1
|
Jang S, Lee J, Jeong JG, Oh TI, Lee E. Reconstruction of Fibrocartilage with Fibrous Alignment of Type I Collagen in Scaffold-Free Manner. Tissue Eng Part A 2023; 29:529-540. [PMID: 37382424 DOI: 10.1089/ten.tea.2023.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023] Open
Abstract
For functional reconstruction of fibrocartilage, it is necessary to reproduce the essential mechanical property exhibited by natural fibrocartilage. The distinctive mechanical property of fibrocartilage is originated from the specific histological features of fibrocartilage composed of highly aligned type I collagen (Col I) and an abundant cartilaginous matrix. While the application of tensile stimulation induces highly aligned Col I, our study reveals that it also exerts an antichondrogenic effect on scaffold-free tissues constructed with meniscal chondrocytes (MCs) and induces downregulation of Sox-9 expression and attenuated glycosaminoglycan production. Modulation of mechanotransduction by blocking nuclear translocation of Yes-associated protein (YAP) ameliorated the antichondrogenic effect in the presence of tensile stimulation. Since MCs subjected to mechanical doses either by surface stiffness or tensile stimulation showed reversibility of YAP status even after a long-term exposure to mechanotransduction, fibrocartilage tissue was constructed by sequentially inducing tissue alignment by tensile stimulation followed by inducing cartilaginous matrix production in a tension-released state. The minimal tensile dose to constitute durable tissue alignment was screened by investigating the alignment of cytoskeleton and Col I after culturing the scaffold-free tissue constructs with various tensile doses (10% static tension for 1, 3, 7, and 10 days) followed by maintaining in a released state for 5 days. Fluorescence-conjugated phalloidin binding and immunofluorescence of Col I indicated that the duration of static tension for more than 7 days resulted in durable tissue alignment for at least 5 days in the tension-released state. The tissues subjected to tensile stimulation for 7 days followed by 14 days in a released state in chondrogenic media resulted in abundant cartilaginous matrix as well as uniaxial anisotropic alignment. Our results show that the optimized tensile dose can facilitate the successful reconstruction of fibrocartilage by modulating the characteristics of matrix production by MCs.
Collapse
Affiliation(s)
- Seoyoung Jang
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul, South Korea
- R&D Institute, Akrocell Biosciences, Inc., Seoul, South Korea
| | - Jisoo Lee
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Jin Gil Jeong
- Department of Medical Engineering, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Tong In Oh
- Department of Biomedical Engineering, School of Medicine, Kyung Hee University, Seoul, South Korea
- Impedance Imaging Research Center, Kyung Hee University, Seoul, South Korea
| | - EunAh Lee
- Impedance Imaging Research Center, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
2
|
Araújo D, Ribeiro E, Amorim I, Vale N. Repurposed Drugs in Gastric Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010319. [PMID: 36615513 PMCID: PMC9822219 DOI: 10.3390/molecules28010319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is one of the major causes of death worldwide, ranking as the fifth most incident cancer in 2020 and the fourth leading cause of cancer mortality. The majority of GC patients are in an advanced stage at the time of diagnosis, presenting a poor prognosis and outcome. Current GC treatment approaches involve endoscopic detection, gastrectomy and chemotherapy or chemoradiotherapy in an adjuvant or neoadjuvant setting. Drug development approaches demand extreme effort to identify molecular mechanisms of action of new drug candidates. Drug repurposing is based on the research of new therapeutic indications of drugs approved for other pathologies. In this review, we explore GC and the different drugs repurposed for this disease.
