1
|
Zhang H, Yuan X, Yang Y, Wanyan Y, Tao L, Chen Y. Cathelicidin LL-37 promotes EMT, migration and metastasis of hepatocellular carcinoma cells in vitro and mouse model. Cell Adh Migr 2023; 17:20-34. [PMID: 36656313 PMCID: PMC9858423 DOI: 10.1080/19336918.2023.2168231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The effect of cathelicidin hCAP18/LL-37 in hepatocellular carcinoma (HCC) metastasis remains unclear. Here, we confirmed that LL-37 expression enhanced endothelial-mesenchymal transition (EMT), migration and invasion in HCC cells. And the HER2/EGFR-MAPK/ERK signal participated in the process above. More frequent lung metastases were observed in an LL-37-overexpressing hematogenous metastasis model. Interestingly, 1,25(OH)2D3 together with si-LL-37 significantly enhanced 1,25(OH)2D3-induced inhibition of migration and invasion in PLC/PRF-5 cells, and also enhanced reversion of the EMT process. Therefore, LL-37 is involved in HCC metastases, and may act as an important factor to attenuate the inhibitory activity of 1,25(OH)2D3 on HCC metastasis. Targeting hCAP18/LL-37 may offer a potential strategy to improve the anticancer activity of 1,25(OH)2D3 in HCC therapy.
Collapse
Affiliation(s)
- Huidan Zhang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Xueli Yuan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yaxin Yang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yangke Wanyan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Liping Tao
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Yuqing Chen
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, Jiangsu, China,CONTACT Yuqing Chen Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, 1# Wenyuan Rd, Nanjing210000, Jiangsu Province, PR China
| |
Collapse
|
2
|
Aria H, Rezaei M. Immunogenic cell death inducer peptides: A new approach for cancer therapy, current status and future perspectives. Biomed Pharmacother 2023; 161:114503. [PMID: 36921539 DOI: 10.1016/j.biopha.2023.114503] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Immunogenic Cell Death (ICD) is a type of cell death that kills tumor cells by stimulating the adaptive immune response against other tumor cells. ICD depends on the endoplasmic reticulum (ER) stress and the secretion of Damage-Associated Molecular Patterns (DAMP) by the dying tumor cell. DAMPs recruit innate immune cells such as Dendritic Cells (DC), triggering a cancer-specific immune response such as cytotoxic T lymphocytes (CTLs) to eliminate remaining cancer cells. ICD is accompanied by several hallmarks in dying cells, such as surface translocation of ER chaperones, calreticulin (CALR), and extracellular secretion of DAMPs such as high mobility group protein B1 (HMGB1) and adenosine triphosphate (ATP). Therapeutic peptides can kill bacteria and tumor cells thus affecting the immune system. They have high specificity and affinity for their targets, small size, appropriate cell membrane penetration, short half-life, and simple production processes. Peptides are interesting agents for immunomodulation since they may overcome the limitations of other therapeutics. Thus, the development of peptides affecting the TME and active antitumoral immunity has been actively pursued. On the other hand, several peptides have been recently identified to trigger ICD and anti-cancer responses. In the present review, we review previous studies on peptide-induced ICD, their mechanism, their targets, and markers. They include anti-microbial peptides (AMPs), cationic or mitochondrial targeting, checkpoint inhibitors, antiapoptotic inhibitors, and "don't eat me" inhibitor peptides. Also, peptides will be investigated potentially inducing ICD that is divided into ER stressors, ATPase inhibitors, and anti-microbial peptides.
Collapse
Affiliation(s)
- Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
3
|
Chinipardaz Z, Zhong JM, Yang S. Regulation of LL-37 in Bone and Periodontium Regeneration. Life (Basel) 2022; 12:1533. [PMID: 36294968 PMCID: PMC9604716 DOI: 10.3390/life12101533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022] Open
Abstract
The goal of regenerative therapy is to restore the structure and function of the lost tissues in the fields of medicine and dentistry. However, there are some challenges in regeneration therapy such as the delivery of oxygen and nutrition, and the risk of infection in conditions such as periodontitis, osteomyelitis, etc. Leucine leucine-37 (LL-37) is a 37-residue, amphipathic, and helical peptide found only in humans and is expressed throughout the body. It has been shown to induce neovascularization and vascular endothelial growth factor (VEGF) expression. LL-37 also stimulates the migration and differentiation of mesenchymal stem cells (MSCs). Recent studies have shown that LL-37 plays an important role in the innate defense system through the elimination of pathogenic microbes and the modulation of the host immune response. LL-37 also manifests other functions such as promoting wound healing, angiogenesis, cell differentiation, and modulating apoptosis. This review summarizes the current studies on the structure, expression, and function of LL-37 and highlights the contributions of LL-37 to oral cavity, periodontium, and bone regeneration.
