1
|
Asadi M, Zafari V, Sadeghi-Mohammadi S, Shanehbandi D, Mert U, Soleimani Z, Caner A, Zarredar H. The role of tumor microenvironment and self-organization in cancer progression: Key insights for therapeutic development. BIOIMPACTS : BI 2024; 15:30713. [PMID: 40256216 PMCID: PMC12008505 DOI: 10.34172/bi.30713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/08/2024] [Accepted: 11/20/2024] [Indexed: 04/22/2025]
Abstract
Introduction The tumor microenvironment (TME) plays a pivotal role in cancer progression, influencing tumor initiation, growth, invasion, metastasis, and response to therapies. This study explores the dynamic interactions within the TME, particularly focusing on self-organization-a process by which tumor cells and their microenvironment reciprocally shape one another, leading to cancer progression and resistance. Understanding these interactions can reveal new prognostic markers and therapeutic targets within the TME, such as extracellular matrix (ECM) components, immune cells, and cytokine signaling pathways. Methods A comprehensive search method was employed to investigate the current academic literature on TME, particularly focusing on self-organization in the context of cancer progression and resistance across the PubMed, Google Scholar, and Science Direct databases. Results Recent studies suggest that therapies that disrupt TME self-organization could improve patient outcomes by defeating drug resistance and increasing the effectiveness of conventional therapy. Additionally, this research highlights the essential of understanding the biophysical properties of the TME, like cytoskeletal alterations, in the development of more effective malignancy therapy. Conclusion This review indicated that targeting the ECM and immune cells within the TME can improve therapy effectiveness. Also, by focusing on TME self-organization, we can recognize new therapeutic plans to defeat drug resistance.
Collapse
Affiliation(s)
- Milad Asadi
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Venus Zafari
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Sanam Sadeghi-Mohammadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ufuk Mert
- Institute of Health Sciences, Department of Basic Oncology, Ege University, Izmir, Turkey
| | - Zahra Soleimani
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayşe Caner
- Department of Basic Oncology, Ege University, Institute of Health Sciences, Izmir, Turkey
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Lopes CDH, Braganca Xavier C, Torrado C, Veneziani AC, Megid TBC. A Comprehensive Exploration of Agents Targeting Tumor Microenvironment: Challenges and Future Perspectives. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:283-299. [PMID: 39524466 PMCID: PMC11541921 DOI: 10.36401/jipo-24-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 11/16/2024]
Abstract
The tumor microenvironment (TME) encompasses the complex and diverse surroundings in which tumors arise. Emerging insights highlight the TME's critical role in tumor development, progression, metastasis, and treatment response. Consequently, the TME has attracted significant research and clinical interest, leading to the identification of numerous novel therapeutic targets. Advances in molecular technologies now enable detailed genomic and transcriptional analysis of cancer cells and the TME and the integration of microenvironmental data to the tumor genomic landscape. This comprehensive review discusses current progress in targeting the TME for drug development, addressing associated challenges, strategies for modulating the pro-tumor microenvironment, and the discovery of new targets.
Collapse
Affiliation(s)
| | | | - Carlos Torrado
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
3
|
Chen J, Duan Y, Che J, Zhu J. Dysfunction of dendritic cells in tumor microenvironment and immunotherapy. Cancer Commun (Lond) 2024; 44:1047-1070. [PMID: 39051512 PMCID: PMC11492303 DOI: 10.1002/cac2.12596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/10/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024] Open
Abstract
Dendritic cells (DCs) comprise diverse cell populations that play critical roles in antigen presentation and triggering immune responses in the body. However, several factors impair the immune function of DCs and may promote immune evasion in cancer. Understanding the mechanism of DC dysfunction and the diverse functions of heterogeneous DCs in the tumor microenvironment (TME) is critical for designing effective strategies for cancer immunotherapy. Clinical applications targeting DCs summarized in this report aim to improve immune infiltration and enhance the biological function of DCs to modulate the TME to prevent cancer cells from evading the immune system. Herein, factors in the TME that induce DC dysfunction, such as cytokines, hypoxic environment, tumor exosomes and metabolites, and co-inhibitory molecules, have been described. Furthermore, several key signaling pathways involved in DC dysfunction and signal-relevant drugs evaluated in clinical trials were identified. Finally, this review provides an overview of current clinical immunotherapies targeting DCs, especially therapies with proven clinical outcomes, and explores future developments in DC immunotherapies.
Collapse
Affiliation(s)
- Jie Chen
- Jecho Institute Co., LtdShanghaiP. R. China
| | - Yuhang Duan
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of EducationBeijingP. R. China
- Shanghai Jiao Tong University, School of PharmacyShanghaiP. R. China
| | - Junye Che
- Jecho Institute Co., LtdShanghaiP. R. China
| | - Jianwei Zhu
- Jecho Institute Co., LtdShanghaiP. R. China
- Engineering Research Center of Cell & Therapeutic AntibodyMinistry of EducationBeijingP. R. China
- Shanghai Jiao Tong University, School of PharmacyShanghaiP. R. China
| |
Collapse
|
4
|
Zanotta S, Galati D, De Filippi R, Pinto A. Enhancing Dendritic Cell Cancer Vaccination: The Synergy of Immune Checkpoint Inhibitors in Combined Therapies. Int J Mol Sci 2024; 25:7509. [PMID: 39062753 PMCID: PMC11277144 DOI: 10.3390/ijms25147509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Dendritic cell (DC) cancer vaccines are a promising therapeutic approach, leveraging the immune system to fight tumors. These vaccines utilize DCs' ability to present tumor-associated antigens to T cells, triggering a robust immune response. DC vaccine development has progressed through three generations. The first generation involved priming DCs with tumor-associated antigens or messenger RNA outside the body, showing limited clinical success. The second generation improved efficacy by using cytokine mixtures and specialized DC subsets to enhance immunogenicity. The third generation used blood-derived DCs to elicit a stronger immune response. Clinical trials indicate that cancer vaccines have lower toxicity than traditional cytotoxic treatments. However, achieving significant clinical responses with DC immunotherapy remains challenging. Combining DC vaccines with immune checkpoint inhibitors (ICIs), such as anticytotoxic T-lymphocyte Antigen 4 and antiprogrammed death-1 antibodies, has shown promise by enhancing T-cell responses and improving clinical outcomes. These combinations can transform non-inflamed tumors into inflamed ones, boosting ICIs' efficacy. Current research is exploring new checkpoint targets like LAG-3, TIM-3, and TIGIT, considering their potential with DC vaccines. Additionally, engineering T cells with chimeric antigen receptors or T-cell receptors could further augment the antitumor response. This comprehensive strategy aims to enhance cancer immunotherapy, focusing on increased efficacy and improved patient survival rates.