Collapse
Affiliation(s)
- Diana Araújo
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Eduarda Ribeiro
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de Carvalho, 45, 4200-135 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
3
|
Li T, Cao H, Wu S, Zhong P, Ding J, Wang J, Wang F, He Z, Huang GL. Phosphorylated ATF1 at Thr184 promotes metastasis and regulates MMP2 expression in gastric cancer. J Transl Med 2022; 20:169. [PMID: 35397606 PMCID: PMC8994398 DOI: 10.1186/s12967-022-03361-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Studies have revealed an important role of activating transcription factor 1 (ATF1) and phosphorylated ATF1 at Ser63 in tumors. Our previous study identified Thr184 as a novel phosphorylation site of ATF1. However, the role of phosphorylated ATF1 at Thr184 (p-ATF1-T184) in tumor is unclear. This study figured out the role of p-ATF1-T184 in the metastasis of gastric cancer (GC) and in the regulation of Matrix metallopeptidase 2 (MMP2). Methods Immunohistochemical analysis (IHC) was performed to analyze the level of p-ATF1-T184 and its relationship with clinicopathological characteristics. Wound scratch test, Transwell assay were used to observe the role of p-ATF1-T184 in the invasion and metastasis of GC. The regulation of MMP2 by p-ATF1-T184 was investigated by a series of experiments including quantitative RT-PCR, western blot, gelatin zymography assay, Chromatin immunoprecipitation (ChIP), luciferase reporter assay and cycloheximide experiment. The Cancer Genome Atlas (TCGA) data were used to analyze the expression and prognostic role of ATF1 and MMP2 in GC. Mass spectrometry (MS) following co-immunoprecipitation (co-IP) assay was performed to identify potential upstream kinases that would phosphorylate ATF1 at Thr184. Results High expression level of p-ATF1-T184 was found and significantly associated with lymph node metastasis and poor survival in a GC cohort of 126 patients. P-ATF1-T184 promoted migration and invasion of gastric cancer cells. Phosphorylation of ATF1-T184 could regulate the mRNA, protein expression and extracellular activity of MMP2. P-ATF1-T184 further increased the DNA binding ability, transcription activity, and stabilized the protein expression of ATF1. Moreover, TCGA data and IHC results suggested that the mRNA level of ATF1 and MMP2, and protein level of p-ATF1-T184 and MMP2 could be prognosis markers of GC. Two protein kinase related genes, LRBA and S100A8, were identified to be correlated with the expression ATF1 in GC. Conclusion Our results indicated that p-ATF1-T184 promoted metastasis of GC by regulating MMP2. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03361-3.
Collapse
|
4
|
Expression level of long non-coding RNA colon adenocarcinoma hypermethylated serves as a novel prognostic biomarker in patients with thyroid carcinoma. Biosci Rep 2021; 41:228191. [PMID: 33792624 PMCID: PMC8056003 DOI: 10.1042/bsr20210284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The present study attempts to identify the prognostic value and potential mechanism of action of colorectal adenocarcinoma hypermethylated (CAHM) in thyroid carcinoma (THCA) by using the RNA sequencing (RNA-seq) dataset from The Cancer Genome Atlas (TCGA). The functional mechanism of CAHM was explored by using RNA-seq dataset and multiple functional enrichment analysis approaches. Connectivity map (CMap) online analysis tool was also used to predict CAHM targeted drugs. Survival analysis suggests that THCA patients with high CAHM expression have lower risk of death than the low CAHM expression (log-rank P=0.022, adjusted P=0.011, HR = 0.187, 95% confidence interval (CI) = 0.051–0.685). Functional enrichment of CAHM co-expression genes suggests that CAHM may play a role in the following biological processes: DNA repair, cell adhesion, DNA replication, vascular endothelial growth factor receptor, Erb-B2 receptor tyrosine kinase 2, ErbB and thyroid hormone signaling pathways. Functional enrichment of differentially expressed genes (DEGs) between low- and high-CAHM phenotype suggests that different CAHM expression levels may have the following differences in biological processes in THCA: cell adhesion, cell proliferation, extracellular signal-regulated kinase (ERK) 1 (ERK1) and ERK2 cascade, G-protein coupled receptor, chemokine and phosphatidylinositol-3-kinase-Akt signaling pathways. Connectivity map have identified five drugs (levobunolol, NU-1025, quipazine, anisomycin and sulfathiazole) for CAHM targeted therapy in THCA. Gene set enrichment analysis (GSEA) suggest that low CAHM phenotype were notably enriched in p53, nuclear factor κB, Janus kinase-signal transducer and activators of transcription, tumor necrosis factor, epidermal growth factor receptor and other signaling pathways. In the present study, we have identified that CAHM may serve as novel prognostic biomarkers for predicting overall survival (OS) in patients with THCA.