Collapse
Affiliation(s)
- Zahra Chinipardaz
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica M. Zhong
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
| | - Shuying Yang
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Lu F, Zhu Y, Zhang G, Liu Z. Renovation as innovation: Repurposing human antibacterial peptide LL-37 for cancer therapy. Front Pharmacol 2022; 13:944147. [PMID: 36081952 PMCID: PMC9445486 DOI: 10.3389/fphar.2022.944147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/22/2022] [Indexed: 01/10/2023] Open
Abstract
In many organisms, antimicrobial peptides (AMPs) display wide activities in innate host defense against microbial pathogens. Mammalian AMPs include the cathelicidin and defensin families. LL37 is the only one member of the cathelicidin family of host defense peptides expressed in humans. Since its discovery, it has become clear that they have pleiotropic effects. In addition to its antibacterial properties, many studies have shown that LL37 is also involved in a wide variety of biological activities, including tissue repair, inflammatory responses, hemotaxis, and chemokine induction. Moreover, recent studies suggest that LL37 exhibits the intricate and contradictory effects in promoting or inhibiting tumor growth. Indeed, an increasing amount of evidence suggests that human LL37 including its fragments and analogs shows anticancer effects on many kinds of cancer cell lines, although LL37 is also involved in cancer progression. Focusing on recent information, in this review, we explore and summarize how LL37 contributes to anticancer effect as well as discuss the strategies to enhance delivery of this peptide and selectivity for cancer cells.
Collapse
|
5
|
Chen X, Ji S, Si J, Zhang X, Wang X, Guo Y, Zou X. Human cathelicidin antimicrobial peptide suppresses proliferation, migration and invasion of oral carcinoma HSC-3 cells via a novel mechanism involving caspase-3 mediated apoptosis. Mol Med Rep 2020; 22:5243-5250. [PMID: 33174023 PMCID: PMC7646992 DOI: 10.3892/mmr.2020.11629] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
Human cathelicidin antimicrobial peptide and its active product, LL-37 (CAMP/LL-37), exhibit a broad spectrum of antimicrobial effects. An increasing number of studies have shown that human CAMP/LL-37 also serves significant roles in various types of cancer. The primary aims of the present study were to investigate the roles and mechanisms of human CAMP/LL-37 in oral squamous cell carcinoma (OSCC) cells. The results indicated that either LL-37 C-terminal deletion mutants (CDEL) or CAMP stable expression in HSC-3 cells reduced colony formation, proliferation, migration and invasion ability of the cells. Expression analysis demonstrated that either CDEL or CAMP stable expression in HSC-3 cells induced caspase-3 mediated apoptosis via the P53-Bcl-2/BAX signalling pathway, whereas the levels of cell cycle-related proteins, cyclin B1 and PKR-like ER kinase, were significantly upregulated in the CAMP, but not in the CDEL overexpressing cells. Transcriptional profile comparisons revealed that CDEL or CAMP stable expression in HSC-3 cells upregulated expression of genes involved in the IL-17-dependent pathway compared with the control. Taken together, these results suggest that CAMP may act as a tumour suppressor in OSCC cells, and the underlying mechanism involves the induction of caspase-3 mediated apoptosis via the P53-Bcl-2/BAX signalling pathway.
