1
|
Nellinger S, Rapp MA, Southan A, Wittmann V, Kluger PJ. An Advanced 'clickECM' That Can be Modified by the Inverse-Electron-Demand Diels-Alder Reaction. Chembiochem 2021; 23:e202100266. [PMID: 34343379 PMCID: PMC9291553 DOI: 10.1002/cbic.202100266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/02/2021] [Indexed: 11/11/2022]
Abstract
The extracellular matrix (ECM) represents the natural environment of cells in tissue and therefore is a promising biomaterial in a variety of applications. Depending on the purpose, it is necessary to equip the ECM with specific addressable functional groups for further modification with bioactive molecules, for controllable cross-linking and/or covalent binding to surfaces. Metabolic glycoengineering (MGE) enables the specific modification of the ECM with such functional groups without affecting the native structure of the ECM. In a previous approach (S. M. Ruff, S. Keller, D. E. Wieland, V. Wittmann, G. E. M. Tovar, M. Bach, P. J. Kluger, Acta Biomater. 2017, 52, 159-170), we demonstrated the modification of an ECM with azido groups, which can be addressed by bioorthogonal copper-catalyzed azide-alkyne cycloaddition (CuAAC). Here, we demonstrate the modification of an ECM with dienophiles (terminal alkenes, cyclopropene), which can be addressed by an inverse-electron-demand Diels-Alder (IEDDA) reaction. This reaction is cell friendly as there are no cytotoxic catalysts needed. We show the equipment of the ECM with a bioactive molecule (enzyme) and prove that the functional groups do not influence cellular behavior. Thus, this new material has great potential for use as a biomaterial, which can be individually modified in a wide range of applications.
Collapse
Affiliation(s)
- Svenja Nellinger
- Reutlingen Research Institute, Reutlingen University, School of Applied Chemistry, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Mareike A Rapp
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Nobelstr. 12, 70569, Stuttgart, Germany
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstr. 10, 78457, Konstanz, Germany
| | - Petra J Kluger
- Reutlingen Research Institute, Reutlingen University, School of Applied Chemistry, Alteburgstr. 150, 72762, Reutlingen, Germany
| |
Collapse
|
2
|
Astakhova K, Ray R, Taskova M, Uhd J, Carstens A, Morris K. "Clicking" Gene Therapeutics: A Successful Union of Chemistry and Biomedicine for New Solutions. Mol Pharm 2018; 15:2892-2899. [PMID: 29300491 PMCID: PMC6078818 DOI: 10.1021/acs.molpharmaceut.7b00765] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of nucleic acid, DNA and RNA, based strategies to disrupt gene expression as a therapeutic is quickly emerging. Indeed, synthetic oligonucleotides represent a major component of modern gene therapeutics. However, the efficiency and specificity of intracellular uptake for nonmodified oligonucleotides is rather poor. Utilizing RNA based oligonucleotides as therapeutics is even more challenging to deliver, due to extremely fast enzymatic degradation of the RNAs. RNAs get rapidly degraded in vivo and demonstrate large off-target binding events when they can reach and enter the desired target cells. One approach that holds much promise is the utilization of "click chemistry" to conjugate receptor or cell specific targeting molecules directly to the effector oligonucleotides. We discuss here the applications of the breakthrough technology of CuAAC click chemistry and the immense potential in utilizing "click chemistry" in the development of new age targeted oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Kira Astakhova
- Department of Chemistry, Technical University of Denmark, 206 Kemitorvet, 2800 Kgs Lyngby, Denmark
| | - Roslyn Ray
- Center for Gene Therapy, City of Hope – Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope. 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Maria Taskova
- Department of Chemistry, Technical University of Denmark, 206 Kemitorvet, 2800 Kgs Lyngby, Denmark
| | - Jesper Uhd
- Department of Chemistry, Technical University of Denmark, 206 Kemitorvet, 2800 Kgs Lyngby, Denmark
| | - Annika Carstens
- Department of Chemistry, Technical University of Denmark, 206 Kemitorvet, 2800 Kgs Lyngby, Denmark
| | - Kevin Morris
- Center for Gene Therapy, City of Hope – Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope. 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| |
Collapse
|
3
|
Abstract
Fluorogenic oligonucleotide probes that can produce a change in fluorescence signal upon binding to specific biomolecular targets, including nucleic acids as well as non-nucleic acid targets, such as proteins and small molecules, have applications in various important areas. These include diagnostics, drug development and as tools for studying biomolecular interactions in situ and in real time. The probes usually consist of a labeled oligonucleotide strand as a recognition element together with a mechanism for signal transduction that can translate the binding event into a measurable signal. While a number of strategies have been developed for the signal transduction, relatively little attention has been paid to the recognition element. Peptide nucleic acids (PNA) are DNA mimics with several favorable properties making them a potential alternative to natural nucleic acids for the development of fluorogenic probes, including their very strong and specific recognition and excellent chemical and biological stabilities in addition to their ability to bind to structured nucleic acid targets. In addition, the uncharged backbone of PNA allows for other unique designs that cannot be performed with oligonucleotides or analogues with negatively-charged backbones. This review aims to introduce the principle, showcase state-of-the-art technologies and update recent developments in the areas of fluorogenic PNA probes during the past 20 years.
