1
|
Khaleel AQ, Altalbawy FMA, Jabir MS, F Hasan T, Jain V, Abbot V, Nakash P, Kumar MR, Mustafa YF, Jawad MA. CXCR4/CXCL12 blockade therapy; a new horizon in TNBC therapy. Med Oncol 2025; 42:161. [PMID: 40216617 DOI: 10.1007/s12032-025-02705-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/29/2025] [Indexed: 05/03/2025]
Abstract
The only subtype of breast cancer (BC) without specific therapy is triple-negative breast cancer (TNBC), which represents 15-20% of incidence cases of BC. TNBC encompasses transformed and nonmalignant cells, including cancer-associated fibroblasts (CAF), endothelial vasculature, and tumor-infiltrating cells. These nonmalignant cells, soluble factors (e.g., cytokines), and the extracellular matrix (ECM) form the tumor microenvironment (TME). The TME is made up of these nonmalignant cells, ECM, and soluble components, including cytokines. Direct cell-to-cell contact and soluble substances like cytokines (e.g., chemokines) may facilitate interaction between cancer cells and the surrounding TME. Through growth-promoting cytokines, TME not only enables the development of cancer but also confers therapy resistance. New treatment targets will probably be suggested by comprehending the processes behind tumor development and progression as well as the functions of chemokines in TNBC. In this light, several investigations have shown the pivotal function of the C-X-C motif chemokine ligand 12 (CXCL12 or SDF-1) axis and chemokine receptor type 4 (CXCR4) in the pathophysiology of TNBC. This review provides an overview of the CXCR4/CXCL12 axis' function in TNBC development, metastasis, angiogenesis, and treatment resistance. A synopsis of current literature on targeting the CXCR4/CXCL12 axis for treating and managing TNBC has also been provided.
Collapse
Affiliation(s)
- Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, Al-Maarif University College, Al Anbar, 31001, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Thikra F Hasan
- College of Health&Medical Technology, Uruk University, Baghdad, Iraq
| | - Vicky Jain
- Department of Chemistry, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Vikrant Abbot
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Prashant Nakash
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | | |
Collapse
|
2
|
Khaparkhuntikar K, Maji I, Gupta SK, Mahajan S, Aalhate M, Sriram A, Gupta U, Guru SK, Kulkarni P, Singh PK. Acalabrutinib as a novel hope for the treatment of breast and lung cancer: an in-silico proof of concept. J Biomol Struct Dyn 2024; 42:1469-1484. [PMID: 37272883 DOI: 10.1080/07391102.2023.2217923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/01/2023] [Indexed: 06/06/2023]
Abstract
Drug repurposing is proved to be a groundbreaking concept in the field of cancer research, accelerating the pace of de novo drug discovery by investigating the anti-cancer activity of the already approved drugs. On the other hand, it got highly benefitted from the advancement in the in-silico tools and techniques, which are used to build up the initial "proof of concept" based on the drug-target interaction. Acalabrutinib (ACL) is a well-known drug for the treatment of hematological malignancies. But, the therapeutic ability of ACL against solid tumors is still unexplored. Thereby, the activity of ACL on breast cancer and lung cancer was evaluated utilizing different computational methods. A series of proteins such as VEGFR1, ALK, BCL2, CXCR-4, mTOR, AKT, PI3K, HER-2, and Estrogen receptors were selected based on their involvement in the progression of the breast as well as lung cancer. A multi-level computational study starting from protein-ligand docking to molecular dynamic (MD) simulations were performed to detect the binding potential of ACL towards the selected proteins. Results of the study led to the identification of ACL as a ligand that showed a high docking score and binding energy with HER-2, mTOR, and VEGFR-1 successively. Whereas, the MD simulations study has also shown good docked complex stability of ACL with HER2 and VEGFR1. Our findings suggest that interaction with those receptors can lead to preventive action on both breast and lung cancer, thus it can be concluded that ACL could be a potential molecule for the same purpose.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kedar Khaparkhuntikar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sunil Kumar Gupta
- Department of Bioinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anitha Sriram
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Prachi Kulkarni
- Department of Physiology, Shri B. M. Patil Medical College, Hospital & Research Centre BLDE (Deemed to be University), Vijayapura, Karnataka, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
3
|
Lähdeniemi IAK, Devlin JR, Nagaraj AS, Talwelkar SS, Bao J, Linnavirta N, Şeref Vujaklija C, Kiss EA, Hemmes A, Verschuren EW. Development of an adenosquamous carcinoma histopathology - selective lung metastasis model. Biol Open 2022; 11:281292. [PMID: 36355420 PMCID: PMC9770245 DOI: 10.1242/bio.059623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Preclinical tumor models with native tissue microenvironments provide essential tools to understand how heterogeneous tumor phenotypes relate to drug response. Here we present syngeneic graft models of aggressive, metastasis-prone histopathology-specific NSCLC tumor types driven by KRAS mutation and loss of LKB1 (KL): adenosquamous carcinoma (ASC) and adenocarcinoma (AC). We show that subcutaneous injection of primary KL; ASC cells results in squamous cell carcinoma (SCC) tumors with high levels of stromal infiltrates, lacking the source heterogeneous histotype. Despite forming subcutaneous tumors, intravenously injected KL;AC cells were unable to form lung tumors. In contrast, intravenous injection of KL;ASC cells leads to their lung re-colonization and lesions recapitulating the mixed AC and SCC histopathology, tumor immune suppressive microenvironment and oncogenic signaling profile of source tumors, demonstrating histopathology-selective phenotypic dominance over genetic drivers. Pan-ERBB inhibition increased survival, while selective ERBB1/EGFR inhibition did not, suggesting a role of the ERBB network crosstalk in resistance to ERBB1/EGFR. This immunocompetent NSCLC lung colonization model hence phenocopies key properties of the metastasis-prone ASC histopathology, and serves as a preclinical model to dissect therapy responses and metastasis-associated processes.
