang
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis Internal Medicine, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, Guangdong, 510095, P.R. China
| | - Shouyong Tan
- State Key Laboratory of Respiratory Disease, Guangzhou Key Laboratory of Tuberculosis Research, Department of Tuberculosis Internal Medicine, Guangzhou Chest Hospital, Institute of Tuberculosis, Guangzhou Medical University, Guangzhou, Guangdong, 510095, P.R. China.
| |
Collapse
|
4
|
Liu T, Wang Y, Hou Z, Shi Z, Wang R, Shi Y, Hua L, Wu L, Xu M, Ding X, Sun Q. Effects of antibiotic cocktail on the fecal microbiota and their potential correlation of local immune response. BMC Microbiol 2024; 24:283. [PMID: 39085808 PMCID: PMC11290084 DOI: 10.1186/s12866-024-03424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The guts of mammals are home to trillions of microbes, forming a complex and dynamic ecosystem. Gut microbiota is an important biological barrier for maintaining immune homeostasis. Recently, the use of antibiotics to clear gut microbiota has gained popularity as a low cost and easy-to-use alternative to germ-free animals. However, the effect of the duration of the antibiotic cocktail on the gut microbiome is unclear, and more importantly, the effect of dramatic changes in the gut microbiota on intestinal tissue morphology and local immune response is rarely reported. RESULTS We observed a significant reduction in fecal microbiota species and abundance after 1 week of exposure to an antibiotic cocktail, gavage twice daily by intragastric administration. In terms of composition, Bacteroidetes and Firmicutes were replaced by Proteobacteria. Extending antibiotic exposure to 2-3 weeks did not significantly improve the overall efficiency of microbiotal consumption. No significant histomorphological changes were observed in the first 2 weeks of antibiotic cocktail exposure, but the expression of inflammatory mediators in intestinal tissue was increased after 3 weeks of antibiotic cocktail exposure. Mendelian randomization analysis showed that Actinobacteria had a significant causal association with the increase of IL-1β (OR = 1.65, 95% CI = 1.23 to 2.21, P = 0.007) and TNF-α (OR = 1.81, 95% CI = 1.26 to 2.61, P = 0.001). CONCLUSIONS Our data suggest that treatment with an antibiotic cocktail lasting 1 week is sufficient to induce a significant reduction in gut microbes. 3 weeks of antibiotic exposure can lead to the colonization of persistant microbiota and cause changes in intestinal tissue and local immune responses.
Collapse
Affiliation(s)
- Ting Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No.584, Binwen Road, Hangzhou, 310053, Zhejiang Province, China
| | - Yin Wang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No.584, Binwen Road, Hangzhou, 310053, Zhejiang Province, China
| | - Zhuoer Hou
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhenyu Shi
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Rongyun Wang
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanan Shi
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lijiangshan Hua
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lingyun Wu
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xinghong Ding
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, No.584, Binwen Road, Hangzhou, 310053, Zhejiang Province, China
| | - Qiuhua Sun
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
5
|
Sun W, Zhou T, Ding P, Guo L, Zhou X, Long K. Bibliometric analysis of intestinal microbiota and lung diseases. Front Cell Infect Microbiol 2024; 14:1347110. [PMID: 38426014 PMCID: PMC10902173 DOI: 10.3389/fcimb.2024.1347110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Background Increasing evidence suggests a close association between the intestinal microbiome and the respiratory system, drawing attention to studying the gut-lung axis. This research employs bibliometric methods to conduct a visual analysis of literature in the field of intestinal microbiota and lung diseases over the past two decades. It offers scientific foundations for research directions and critical issues in this field. Methods We retrieved all articles on intestinal microbiota and lung diseases from the SCI-Expanded of WoSCC on October 25, 2023. The analysis included original articles and reviews published in English from 2011 to 2023. We utilized Python, VOSviewer, and CiteSpace to analyze the retrieved data visually. Results A total of 794 publications were analyzed. China ranked first in the number of publications, while the United States had the highest citations and H-index. Jian Wang was the most prolific author. Zhejiang University was the institution with the highest number of publications. Frontiers in Microbiology was the journal with the most publications. Author keywords appearing more than 100 times included "intestinal microbiota/microbiome", "microbiota/microbiome", and "gut-lung axis". Conclusion The correlation and underlying mechanisms between intestinal microbiota and lung diseases, including asthma, COPD, lung cancer, and respiratory infections, remain hot topics in research. However, understanding the mechanisms involving the gut-lung axis is still in its infancy and requires further elucidation.