Collapse
Affiliation(s)
- Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Komljenovic D, Wiessler M, Waldeck W, Ehemann V, Pipkorn R, Schrenk HH, Debus J, Braun K. NIR-Cyanine Dye Linker: a Promising Candidate for Isochronic Fluorescence Imaging in Molecular Cancer Diagnostics and Therapy Monitoring. Am J Cancer Res 2016; 6:131-41. [PMID: 26722379 PMCID: PMC4679360 DOI: 10.7150/thno.11460] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 08/07/2015] [Indexed: 12/11/2022] Open
Abstract
Personalized anti-cancer medicine is boosted by the recent development of molecular diagnostics and molecularly targeted drugs requiring rapid and efficient ligation routes. Here, we present a novel approach to synthetize a conjugate able to act simultaneously as an imaging and as a chemotherapeutic agent by coupling functional peptides employing solid phase peptide synthesis technologies. Development and the first synthesis of a fluorescent dye with similarity in the polymethine part of the Cy7 molecule whose indolenine-N residues were substituted with a propylene linker are described. Methylating agent temozolomide is functionalized with a tetrazine as a diene component whereas Cy7-cell penetrating peptide conjugate acts as a dienophilic reaction partner for the inverse Diels-Alder click chemistry-mediated ligation route yielding a theranostic conjugate, 3-mercapto-propionic-cyclohexenyl-Cy7-bis-temozolomide-bromide-cell penetrating peptide. Synthesis route described here may facilitate targeted delivery of the therapeutic compound to achieve sufficient local concentrations at the target site or tissue. Its versatility allows a choice of adequate imaging tags applicable in e.g. PET, SPECT, CT, near-infrared imaging, and therapeutic substances including cytotoxic agents. Imaging tags and therapeutics may be simultaneously bound to the conjugate applying click chemistry. Theranostic compound presented here offers a solid basis for a further improvement of cancer management in a precise, patient-specific manner.
Collapse
|
5
|
Hörner S, Uth C, Avrutina O, Frauendorf H, Wiessler M, Kolmar H. Combination of inverse electron-demand Diels–Alder reaction with highly efficient oxime ligation expands the toolbox of site-selective peptide conjugations. Chem Commun (Camb) 2015; 51:11130-3. [DOI: 10.1039/c5cc03434e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A modular bioconjugation strategy based on stepwise oxime ligation and inverse electron-demand Diels–Alder reaction.