Collapse
Affiliation(s)
- Iris A. K. Lähdeniemi
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jennifer R. Devlin
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ashwini S. Nagaraj
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sarang S. Talwelkar
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jie Bao
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nora Linnavirta
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ceren Şeref Vujaklija
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Elina A. Kiss
- University of Helsinki and Wihuri Research Institute, Helsinki, Finland
| | - Annabrita Hemmes
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Emmy W. Verschuren
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland,Author for correspondence ()
| |
Collapse
|
4
|
Alsayed RKME, Khan AQ, Ahmad F, Ansari AW, Alam MA, Buddenkotte J, Steinhoff M, Uddin S, Ahmad A. Epigenetic regulation of CXCR4 signaling in cancer pathogenesis and progression. Semin Cancer Biol 2022; 86:697-708. [PMID: 35346802 DOI: 10.1016/j.semcancer.2022.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/08/2023]
Abstract
Signaling involving chemokine receptor CXCR4 and its ligand SDF-1/CXL12 has been investigated for many years for its possible role in cancer progression and pathogenesis. Evidence emerging from clinical studies in recent years has further established diagnostic as well as prognostic importance of CXCR4 signaling. CXCR4 and SDF-1 are routinely reported to be elevated in tumors, distant metastases, which correlates with poor survival of patients. These findings have kindled interest in the mechanisms that regulate CXCR4/SDF-1 expression. Of note, there is a particular interest in the epigenetic regulation of CXCR4 signaling that may be responsible for upregulated CXCR4 in primary as well as metastatic cancers. This review first lists the clinical evidence supporting CXCR4 signaling as putative cancer diagnostic and/or prognostic biomarker, followed by a discussion on reported epigenetic mechanisms that affect CXCR4 expression. These mechanisms include regulation by non-coding RNAs, such as, microRNAs, long non-coding RNAs and circular RNAs. Additionally, we also discuss the regulation of CXCR4 expression through methylation and acetylation. Better understanding and appreciation of epigenetic regulation of CXCR4 signaling can invariably lead to identification of novel therapeutic targets as well as therapies to regulate this oncogenic signaling.
Collapse
Affiliation(s)
- Reem Khaled M E Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Fareed Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Abdul Wahid Ansari
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Jorg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha 24144, Qatar; Department of Dermatology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar.