Collapse
|
5
|
Yin L, Chen G. Verteporfin Promotes the Apoptosis and Inhibits the Proliferation, Migration, and Invasion of Cervical Cancer Cells by Downregulating SULT2B1 Expression. Med Sci Monit 2020; 26:e926780. [PMID: 33079922 PMCID: PMC7586758 DOI: 10.12659/msm.926780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Cervical cancer threatens women’s health worldwide. Verteporfin (VP), a small-molecule YAP1 inhibitor, inhibits cancer cell growth. This study investigated whether VP could inhibit the proliferation and promote the apoptosis of cervical cancer cells by decreasing SULT2B1 expression. Material/Methods Normal and cancerous cervical cell proliferation after VP treatment was detected by CCK-8 assay. HeLa cell migration, invasion, and apoptosis after VP treatment and transfection were analyzed by wound healing assay, transwell assay, and TUNEL assay, respectively. The expression of related proteins was determined by western blot analysis. Western blot and RT-qPCR analysis detected mRNA and protein expression of SULT2B1. Results Different VP concentrations (0.5, 1, 2, and 5 μM) inhibited the viability of HeLa cells and had no obvious effect on H8 cells. Therefore, 5 μM VP was selected for subsequent experiments. VP inhibited the proliferation, migration, and invasion of HeLa cells and promoted their apoptosis. Bcl-2 expression decreased, and expression of Bax, caspase-3, and caspase-9 in VP-treated HeLa cells increased. SULT2B1 expression increased in cervical cancer cells compared with normal cervical cells. Furthermore, SULT2B1 expression increased in HeLa cells and VP suppressed SULT2B1 expression. SULT2B1 overexpression reduced the inhibiting effect of VP on the proliferation, migration, and apoptosis of HeLa cells, and reduced VP effect on apoptosis of HeLa cells. SULT2B1 overexpression upregulated the Bcl-2 expression and downregulated the expression of Bax, caspase-3, and caspase-9 in VP-treated HeLa cells. Conclusions VP inhibited the proliferation, migration, and invasion and promoted apoptosis of cervical cancer cells by decreasing SULT2B1 expression.
Collapse
Affiliation(s)
- Lijun Yin
- Department of Gynecology and Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Guilin Chen
- Department of Obstetrics and Gynecology, The Second People's Hospital of Lianyungang City, Lianyungang, Jiangsu, China (mainland)
| |
Collapse
|
6
|
Wang M, Liu C, Li Y, Zhang Q, Zhu L, Fang Z, Jin L. Verteporfin Is a Promising Anti-Tumor Agent for Cervical Carcinoma by Targeting Endoplasmic Reticulum Stress Pathway. Front Oncol 2020; 10:1781. [PMID: 33014875 PMCID: PMC7494960 DOI: 10.3389/fonc.2020.01781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022] Open
Abstract
Accumulated evidence has shown that the photosensitizer Verteporfin (VP) may be an ideal agent for various cancer types. However, the effect and mechanism of VP on human cervical carcinoma remain rudimentary. The aim of this study was to investigate the effect of VP on human cervical carcinoma cells (HeLa and SiHa cells) and to elucidate the possible mechanism. CCK-8, wound healing assay, flow cytometry analysis, western blotting, TUNEL staining were performed to evaluate the effects of VP on HeLa and SiHa cells in vitro as well as in vivo on a xenograft model. In addition, the role of endoplasmic reticulum (ER) stress in VP-induced apoptosis was investigated using RT-qPCR and western blotting. The results showed that the viability of HeLa and SiHa cells was suppressed by VP in dose- and time-dependent manners. Compared with the control group, apoptosis rates were higher with stronger TUNEL fluorescence signals in the experimental group, which substantiated that VP induced apoptosis at both 2D and 3D cell levels. Besides, VP can squelch the growth of tumors in both sizes and weights on the xenograft models without impairing ovarian reserve. Mechanism studies demonstrated that VP activated ER stress by upregulating the expression of GRP78, CHOP, and Caspase-12, and VP-induced apoptosis can be alleviated when ER stress pathway was inhibited. Our results provided a foundation for repurposing VP as a promising agent for cervical cancer patients without obvious reproductive toxicity by targeting ER stress pathway, and more researches are required to support its application in clinical practice.