Collapse
Affiliation(s)
- Weiting Sun
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tong Zhou
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Ding
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuxue Guo
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiujuan Zhou
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kunlan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Alvarado-Peña N, Galeana-Cadena D, Gómez-García IA, Mainero XS, Silva-Herzog E. The microbiome and the gut-lung axis in tuberculosis: interplay in the course of disease and treatment. Front Microbiol 2023; 14:1237998. [PMID: 38029121 PMCID: PMC10643882 DOI: 10.3389/fmicb.2023.1237998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB) that remains a significant global health challenge. The extensive use of antibiotics in tuberculosis treatment, disrupts the delicate balance of the microbiota in various organs, including the gastrointestinal and respiratory systems. This gut-lung axis involves dynamic interactions among immune cells, microbiota, and signaling molecules from both organs. The alterations of the microbiome resulting from anti-TB treatment can significantly influence the course of tuberculosis, impacting aspects such as complete healing, reinfection, and relapse. This review aims to provide a comprehensive understanding of the gut-lung axis in the context of tuberculosis, with a specific focus on the impact of anti-TB treatment on the microbiome.
Collapse
Affiliation(s)
- Néstor Alvarado-Peña
- Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, México City, Mexico
| | - David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias, México City, Mexico
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, México City, Mexico
| | - Xavier Soberón Mainero
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Eugenia Silva-Herzog
- Laboratorio de Vinculación Científica, Facultad de Medicina-Universidad Nacional Autonoma de México-Instituto Nacional de Medicina Genomica, México City, Mexico
| |
Collapse
|
7
|
Zhuo Q, Zhang X, Zhang K, Chen C, Huang Z, Xu Y. The gut and lung microbiota in pulmonary tuberculosis: susceptibility, function, and new insights into treatment. Expert Rev Anti Infect Ther 2023; 21:1355-1364. [PMID: 37970631 DOI: 10.1080/14787210.2023.2283036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
INTRODUCTION Tuberculosis (TB) is a chronic infectious disease caused by mycobacterium tuberculosis (Mtb) that poses a major threat to human health. AREAS COVERED Herein, we aim to review the alteration of the microbiota in gut and respiratory during TB development, the potential function and mechanisms of microbiota in the pathogenesis of Mtb infection, and the impact of antibiotic treatment on the microbiota. In addition, we discuss the potential new paradigm for the use of microbiota-based treatments such as probiotics and prebiotics in the treatment of TB. EXPERT OPINION Studies have shown that trillions of micro-organisms live in the human gut and respiratory tract, acting as gatekeepers in maintaining immune homeostasis and respiratory physiology and playing a beneficial or hostile role in the development of TB. Anti-TB antibiotics may cause microecological imbalances in the gut and respiratory tract, and microbiome-based therapeutics may be a promising strategy for TB treatment. Appropriate probiotics and prebiotics supplementation, along with antimycobacterial treatment, will improve the therapeutic effect of TB treatment and protect the gut and respiratory microbiota from dysbiosis.
Collapse
Affiliation(s)
- Qiqi Zhuo
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xianyi Zhang
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Kehong Zhang
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Chan Chen
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhen Huang
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yuzhong Xu
- Department of Clinical Laboratory, The Baoan People's Hospital of Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Cai X, Luo Y, Zhang Y, Lin Y, Wu B, Cao Z, Hu Z, Wu X, Tan S. Airway microecology in rifampicin-resistant and rifampicin-sensitive pulmonary tuberculosis patients. BMC Microbiol 2022; 22:286. [PMID: 36447140 PMCID: PMC9706898 DOI: 10.1186/s12866-022-02705-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 11/11/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Pulmonary tuberculosis is a chronic infectious disease of the respiratory system. It is still one of the leading causes of death from a single infectious disease, but it has been stuck in the study of a single pathogen. Recent studies have shown that many diseases are associated with disruption of the native microbiota. In this study we investigated the occurrence of tuberculosis and the correlation between drug resistance and respiratory flora. High-throughput 16 S rRNA gene sequencing was used to characterize the respiratory microbiota composition of 30 tuberculosis (TB) affected patients and compared with 30 healthy (H) controls. According to their Gene Xpert results, 30 pulmonary tuberculosis patients were divided into 12 persons in the drug-sensitive group (DS0) and 18 persons in the drug-resistant group (DR0). The microbial flora of the two were compared with the H group. RESULTS The data generated by sequencing showed that Firmicutes, Proteus, Bacteroides, Actinomyces and Fusobacterium were the five main bacterial phyla detected, and they constituted more than 96% of the microbial community. The relative abundances of Fusobacterium, Haemophilus, Porphyromonas, Neisseria, TM7, Spirochetes, SR1, and Tenericutes in the TB group was lower than that of the H group, and Granulicatella was higher than the H group. The PcoA diagrams of the two groups had obvious clustering differences. The Alpha diversity of the TB group was lower than that of the H group, and the Beta diversity was higher than that of the H group (P < 0.05). The relative abundance of Streptococcus in the DS0 group was significantly higher than that in the DR0 group (P < 0.05). CONCLUSION Pulmonary tuberculosis can cause disorders of the respiratory tract microbial flora, in which the relative abundance of Streptococcus was significantly different between rifampicin-sensitive and rifampicin-resistant patients.