| |
Collapse
|
5
|
Qiu L, Xu Y, Xu H, Yu B. The clinicopathological and prognostic value of CXCR4 expression in patients with lung cancer: a meta-analysis. BMC Cancer 2022; 22:681. [PMID: 35729596 PMCID: PMC9210617 DOI: 10.1186/s12885-022-09756-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 06/10/2022] [Indexed: 12/13/2022] Open
Abstract
Background The C-X-C chemokine receptor 4 (CXCR4) has been suggested to play an important role in several types of cancers and is related to biological behaviors connected with tumor progression. However, the clinical significance and application of CXCR4 in lung cancer remain disputable. Thus, we conducted a meta-analysis to investigate the impact of CXCR4 expression on survival and clinicopathological features in lung cancer. Methods Comprehensive literature searches were conducted in PubMed, Embase and Web of Science for relevant studies. We pooled hazard ratios (HRs)/odds ratios (ORs) with 95% confidence intervals (CIs) by STATA 12.0 to evaluate the potential value of CXCR4 expression. Results Twenty-seven relevant articles involving 2932 patients with lung cancer were included in our meta-analysis. The results revealed that CXCR4 expression was apparently associated with poor overall survival (OS) (HR 1.61, 95% CI 1.42–1.82) and disease-free survival (HR 3.39, 95% CI 2.38–4.83). Furthermore, a significant correlation with poor OS was obvious in non-small cell lung cancer patients (HR 1.59, 95% CI 1.40–1.81) and in patients showing CXCR4 expression in the cytoplasm (HR 2.10, 95% CI 1.55–2.84) and the membrane (HR 1.74, 95% CI 1.24–2.45). CXCR4 expression was significantly associated with men (OR 1.32, 95% CI 1.08–1.61), advanced tumor stages (T3-T4) (OR 2.34, 95% CI 1.28–4.28), advanced nodal stages (N > 0) (OR 2.34, 95% CI 1.90–2.90), distant metastasis (OR 3.65, 95% CI 1.53–8.69), advanced TNM stages (TNM stages III, IV) (OR 3.10, 95% CI 1.95–4.93) and epidermal growth factor receptor (EGFR) expression (OR 2.44, 95% CI 1.44–4.12) but was not associated with age, smoking history, histopathology, differentiation, lymphatic vessel invasion or local recurrence. Conclusion High expression of CXCR4 is related to tumor progression and might be an adverse prognostic factor for lung cancer.
Collapse
Affiliation(s)
- Liping Qiu
- Department of Pulmonary and Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Zhejiang, 315000, China
| | - Yuanyuan Xu
- Department of Pulmonary and Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Zhejiang, 315000, China
| | - Hui Xu
- Department of Pulmonary and Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Zhejiang, 315000, China
| | - Biyun Yu
- Department of Pulmonary and Critical Care Medicine, Ningbo Medical Center Lihuili Hospital, 1111 Jiangnan Road, Zhejiang, 315000, China.
| |
Collapse
|
6
|
Liu S, Hu C, Li M, An J, Zhou W, Guo J, Xiao Y. Estrogen receptor beta promotes lung cancer invasion via increasing CXCR4 expression. Cell Death Dis 2022; 13:70. [PMID: 35064116 PMCID: PMC8782891 DOI: 10.1038/s41419-022-04514-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/16/2021] [Accepted: 01/06/2022] [Indexed: 12/24/2022]
Abstract
Lung cancer is one of the most lethal malignant tumors in the world. The high recurrence and mortality rate make it urgent for scientists and clinicians to find new targets for better treatment of lung cancer. Early studies indicated that estrogen receptor β (ERβ) might impact the progression of non-small-cell lung cancer (NSCLC). However, the detailed mechanisms, especially its linkage to the CXCR4-mediated cell invasion, remain unclear. Here we found that ERβ could promote NSCLC cell invasion via increasing the circular RNA (circRNA), circ-TMX4, expression via directly binding to the 5′ promoter region of its host gene TMX4. ERβ-promoted circ-TMX4 could then sponge and inhibit the micro RNA (miRNA, miR), miR-622, expression, which can then result in increasing the CXCR4 messenger RNA translation via a reduced miRNA binding to its 3′ untranslated region (3′UTR). The preclinical study using an in vivo mouse model with orthotopic xenografts of NSCLC cells confirmed the in vitro data, and the human NSCLC database analysis and tissue staining also confirmed the linkage of ERβ/miR-622/CXCR4 signaling to the NSCLC progression. Together, our findings suggest that ERβ can promote NSCLC cell invasion via altering the ERβ/circ-TMX4/miR-622/CXCR4 signaling, and targeting this newly circ-TMX4/miR-622/CXCR4 signaling may help us find new treatment strategies to better suppress NSCLC progression.
Collapse
Affiliation(s)
- Shiqing Liu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Li
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jian An
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.,Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wolong Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jia Guo
- Health Management Centre, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yao Xiao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China. .,Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China. .,International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standards, Changsha, 410008, China.
| |
Collapse
|
7
|
Broxmeyer HE. All in for nuclear PFKP-induced CXCR4 metastasis: a T cell acute lymphoblastic leukemia prognostic marker. J Clin Invest 2021; 131:e151295. [PMID: 34396983 DOI: 10.1172/jci151295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phosphofructokinase 1 (PFK1) is expressed in T cell acute lymphoblastic leukemia (T-ALL), where its upregulation is linked with cancer progression. While PFK1 functions in the glycolysis pathway within the cytoplasm, it is also present in the nucleus where it regulates gene transcription. In this issue of the JCI, Xueliang Gao, Shenghui Qin, et al. focus their mechanism-based investigation on the nucleocytoplasmic shuttling aspect of the PFK1 platelet isoform, PFKP. Functional nuclear export and localization sequences stimulated CXC chemokine receptor type 4 (CXCR4) expression to promote T-ALL invasion that involved cyclin D3/CDK6, c-Myc, and importin-9. Since the presence of nuclear PFKP is associated with poor survival in T-ALL, nuclear PFKP-induced CXCR4 expression might serve as a prognostic marker for T-ALL. More promising, though, are the mechanistic insights suggesting that approaches to dampening metastatic migration may have application to benefit patients with T-ALL.