Collapse
Affiliation(s)
- Meng Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuehan Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiulin Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Reproductive Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Zhu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zishui Fang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Baglo Y, Sorrin AJ, Liang BJ, Huang HC. Harnessing the Potential Synergistic Interplay Between Photosensitizer Dark Toxicity and Chemotherapy. Photochem Photobiol 2020; 96:636-645. [PMID: 31856423 DOI: 10.1111/php.13196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
The combination of photodynamic therapy and taxol- or platinum-based chemotherapy (photochemotherapy) is an effective and promising cancer treatment. While the mechanisms of action of photochemotherapy are actively studied, relatively little is known about the cytotoxicity and molecular alterations induced by the combination of chemotherapy and photosensitizers without light activation in cancer cells. This study investigates the interplay between the photosensitizer benzoporphyrin derivative (BPD) without light activation and cisplatin or paclitaxel in two glioblastoma lines, U87 and U251. The combination effect of BPD and cisplatin in U87 cells is slightly synergistic (combination index, CI = 0.93), showing 1.8- to 2.6-fold lower half-maximal inhibitory concentrations (IC50 ) compared to those of individual drugs. In contrast, combining BPD and paclitaxel is slightly antagonistic (CI = 1.14) in U87 cells. In U251 cells, the combinations of BPD and cisplatin or paclitaxel are both antagonistic (CI = 1.24 and 1.34, respectively). Western blotting was performed to investigate changes in the expression levels of YAP, TAZ, Bcl-2 and EGFR in U87 and U251 cells treated with BPD, cisplatin and paclitaxel, both as monotherapies and in combination. Our study provides insights into the molecular alterations in two glioma lines caused by each monotherapy and the combinations, in order to inform the design of effective treatments.
Collapse
Affiliation(s)
- Yan Baglo
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Aaron J Sorrin
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Barry J Liang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
8
|
Huang MH, Liu PY, Wu SN. Characterization of Perturbing Actions by Verteporfin, a Benzoporphyrin Photosensitizer, on Membrane Ionic Currents. Front Chem 2019; 7:566. [PMID: 31508407 PMCID: PMC6714490 DOI: 10.3389/fchem.2019.00566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/25/2019] [Indexed: 01/13/2023] Open
Abstract
Verteporfin (VP), a benzoporphyrin derivative, has been clinically tailored as a photosensitizer and recently known to suppress YAP-TEAD complex accompanied by suppression of the growth in an array of neoplastic cells. However, the detailed information is little available regarding possible modifications of it and its related compounds on transmembrane ionic currents, despite its growing use in clinical settings. In this study, from whole cell recordings, VP (0.3-100 μM) increased the amplitude of Ca2+-activated K+ currents (I K(Ca)) in pituitary tumor (GH3) cells in a concentration-dependent manner with an EC50 value of 2.4 μM. VP-stimulated I K(Ca) in these cells was suppressed by further addition of either paxilline, iberiotoxin, or dithiothreitol, but not by that of tobultamide or TRAM-39. VP at a concentration of 10 μM mildly suppressed the amplitude of delayed-rectifier K+ current; however, it had minimal effects on M-type K+ current. In cell-attached current recordings, addition of VP to the recording medium enhanced the activity of large-conductance Ca2+-activated K+ (BKCa) channels. In the presence of VP, additional illumination with light intensity of 5.5 mW/cm2 raised the probability of BKCa-channel openings further. Addition of VP decreased the peak amplitude of L-type Ca2+ current together with slowed inactivation time course of the current; however, it failed to modify voltage-gated Na+ current. Illumination of GH3 cells in continued presence of VP also induced a non-selective cation current. Additionally, VP increased the activity of BKCa channels in human 13-06-MG glioma cells with an EC50 value of 1.9 μM. Therefore, the effects of VP on ionic currents described herein tend to be upstream of its inhibition of YAP-TEAD complex and they are conceivably likely to contribute to the underlying mechanisms through which it and its structurally similar compounds effect the modifications in functional activities of pituitary or glial neoplastic cells, if the in vivo findings occur.