Collapse
Affiliation(s)
- Xi Chen
- Laboratory of Mucosal Immunology, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Shenying Ji
- Laboratory of Mucosal Immunology, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Jia Si
- Laboratory of Mucosal Immunology, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xiangyu Zhang
- Laboratory of Mucosal Immunology, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xiaoyan Wang
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yong Guo
- College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Xianqiong Zou
- Laboratory of Mucosal Immunology, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
6
|
Pinheiro da Silva F, Vinicius Macarini Bruzaferro E, Olsen Saraiva Câmara N. Antimicrobial peptides in the gut-brain axis: A straightforward review to unravel some missing links. J Neurosci Res 2020; 98:2384-2389. [PMID: 32945561 DOI: 10.1002/jnr.24729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/26/2020] [Accepted: 08/30/2020] [Indexed: 11/11/2022]
Abstract
Antimicrobial peptides (AMPs) are intriguing molecules, able to directly kill several microorganisms and to regulate multiple aspects of the immune response. Despite the extensive studies on the role of AMPs in the epithelial barrier, placing them as a pivotal line of defense against pathogen invasion, little attention has been directed to their role in the maintenance and modulation of the gut microbiota and, by consequence, of the homeostasis of extra intestinal tissues. Here, we review the recent literature about the microbiome-gut-brain axis, focusing on the role of AMPs in this scenario. We provide a straightforward revision of current data in order to provide an overview of the subject, discussing more in depth some points that, in our opinion, are crucial and have received little attention.
Collapse
Affiliation(s)
- Fabiano Pinheiro da Silva
- Laboratório de Emergências Clínicas, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | - Niels Olsen Saraiva Câmara
- Laboratório de Imunobiologia de Transplantes, Departamento de Imunologia, Instituto de Ciências Biológicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Xing M, Ji M, Hu J, Zhu T, Chen Y, Bai X, Mwangi J, Mo G, Lai R, Jin L. Snake Cathelicidin Derived Peptide Inhibits Zika Virus Infection. Front Microbiol 2020; 11:1871. [PMID: 32849457 PMCID: PMC7417475 DOI: 10.3389/fmicb.2020.01871] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/16/2020] [Indexed: 01/19/2023] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne virus belonging to the genus Flavivirus and has reemerged in recent years with epidemic potential. ZIKV infection may result in severe syndromes such as neurological complications and microcephaly in newborns. Therefore, ZIKV has become a global public health threat and currently there is no approved specific drug for its treatment. Animal venoms are important resources of novel drugs. Cathelicidin-BF (BF-30) is a defensive peptide identified from Bungarus fasciatus snake venom and has been shown to be an excellent template for applicable peptide design. In this study, we found that ZY13, one of the peptidic analogs of BF-30, inhibits ZIKV infection in vitro and in vivo. Mechanistic studies revealed that ZY13 can directly inactivate ZIKV and reduce the production of infectious virions. Further studies also indicated that administration of ZY13 strengthen the host antiviral immunity via AXL-SOCS (suppressor of cytokine signaling protein) pathway. Additionally, the results of mouse experiment suggest that ZY13 efficiently restrict ZIKV infection and improve the growth defects of ZIKV-infected mouse pups. Together, our findings not only demonstrate that ZY13 might be a candidate for anti-ZIKV drug, but also indicated the importance of animal venom peptides as templates for antivirals development.
Collapse
Affiliation(s)
- Meichen Xing
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mengyao Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jingmei Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Tengyu Zhu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yaoyao Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xuewei Bai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - James Mwangi
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ren Lai
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-African Joint Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Institute for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai, China
| | - Lin Jin
- Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
8
|
Lindhauer NS, Bertrams W, Pöppel A, Herkt CE, Wesener A, Hoffmann K, Greene B, Van Der Linden M, Vilcinskas A, Seidel K, Schmeck B. Antibacterial activity of a Tribolium castaneum defensin in an in vitro infection model of Streptococcus pneumoniae. Virulence 2020; 10:902-909. [PMID: 31657264 PMCID: PMC6844301 DOI: 10.1080/21505594.2019.1685150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Streptococcus pneumoniae (S. pneumoniae) is the most common bacterial cause of community-acquired pneumonia. Increasing rates of antibiotic-resistant S. pneumoniae strains impair therapy and necessitate alternative treatment options. In this study, we analysed insect-derived antimicrobial peptides (AMPs) for antibacterial effects on S. pneumoniae in a human in vitro infection model. AMP effects on bacterial growth were examined by colony forming unit (CFU)-assays, and growth curve measurements. Furthermore, cytotoxicity to primary human macrophages was detected by measuring lactate-dehydrogenase release to the supernatant. One AMP (Defensin 1) was tested in a model of primary human monocyte-derived macrophages infected with S. pneumoniae strain D39 and a multi-resistant clinical isolate. Inflammatory reactions were characterised by qPCR and multiplex-ELISA. In total, the antibacterial effects of 23 AMPs were characterized. Only Tribolium castaneum Defensin 1 showed significant antibacterial effects against S. pneumoniae strain D39 and a multi-resistant clinical isolate. During in vitro infection of primary human macrophages with S. pneumoniae D39, Defensin 1 displayed strong antibacterial effects, and consequently reduced bacteria-induced cytokine expression and release. In summary, Tribolium castaneum Defensin 1 showed profound antibacterial effectivity against Streptococcus pneumoniae D39 and a multi-resistant clinical isolate without unwanted cytotoxic or inflammatory side effects on human blood-derived macrophages.
