1
|
Jose AD, Chong CHN, Cheah E, Jaiswal J, Wu Z, Thakur SS. Formulation and evaluation of oxygen microbubbles stabilised in a hydrogel to potentiate radiotherapy. Int J Pharm 2025; 674:125443. [PMID: 40064385 DOI: 10.1016/j.ijpharm.2025.125443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 02/23/2025] [Accepted: 03/07/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND Tumour hypoxia poses a significant challenge in cancer treatment. There is mounting evidence that reoxygenating tumours increases their sensitivity to conventional cancer therapies. Oxygenated microbubbles (OMB) show promise for this application but suffer from poor stability and rapid clearance. Embedding OMB in a thermosensitive hydrogel (OMBHG) may prolong tumour oxygenation and improve therapeutic outcomes. OBJECTIVES To formulate and evaluate OMB loaded in a temperature sensitive hydrogel on an in vitro model of tumour hypoxia. METHODS OMB generated from a liposomal precursor were dispersed at various concentrations in a poloxamer hydrogel. OMB size, hydrogel rheology, injectability, oxygen loading/release, and impact on efficacy of radiotherapy against HCT116 colon cancer cells under hypoxia/normoxia were evaluated. RESULTS DSPC:DSPE-PEG2000 (94:6 molar ratio) liposomes dispersed in a poloxamer 407: poloxamer 188 (21:6.5 % w/w) hydrogel generated OMB predominantly sized < 1 µm. OMBHG formulations were deemed injectable (force to inject < 38 N) at 20 °C and gelled before 37 °C and demonstrated both greater oxygen loading and prolonged oxygen release than OMB alone. Cancer cells were significantly less sensitive to radiotherapy under hypoxic conditions. Pre-treatment of the cells with OMB or OMBHG enhanced radiotherapy significantly, reducing clonogenic survival rates in HCT116 cells by 78 % in hypoxic conditions and by 68 % in normoxic conditions (p < 0.0001 in both cases). Notably, this treatment restored the radiotherapy sensitivity of hypoxic cells to the levels seen with normoxic cells. CONCLUSION Reoxygenation with a newly developed OMB hydrogel formulation effectively sensitised HCT116 to radiotherapy in vitro. Ongoing studies are exploring the importance of reoxygenation rate and extent for optimal tumour sensitisation.
Collapse
Affiliation(s)
- Ashok David Jose
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Celine Hui-Ning Chong
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ernest Cheah
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jagdish Jaiswal
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Sachin Sunil Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
2
|
Kakiuchi K, Borden MA. Effect of Lipid Composition and Stirring Dynamics on Oxygen Microbubble Stability and Oxygen Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1745-1755. [PMID: 39814569 PMCID: PMC12039959 DOI: 10.1021/acs.langmuir.4c04104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Lipid-coated oxygen microbubbles (OMBs) are being investigated for biomedical applications to alleviate hypoxia such as systemic oxygenation and image-guided radiosensitization therapy. Additionally, they hold potential for boarder application as oxygen carriers beyond the biomedical filed. Understanding the stability and oxygen release properties of OMBs in dynamic aqueous environments is critical for these applications. In this study, we found that OMBs composed of longer acyl chain phospholipids (DSPC and DBPC) were stable in storage for at least 1 week, unlike the shorter acyl chain phospholipid (DPPC). OMBs were also more stable with a diacyl PEG-PE emulsifier compared with single-chain PEG-40 stearate. Dilution of OMBs did not alter the average diameter. While previous studies have examined the theoretical and experimental aspects of oxygen release from OMBs under static conditions, quantitative evaluations of OMB dispersions under dynamic stirring conditions remain limited. Here, we introduce a novel oxygen measurement method that quantitatively tracks the transition of the dissolved oxygen concentration in an aqueous medium upon mixing with a bolus of OMBs. Our results indicate that a 50 vol % OMB dispersion releases more than 330 mg/L of oxygen, surpassing arterial oxygen levels, and that more than 95% of this oxygen is released within 30 s. The rate of oxygenation of the OMB dispersions was comparable to that of a bolus injection of oxygen-saturated water under sufficient agitation, indicating that convection in the aqueous medium is the limiting transport mechanism. However, the lipid shell had a measurable effect on the oxygen release rate, which correlated with its oxygen permeability. Increasing the stirring speed increased both oxygen release rate and total amount of oxygen released. Overall, this study elucidates the fundamental stability and mass transport properties of the OMB dispersions under practical stirring conditions.