Collapse
Affiliation(s)
- Serena Zanotta
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| | - Domenico Galati
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| | - Rosaria De Filippi
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, 80131 Napoli, Italy;
| | - Antonio Pinto
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Onco-Hematology and Innovative Diagnostics, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Napoli, Italy; (S.Z.); (A.P.)
| |
Collapse
|
5
|
Alipour S, Mardi A, Shajari N, Kazemi T, Sadeghi MR, Ahmadian Heris J, Masoumi J, Baradaran B. Unmasking the NLRP3 inflammasome in dendritic cells as a potential therapeutic target for autoimmunity, cancer, and infectious conditions. Life Sci 2024; 348:122686. [PMID: 38710282 DOI: 10.1016/j.lfs.2024.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Proper and functional immune response requires a complex interaction between innate and adaptive immune cells, which dendritic cells (DCs) are the primary actors in this coordination as professional antigen-presenting cells. DCs are armed with numerous pattern recognition receptors (PRRs) such as nucleotide-binding and oligomerization domain-like receptors (NLRs) like NLRP3, which influence the development of their activation state upon sensation of ligands. NLRP3 is a crucial component of the immune system for protection against tumors and infectious agents, because its activation leads to the assembly of inflammasomes that cause the formation of active caspase-1 and stimulate the maturation and release of proinflammatory cytokines. But, when NLRP3 becomes overactivated, it plays a pathogenic role in the progression of several autoimmune disorders. So, NLRP3 activation is strictly regulated by diverse signaling pathways that are mentioned in detail in this review. Furthermore, the role of NLRP3 in all of the diverse immune cells' subsets is briefly mentioned in this study because NLRP3 plays a pivotal role in modulating other immune cells which are accompanied by DCs' responses and subsequently influence differentiation of T cells to diverse T helper subsets and even impact on cytotoxic CD8+ T cells' responses. This review sheds light on the functional and therapeutic role of NLRP3 in DCs and its contribution to the occurrence and progression of autoimmune disorders, prevention of diverse tumors' development, and recognition and annihilation of various infectious agents. Furthermore, we highlight NLRP3 targeting potential for improving DC-based immunotherapeutic approaches, to be used for the benefit of patients suffering from these disorders.
Collapse
Affiliation(s)
- Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Hosseini I, Fleisher B, Getz J, Decalf J, Kwong M, Ovacik M, Bainbridge TW, Moussion C, Rao GK, Gadkar K, Kamath AV, Ramanujan S. A Minimal PBPK/PD Model with Expansion-Enhanced Target-Mediated Drug Disposition to Support a First-in-Human Clinical Study Design for a FLT3L-Fc Molecule. Pharmaceutics 2024; 16:660. [PMID: 38794321 PMCID: PMC11125320 DOI: 10.3390/pharmaceutics16050660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
FLT3L-Fc is a half-life extended, effectorless Fc-fusion of the native human FLT3-ligand. In cynomolgus monkeys, treatment with FLT3L-Fc leads to a complex pharmacokinetic/pharmacodynamic (PK/PD) relationship, with observed nonlinear PK and expansion of different immune cell types across different dose levels. A minimal physiologically based PK/PD model with expansion-enhanced target-mediated drug disposition (TMDD) was developed to integrate the molecule's mechanism of action, as well as the complex preclinical and clinical PK/PD data, to support the preclinical-to-clinical translation of FLT3L-Fc. In addition to the preclinical PK data of FLT3L-Fc in cynomolgus monkeys, clinical PK and PD data from other FLT3-agonist molecules (GS-3583 and CDX-301) were used to inform the model and project the expansion profiles of conventional DC1s (cDC1s) and total DCs in peripheral blood. This work constitutes an essential part of our model-informed drug development (MIDD) strategy for clinical development of FLT3L-Fc by projecting PK/PD in healthy volunteers, determining the first-in-human (FIH) dose, and informing the efficacious dose in clinical settings. Model-generated results were incorporated in regulatory filings to support the rationale for the FIH dose selection.
Collapse
|
7
|
Liu P, Wei Z, Ye X. Immunostimulatory effects of thermal ablation: Challenges and future prospects. J Cancer Res Ther 2024; 20:531-539. [PMID: 38687922 DOI: 10.4103/jcrt.jcrt_2484_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 12/13/2023] [Indexed: 05/02/2024]
Abstract
ABSTRACT This literature explores the immunostimulatory effects of thermal ablation in the tumor microenvironment, elucidating the mechanisms such as immunogenic cell death, tumor-specific antigens, and damage-associated molecular patterns. Furthermore, it outlines critical issues associated with thermal ablation-induced immunostimulatory challenges and offers insights into future research avenues and potential therapeutic strategies.