Collapse
Affiliation(s)
- Mei-Han Huang
- College of Medical and Health Sciences, Fooyin University, Kaohsiung City, Taiwan
| | - Ping-Yen Liu
- Division of Cardiovascular Medicine, National Cheng Kung University Medical College, Tainan City, Taiwan
| | - Sheng-Nan Wu
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan City, Taiwan.,Department of Physiology, National Cheng Kung University Medical College, Tainan City, Taiwan
| |
Collapse
|
9
|
Liu K, Du S, Gao P, Zheng J. Verteporfin suppresses the proliferation, epithelial-mesenchymal transition and stemness of head and neck squamous carcinoma cells via inhibiting YAP1. J Cancer 2019; 10:4196-4207. [PMID: 31413738 PMCID: PMC6691709 DOI: 10.7150/jca.34145] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/26/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose: Yes-associated protein 1 (YAP1) is overexpressed in head and neck squamous cell carcinoma (HNSCC). However, it is unknown whether verteporfin, a YAP1 inhibitor, can inhibit HNSCC cells as well as the molecular mechanisms involved. Methods: YAP1 expression was investigated by immunohistochemistry in human head and neck carcinoma tissues (n=70). CCK-8 assay, colony formation assay, flow cytometric analysis, wound-healing assay and Transwell migration and invasion assays were used to evaluated the effects of verteporfin on the six HNSCC cell lines (three HPV-positive and three HPV-negative). The transcription and protein expression levels of YAP1 and its associated genes were investigated by real-time PCR and Western blotting, respectively. The effects of verteporfin on HNSCC cells in vivo were assessed by a xenograft model. Results: YAP1 expression was significantly higher in carcinoma tissues than in tumor-adjacent normal tissues (n=10). A CCK-8 assay showed that the inhibitory effects of verteporfin on HNSCC cells were markedly enhanced by light activation. Verteporfin significantly inhibited HNSCC cell proliferation, migration and invasion, induced apoptosis, and arrested the cell cycle at the S/G2 phase. Verteporfin significantly attenuated the expression of genes related to epithelial-mesenchymal transition (YAP1, Snail, CTNNB1 and EGFR) and stemness (Oct4 and YAP1) and increased E-cadherin expression in HNSCC cells. Furthermore, verteporfin significantly inhibited PD-L1 expression in HNSCC cells. However, the expression levels of HPV-16 E6 and E7 did not change with VP treatment. The anticancer effect of verteporfin on HNSCC was confirmed by the inhibition of xenograft growth in vivo. Conclusions: Our results indicate that YAP1 overexpression is involved in HNSCC tumorigenesis and verteporfin is a potential therapeutic drug for HNSCC.
Collapse
Affiliation(s)
- Kui Liu
- Department of Pathology, Medical School of Southeast University, Nanjing 210009, China
| | - Shanmei Du
- Department of Pathology, Medical School of Southeast University, Nanjing 210009, China.,Zibo Vocational Institute, Zibo 255314, China
| | - Peng Gao
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA19104, USA.,Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jie Zheng
- Department of Pathology, Medical School of Southeast University, Nanjing 210009, China
| |
Collapse
|
10
|
Liu X, Lin L, Li Q, Ni Y, Zhang C, Qin S, Wei J. ERK1/2 communicates GPCR and EGFR signaling pathways to promote CTGF-mediated hypertrophic cardiomyopathy upon Ang-II stimulation. BMC Mol Cell Biol 2019; 20:14. [PMID: 31200637 PMCID: PMC6570861 DOI: 10.1186/s12860-019-0202-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 06/02/2019] [Indexed: 12/12/2022] Open
Abstract
Background Hypertrophic cardiomyopathy occurs along with pathological phenomena such as cardiac hypertrophy, myocardial fibrosis and cardiomyocyte activity. However, few of the specific molecular mechanisms underlying this pathological condition have been mentioned. Methods All target proteins and markers expression in the study was verified by PCR and western bloting. H9c2 cell morphology and behavior were analyzed using immunofluorescent and proliferation assays, respectively. And, the CTGF protein secreted in cell culture medium was detected by ELISA. Results We found that high expression of CTGF and low expression of EGFR were regulated by ERK1/2 signaling pathway during the cardiac hypertrophy induced by Ang-II stimulation. CTGF interacted with EGFR, and the interaction is reduced with the stimulation of Ang-II. ERK1/2 serves as the center of signal control during the cardiac hypertrophy. Conclusion The ERK1/2 cooperates with GPCR and EGFR signaling, and promotes the occurrence and development of cardiac hypertrophy by regulating the expression and binding states of CTGF and EGFR. The study revealed a regulation model based on ERK1/2, suggesting that ERK1/2 signaling pathway may be an important control link for mitigation of hypertrophic cardiomyopathy treatment.