Collapse
Affiliation(s)
- Kenta Kakiuchi
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Mark Andrew Borden
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Mechanical Engineering Department, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
3
|
Gomes FL, Jeong SH, Shin SR, Leijten J, Jonkheijm P. Engineering Synthetic Erythrocytes as Next-Generation Blood Substitutes. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2315879. [PMID: 39386164 PMCID: PMC11460667 DOI: 10.1002/adfm.202315879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 10/12/2024]
Abstract
Blood scarcity is one of the main causes of healthcare disruptions worldwide, with blood shortages occurring at an alarming rate. Over the last decades, blood substitutes has aimed at reinforcing the supply of blood, with several products (e.g., hemoglobin-based oxygen carriers, perfluorocarbons) achieving a limited degree of success. Regardless, there is still no widespread solution to this problem due to persistent challenges in product safety and scalability. In this Review, we describe different advances in the field of blood substitution, particularly in the development of artificial red blood cells, otherwise known as engineered erythrocytes. We categorize the different strategies into natural, synthetic, or hybrid approaches, and discuss their potential in terms of safety and scalability. We identify synthetic engineered erythrocytes as the most powerful approach, and describe erythrocytes from a materials engineering perspective. We review their biological structure and function, as well as explore different methods of assembling a material-based cell. Specifically, we discuss how to recreate size, shape, and deformability through particle fabrication, and how to recreate the functional machinery through synthetic biology and nanotechnology. We conclude by describing the versatile nature of synthetic erythrocytes in medicine and pharmaceuticals and propose specific directions for the field of erythrocyte engineering.
Collapse
Affiliation(s)
- Francisca L Gomes
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Seol-Ha Jeong
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Pascal Jonkheijm
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
| |
Collapse
|
4
|
Navarro-Becerra JA, Castillo JI, Borden MA. Effect of Poly(ethylene glycol) Configuration on Microbubble Pharmacokinetics. ACS Biomater Sci Eng 2024; 10:3331-3342. [PMID: 38600786 DOI: 10.1021/acsbiomaterials.3c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Microbubbles (MBs) hold substantial promise for medical imaging and therapy; nonetheless, knowledge gaps persist between composition, structure, and in vivo performance, especially with respect to pharmacokinetics. Of particular interest is the role of the poly(ethylene glycol) (PEG) layer, which is thought to shield the MB against opsonization and rapid clearance but is also known to cause an antibody response upon multiple injections. The goal of this study was, therefore, to elucidate the role of the PEG layer in circulation persistence of MBs in the naïve animal (prior to an adaptive immune response). Here, we directly observe the number and size of individual MBs obtained from blood samples, unifying size and concentration into the microbubble volume dose (MVD) parameter. This approach enables direct evaluation of the pharmacokinetics of intact MBs, comprising both the lipid shell and gaseous core, rather than separately assessing the lipid or gas components. We examined the in vivo circulation persistence of 3 μm diameter phospholipid-coated MBs with three different mPEG2000 content: 2 mol % (mushroom), 5 mol % (intermediate), and 10 mol % (brush). MB size and concentration in the blood were evaluated by a hemocytometer analysis over 30 min following intravenous injections of 20 and 40 μL/kg MVD in Sprague-Dawley rats. Interestingly, pharmacokinetic analysis demonstrated that increasing PEG concentration on the MB surface resulted in faster clearance. This was evidenced by a 1.6-fold reduction in half-life and area under the curve (AUC) (p < 0.05) in the central compartment. Conversely, the AUC in the peripheral compartment increased with PEG density, suggesting enhanced MB trapping by the mononuclear phagocyte system. This was supported by an in vitro assay, which showed a significant rise in complement C3a activation with a higher PEG content. In conclusion, a minimal PEG concentration on the MB shell (mushroom configuration) was found to prolong circulation and mitigate immunogenicity.
Collapse
Affiliation(s)
- J Angel Navarro-Becerra
- Mechanical Engineering Department, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jair I Castillo
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Mark A Borden
- Mechanical Engineering Department, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
5
|
Boopathi E, Den RB, Thangavel C. Innate Immune System in the Context of Radiation Therapy for Cancer. Cancers (Basel) 2023; 15:3972. [PMID: 37568788 PMCID: PMC10417569 DOI: 10.3390/cancers15153972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Radiation therapy (RT) remains an integral component of modern oncology care, with most cancer patients receiving radiation as a part of their treatment plan. The main goal of ionizing RT is to control the local tumor burden by inducing DNA damage and apoptosis within the tumor cells. The advancement in RT, including intensity-modulated RT (IMRT), stereotactic body RT (SBRT), image-guided RT, and proton therapy, have increased the efficacy of RT, equipping clinicians with techniques to ensure precise and safe administration of radiation doses to tumor cells. In this review, we present the technological advancement in various types of RT methods and highlight their clinical utility and associated limitations. This review provides insights into how RT modulates innate immune signaling and the key players involved in modulating innate immune responses, which have not been well documented earlier. Apoptosis of cancer cells following RT triggers immune systems that contribute to the eradication of tumors through innate and adoptive immunity. The innate immune system consists of various cell types, including macrophages, dendritic cells, and natural killer cells, which serve as key mediators of innate immunity in response to RT. This review will concentrate on the significance of the innate myeloid and lymphoid lineages in anti-tumorigenic processes triggered by RT. Furthermore, we will explore essential strategies to enhance RT efficacy. This review can serve as a platform for researchers to comprehend the clinical application and limitations of various RT methods and provides insights into how RT modulates innate immune signaling.