Collapse
Affiliation(s)
- Peng Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, No. 16766 Jingshi Road, Jinan, Shandong Province, China
| | | | | |
Collapse
|
8
|
Rezaie J, Chodari L, Mohammadpour-Asl S, Jafari A, Niknam Z. Cell-mediated barriers in cancer immunosurveillance. Life Sci 2024; 342:122528. [PMID: 38408406 DOI: 10.1016/j.lfs.2024.122528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The immune cells within the tumor microenvironment (TME) exert multifaceted functions ranging from tumor-antagonizing or tumor-promoting activities. During the initial phases of tumor development, the tumor-antagonizing immune cells in the TME combat cancer cells in an immune surveillance process. However, with time, cancer cells can evade detection and impede the immune cells' effectiveness through diverse mechanisms, such as decreasing immunogenic antigen presentation on their surfaces and/or secreting anti-immune factors that cause tolerance in TME. Moreover, some immune cells cause immunosuppressive situations and inhibit antitumoral immune responses. Physical and cellular-mediated barriers in the TME, such as cancer-associated fibroblasts, tumor endothelium, the altered lipid composition of tumor cells, and exosomes secreted from cancer cells, also mediate immunosuppression and prevent extravasation of immune cells. Due to successful clinical outcomes of cancer treatment strategies the potential barriers must be identified and addressed. We need to figure out how to optimize cancer immunotherapy strategies, and how to combine therapeutic approaches for maximum clinical benefit. This review provides a detailed overview of various cells and molecules in the TME, their association with escaping from immune surveillance, therapeutic targets, and future perspectives for improving cancer immunotherapy.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Mohammadpour-Asl
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
9
|
Sun Z, Zhang L, Liu L. Reprogramming the lipid metabolism of dendritic cells in tumor immunomodulation and immunotherapy. Biomed Pharmacother 2023; 167:115574. [PMID: 37757492 DOI: 10.1016/j.biopha.2023.115574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells in the human body. They detect and process environmental signals and communicate with T cells to bridge innate and adaptive immunity. Cell activation, function, and survival are closely associated with cellular metabolism. An increasing number of studies have revealed that lipid metabolism affects DC activation as well as innate and acquired immune responses. Combining lipid metabolic regulation with immunotherapy can strengthen the ability of antigen-presentation and T-cell activation of DCs, improve the existing anti-tumor therapy, and overcome the defects of DC-related therapies in the current stage, which has great potential in cancer therapy. This review summarizes the lipid metabolism of DCs under physiological conditions, analyzes the role of reprogramming the lipid metabolism of DCs in tumor immune regulation, and discusses potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Zhanbo Sun
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lingyun Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lixian Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
10
|
Lian J, Lin D, Huang Y, Chen X, Chen L, Zhang F, Tang P, Xie J, Hou X, Du Z, Deng J, Hao E, Liu J. Exploring the potential use of Chinese herbs in regulating the inflammatory microenvironment of tumours based on the concept of 'state-target identification and treatment': a scooping review. Chin Med 2023; 18:124. [PMID: 37742025 PMCID: PMC10517536 DOI: 10.1186/s13020-023-00834-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/03/2023] [Indexed: 09/25/2023] Open
Abstract
Tumours do not exist in isolation from the organism; their growth, proliferation, motility, and immunosuppressive response are intricately connected to the tumour's microenvironment. As tumour cells and the microenvironment coevolve, an inflammatory microenvironment ensues, propelling the phenomenon of inflammation-cancer transformation-an idea proposed by modern medicine. This review aims to encapsulate the array of representative factors within the tumour's inflammatory microenvironment, such as interleukins (IL-6, IL-10, IL-17, IL-1β), transforming growth factor-beta (TGF-β), interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMPs). Moreover, drawing upon research in traditional Chinese medicine (TCM) and pharmacology, we explore the delicate interplay between these factors and tumour-associated inflammatory cells: tumour-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (TANs) and dendritic cells (DCs). By analyzing the tumour-promoting effects of these entities, we delve into the connotations of Academician Tong Xiao-lin's novel model of "state-target differentiation" and its application in the diagnosis and treatment of tumours. Our aim is to enhance the precision and targeting of tumour treatment in clinical practice. Delving deeper into our understanding of tumour pathogenesis through the lens of modern medicine, we discern the key etiology and pathogenesis throughout the entire developmental stage of tumours, unveiling the evolutionary patterns of Chinese Medicine (CM) states: heat state → phlegm state → stagnation state → deficiency state. Building upon this foundation, we devised a state-regulating formula. Simultaneously, drawing on pharmacological research in traditional Chinese medicine (TCM), we meticulously identified a range of targeted drugs that effectively modulate the aforementioned tumour-related mediators. This comprehensive strategy-a harmonious integration of state identification, target recognition, and simultaneous regulation-aims to elevate clinical efficacy. The fusion of TCM with Western medicine in tumour treatment introduces novel dimensions to the precise and refined application of TCM in clinical practice.
Collapse
Affiliation(s)
- Jing Lian
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Faculty of pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Dongxin Lin
- Faculty of pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuchan Huang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaohui Chen
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Lian Chen
- Faculty of pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Peiling Tang
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
- Faculty of pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China.
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China.
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China.
| | - Junhui Liu
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China.
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China.
- Faculty of pharmacy, Guangxi University of Chinese Medicine, Nanning, China.
| |
Collapse
|
11
|
Li Q, He J, Li S, Tian C, Yang J, Yuan H, Lu Y, Fagone P, Nicoletti F, Xiang M. The combination of gemcitabine and ginsenoside Rh2 enhances the immune function of dendritic cells against pancreatic cancer via the CARD9-BCL10-MALT1 / NF-κB pathway. Clin Immunol 2023; 248:109217. [PMID: 36581220 DOI: 10.1016/j.clim.2022.109217] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022]
Abstract
Cold tumor immune microenvironment (TIME) of pancreatic cancer (PC) with minimal dendritic cell (DC) and T cell infiltration can result in insufficient immunotherapy and chemotherapy. While gemcitabine (GEM) is a first-line chemotherapeutic drug for PC, its efficacy is reduced by immunosuppression and drug resistance. Ginsenoside Rh2 (Rh2) is known to have anti-cancer and immunomodulatory properties. Combining GEM with Rh2 may thus overcome immunosuppression and induce lasting anti-tumor immunity in PC. Here, we showed that after GEM-Rh2 therapy, there was significantly greater tumor infiltration by DCs. Caspase recruitment domain-containing protein 9 (CARD9), a central adaptor protein, was strongly up-regulated DCs with GEM-Rh2 therapy and promoted anti-tumor immune responses by DCs. CARD9 was found to be a critical target for Rh2 to enhance DC function. However, GEM-Rh2 treatment did not achieve the substantial anti-PC efficacy in CARD9-/- mice as in WT mice. The adoptive transfer of WT DCs to DC-depleted PC mice treated with GEM-Rh2 elicited strong anti-tumor immune responses, although CARD9-/- DCs were less effective than WT DCs. Our results showed that GEM-Rh2 may reverse cold TIME by enhancing tumor immunogenicity and decreasing the levels of immunosuppressive factors, reactivating DCs via the CARD9-BCL10-MALT1/ NF-κB pathway. Our findings suggest a potentially feasible and safe treatment strategy for PC, with a unique mechanism of action. Thus, Rh2 activation of DCs may remodel the cold TIME and optimize GEM chemotherapy for future therapeutic use.
Collapse
Affiliation(s)
- Qing Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jialuo He
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Senlin Li
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jian Yang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Huimin Yuan
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yi Lu
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95100 Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95100 Catania, Italy.