Collapse
Affiliation(s)
- Xin Liu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, Fifth West Road, Xi'an, 710004, Shaanxi, China
| | - Lin Lin
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, Fifth West Road, Xi'an, 710004, Shaanxi, China
| | - Qing Li
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, Fifth West Road, Xi'an, 710004, Shaanxi, China
| | - Yajuan Ni
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, Fifth West Road, Xi'an, 710004, Shaanxi, China
| | - Chaoying Zhang
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, Fifth West Road, Xi'an, 710004, Shaanxi, China
| | - Shuguang Qin
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, Fifth West Road, Xi'an, 710004, Shaanxi, China
| | - Jin Wei
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, 157, Fifth West Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
11
|
Mori M, Mori T, Yamamoto A, Takagi S, Ueda M. Proliferation of poorly differentiated endometrial cancer cells through autocrine activation of FGF receptor and HES1 expression. Hum Cell 2019; 32:367-378. [PMID: 30963412 DOI: 10.1007/s13577-019-00249-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
Patients with poorly differentiated endometrial cancer show poor prognosis, and effective molecular target-based therapies are needed. Endometrial cancer cells proliferate depending on the activation of HES1 (hairy and enhancer of split-1), which is induced by several pathways, such as the Notch and fibroblast growth factor receptor (FGFR) signaling pathways. In addition, aberrant, ligand-free activation of the FGFR signaling pathway resulting from mutations in FGFR2 was also reported in endometrial cancer. However, a clinical trial showed that there was no difference in the effectiveness of FGFR inhibitors between patients with and without the FGFR2 mutation, suggesting a presence of another signaling pathway for the FGFR activation. Here, we investigated the signaling pathway regulating the expression of HES1 and proliferation of poorly and well-differentiated endometrial cancer cell lines Ishikawa and HEC-50B, respectively. Whereas Ishikawa cells proliferated and expressed HES1 in a Notch signaling-dependent manner, Notch signaling was not involved in HES1 and proliferation of HEC-50B cells. The FGFR inhibitor, NVP-BGJ398, decreased HES1 expression and proliferation of HEC-50B cells; however, HEC50B cells had no mutations in the FGFR2 gene. Instead, HEC-50B cells highly expressed ligands for FGFR2, suggesting that FGFR2 is activated by an autocrine manner, not by ligand-free activation. This autocrine pathway activated Akt downstream of FGFR for cell proliferation. Our findings suggest the usefulness of HES1 as a marker for the proliferation signaling and that FGFR inhibitor may be effective for poorly differentiated endometrial cancers that harbor wild-type FGFR.
Collapse
Affiliation(s)
- Michihiro Mori
- Department of Medical Life Science, College of Life Science, Kurashiki University of Science and the Arts, 2640 Nishinoura Tsurajima-cho Kurashiki-shi, Okayama, 712-8505, Japan. .,Kake Institute of Cytopathology, Okayama, Japan.
| | - Toshinori Mori
- Department of Clinical Laboratory, Mihara Medical Associations Hospital, Hiroshima, Japan.,Department of Chemical Technology, Graduate School of Science and Industrial Technology, Kurashiki University of Science and the Arts, Okayama, Japan
| | - Aina Yamamoto
- Department of Chemical Technology, Graduate School of Science and Industrial Technology, Kurashiki University of Science and the Arts, Okayama, Japan
| | - Shoji Takagi
- Department of Medical Life Science, College of Life Science, Kurashiki University of Science and the Arts, 2640 Nishinoura Tsurajima-cho Kurashiki-shi, Okayama, 712-8505, Japan.,Kake Institute of Cytopathology, Okayama, Japan
| | - Masatsugu Ueda
- Faculty of Health Sciences, Kio University, Nara, Japan.,Graduate School of Health Sciences, Kio University, Nara, Japan
| |
Collapse
|