Collapse
Affiliation(s)
- Ettickan Boopathi
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert B. Den
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Chellappagounder Thangavel
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Radiation Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
6
|
Durham PG, Upadhyay A, Navarro-Becerra JA, Moon RE, Borden MA, Dayton PA, Papadopoulou V. Effect of Anesthetic Carrier Gas on In Vivo Circulation Times of Intravenously Administered Phospholipid Oxygen Microbubbles in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1861-1866. [PMID: 37246050 DOI: 10.1016/j.ultrasmedbio.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/30/2023]
Abstract
OBJECTIVE For the treatment of tumor hypoxia, microbubbles comprising oxygen as a majority component of the gas core with a stabilizing shell may be used to deliver and release oxygen locally at the tumor site through ultrasound destruction. Previous work has revealed differences in circulation half-life in vivo for perfluorocarbon-filled microbubbles, typically used as ultrasound imaging contrast agents, as a function of anesthetic carrier gas. These differences in circulation time in vivo were likely due to gas diffusion as a function of anesthetic carrier gas, among other variables. This work has motivated studies to evaluate the effect of anesthetic carrier gas on oxygen microbubble circulation dynamics. METHODS Circulation time for oxygen microbubbles was derived from ultrasound image intensity obtained during longitudinal kidney imaging. Studies were constructed for rats anesthetized on inhaled isoflurane with either pure oxygen or medical air as the anesthetic carrier gas. RESULTS Results indicated that oxygen microbubbles were highly visible via contrast-specific imaging. Marked signal enhancement and duration differences were observed between animals breathing air and oxygen. Perhaps counterintuitively, oxygen microbubbles disappeared from circulation significantly faster when the animals were breathing pure oxygen compared with medical air. This may be explained by nitrogen counterdiffusion from blood into the bubble, effectively changing the gas composition of the core, as has been observed in perfluorocarbon core microbubbles. CONCLUSION Our findings suggest that the apparent longevity and persistence of oxygen microbubbles in circulation may not be reflective of oxygen delivery when the animal is anesthetized breathing air.
Collapse
Affiliation(s)
- Phillip G Durham
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, USA
| | - Awaneesh Upadhyay
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | | | - Richard E Moon
- Departments of Anesthesiology and Medicine, Center for Hyperbaric Medicine and Environmental Physiology, Duke University, NC, USA
| | - Mark A Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA
| | - Paul A Dayton
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA; Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, USA
| | - Virginie Papadopoulou
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Papadopoulou V, Stride EP, Borden MA, Eisenbrey JR, Dayton PA. Radiotherapy Sensitization With Ultrasound-Stimulated Intravenously Injected Oxygen Microbubbles Can Have Contrary Effects Depending on the Study Model. ULTRASOUND IN MEDICINE & BIOLOGY 2023:S0301-5629(23)00198-9. [PMID: 37442717 DOI: 10.1016/j.ultrasmedbio.2023.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/13/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023]
Affiliation(s)
- Virginie Papadopoulou
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, USA
| | - Eleanor P Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Mark A Borden
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA; Biomaterial Engineering Program, University of Colorado, Boulder, CO, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC, USA; Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Navarro-Becerra JA, Borden MA. Targeted Microbubbles for Drug, Gene, and Cell Delivery in Therapy and Immunotherapy. Pharmaceutics 2023; 15:1625. [PMID: 37376072 DOI: 10.3390/pharmaceutics15061625] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Microbubbles are 1-10 μm diameter gas-filled acoustically-active particles, typically stabilized by a phospholipid monolayer shell. Microbubbles can be engineered through bioconjugation of a ligand, drug and/or cell. Since their inception a few decades ago, several targeted microbubble (tMB) formulations have been developed as ultrasound imaging probes and ultrasound-responsive carriers to promote the local delivery and uptake of a wide variety of drugs, genes, and cells in different therapeutic applications. The aim of this review is to summarize the state-of-the-art of current tMB formulations and their ultrasound-targeted delivery applications. We provide an overview of different carriers used to increase drug loading capacity and different targeting strategies that can be used to enhance local delivery, potentiate therapeutic efficacy, and minimize side effects. Additionally, future directions are proposed to improve the tMB performance in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