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
12
|
Momenzadeh N, Hajian S, Shabankare A, Ghavimi R, Kabiri-Samani S, Kabiri H, Hesami-Zadeh K, Shabankareh ANT, Nazaraghay R, Nabipour I, Mohammadi M. Photothermic therapy with cuttlefish ink-based nanoparticles in combination with anti-OX40 mAb achieve remission of triple-negative breast cancer. Int Immunopharmacol 2023; 115:109622. [PMID: 36577156 DOI: 10.1016/j.intimp.2022.109622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/12/2022] [Accepted: 12/18/2022] [Indexed: 12/27/2022]
Abstract
Immunostimulatory monoclonal antibodies (IS-mAb) have been proven to enhance the therapeutic effectiveness of various anticancer therapy. In the present investigation, we launched a separate combinational therapy for the treatment of triple-negative breast cancer (TNBC) using cuttlefish ink-based nanoparticles (CINPs) for photothermal therapy (PTT) and anti-OX40 antibody. Our goal was to increase the therapeutic response to the disease. CINPs were characterized by their physicochemical properties, which revealed that they had a hydrodynamic diameter ranging from 128 to 148 nm, a negative surface charge, and a high photothermal conversion efficiency under both in vitro and in vivo settings. In TNBC model, we evaluated the therapeutic effectiveness of the following groups: CINP-PTT + anti-OX40 Ab (G1), CINPs-PTT (G2), CINPs + anti-OX40 Ab (G3), anti-OX40 (G4) or PBS (G5). In each case, we assessed the efficacy of these groups against one another. The intratumor administration of all of the substances and therapies was performed. CINP-PTT + anti-OX40 Ab and CINP + anti-OX40 Ab (particularly CINP-PTT + anti-OX40 Ab) induced significant tumor regression in treated (breast) and non-treated (flank) tumor, and completely inhibited lung metastasis, thereby inducing a higher survival rate in mice in comparison to CINP-PTT, anti-OX40 Ab, or PBS. This was the case because in CINPs-treated tumors, particularly those treated with CINPs-PTT, intratumoral injection of CINPs increased the frequency of OX40, CD8 double-positive T cells. CINPs improved the conversion of the macrophage phenotype from M2 to M1 in vitro, which is significant from an immunological point of view. In addition, anti-OX40 Ab combined with CINPs or, more specifically, CINPs-PPT produced a larger frequency of preexisting and newly formed tumor-specific CD8 T cells, as well as an enhanced frequency of CD8 T cells infiltrating non-treated tumors, in comparison to respective monotherapies. When the data were taken into consideration as a whole, it seemed that CINPs-based PTT may effectively enhance the antitumor response effectiveness of anti-OX40 Ab.
Collapse
Affiliation(s)
- Niloofar Momenzadeh
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sobhan Hajian
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Atefe Shabankare
- Islamic Azad University, Tehran Medical Sciences Branch, Tehran, Iran
| | - Reza Ghavimi
- CinnaGen research and production CO., Akborz, Iran; CinaGen medical biotechnology research center, Alborz university of medical sciences, Karaj, Iran
| | - Saber Kabiri-Samani
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, and Sina Borna Aria (SABA) Co., Ltd, Research and Development Center for Biotechnology, Shahrekord, Iran
| | - Hamidreza Kabiri
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, and Sina Borna Aria (SABA) Co., Ltd, Research and Development Center for Biotechnology, Shahrekord, Iran
| | | | - Azar Najafi Tireh Shabankareh
- Department of Medical Nanotecnology,School of Advanced Technology in Medicine, Tehran University of Medical Sciences(TUMS), Iran
| | - Roghayeh Nazaraghay
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Mohsen Mohammadi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Cascão R, Faria CC. Optimizing the role of immunotherapy for the treatment of glioblastoma. NEW INSIGHTS INTO GLIOBLASTOMA 2023:553-591. [DOI: 10.1016/b978-0-323-99873-4.00012-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Yang Z, Chi Y, Bao J, Zhao X, Zhang J, Wang L. Virus-like Particles for TEM Regulation and Antitumor Therapy. J Funct Biomater 2022; 13:304. [PMID: 36547564 PMCID: PMC9788044 DOI: 10.3390/jfb13040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Tumor development and metastasis are intimately associated with the tumor microenvironment (TME), and it is difficult for vector-restricted drugs to act on the TME for long-term cancer immunotherapy. Virus-like particles (VLPs) are nanocage structures self-assembled from nucleic acid free viral proteins. Most VLPs range from 20-200 nm in diameter and can naturally drain into lymph nodes to induce robust humoral immunity. As natural nucleic acid nanocarriers, their surfaces can also be genetically or chemically modified to achieve functions such as TME targeting. This review focuses on the design ideas of VLP as nanocarriers and the progress of their research in regulating TME.
Collapse
Affiliation(s)
- Zhu Yang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjie Chi
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxin Bao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Xin Zhao
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin 150040, China
| | - Jing Zhang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianyan Wang
- Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Guo J, Ma S, Mai Y, Gao T, Song Z, Yang J. Combination of a cationic complexes loaded with mRNA and α-Galactose ceramide enhances antitumor immunity and affects the tumor immune microenvironment. Int Immunopharmacol 2022; 113:109254. [DOI: 10.1016/j.intimp.2022.109254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/05/2022]
|
16
|
Abstract
Energy metabolism maintains the activation of intracellular and intercellular signal transduction, and plays a crucial role in immune response. Under environmental stimulation, immune cells change from resting to activation and trigger metabolic reprogramming. The immune system cells exhibit different metabolic characteristics when performing functions. The study of immune metabolism provides new insights into the function of immune cells, including how they differentiate, migrate and exert immune responses. Studies of immune cell energy metabolism are beginning to shed light on the metabolic mechanism of disease progression and reveal new ways to target inflammatory diseases such as autoimmune diseases, chronic viral infections, and cancer. Here, we discussed the relationship between immune cells and metabolism, and proposed the possibility of targeted metabolic process for disease treatment.
Collapse
|
17
|
Kwiecień I, Rutkowska E, Raniszewska A, Sokołowski R, Bednarek J, Jahnz-Różyk K, Rzepecki P, Domagała-Kulawik J. Immunosuppressive properties of human PD-1 + , PDL-1 + and CD80 + dendritic cells from lymph nodes aspirates of lung cancer patients. Cancer Immunol Immunother 2022; 71:2469-2483. [PMID: 35254478 DOI: 10.1007/s00262-022-03178-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
Abstract
Dendritic cells (DCs) play a pivotal role in the homeostasis of the immune system. The tumor microenvironment impairs the proper function of DCs. The immunomodulatory properties of DCs in lung cancer are of interest. In the present study, we analysed DCs subsets and immune cells with the expression of immunomodulatory molecules: PD-1 and PD-L1 and co-stimulatory molecule CD80 in metastatic, non-metastatic lymph nodes (LNs) and peripheral blood (PB). LNs aspirates were obtained during the EBUS/TBNA procedure of 29 patients with primary lung cancer. The cells were analyzed by flow cytometry. We reported a higher percentage of DCs in the metastatic than in the non-metastatic LNs and the PB (0.709% vs. 0.166% vs. 0.043%, p < 0.0001). The proportions of PD-1 + , PD-L1 + and CD80 + DCs were higher in the metastatic LNs than in the non-metastatic ones. A higher proportion of regulatory DCs (DCregs) was found in the metastatic ones than in the non-metastatic LNs (22.5% vs. 3.1%, p = 0.0189). We report that DCs cells show increased expression of PD-1, PD-L1 and CD80 molecules that can interact with T lymphocytes. It can be assumed that mature DCs infiltrating metastatic LNs can develop into DCregs, which are involved in the suppression of anti-tumor response.