Collapse
Affiliation(s)
- Xingshan Cai
- grid.413422.20000 0004 1773 0966Department of Medical Laboratory, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| | - Yang Luo
- grid.413422.20000 0004 1773 0966Department of Medical Laboratory, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| | - Yuanliang Zhang
- grid.413422.20000 0004 1773 0966Department of Medical Laboratory, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| | - Yuan Lin
- grid.413422.20000 0004 1773 0966Department of Tuberculosis Internal Medicine, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| | - Bitong Wu
- grid.413422.20000 0004 1773 0966Department of Tuberculosis Internal Medicine, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| | - Zhizhong Cao
- grid.413422.20000 0004 1773 0966Department of Medical Laboratory, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| | - Zuqiong Hu
- grid.413422.20000 0004 1773 0966Department of Medical Laboratory, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| | - Xingyi Wu
- grid.413422.20000 0004 1773 0966Department of Medical Laboratory, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| | - Shouyong Tan
- grid.413422.20000 0004 1773 0966Department of Tuberculosis Internal Medicine, Guangzhou Chest Hospital, Guangzhou, 510095 P. R. China
| |
Collapse
|
9
|
Barbosa-Amezcua M, Galeana-Cadena D, Alvarado-Peña N, Silva-Herzog E. The Microbiome as Part of the Contemporary View of Tuberculosis Disease. Pathogens 2022; 11:pathogens11050584. [PMID: 35631105 PMCID: PMC9147979 DOI: 10.3390/pathogens11050584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/28/2022] Open
Abstract
The study of the microbiome has changed our overall perspective on health and disease. Although studies of the lung microbiome have lagged behind those on the gastrointestinal microbiome, there is now evidence that the lung microbiome is a rich, dynamic ecosystem. Tuberculosis is one of the oldest human diseases, it is primarily a respiratory infectious disease caused by strains from the Mycobacterium tuberculosis Complex. Even today, during the COVID-19 pandemic, it remains one of the principal causes of morbidity and mortality worldwide. Tuberculosis disease manifests itself as a dynamic spectrum that ranges from asymptomatic latent infection to life-threatening active disease. The review aims to provide an overview of the microbiome in the tuberculosis setting, both in patients’ and animal models. We discuss the relevance of the microbiome and its dysbiosis, and how, probably through its interaction with the immune system, it is a significant factor in tuberculosis’s susceptibility, establishment, and severity.
Collapse
Affiliation(s)
- Martín Barbosa-Amezcua
- Laboratorio de Farmacogenómica, Instituto Nacional de Medicina Genomica (INMEGEN), Mexico City 14610, Mexico;
| | - David Galeana-Cadena
- Laboratorio de Inmunobiología y Genética, Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City 14080, Mexico;
| | - Néstor Alvarado-Peña
- Coordinación de Infectología y Microbiología, Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City 14080, Mexico;
| | - Eugenia Silva-Herzog
- Coordinación de Infectología y Microbiología, Instituto Nacional de Enfermedades Respiratorias (INER), Mexico City 14080, Mexico;
- Laboratorio de Vinculación Científica, Facultad de Medicina-Universidad Nacional Autonoma de Mexico-Instituto Nacional de Medicina Genomica (UNAM-INMEGEN), Mexico City 14610, Mexico
- Correspondence:
| |
Collapse
|
10
|
Insights into the Unique Lung Microbiota Profile of Pulmonary Tuberculosis Patients Using Metagenomic Next-Generation Sequencing. Microbiol Spectr 2022; 10:e0190121. [PMID: 35196800 PMCID: PMC8865484 DOI: 10.1128/spectrum.01901-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microbiota plays an important role in human health and disease development. The lung microbiota profile in pulmonary tuberculosis (TB) patients and the effects of anti-TB treatment on the profile need to be determined thoroughly and comprehensively. This study primarily aimed to determine the lung microbiota profile associated with pulmonary TB and characterize the longitudinal changes during anti-TB treatment. A total of 53 participants, comprising 8 healthy individuals, 12 untreated pulmonary TB patients, 15 treated pulmonary TB patients, 11 cured pulmonary TB patients, and 7 lung cancer patients, were recruited in the present study. Bronchioalveolar lavage fluid (BALF) samples were collected from the above participants, and throat swabs were taken from healthy individuals. Microbiomes in the samples were examined using metagenomic next-generation sequencing (mNGS). Differences in microbiota profiles were determined through a comparison of the indicated groups. Our findings indicated that the BALF samples displayed decreased richness and diversity of the microbiota compared to those of the throat swab samples, and these two kinds of samples exhibited obvious separation on principal-coordinate analysis (PCoA) plots. Untreated pulmonary TB patients displayed a unique lung microbiota signature distinct from that of healthy individuals and lung cancer patients. Our data first demonstrated that anti-TB treatment with first-line drugs increases alpha diversity and significantly affects the beta diversity of the lung microbiota, while it also induces antibiotic resistance genes (ARGs). IMPORTANCE Characterization of the lung microbiota could lead to a better understanding of the pathogenesis of pulmonary TB. Here, we applied the metagenomic shotgun sequencing instead of 16S rRNA sequencing method to characterize the lung microbiota using the BALF samples instead of sputum. We found that alterations in the lung microbiota are associated with TB infection and that anti-TB treatment significantly affects the alpha and beta diversity of the lung microbiota in pulmonary TB patients. These findings could help us better understand TB pathogenesis.