| | - Mark A Borden
- Mechanical Engineering Department, University of Colorado Boulder, Boulder, CO 80309, USA
- Biomedical Engineering Program, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
9
|
Lacerda Q, Falatah H, Liu JB, Wessner CE, Oeffinger B, Rochani A, Leeper DB, Forsberg F, Curry JM, Kaushal G, Keith SW, O'Kane P, Wheatley MA, Eisenbrey JR. Improved Tumor Control Following Radiosensitization with Ultrasound-Sensitive Oxygen Microbubbles and Tumor Mitochondrial Respiration Inhibitors in a Preclinical Model of Head and Neck Cancer. Pharmaceutics 2023; 15:pharmaceutics15041302. [PMID: 37111787 PMCID: PMC10145368 DOI: 10.3390/pharmaceutics15041302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Tumor hypoxia (oxygen deficiency) is a major contributor to radiotherapy resistance. Ultrasound-sensitive microbubbles containing oxygen have been explored as a mechanism for overcoming tumor hypoxia locally prior to radiotherapy. Previously, our group demonstrated the ability to encapsulate and deliver a pharmacological inhibitor of tumor mitochondrial respiration (lonidamine (LND)), which resulted in ultrasound-sensitive microbubbles loaded with O2 and LND providing prolonged oxygenation relative to oxygenated microbubbles alone. This follow-up study aimed to evaluate the therapeutic response to radiation following the administration of oxygen microbubbles combined with tumor mitochondrial respiration inhibitors in a head and neck squamous cell carcinoma (HNSCC) tumor model. The influences of different radiation dose rates and treatment combinations were also explored. The results demonstrated that the co-delivery of O2 and LND successfully sensitized HNSCC tumors to radiation, and this was also enhanced with oral metformin, significantly slowing tumor growth relative to unsensitized controls (p < 0.01). Microbubble sensitization was also shown to improve overall animal survival. Importantly, effects were found to be radiation dose-rate-dependent, reflecting the transient nature of tumor oxygenation.
Collapse
Affiliation(s)
- Quezia Lacerda
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- School of Biomedical Engineering, Science and Health Systems Drexel University, Philadelphia, PA 19104, USA
| | - Hebah Falatah
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- School of Biomedical Engineering, Science and Health Systems Drexel University, Philadelphia, PA 19104, USA
- College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah 22384, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Corinne E Wessner
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- School of Biomedical Engineering, Science and Health Systems Drexel University, Philadelphia, PA 19104, USA
| | - Brian Oeffinger
- School of Biomedical Engineering, Science and Health Systems Drexel University, Philadelphia, PA 19104, USA
| | - Ankit Rochani
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Pharmaceutical Sciences, Wegmans School of Pharmacy, St. John Fisher University, Rochester, NY 14618, USA
| | - Dennis B Leeper
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Flemming Forsberg
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joseph M Curry
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gagan Kaushal
- Department of Pharmaceutical Sciences, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Scott W Keith
- Division of Biostatistics, Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Patrick O'Kane
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Margaret A Wheatley
- School of Biomedical Engineering, Science and Health Systems Drexel University, Philadelphia, PA 19104, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Edwards IA, De Carlo F, Sitta J, Varner W, Howard CM, Claudio PP. Enhancing Targeted Therapy in Breast Cancer by Ultrasound-Responsive Nanocarriers. Int J Mol Sci 2023; 24:ijms24065474. [PMID: 36982548 PMCID: PMC10053544 DOI: 10.3390/ijms24065474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Currently, the response to cancer treatments is highly variable, and severe side effects and toxicity are experienced by patients receiving high doses of chemotherapy, such as those diagnosed with triple-negative breast cancer. The main goal of researchers and clinicians is to develop new effective treatments that will be able to specifically target and kill tumor cells by employing the minimum doses of drugs exerting a therapeutic effect. Despite the development of new formulations that overall can increase the drugs’ pharmacokinetics, and that are specifically designed to bind overexpressed molecules on cancer cells and achieve active targeting of the tumor, the desired clinical outcome has not been reached yet. In this review, we will discuss the current classification and standard of care for breast cancer, the application of nanomedicine, and ultrasound-responsive biocompatible carriers (micro/nanobubbles, liposomes, micelles, polymeric nanoparticles, and nanodroplets/nanoemulsions) employed in preclinical studies to target and enhance the delivery of drugs and genes to breast cancer.