Collapse
Affiliation(s)
- Nora S Lindhauer
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Anne Pöppel
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany
| | - Christina E Herkt
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Andre Wesener
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Kerstin Hoffmann
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Brandon Greene
- Institute of Medical Bioinformatics and Biostatistics, Universities of Giessen and Marburg, Philipps-University Marburg, Marburg, Germany
| | - Mark Van Der Linden
- German National Reference Center for Streptococci, Department of Medical Microbiology, University Hospital RWTH Aachen, Aachen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Giessen, Germany.,Institute for Insect Biotechnology, Justus-Liebig-University, Giessen, Germany
| | - Kerstin Seidel
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany.,Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University, Member of the German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
9
|
Chen J, Shin VY, Ho JCW, Siu MT, Cheuk IWY, Kwong A. Functional Implications of Cathelicidin Antimicrobial Protein in Breast Cancer and Tumor-Associated Macrophage Microenvironment. Biomolecules 2020; 10:E688. [PMID: 32365569 PMCID: PMC7277779 DOI: 10.3390/biom10050688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
It is well-established that tumor-associated macrophages (TAMs) play an important role in breast cancer development. Accumulating evidence suggested that human cathelicidin antimicrobial protein (CAMP), which is mainly expressed in host defense cells such as macrophages, is crucial not only in combating microorganisms but also promoting tumor growth. Here we report the interaction of CAMP with TAMs in breast cancer. CAMP expression was upregulated in cancer tissues and in the circulation of breast cancer patients. Surgical removal of tumor decreased CAMP peptide serum level. Knockdown of CAMP decreased cell proliferation and migration/invasion ability in breast cancer cells. CAMP expression was altered during macrophage M1/M2 polarization and was expressed predominantly in M2 phenotype. In addition, breast cancer cells co-cultured with macrophages upregulated CAMP expression and also increased cancer cell viability. Xenograft tumors reduced significantly upon CAMP receptor antagonist treatment. Our data implicated that CAMP confers an oncogenic role in breast cancer and plays an important role in the tumor microenvironment between TAMs and breast cancer cells, and blocking the interaction between them would provide a novel therapeutic option for this malignant disease.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Surgery, The University of Hong Kong, Pokfulam 999077, Hong Kong; (J.C.); (V.Y.S.); (J.C.-W.H.); (M.-T.S.); (I.W.-Y.C.)
| | - Vivian Yvonne Shin
- Department of Surgery, The University of Hong Kong, Pokfulam 999077, Hong Kong; (J.C.); (V.Y.S.); (J.C.-W.H.); (M.-T.S.); (I.W.-Y.C.)
| | - John Chi-Wang Ho
- Department of Surgery, The University of Hong Kong, Pokfulam 999077, Hong Kong; (J.C.); (V.Y.S.); (J.C.-W.H.); (M.-T.S.); (I.W.-Y.C.)
| | - Man-Ting Siu
- Department of Surgery, The University of Hong Kong, Pokfulam 999077, Hong Kong; (J.C.); (V.Y.S.); (J.C.-W.H.); (M.-T.S.); (I.W.-Y.C.)
| | - Isabella Wai-Yin Cheuk
- Department of Surgery, The University of Hong Kong, Pokfulam 999077, Hong Kong; (J.C.); (V.Y.S.); (J.C.-W.H.); (M.-T.S.); (I.W.-Y.C.)
| | - Ava Kwong
- Department of Surgery, The University of Hong Kong, Pokfulam 999077, Hong Kong; (J.C.); (V.Y.S.); (J.C.-W.H.); (M.-T.S.); (I.W.-Y.C.)