Collapse
Affiliation(s)
- Iwona Kwiecień
- Department of Internal Medicine and Hematology, Laboratory of Hematology and Flow Cytometry, Military Institute of Medicine, Szaserów 128 Street, 04-141, Warsaw, Poland.
| | - Elżbieta Rutkowska
- Department of Internal Medicine and Hematology, Laboratory of Hematology and Flow Cytometry, Military Institute of Medicine, Szaserów 128 Street, 04-141, Warsaw, Poland
| | - Agata Raniszewska
- Department of Internal Medicine and Hematology, Laboratory of Hematology and Flow Cytometry, Military Institute of Medicine, Szaserów 128 Street, 04-141, Warsaw, Poland
| | - Rafał Sokołowski
- Department of Internal Medicine, Pulmonology, Allergology and Clinical Immunology, Military Institute of Medicine, Szaserów 128 Street, 04-141, Warsaw, Poland
| | - Joanna Bednarek
- Department of Internal Medicine, Pulmonology, Allergology and Clinical Immunology, Military Institute of Medicine, Szaserów 128 Street, 04-141, Warsaw, Poland
| | - Karina Jahnz-Różyk
- Department of Internal Medicine, Pulmonology, Allergology and Clinical Immunology, Military Institute of Medicine, Szaserów 128 Street, 04-141, Warsaw, Poland
| | - Piotr Rzepecki
- Department of Internal Medicine and Hematology, Military Institute of Medicine, Szaserów 128 Street, 04-141, Warsaw, Poland
| | - Joanna Domagała-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a Street, 02-097, Warsaw, Poland
| |
Collapse
|
18
|
Codrici E, Popescu ID, Tanase C, Enciu AM. Friends with Benefits: Chemokines, Glioblastoma-Associated Microglia/Macrophages, and Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms23052509. [PMID: 35269652 PMCID: PMC8910233 DOI: 10.3390/ijms23052509] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most common primary intracranial tumor and has the greatest prevalence of all brain tumors. Treatment resistance and tumor recurrence in GBM are mostly explained by considerable alterations within the tumor microenvironment, as well as extraordinary cellular and molecular heterogeneity. Soluble factors, extracellular matrix components, tissue-resident cell types, resident or newly recruited immune cells together make up the GBM microenvironment. Regardless of many immune cells, a profound state of tumor immunosuppression is supported and developed, posing a considerable hurdle to cancer cells' immune-mediated destruction. Several studies have suggested that various GBM subtypes present different modifications in their microenvironment, although the importance of the microenvironment in treatment response has yet to be determined. Understanding the microenvironment and how it changes after therapies is critical because it can influence the remaining invasive GSCs and lead to recurrence. This review article sheds light on the various components of the GBM microenvironment and their roles in tumoral development, as well as immune-related biological processes that support the interconnection/interrelationship between different cell types. Also, we summarize the current understanding of the modulation of soluble factors and highlight the dysregulated inflammatory chemokine/specific receptors cascades/networks and their significance in tumorigenesis, cancer-related inflammation, and metastasis.
Collapse
Affiliation(s)
- Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| | - Ionela-Daniela Popescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Clinical Biochemistry, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| |
Collapse
|
19
|
Hua J, Wu P, Gan L, Zhang Z, He J, Zhong L, Zhao Y, Huang Y. Current Strategies for Tumor Photodynamic Therapy Combined With Immunotherapy. Front Oncol 2021; 11:738323. [PMID: 34868932 PMCID: PMC8635494 DOI: 10.3389/fonc.2021.738323] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/27/2021] [Indexed: 12/30/2022] Open
Abstract
Photodynamic therapy (PDT) is a low invasive antitumor therapy with fewer side effects. On the other hand, immunotherapy also has significant clinical applications in the treatment of cancer. Both therapies, on their own, have some limitations and are incapable of meeting the demands of the current cancer treatment. The efficacy of PDT and immunotherapy against tumor metastasis and tumor recurrence may be improved by combination strategies. In this review, we discussed the possibility that PDT could be used to activate immune responses by inducing immunogenic cell death or generating cancer vaccines. Furthermore, we explored the latest advances in PDT antitumor therapy in combination with some immunotherapy such as immune adjuvants, inhibitors of immune suppression, and immune checkpoint blockade.
Collapse
Affiliation(s)
- Jianfeng Hua
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Pan Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Lu Gan
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhikun Zhang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- The First People’s Hospital of Changde City, Changde, China
| |
Collapse
|
20
|
Noh KE, Lee JH, Choi SY, Jung NC, Nam JH, Oh JS, Song JY, Seo HG, Wang Y, Lee HS, Lim DS. TGF-β/IL-7 Chimeric Switch Receptor-Expressing CAR-T Cells Inhibit Recurrence of CD19-Positive B Cell Lymphoma. Int J Mol Sci 2021; 22:ijms22168706. [PMID: 34445415 PMCID: PMC8395772 DOI: 10.3390/ijms22168706] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/02/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T cells are effective in the treatment of hematologic malignancies but have shown limited efficacy against solid tumors. Here, we demonstrated an approach to inhibit recurrence of B cell lymphoma by co-expressing both a human anti-CD19-specific single-chain variable fragment (scFv) CAR (CD19 CAR) and a TGF-β/IL-7 chimeric switch receptor (tTRII-I7R) in T cells (CD19 CAR-tTRII-I7R-T cells). The tTRII-I7R was designed to convert immunosuppressive TGF-β signaling into immune-activating IL-7 signaling. The effect of TGF-β on CD19 CAR-tTRII-I7R-T cells was assessed by western blotting. Target-specific killing by CD19 CAR-tTRII-I7R-T cells was evaluated by Eu-TDA assay. Daudi tumor-bearing NSG (NOD/SCID/IL2Rγ-/-) mice were treated with CD19 CAR-tTRII-I7R-T cells to analyze the in vivo anti-tumor effect. In vitro, CD19 CAR-tTRII-I7R-T cells had a lower level of phosphorylated SMAD2 and a higher level of target-specific cytotoxicity than controls in the presence of rhTGF-β1. In the animal model, the overall survival and recurrence-free survival of mice that received CD19 CAR-tTRII-I7R-T cells were significantly longer than in control mice. These findings strongly suggest that CD19 CAR-tTRII-I7R-T cell therapy provides a new strategy for long-lasting, TGF-β-resistant anti-tumor effects against B cell lymphoma, which may lead ultimately to increased clinical efficacy.