Collapse
Affiliation(s)
- Isaiah A. Edwards
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Flavia De Carlo
- Department of Pharmacology and Toxicology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Juliana Sitta
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - William Varner
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Candace M. Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Pier Paolo Claudio
- Department of Pharmacology and Toxicology, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Correspondence:
| |
Collapse
|
11
|
Microbubbles for human diagnosis and therapy. Biomaterials 2023; 294:122025. [PMID: 36716588 DOI: 10.1016/j.biomaterials.2023.122025] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Microbubbles (MBs) were observed for the first time in vivo as a curious consequence of quick saline injection during ultrasound (US) imaging of the aortic root, more than 50 years ago. From this serendipitous event, MBs are now widely used as contrast enhancers for US imaging. Their intrinsic properties described in this review, allow a multitude of designs, from shell to gas composition but also from grafting targeting agents to drug payload encapsulation. Indeed, the versatile MBs are deeply studied for their dual potential in imaging and therapy. As presented in this paper, new generations of MBs now opens perspectives for targeted molecular imaging along with the development of new US imaging systems. This review also presents an overview of the different therapeutic strategies with US and MBs for cancer, cardiovascular diseases, and inflammation. The overall aim is to overlap those fields in order to find similarities in the MBs application for treatment enhancement associated with US. To conclude, this review explores the new scales of MBs technologies with nanobubbles development, and along concurrent advances in the US imaging field. This review ends by discussing perspectives for the booming future uses of MBs.
Collapse
|
12
|
Guo W, Huang S, An J, Zhang J, Dong F, Dang J, Zhang J. Ultrasound-Mediated Antitumor Therapy via Targeted Acoustic Release Carrier of Carbon Monoxide (TARC-CO). ACS APPLIED MATERIALS & INTERFACES 2022; 14:50664-50676. [PMID: 36322480 DOI: 10.1021/acsami.2c16821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As one of the most valuable endogenous gas signaling molecules, carbon monoxide (CO) has been demonstrated in numerous studies to show excellent promise in the treatment of diseases, such as cancer. However, for many years, the inherent high affinity of CO for hemoglobin severely impeded the clinical transformation of CO-based treatments. Therefore, the controlled delivery of CO to target tissues has become a common challenge. Herein, an efficient ultrasonic-triggered and targeted CO release strategy was constructed based on a novel targeted acoustic release carrier of carbon monoxide (TARC-CO) that we synthesized in this study. The designed TARC-COs could afford a safe, stable, and ultrasound-guided delivery of CO in vivo by loading a specified dose of CO inside microbubbles, resulting in breast tumor suppression. Taking advantage of the high loading capacity of microbubbles, the unit volume of TARC-CO suspension could encapsulate up to 337.1 ± 8.0 (×103 ppm) of CO. In addition, the satisfactory ultrasound contrast-enhanced ability of TARC-COs achieved real-time interactive guidance and visual policing of CO delivery. For the in vitro antitumor study, TARC-COs with ultrasonic irradiation were demonstrated to effectively induce mitochondrial dysfunction by reducing mitochondrial membrane potential, leading to the apoptosis of 4T1 cells. In addition, we realized that TARC-CO-based treatment could significantly slow the growth rate of tumors by inducing apoptosis, inhibiting the proliferation of cancer cells, and limiting tumor angiogenesis. In summary, this proof-of-concept study demonstrates the feasibility and tremendous potential of TARC-COs for controlled release of CO, which can be expected to provide new inspirations and a promising perspective for therapy based on active gases.
Collapse
Affiliation(s)
- Wenyu Guo
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuo Huang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jian An
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiabin Zhang
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Feihong Dong
- State Key Laboratory of Membrane Biology, National Biomedical Imaging Center, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jie Dang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- College of Engineering, Peking University, Beijing 100871, China
- National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Tumoral Oxygenation and Biodistribution of Lonidamine Oxygen Microbubbles Following Localized Ultrasound-Triggered Delivery. Int J Pharm 2022; 625:122072. [PMID: 35932933 DOI: 10.1016/j.ijpharm.2022.122072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 12/24/2022]
Abstract
Prior work has shown that microbubble-assisted delivery of oxygen improves tumor oxygenation and radiosensitivity, albeit over a limited duration. Lonidamine (LND) has been investigated because of its ability to stimulate glycolysis, lactate production, inhibit mitochondrial respiration, and inhibit oxygen consumption rates in tumors but suffers from poor bioavailability. The goal of this work was to characterize LND-loaded oxygen microbubbles and assess their ability to oxygenate a human head and neck squamous cell carcinoma (HNSCC) tumor model, while also assessing LND biodistribution. In tumors treated with surfactant-shelled microbubbles with oxygen core (SE61O2) and ultrasound, pO2 levels increased to a peak 19.5±9.7 mmHg, 50 seconds after injection and returning to baseline after 120 seconds. In comparison, in tumors treated with SE61O2/LND and ultrasound, pO2 levels showed a peak increase of 29.0±8.3 mmHg, which was achieved 70 seconds after injection returning to baseline after 300 seconds (p<0.001). The co-delivery of O2andLNDvia SE61 also showed an improvement of LND biodistribution in both plasma and tumor tissues (p<0.001). In summary, ultrasound-sensitive microbubbles loaded with O2 and LND provided prolonged oxygenation relative to oxygenated microbubbles alone, as well as provided an ability to locally deliver LND, making them more appropriate for clinical translation.