Collapse
|
11
|
Cho SY, Choi JH, Lee SH, Choi YS, Hwang SW, Kim YJ. Metataxonomic investigation of the microbial community in the trachea and oropharynx of healthy controls and diabetic patients using endotracheal tubes. PLoS One 2021; 16:e0259596. [PMID: 34739518 PMCID: PMC8570478 DOI: 10.1371/journal.pone.0259596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Although the study of respiratory microbiota has been an active field of research, obtaining the appropriate respiratory samples for healthy controls remains to be a challenge. As such, this study aims to evaluate the use of endotracheal tube washing as a viable control for sputum samples. METHODS A total of 14 subjects, including 8 healthy respiratory controls and 6 diabetic patients without any respiratory disease, were enrolled in this study, during which the endotracheal tubes used in their scheduled routine surgery were collected. Pre-operative oral gargles were also collected from non-diabetic subjects. RESULTS 16S amplicon sequencing revealed similar taxa composition in endotracheal tube washings and oral gargles in the healthy control subjects, although the relative abundance of 11 genus level operational taxonomic units was significantly different between the two sample sources. The diabetic subjects showed relatively lower diversity than those of non-diabetic subjects. The proportion range of the most abundant taxa detected in each endotracheal tube washings were 10.1-33.2%. CONCLUSION Endotracheal tube washing fluid may provide healthy control samples for upper respiratory investigations without incurring any additional risk to the subject.
Collapse
Affiliation(s)
- Sun Young Cho
- Department of Laboratory Medicine, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Jeong-Hyun Choi
- Department of Anesthesiology, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Seung Hyeun Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Yong-Sung Choi
- Department of Pediatrics, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Sung Wook Hwang
- Department of Anesthesiology and Pain Medicine, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Young Jin Kim
- Department of Laboratory Medicine, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Valdez-Palomares F, Muñoz Torrico M, Palacios-González B, Soberón X, Silva-Herzog E. Altered Microbial Composition of Drug-Sensitive and Drug-Resistant TB Patients Compared with Healthy Volunteers. Microorganisms 2021; 9:1762. [PMID: 34442841 PMCID: PMC8398572 DOI: 10.3390/microorganisms9081762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 01/09/2023] Open
Abstract
Mycobacterium tuberculosis infection has three discernible outcomes: active tuberculosis, latent tuberculosis, or clearance of the bacterium. The outcome of the infection depends on the interaction of the bacterium, the immune system, and the microbiome of the host. The current study uses 16S rRNA sequencing to determine the diversity and composition of the respiratory microbiome of drug-resistant and drug-sensitive tuberculosis patients as well as healthy volunteers. Tuberculosis patients exhibited increased microbial diversity and differentially abundant bacteria than healthy volunteers. Compositional differences were also observed when comparing drug-sensitive or -resistant tuberculosis patients. Finally, we defined and assessed the differences in the core sputum microbiota between tuberculosis patients and healthy volunteers. Our observations collectively suggest that in sputum, Mycobacterium tuberculosis infection is related to altered bacterial diversity and compositional differences of core members of the microbiome, with potential implications for the bacterial pulmonary ecosystem's stability and function.
Collapse
Affiliation(s)
- Fernanda Valdez-Palomares
- Laboratorio de Vinculación Científica, Facultad de Medicina-UNAM en INMEGEN, Mexico City 14610, Mexico; (F.V.-P.); (B.P.-G.)
| | | | - Berenice Palacios-González
- Laboratorio de Vinculación Científica, Facultad de Medicina-UNAM en INMEGEN, Mexico City 14610, Mexico; (F.V.-P.); (B.P.-G.)
| | - Xavier Soberón
- Departamento de Ingeniería Celular y Biocatálisis, Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Mexico;
| | - Eugenia Silva-Herzog
- Laboratorio de Vinculación Científica, Facultad de Medicina-UNAM en INMEGEN, Mexico City 14610, Mexico; (F.V.-P.); (B.P.-G.)
| |
Collapse
|