Collapse
MESH Headings
- Animals
- Antigens, CD19/immunology
- Cells, Cultured
- Female
- Humans
- Immunotherapy, Adoptive
- Interleukin-7/genetics
- Interleukin-7/metabolism
- K562 Cells
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/therapy
- Receptors, Chimeric Antigen/metabolism
- Signal Transduction
- Single-Chain Antibodies/metabolism
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
- Treatment Outcome
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kyung-Eun Noh
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam 13488, Gyeonggi-do, Korea; (K.-E.N.); (S.-Y.C.); (J.-H.N.); (J.-S.O.)
| | - Jun-Ho Lee
- Pharos Vaccine Inc., 14 Galmachiro, 288 Bun-gil, Jungwon-gu, Seongnam 13201, Gyeonggi-do, Korea; (J.-H.L.); (N.-C.J.); (H.S.L.)
| | - So-Yeon Choi
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam 13488, Gyeonggi-do, Korea; (K.-E.N.); (S.-Y.C.); (J.-H.N.); (J.-S.O.)
| | - Nam-Chul Jung
- Pharos Vaccine Inc., 14 Galmachiro, 288 Bun-gil, Jungwon-gu, Seongnam 13201, Gyeonggi-do, Korea; (J.-H.L.); (N.-C.J.); (H.S.L.)
| | - Ji-Hee Nam
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam 13488, Gyeonggi-do, Korea; (K.-E.N.); (S.-Y.C.); (J.-H.N.); (J.-S.O.)
| | - Ji-Soo Oh
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam 13488, Gyeonggi-do, Korea; (K.-E.N.); (S.-Y.C.); (J.-H.N.); (J.-S.O.)
| | - Jie-Young Song
- Department of Radiation Cancer Sciences, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul 01812, Korea;
| | - Han Geuk Seo
- Department of Food Science and Biotechnology of Animal Products, Sanghuh College of Life Sciences, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea;
| | - Yu Wang
- Immunotech Applied Science Ltd., Beijing 100176, China;
| | - Hyun Soo Lee
- Pharos Vaccine Inc., 14 Galmachiro, 288 Bun-gil, Jungwon-gu, Seongnam 13201, Gyeonggi-do, Korea; (J.-H.L.); (N.-C.J.); (H.S.L.)
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam 13488, Gyeonggi-do, Korea; (K.-E.N.); (S.-Y.C.); (J.-H.N.); (J.-S.O.)
- Correspondence: ; Tel.: +82-10-2770-4777
| |
Collapse
|
21
|
Galati D, Zanotta S, Bocchino M, De Filippi R, Pinto A. The subtle interplay between gamma delta T lymphocytes and dendritic cells: is there a role for a therapeutic cancer vaccine in the era of combinatorial strategies? Cancer Immunol Immunother 2021; 70:1797-1809. [PMID: 33386466 PMCID: PMC10991494 DOI: 10.1007/s00262-020-02805-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/21/2020] [Indexed: 12/12/2022]
Abstract
Human gamma delta (γδ) T cells represent heterogeneous subsets of unconventional lymphocytes with an HLA-unrestricted target cell recognition. γδ T cells display adaptive clonally restricted specificities coupled to a powerful cytotoxic function against transformed/injured cells. Dendritic cells (DCs) are documented to be the most potent professional antigen-presenting cells (APCs) able to induce adaptive immunity and support the innate immune response independently from T cells. Several data show that the cross-talk of γδ T lymphocytes with DCs can play a crucial role in the orchestration of immune response by bridging innate to adaptive immunity. In the last decade, DCs, as well as γδ T cells, have been of increasing clinical interest, especially as monotherapy for cancer immunotherapy, even though with unpredictable results mainly due to immune suppression and/or tumor-immune escape. For these reasons, new vaccine strategies have to be explored to reach cancer immunotherapy's full potential. The effect of DC-based vaccines on γδ T cell is less extensively investigated, and a combinatorial approach using DC-based vaccines with γδ T cells might promote a strong synergy for long-term tumor control and protection against escaping tumor clones. Here, we discuss the therapeutic potential of the interaction between DCs and γδ T cells to improve cancer vaccination. In particular, we describe the most relevant and updated evidence of such combinatorial approaches, including the use of Zoledronate, Interleukin-15, and protamine RNA, also looking towards future strategies such as CAR therapies.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy.
| | - Serena Zanotta
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - Marialuisa Bocchino
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Rosaria De Filippi
- Department of Clinical Medicine and Surgery, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Antonio Pinto
- Hematology-Oncology and Stem Cell Transplantation Unit, Department of Hematology and Developmental Therapeutics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
22
|
Decipher the Glioblastoma Microenvironment: The First Milestone for New Groundbreaking Therapeutic Strategies. Genes (Basel) 2021; 12:genes12030445. [PMID: 33804731 PMCID: PMC8003887 DOI: 10.3390/genes12030445] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumour in adults. Despite the combination of novel therapeutical approaches, it remains a deadly malignancy with an abysmal prognosis. GBM is a polymorphic tumour from both molecular and histological points of view. It consists of different malignant cells and various stromal cells, contributing to tumour initiation, progression, and treatment response. GBM’s microenvironment is multifaceted and is made up of soluble factors, extracellular matrix components, tissue-resident cell types (e.g., neurons, astrocytes, endothelial cells, pericytes, and fibroblasts) together with resident (e.g., microglia) or recruited (e.g., bone marrow-derived macrophages) immune cells. These latter constitute the so-called immune microenvironment, accounting for a substantial GBM’s tumour volume. Despite the abundance of immune cells, an intense state of tumour immunosuppression is promoted and developed; this represents the significant challenge for cancer cells’ immune-mediated destruction. Though literature data suggest that distinct GBM’s subtypes harbour differences in their microenvironment, its role in treatment response remains obscure. However, an in-depth investigation of GBM’s microenvironment may lead to novel therapeutic opportunities to improve patients’ outcomes. This review will elucidate the GBM’s microenvironment composition, highlighting the current state of the art in immunotherapy approaches. We will focus on novel strategies of active and passive immunotherapies, including vaccination, gene therapy, checkpoint blockade, and adoptive T-cell therapies.