Collapse
|
14
|
Lea-Banks H, Wu SK, Lee H, Hynynen K. Ultrasound-triggered oxygen-loaded nanodroplets enhance and monitor cerebral damage from sonodynamic therapy. Nanotheranostics 2022; 6:376-387. [PMID: 35795341 PMCID: PMC9254362 DOI: 10.7150/ntno.71946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/03/2022] [Indexed: 11/05/2022] Open
Abstract
In sonodynamic therapy, cellular toxicity from sonosensitizer drugs, such as 5-aminolevulinic acid hydrochloride (5-ALA), may be triggered with focused ultrasound through the production of reactive oxygen species (ROS). Here we show that by increasing local oxygen during treatment, using oxygen-loaded perfluorocarbon nanodroplets (250 +/- 8 nm), we can increase the damage induced by 5-ALA, and monitor the severity by recording acoustic emissions in the brain. To achieve this, we sonicated the right striatum of 16 healthy rats after an intravenous dose of 5-ALA (200 mg/kg), followed by saline, nanodroplets, or oxygen-loaded nanodroplets. We assessed haemorrhage, edema and cell apoptosis immediately following, 24 hr, and 48 hr after focused ultrasound treatment. The localized volume of damaged tissue was significantly enhanced by the presence of oxygen-loaded nanodroplets, compared to ultrasound with unloaded nanodroplets (3-fold increase), and ultrasound alone (40-fold increase). Sonicating 1 hr following 5-ALA injection was found to be more potent than 2 hr following 5-ALA injection (2-fold increase), and the severity of tissue damage corresponded to the acoustic emissions from droplet vaporization. Enhancing the local damage from 5-ALA with monitored cavitation activity and additional oxygen could have significant implications in the treatment of atherosclerosis and non-invasive ablative surgeries.
Collapse
Affiliation(s)
- Harriet Lea-Banks
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Sheng-Kai Wu
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Hannah Lee
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Navarro-Becerra JA, Song KH, Martinez P, Borden MA. Microbubble Size and Dose Effects on Pharmacokinetics. ACS Biomater Sci Eng 2022; 8:1686-1695. [PMID: 35357814 DOI: 10.1021/acsbiomaterials.2c00043] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Optimization of contrast-enhanced imaging and focused ultrasound therapy requires a comprehensive understanding of in vivo microbubble (MB) pharmacokinetics. Prior studies have focused pharmacokinetic analysis on indirect techniques, such as ultrasound imaging of the blood pool and gas chromatography of exhaled gases. The goal of this work was to measure the MB concentration directly in blood and correlate the pharmacokinetic parameters with the MB size and dose. MB volume dose (MVD) was chosen to combine the size distribution and number into a single-dose parameter. Different MB sizes (2, 3, and 5 μm diameter) at 5-40 μL/kg MVD were intravenously injected. Blood samples were withdrawn at different times (1-10 min) and analyzed by image processing. We found that for an MVD threshold < 40 μL/kg for 2 and 3 μm and <10 μL/kg for 5 μm, MB clearance followed first-order kinetics. When matching MVD, MBs of different sizes had comparable half-lives, indicating that gas dissolution and elimination by the lungs are the primary mechanisms for elimination. Above the MVD threshold, MB clearance followed biexponential kinetics, suggesting a second elimination mechanism mediated by organ retention, possibly in the lung, liver, and spleen. In conclusion, we present the first direct MB pharmacokinetic study, demonstrate the utility of MVD as a unified dose metric, and provide insights into the mechanisms of MB clearance from circulation.
Collapse
Affiliation(s)
- J Angel Navarro-Becerra
- Mechanical Engineering Department, University of Colorado, Boulder, Colorado 80309, United States
| | - Kang-Ho Song
- Mechanical Engineering Department, University of Colorado, Boulder, Colorado 80309, United States
| | - Payton Martinez
- Biomedical Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
| | - Mark A Borden
- Mechanical Engineering Department, University of Colorado, Boulder, Colorado 80309, United States.,Biomedical Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
16
|
Wang F, Dong L, Wei X, Wang Y, Chang L, Wu H, Liu S, Chang Y, Yin Y, Luo X, Jia X, Yan F, Li N. Effect of Gambogic Acid-Loaded Porous-Lipid/PLGA Microbubbles in Combination With Ultrasound-Triggered Microbubble Destruction on Human Glioma. Front Bioeng Biotechnol 2021; 9:711787. [PMID: 34604184 PMCID: PMC8479098 DOI: 10.3389/fbioe.2021.711787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Gambogic acid (GA) is a highly effective antitumor agent, and it is used for the treatment of a wide range of cancers. It is challenging to deliver drugs to the central nervous system due to the inability of GA to cross the blood-brain barrier (BBB). Studies have shown that ultrasound-targeted microbubble destruction can be used for transient and reversible BBB disruption, significantly facilitating intracerebral drug delivery. We first prepared GA-loaded porous-lipid microbubbles (GA porous-lipid/PLGA MBs), and an in vitro BBB model was established. The cell viability was detected by CCK-8 assay and flow cytometry. The results indicate that U251 human glioma cells were killed by focused ultrasound (FUS) combined with GA/PLGA microbubbles. FUS combined with GA/PLGA microbubbles was capable of locally and transiently enhancing the permeability of BBB under certain conditions. This conformational change allows the release of GA to extracellular space. This study provides novel targets for the treatment of glioma.