Collapse
Affiliation(s)
- S. Hörner
- Technische Universität Darmstadt
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie
- 64287 Darmstadt
- Germany
| | - C. Uth
- Technische Universität Darmstadt
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie
- 64287 Darmstadt
- Germany
| | - O. Avrutina
- Technische Universität Darmstadt
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie
- 64287 Darmstadt
- Germany
| | - H. Frauendorf
- Georg-August-Universität Göttingen
- Institut für Organische und Biomolekulare Chemie
- Zentrale Analytik/Massenspektrometrie
- 37077 Göttingen
- Germany
| | - M. Wiessler
- Deutsches Krebsforschungszentrum
- Medizinische Physik in der Radiologie
- 69120 Heidelberg
- Germany
| | - H. Kolmar
- Technische Universität Darmstadt
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie
- 64287 Darmstadt
- Germany
| |
Collapse
|
6
|
Pipkorn R, Rawer S, Wiessler M, Waldeck W, Koch M, Schrenk HH, Braun K. SPPS resins impact the PNA-syntheses' improvement. Int J Med Sci 2013; 10:331-7. [PMID: 23423830 PMCID: PMC3575629 DOI: 10.7150/ijms.5374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/19/2012] [Indexed: 01/07/2023] Open
Abstract
The personalized medicine, also documented as "individualized medicine", is an effective and therapeutic approach. It is designed to treat the disease of the individual patient whose precise differential gene expression profile is well known. The trend in the biomedical and biophysical research shows important consequences for the pharmaceutical drug and diagnostics research. It requires a high variability in the design and safety of target-specific pharmacologically active molecules and diagnostic components for imaging of metabolic processes. A key technology which may fulfill the highest demands during synthesis of these individual drugs and diagnostics is the solid phase synthesis which is congenial to automated manufacturing. Additionally the choice of tools like resins and reagents is pivotal to synthesize drugs and diagnostics in high quality and yields. Here we demonstrate the solid phase synthesis effects dependent on the choice of resin and of the deprotection agent.
Collapse
Affiliation(s)
- Rüdiger Pipkorn
- German Cancer Research Center, Peptide Synthesis Core Facility, INF 280, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
7
|
Thomas JD, Cui H, North PJ, Hofer T, Rader C, Burke TR. Application of strain-promoted azide-alkyne cycloaddition and tetrazine ligation to targeted Fc-drug conjugates. Bioconjug Chem 2012; 23:2007-13. [PMID: 22988967 PMCID: PMC3474869 DOI: 10.1021/bc300052u] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have previously described an approach whereby antibody Fc fragments harboring a single C-terminal selenocysteine residue (Fc-Sec) are directed against a variety of targets by changing the peptide or small molecule to which they are conjugated. In the present work, we describe methodology for improving the efficacy of these Fc-Sec conjugates by incorporating cytotoxic drugs. The Fc-Sec protein is first programmed to target specific tumor cell types by attachment of a bifunctional linker that contains a "clickable" handle (e.g., cyclobutane or cyclooctyne) in addition to a tumor cell-binding peptide or small molecule. Following Fc-Sec conjugation, a cytotoxic warhead is then attached by cycloaddition reactions of tetrazine or azide-containing linker. To validate this approach, we used a model system in which folic acid (FA) is the targeting moiety and a disulfide-linked biotin moiety serves as a cytotoxic drug surrogate. We demonstrated successful targeting of Fc-Sec proteins to folate-receptor expressing tumor cells. Tetrazine ligation was found to be an efficient method for biotin "arming" of the folate-targeted Fc-Sec proteins. We also report novel bioconjugation methodologies that use [4 + 2] cycloaddition reactions between tetrazines and cyclooctynes.
Collapse
Affiliation(s)
- Joshua D. Thomas
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, U.S.A
| | - Huiting Cui
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Patrick J North
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Thomas Hofer
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Christoph Rader
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, U.S.A
| |
Collapse
|
8
|
Wiessler M, Hennrich U, Pipkorn R, Waldeck W, Cao L, Peter J, Ehemann V, Semmler W, Lammers T, Braun K. Theranostic cRGD-BioShuttle Constructs Containing Temozolomide- and Cy7 For NIR-Imaging and Therapy. Am J Cancer Res 2011; 1:381-94. [PMID: 22211144 PMCID: PMC3248642 DOI: 10.7150/thno/v01p0381] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 12/01/2011] [Indexed: 11/13/2022] Open
Abstract
Innovative and personalized therapeutic approaches result from the identification and control of individual aberrantly expressed genes at the transcriptional and post-transcriptional level. Therefore, it is of high interest to establish diagnostic, therapeutic and theranostic strategies at these levels. In the present study, we used the Diels-Alder Reaction with inverse electron demand (DARinv) click chemistry to prepare a series of cyclic RGD-BioShuttle constructs. These constructs carry the near-infrared (NIR) imaging agent Cy7 and the chemotherapeutic agent temozolomide (TMZ). We evaluated their uptake by and their efficacy against integrin αvβ3-expressing MCF7 human breast carcinoma cells. In addition, using a mouse phantom, we analyzed the suitability of this targeted theranostic agent for NIR optical imaging. We observed that the cyclic RGD-based carriers containing TMZ and/or Cy7 were effectively taken up by αvβ3-expressing cells, that they were more effective than free TMZ in inducing cell death, and that they could be quantitatively visualized using NIR fluorescence imaging. Therefore, these targeted theranostic agents are considered to be highly suitable systems for improving disease diagnosis and therapy.