Collapse
|
23
|
Liu J, Wang Y, Qiu Z, Lv G, Huang X, Lin H, Lin Z, Qu P. Impact of TCM on Tumor-Infiltrating Myeloid Precursors in the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:635122. [PMID: 33748122 PMCID: PMC7969811 DOI: 10.3389/fcell.2021.635122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
The tumor microenvironment (TME) is composed of tumor cells, blood/lymphatic vessels, the tumor stroma, and tumor-infiltrating myeloid precursors (TIMPs) as a sophisticated pathological system to provide the survival environment for tumor cells and facilitate tumor metastasis. In TME, TIMPs, mainly including tumor-associated macrophage (TAM), tumor-associated dendritic cells (DCs), and myeloid-derived suppressor cells (MDSCs), play important roles in repressing the antitumor activity of T cell or other immune cells. Therefore, targeting those cells would be one novel efficient method to retard cancer progression. Numerous studies have shown that traditional Chinese medicine (TCM) has made extensive research in tumor immunotherapy. In the review, we demonstrate that Chinese herbal medicine (CHM) and its components induce tumor cell apoptosis, directly inhibiting tumor growth and invasion. Further, we discuss that TCM regulates TME to promote effective antitumor immune response, downregulates the numbers and function of TAMs/MDSCs, and enhances the antigen presentation ability of mature DCs. We also review the therapeutic effects of TCM herbs and their ingredients on TIMPs in TME and systemically analyze the regulatory mechanisms of TCM on those cells to have a deeper understanding of TCM in tumor immunotherapy. Those investigations on TCM may provide novel ideas for cancer treatment.
Collapse
Affiliation(s)
- Jinlong Liu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yuchen Wang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Guangfu Lv
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xiaowei Huang
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - He Lin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Zhe Lin
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Peng Qu
- Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| |
Collapse
|
24
|
Peng X, He Y, Huang J, Tao Y, Liu S. Metabolism of Dendritic Cells in Tumor Microenvironment: For Immunotherapy. Front Immunol 2021; 12:613492. [PMID: 33732237 PMCID: PMC7959811 DOI: 10.3389/fimmu.2021.613492] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are a type of an antigen-presenting cell which undertake a job on capturing antigens coming from pathogens or tumors and presenting to T cells for immune response. The metabolism of DCs controls its development, polarization, and maturation processes and provides energy support for its functions. However, the immune activity of DCs in tumor microenvironment (TME) is inhibited generally. Abnormal metabolism of tumor cells causes metabolic changes in TME, such as hyperglycolysis, lactate and lipid accumulation, acidification, tryptophan deprivation, which limit the function of DCs and lead to the occurrence of tumor immune escape. Combined metabolic regulation with immunotherapy can strengthen the ability of antigen-presentation and T cell activation of DCs, improve the existing anti-tumor therapy, and overcome the defects of DC-related therapies in the current stage, which has great potential in oncology therapy. Therefore, we reviewed the glucose, lipid, and amino acid metabolism of DCs, as well as the metabolic changes after being affected by TME. Together with the potential metabolic targets of DCs, possible anti-tumor therapeutic pathways were summarized.
Collapse
Affiliation(s)
- Xin Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Youe He
- Department of Translational Medicine, Cancer Biological Treatment Center, Xiangya Hospital, Central South University, Changsha, China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Carcinogenesis of Ministry of Health, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
25
|
Bombyx batryticatus Protein-Rich Extract Induces Maturation of Dendritic Cells and Th1 Polarization: A Potential Immunological Adjuvant for Cancer Vaccine. Molecules 2021; 26:molecules26020476. [PMID: 33477499 PMCID: PMC7831066 DOI: 10.3390/molecules26020476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/30/2022] Open
Abstract
Bombyx batryticatus, a protein-rich edible insect, is widely used as a traditional medicine in China. Several pharmacological studies have reported the anticancer activity of B. batryticatus extracts; however, the capacity of B. batryticatus extracts as immune potentiators for increasing the efficacy of cancer immunotherapy is still unverified. In the present study, we investigated the immunomodulatory role of B. batryticatus protein-rich extract (BBPE) in bone marrow-derived dendritic cells (BMDCs) and DC vaccine-immunized mice. BBPE-treated BMDCs displayed characteristics of mature immune status, including high expression of surface molecules (CD80, CD86, major histocompatibility complex (MHC)-I, and MHC-II), increased production of proinflammatory cytokines (tumor necrosis factor-α and interleukin-12p70), enhanced antigen-presenting ability, and reduced endocytosis. BBPE-treated BMDCs promoted naive CD4+ and CD8+ T-cell proliferation and activation. Furthermore, BBPE/ovalbumin (OVA)-pulsed DC-immunized mice showed a stronger OVA-specific multifunctional T-cell response in CD4+ and CD8+ T cells and a stronger Th1 antibody response than mice receiving differently treated DCs, which showed the enhanced protective effect against tumor growth in E.G7 tumor-bearing mice. Our data demonstrate that BBPE can be a novel immune potentiator for a DC-based vaccine in anticancer therapy.
Collapse
|
26
|
Tong L, Yue P, Yang Y, Huang J, Zeng Z, Qiu W. Motility and Mechanical Properties of Dendritic Cells Deteriorated by Extracellular Acidosis. Inflammation 2020; 44:737-745. [PMID: 33130921 PMCID: PMC7985054 DOI: 10.1007/s10753-020-01373-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/21/2020] [Indexed: 10/27/2022]
Abstract
Dendritic cells (DCs) are the most powerful antigen-presenting cells known to date and play an important role in initiating and amplifying both innate and adaptive immune responses. Extracellular acidosis is an important hallmark of a variety of inflammatory processes and solid tumors. However, few studies have focused on the effect of extracellular acidosis on DCs and their functions. Cellular mechanical properties reflect the relationship between cell structure and function, including cytoskeleton (especially F-actin organization), membrane negative charges, membrane fluidity, and osmotic fragility. The study investigated the effects of extracellular acidosis on the DCs functions from the perspective of cellular migration and mechanical properties. The results showed that migration ability, F-actin contents, and membrane negative charges of DCs were reduced by extracellular acidosis no matter whether LPS stimulated its maturation or not. And these functions could not return to normal after removing acidic microenvironment, which revealed that the function impairment induced by extracellular acidosis might be irreversible. In addition, the proliferation capacity of stimulated allogeneic T cells was impaired by extracellular acidosis. Our results suggest extracellular acidosis may play an immunosuppressive role in DCs-mediated immune process.