Collapse
Affiliation(s)
- Feng Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Lei Dong
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xixi Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yongling Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Liansheng Chang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hongwei Wu
- Department of Chemistry, Xinxiang Medical University, Xinxiang, China
| | - Shuyuan Liu
- Department of Infectious Diseases, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China
| | - Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yaling Yin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiaoqiu Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiaojian Jia
- Shenzhen Kangning Hospital and Shenzhen Mental Health Center, Shenzhen, China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nana Li
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
17
|
Chattaraj R, Hammer DA, Lee D, Sehgal CM. Multivariable Dependence of Acoustic Contrast of Fluorocarbon and Xenon Microbubbles under Flow. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2676-2691. [PMID: 34112553 PMCID: PMC8355047 DOI: 10.1016/j.ultrasmedbio.2021.04.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Microbubbles (MBs) are 1 to 10 µm gas particles stabilized by an amphiphilic shell capable of responding to biomedical ultrasound with strong acoustic signals, allowing them to be commonly used in ultrasound imaging and therapy. The composition of both the shell and the core determines their stability and acoustic properties. While there has been extensive characterization of the dissolution, oscillation, cavitation, collapse and therefore, ultrasound contrast of MBs under static conditions, few reports have examined such behavior under hydrodynamic flow. In this study, we evaluate the interplay of ultrasound parameters (five different mechanical indices [MIs]), MB shell parameter (shell stiffness), type of gas (perfluorocarbon for diagnostic imaging and xenon as a therapeutic gas), and a flow parameter (flow rate) on the ultrasound signal of phospholipid-stabilized MBs flowing through a latex tube embedded in a tissue-mimicking phantom. We find that the contrast gradient (CG), a metric of the rate of decay of contrast along the length of the tube, and the contrast peak (CP), the location where the maximum contrast is reached, depend on the conditions of flow, imaging, and MB material. For instance, while the contrast near the flow inlet of the field of view is highest for a softer shell (dipalmitoylphosphatidylcholine [DPPC], C16) than for stiffer shells (distearoylphosphatidylcholine [DSPC], C18, and dibehenoylphosphatidylcholine [DBPC], C22), the contrast decay is also faster; stiffer shells provide more resistance and hence lead to slower MB dissolution/destruction. At higher flow rates, the CG is low for a fixed length of time because each MB is exposed to ultrasound for a shorter period. The CG becomes high for low flow rates, especially at high incident pressures (high MI), causing more MB destruction closer to the inlet of the field of view. Also, the CP shifts toward the inlet at low flow rates, high MIs, and low shell stiffness. We also report the first demonstration of sustained ultrasound flow imaging of a water-soluble, therapeutic gas MB (xenon). We find that an increased MB concentration is necessary for obtaining the same signal magnitude for xenon MBs. In summary, this study builds a framework depicting how multiple variables simultaneously affect the evolution of MB ultrasound contrast under flow. Depending on the MB composition, imaging conditions, transducer positioning, and image processing, building on such a framework could potentially allow for extraction of additional diagnostic information than is commonly analyzed for physiological flow.
Collapse
Affiliation(s)
- Rajarshi Chattaraj
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel A Hammer
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chandra M Sehgal
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
18
|
McHugh CT, Durham PG, Kelley M, Dayton PA, Branca RT. Magnetic Resonance Detection of Gas Microbubbles via HyperCEST: A Path Toward Dual Modality Contrast Agent. Chemphyschem 2021; 22:1219-1228. [PMID: 33852753 PMCID: PMC8494452 DOI: 10.1002/cphc.202100183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/14/2021] [Indexed: 11/06/2022]
Abstract
Gas microbubbles are an established clinical ultrasound contrast agent. They could also become a powerful magnetic resonance (MR) intravascular contrast agent, but their low susceptibility-induced contrast requires high circulating concentrations or the addition of exogenous paramagnetic nanoparticles for MR detection. In order to detect clinical in vivo concentrations of raw microbubbles via MR, an alternative detection scheme must be used. HyperCEST is an NMR technique capable of indirectly detecting signals from very dilute molecules (concentrations well below the NMR detection threshold) that exchange hyperpolarized 129 Xe. Here, we use quantitative hyperCEST to show that microbubbles are very efficient hyperCEST agents. They can accommodate and saturate millions of 129 Xe atoms at a time, allowing for their indirect detection at concentrations as low as 10 femtomolar. The increased MR sensitivity to microbubbles achieved via hyperCEST can bridge the gap for microbubbles to become a dual modality contrast agent.