Collapse
|
9
|
Pipkorn R, Wiessler M, Waldeck W, Hennrich U, Nokihara K, Beining M, Braun K. Improved synthesis strategy for peptide nucleic acids (PNA) appropriate for cell-specific fluorescence imaging. Int J Med Sci 2011; 9:1-10. [PMID: 22211082 PMCID: PMC3222083 DOI: 10.7150/ijms.9.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Accepted: 10/17/2011] [Indexed: 11/05/2022] Open
Abstract
Progress in genomics and proteomics attended to the door for better understanding the recent rapid expanding complex research field of metabolomics. This trend in biomedical research increasingly focuses to the development of patient-specific therapeutic approaches with higher efficiency and sustainability. Simultaneously undesired adverse reactions are avoided. In parallel, the development of molecules for molecular imaging is required not only for the imaging of morphological structures but also for the imaging of metabolic processes like the aberrant expression of the cysteine protease cathepsin B (CtsB) gene and the activity of the resulting product associated with metastasis and invasiveness of malign tumors. Finally the objective is to merge imaging and therapy at the same level. The design of molecules which fulfil these responsibilities is pivotal and requires proper chemical methodologies. In this context our modified solid phase peptide chemistry using temperature shifts during synthesis is considered as an appropriate technology. We generated highly variable conjugates which consist of molecules useful as diagnostically and therapeutically active molecules. As an example the modular PNA products with the complementary sequence to the CtsB mRNA and additionally with a cathepsin B cleavage site had been prepared as functional modules for distinction of cell lines with different CtsB gene expression. After ligation to the modular peptide-based BioShuttle carrier, which was utilized to facilitate the delivery of the functional modules into the cells' cytoplasm, the modules were scrutinized.
Collapse
Affiliation(s)
- Rüdiger Pipkorn
- DKFZ, Central Peptide Synthesis Unit, INF 580, D-69120 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
10
|
Tasdelen MA. Diels–Alder “click” reactions: recent applications in polymer and material science. Polym Chem 2011. [DOI: 10.1039/c1py00041a] [Citation(s) in RCA: 439] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Pipkorn R, Wiessler M, Waldeck W, Lorenz P, Muehlhausen U, Fleischhacker H, Koch M, Braun K. Enhancement of the click chemistry for the inverse Diels Alder technology by functionalization of amide-based monomers. Int J Med Sci 2011; 8:387-96. [PMID: 21750642 PMCID: PMC3133843 DOI: 10.7150/ijms.8.387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/16/2011] [Indexed: 11/30/2022] Open
Abstract
In the near future personalized medicine with nucleic acids will play a key role in molecular diagnostics and therapy, which require new properties of the nucleic acids, like stability against enzymatic degradation. Here we demonstrate that the replacement of nucleobases with PNA by functional molecules harbouring either a dienophile or a diene reactivity is feasible and confers all new options for functionalization. These newly developed derivatives allow independent multi-ligations of multi-faceted components by use of the inverse Diels Alder technology. The high chemical stability and the ease of synthesis qualify these polyamide building blocks as favourites for intracellular delivery and targeting applications. This allows local drug concentrations sufficient for imaging and therapy and simultaneously a reduction of the application doses. It is important to point out that this technology is not restricted to ligation of medicament material; it is also a candidate to develop new and highly efficient active compounds for a "sustainable pharmacy".
Collapse
Affiliation(s)
- Ruediger Pipkorn
- German Cancer Research Center, Central Peptide Synthesis Unit, INF 580, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|