Collapse
Affiliation(s)
- Lu Tong
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
| | - Ping Yue
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
| | - Yingying Yang
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
| | - Jin Huang
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China
| | - Zhu Zeng
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China.
| | - Wei Qiu
- School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
27
|
Ma J, Zhang H, Tang K, Huang B. Tumor-derived microparticles in tumor immunology and immunotherapy. Eur J Immunol 2020; 50:1653-1662. [PMID: 32976623 PMCID: PMC7702100 DOI: 10.1002/eji.202048548] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/11/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Microvesicles or microparticles, a type of cytoplasm membrane-derived extracellular vesicles, can be released by cancer cells or normal cell types. Alteration of F-actin cytoskeleton by various signals may lead to the cytoplasm membrane encapsulating cellular contents to form microparticles, which contain various messenger molecules, including enzymes, RNAs and even DNA fragments, and are released to extracellular space. The release of microparticles by tumor cells (T-MPs) is a very common event in tumor microenvironments. As a result, T-MPs not only influence tumor cell biology but also profoundly forge tumor immunology. Moreover, T-MPs can act as a natural vehicle that delivers therapeutic drugs to tumor cells and immune cells, thus, remodeling tumor microenvironments and resetting antitumor immune responses, thus, conferring T-MPs a potential role in tumor immunotherapies and tumor vaccines. In this review, we focus on the double-edged sword role of T-MPs in tumor immunology, specifically in TAMs and DCs, and emphasize the application of drug-packaging T-MPs in cancer patients. We aim to provide a new angle to understand immuno-oncology and new strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P. R. China
| | - Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P. R. China
| | - Ke Tang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P. R. China
| | - Bo Huang
- Department of Biochemistry & Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P. R. China.,Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, P. R. China.,Clinical Immunology Center, CAMS, Beijing, P. R. China
| |
Collapse
|
28
|
Senescent Tumor CD8 + T Cells: Mechanisms of Induction and Challenges to Immunotherapy. Cancers (Basel) 2020; 12:cancers12102828. [PMID: 33008037 PMCID: PMC7601312 DOI: 10.3390/cancers12102828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Immunotherapies harness the hosts’ immune system to combat cancer and are currently used to treat many tumor types. Immunotherapies mainly target T cells, the major immune population responsible for tumor-cell killing. One of the reasons that T cells may not respond to immunotherapeutic treatment is that they are in a dysfunctional state termed senescence. This review seeks to describe the molecular mechanisms that characterize and induce T cell senescence within the context of the tumor microenvironment and how this might affect treatment responses. Abstract The inability of tumor-infiltrating T lymphocytes to eradicate tumor cells within the tumor microenvironment (TME) is a major obstacle to successful immunotherapeutic treatments. Understanding the immunosuppressive mechanisms within the TME is paramount to overcoming these obstacles. T cell senescence is a critical dysfunctional state present in the TME that differs from T cell exhaustion currently targeted by many immunotherapies. This review focuses on the physiological, molecular, metabolic and cellular processes that drive CD8+ T cell senescence. Evidence showing that senescent T cells hinder immunotherapies is discussed, as are therapeutic options to reverse T cell senescence.
Collapse
|
29
|
Cancer Acidity and Hypertonicity Contribute to Dysfunction of Tumor-Associated Dendritic Cells: Potential Impact on Antigen Cross-Presentation Machinery. Cancers (Basel) 2020; 12:cancers12092403. [PMID: 32847079 PMCID: PMC7565485 DOI: 10.3390/cancers12092403] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 01/21/2023] Open
Abstract
Macrophages (MΦ) and dendritic cells (DC), major players of the mononuclear phagocyte system (MoPh), are potent antigen presenting cells that steadily sense and respond to signals from the surrounding microenvironment, leading to either immunogenic or tolerogenic outcomes. Next to classical MHC-I/MHC-II antigen-presentation pathways described in the vast majority of cell types, a subset of MoPh (CD8+, XCR1+, CLEC9A+, BDCA3+ conventional DCs in human) is endowed with a high competence to cross-present external (engulfed) antigens on MHC-I molecules to CD8+ T-cells. This exceptional DC function is thought to be a crucial crossroad in cytotoxic antitumor immunity and has been extensively studied in the past decades. Biophysical and biochemical fingerprints of tumor micromilieus show significant spatiotemporal differences in comparison to non-neoplastic tissue. In tumors, low pH (mainly due to extracellular lactate accumulation via the Warburg effect and via glutaminolysis) and high oncotic and osmotic pressure (resulting from tumor debris, increased extracellular matrix components but in part also triggered by nutritive aspects) are—despite fluctuations and difficulties in measurement—likely the most constant general hallmarks of tumor microenvironment. Here, we focus on the influence of acidic and hypertonic micromilieu on the capacity of DCs to cross-present tumor-specific antigens. We discuss complex and in part controversial scientific data on the interference of these factors with to date reported mechanisms of antigen uptake, processing and cross-presentation, and we highlight their potential role in cancer immune escape and poor clinical response to DC vaccines.
Collapse
|
30
|
Wang Y, Lu J, Jiang B, Guo J. The roles of curcumin in regulating the tumor immunosuppressive microenvironment. Oncol Lett 2020; 19:3059-3070. [PMID: 32256807 PMCID: PMC7074405 DOI: 10.3892/ol.2020.11437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer is a harmful threat to human health. In addition to surgery, a variety of anticancer drugs are increasingly used in cancer therapy; however, despite the developments in multimodality treatment, the morbidity and mortality of patients with cancer patients are on the increase. The tumor-specific immunosuppressive microenvironment serves an important function in tumor tolerance and escape from immune surveillance leading to tumor progression. Therefore, identifying new drugs or foods that can enhance the tumor immune response is critical to develop improved cancer prevention methods and treatment. Curcumin, a polyphenolic compound extracted from ginger, has been shown to effectively inhibit tumor growth, proliferation, invasion, metastasis and angiogenesis in a variety of tumors. Recent studies have also indicated that curcumin can modulate the tumor immune response and remodel the tumor immunosuppressive microenvironment, indicating its potential in the immunotherapy of cancer. In this review, a brief introduction to the effects of curcumin on the tumor immune response and tumor immune microenvironment is provided and recent clinical trials investigating the potential of curcumin in cancer therapy are discussed.
Collapse
Affiliation(s)
- Yizhi Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Jun Lu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Bolun Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| |
Collapse
|