- Department of Surgery, The Hong Kong Sanatorium and Hospital, Wan Chai District 999077, Hong Kong
- The Hong Kong Hereditary Breast Cancer Family Registry, Shatin 999077, Hong Kong
| |
Collapse
|
10
|
Aidoukovitch A, Anders E, Dahl S, Nebel D, Svensson D, Nilsson BO. The host defense peptide LL-37 is internalized by human periodontal ligament cells and prevents LPS-induced MCP-1 production. J Periodontal Res 2019; 54:662-670. [PMID: 31095741 DOI: 10.1111/jre.12667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/15/2019] [Accepted: 04/20/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The human host defense peptide LL-37 both shows antimicrobial effects and modulates host cell properties. Here, we assess the effects of synthesized LL-37 on lipopolysaccharide (LPS)-induced inflammation in human periodontal ligament (PDL) cells and investigates underlying mechanisms. BACKGROUND LL-37 has been detected in the periodontal tissues, but its functional importance for PDL cell innate immune responses is not known. METHODS Human PDL cells were obtained from premolars extracted on orthodontic indications. Cellular pro-inflammatory monocyte chemoattractant protein-1 (MCP-1) mRNA expression was determined using quantitative real-time RT-PCR. MCP-1 protein production was assessed by western blot and ELISA. Internalization of LL-37 by PDL cells was visualized by immunocytochemistry. Nuclear factor kappa-light-chain-enhancer of activated B-cell (NF-κB) activity was assessed by western blot of phosphorylated p65, phosphorylated p105, and IκBα proteins. Binding of LL-37 to PDL cell DNA was determined by isolation and purification of DNA and dot blot for LL-37 immunoreactivity. RESULTS Treatment with LL-37 (1 µmol/L) for 24 hours prevented LPS-induced stimulation of MCP-1 expression analyzed both on transcript and on protein levels. Stimulation with LL-37 (1 µmol/L) for 24 hours had no effect on toll-like receptor (TLR)2 and TLR4 transcript expression, suggesting that LL-37 acts downstream of the TLRs. Preincubation with LL-37 for 60 minutes followed by stimulation with LPS for 24 hours in the absence of LL-37 completely prevented LPS-evoked MCP-1 transcript expression, implying that LL-37 acts intracellularly and not via binding and neutralization of LPS. In PDL cells stimulated with LL-37 for 60 minutes, the peptide was internalized as demonstrated by immunocytochemistry, suggesting an intracellular mechanism of action. LL-37 immunoreactivity was observed both in the cytosol and in the nucleus. Downregulation of LPS-induced MCP-1 by LL-37 was not mediated by reduction in NF-κB activity as shown by unaltered expression of phosphorylated p65, phosphorylated p105, and IκBα NF-κB proteins in the presence of LL-37. Immunoreactivity for LL-37 was observed in PDL cell DNA treated with but not without 0.1 and 1 µmol/L LL-37 for 60 minutes in vitro. CONCLUSION LL-37 abolishes LPS-induced MCP-1 production in human PDL cells through an intracellular, NF-κB-independent mechanism which probably involves direct interaction between LL-37 and DNA.