Collapse
|
8
|
Chittasupho C, Aonsri C, Imaram W. Targeted dendrimers for antagonizing the migration and viability of NALM-6 lymphoblastic leukemia cells. Bioorg Chem 2021; 107:104601. [PMID: 33476870 DOI: 10.1016/j.bioorg.2020.104601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/18/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023]
Abstract
Acute lymphoblastic leukemia (ALL) or white blood cell cancer is one of the major causes that kills many children worldwide. Although various therapeutic agents are available for ALL treatment, the new drug discovery and drug delivery system are needed to improve their effectiveness, to reduce the toxicity and side-effect, and to enhance their selectivity to target cancer cells. CXCR4 is a protein expressed on the surface of various types of cancer cell including ALL. In this work, the CXCR4-targeted PAMAM dendrimer was constructed by conjugating G5 PAMAM with a CXCR4 antagonist, LFC131. The results revealed that the LFC131-conjugated G5 PAMAM selectively targeted CXCR4 expressing leukemic precursor B cells (NALM-6) and the migration of NALM-6 cells induced by SDF-1α was inhibited at non-cytotoxic concentration. Further research based on this findings may contribute to potential anti-metastatic drugs for lymphoblastic leukemia.
Collapse
Affiliation(s)
- Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Mueang, Chiang Mai, Thailand
| | - Chaiyawat Aonsri
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Witcha Imaram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand; Special Research Unit for Advanced Magnetic Resonance, Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.
| |
Collapse
|
9
|
Zhao Y, Xia Z, Lin T, Yin Y. Significance of hub genes and immune cell infiltration identified by bioinformatics analysis in pelvic organ prolapse. PeerJ 2020; 8:e9773. [PMID: 32874785 PMCID: PMC7441923 DOI: 10.7717/peerj.9773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/30/2020] [Indexed: 12/27/2022] Open
Abstract
Objective Pelvic organ prolapse (POP) refers to the decline of pelvic organ position and dysfunction caused by weak pelvic floor support. The aim of the present study was to screen the hub genes and immune cell infiltration related to POP disease. Methods Microarray data of 34 POP tissues in the GSE12852 gene expression dataset were used as research objects. Weighted gene co-expression network analysis (WGCNA) was performed to elucidate the hub module and hub genes related to POP occurrence. Gene function annotation was performed using the DAVID tool. Differential analysis based on the GSE12852 dataset was carried out to explore the expression of the selected hub genes in POP and non-POP tissues, and RT-qPCR was used to validate the results. The differential immune cell infiltration between POP and non-POP tissues was investigated using the CIBERSORT algorithm. Results WGCNA revealed the module that possessed the highest correlation with POP occurrence. Functional annotation indicated that the genes in this module were mainly involved in immunity. ZNF331, THBS1, IFRD1, FLJ20533, CXCR4, GEM, SOD2, and SAT were identified as the hub genes. Differential analysis and RT-qPCR demonstrated that the selected hub genes were overexpressed in POP tissues as compared with non-POP tissues. The CIBERSORT algorithm was employed to evaluate the infiltration of 22 immune cell types in POP tissues and non-POP tissues. We found greater infiltration of activated mast cells and neutrophils in POP tissues than non-POP tissues, while the infiltration of resting mast cells was lower in POP tissues. Moreover, we investigated the relationship between the type of immune cell infiltration and hub genes by Pearson correlation analysis. The results indicate that activated mast cells and neutrophils had a positive correlation with the hub genes, while resting mast cells had a negative correlation with the hub genes. Conclusions Our research identified eight hub genes and the infiltration of three types of immune cells related to POP occurrence. These hub genes may participate in the pathogenesis of POP through the immune system, giving them a certain diagnostic and therapeutic value.
Collapse
Affiliation(s)
- Ying Zhao
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijun Xia
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Te Lin
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yitong Yin
- Department of Obstetrics and Gynecology, Pelvic Floor Disease Diagnosis and Treatment Center, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|