Collapse
Affiliation(s)
- Alexandra Aidoukovitch
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Folktandvården Skåne, Lund, Sweden
| | - Emma Anders
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sara Dahl
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Daniel Nebel
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Daniel Svensson
- Department of Experimental Medical Science, Lund University, Lund, Sweden.,Department of Women's and Children's Health, Karolinska Institute, Solna, Sweden
| | - Bengt-Olof Nilsson
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
11
|
Yoshida K, Suzuki S, Kawada-Matsuo M, Nakanishi J, Hirata-Tsuchiya S, Komatsuzawa H, Yamada S, Shiba H. Heparin-LL37 complexes are less cytotoxic for human dental pulp cells and have undiminished antimicrobial and LPS-neutralizing abilities. Int Endod J 2019; 52:1327-1343. [PMID: 31002379 DOI: 10.1111/iej.13130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/12/2019] [Indexed: 12/13/2022]
Abstract
AIM To investigate whether glycosaminoglycans (GAGs) binding to high-dose LL37 eliminates its cytotoxicity to dental pulp cells (hDPCs) whilst retaining undiminished antimicrobial and LPS-neutralizing abilities. METHODOLOGY hDPCs were stimulated with varying concentrations of LL37, and their cell viability was analysed by MTT. Then, high-dose LL37 (10 μmol L-1 ) was bound to varying concentrations of three GAGs, heparin, chondroitin sulphate and hyaluronic acid, and their cytotoxic effects on hDPCs and antimicrobial effects were evaluated and compared. Furthermore, the LPS-neutralizing ability of heparin (5 μg mL-1 )-LL37 (10 μmol L-1 ) complexes, which were found to be less cytotoxic for hDPCs with undiminished antimicrobial ability, was investigated. Statistical analysis was performed using one-way analysis of variance (anova), followed by Dunnett's test. P values below 0.05 were considered significant. RESULTS LL37 significantly reduced the cell viability of hDPCs in a dose-dependent manner (P < 0.01). LL37 (10 μmol L-1 ) binding to heparin within a limited concentration range (2~6 μg mL-1 ) eliminated the cytotoxicity for hDPCs (P < 0.01) whilst exerting potent antimicrobial effects against Streptococcus mutans, Streptococcus sobrinus, Streptococcus salivarius, Aggegatibacter actinomycetemcomitans and Escherichia coli. LL37 (10 μmol L-1 ) binding to chondroitin sulphate exhibited similar functions (P < 0.01); however, the effective chondroitin sulphate concentration was highly restricted (3 μg mL-1 ). LL37 (10 μmol L-1 ) binding to hyaluronic acid was unable to abrogate the cytotoxicity of LL37 even at higher concentrations (10 and 100 μg mL-1 ). Moreover, exogenous addition of LPS dose-dependently reduced the amount of LL37 precipitated with the heparin-LL37 agarose beads (P < 0.01), and the released LL37 simultaneously neutralized the pro-inflammatory ability of LPS in macrophages (P < 0.01). CONCLUSIONS Heparin-LL37 complexes generated at suitable concentration ratios are easy to make, are less cytotoxic and are broad-range antimicrobial materials that can neutralize LPS by providing LL37 in accordance with the amount of free LPS. They may be a potential treatment to save dental pulp tissue from the acute inflammation exacerbated by invading bacteria and the LPS they release.
Collapse
Affiliation(s)
- K Yoshida
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - S Suzuki
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - M Kawada-Matsuo
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - J Nakanishi
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - S Hirata-Tsuchiya
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - H Komatsuzawa
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - S Yamada
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - H Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
12
|
Lathe R, Darlix JL. Prion Protein PRNP: A New Player in Innate Immunity? The Aβ Connection. J Alzheimers Dis Rep 2017; 1:263-275. [PMID: 30480243 PMCID: PMC6159716 DOI: 10.3233/adr-170037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 12/25/2022] Open
Abstract
The prion protein PRNP has been centrally implicated in the transmissible spongiform encephalopathies (TSEs), but its normal physiological role remains obscure. We highlight emerging evidence that PRNP displays antimicrobial activity, inhibiting the replication of multiple viruses, and also interacts directly with Alzheimer's disease (AD) amyloid-β (Aβ) peptide whose own antimicrobial role is now increasingly secure. PRNP and Aβ share share membrane-penetrating, nucleic acid binding, and antiviral properties with classical antimicrobial peptides such as LL-37. We discuss findings that binding of abnormal nucleic acids to PRNP leads to oligomerization of the protein, and suggest that this may be an entrapment and sequestration process that contributes to its antimicrobial activity. Some antimicrobial peptides are known to be exploited by infectious agents, and we cover evidence that PRNP is usurped by herpes simplex virus (HSV-1) that has evolved a virus-encoded 'anti-PRNP'.unction. These findings suggest that PRNP, like LL-37 and Aβ, is likely to be a component of the innate immune system, with implications for the pathoetiology of both AD and TSE.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, UK
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Jean-Luc Darlix
- Faculté de Pharmacie, Centre Nationale de la Recherche Scientifique (CNRS) Unité 7213, Université de Strasbourg, Illkirch, France
| |
Collapse
|
13
|
Severino P, Ariga SK, Barbeiro HV, de Lima TM, de Paula Silva E, Barbeiro DF, Machado MCC, Nizet V, Pinheiro da Silva F. Cathelicidin-deficient mice exhibit increased survival and upregulation of key inflammatory response genes following cecal ligation and puncture. J Mol Med (Berl) 2017. [DOI: 10.1007/s00109-017-1555-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|