Collapse
Affiliation(s)
- Christian T. McHugh
- Department of Physics & Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Phillip G. Durham
- Department of Pharmacoengineering and Molecular Pharmaceutics, The University of North arolina at Chapel Hill, Chapel Hill, NC 27599
| | - Michele Kelley
- Department of Physics & Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Paul A. Dayton
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Rosa T. Branca
- Department of Physics & Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
19
|
Lacerda Q, Tantawi M, Leeper DB, Wheatley MA, Eisenbrey JR. Emerging Applications of Ultrasound-Contrast Agents in Radiation Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:1465-1474. [PMID: 33653626 PMCID: PMC8044052 DOI: 10.1016/j.ultrasmedbio.2021.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 05/29/2023]
Abstract
Radiation therapy (RT) causes DNA damage through ionization, leading to double-strand breaks. In addition, it generates reactive oxygen species (ROS), which are toxic to tumor cells and the vasculature. However, hypoxic regions in the tumor have been shown to not only decrease treatment response but also increase the likelihood of recurrence and metastasis. Ultrasound-sensitive micro-bubbles are emerging as a useful diagnostic and therapeutic tool within RT. Contrast-enhanced ultrasound (CEUS) has shown great promise in early prediction of tumor response to RT. Ultrasound-triggered micro-bubble cavitation has also been shown to induce bio-effects that can sensitize angiogenic tumor vessels to RT. Additionally, ultrasound can trigger the release of drugs from micro-bubble carriers via localized micro-bubble destruction. This approach has numerous applications in RT, including targeted oxygen delivery before radiotherapy. Furthermore, micro-bubbles can be used to locally create ROS without radiation. Sonodynamic therapy uses focused ultrasound and a sonosensitizer to selectively produce ROS in the tumor region and has been explored as a treatment option for cancer. This review summarizes emerging applications of ultrasound contrast agents in RT and ROS augmentation.
Collapse
Affiliation(s)
- Quezia Lacerda
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, Pennsylvania, USA; Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Mohamed Tantawi
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Dennis B Leeper
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Margaret A Wheatley
- School of Biomedical Engineering and Health Sciences, Drexel University, Philadelphia, Pennsylvania, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
20
|
Synthesis of a gemcitabine-modified phospholipid and its subsequent incorporation into a single microbubble formulation loaded with paclitaxel for the treatment of pancreatic cancer using ultrasound-targeted microbubble destruction. Eur J Pharm Biopharm 2021; 165:374-382. [PMID: 34038797 DOI: 10.1016/j.ejpb.2021.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 12/24/2022]
Abstract
Gemcitabine and nab-paclitaxel (Abraxane®) is a standard of care chemotherapy combination used in the treatment of patients with advanced pancreatic cancer. While the combination has shown a survival benefit when compared to gemcitabine monotherapy, it is associated with significant off-target toxicity. Ultrasound targeted microbubble destruction (UTMD) has emerged as an effective strategy for the site-specific deposition of drug-payloads. However, loading a single microbubble formulation with two drug payloads can be challenging and often involves several manipulations post-microbubble preparation that can be cumbersome and generally results in low / inconsistent drug loadings. In this manuscript, we report the one-pot synthesis of a gemcitabine functionalised phospholipid and use it to successfully generate stable microbubble formulations loaded with gemcitabine (Lipid-Gem MB) or a combination of gemcitabine and paclitaxel (Lipid-Gem-PTX MB). Efficacy of the Lipid-Gem MB and Lipid-Gem-PTX MB formulations, following ultrasound (US) stimulation, was evaluated in a three-dimensional (3D) PANC-1 spheroid model of pancreatic cancer and a mouse model bearing ectopic BxPC-3 tumours. The results demonstrated a significant reduction in the cell viability in spheroids for both formulations reducing from 90 ± 10% to 62 ± 5% for Lipid-Gem MB and 84 ± 10% to 30 ± 6% Lipid-Gem-PTX MB following US irradiation. When compared with a clinically relevant dose of free gemcitabine and paclitaxel (i.e. non-particle bound) in a BxPC-3 murine pancreatic tumour model, both formulations also improved tumour growth delay with tumours 40 ± 20% and 40 ± 30% smaller than the respective free drug formulation when treated with Lipid-Gem MB and Lipid-Gem-PTX MB respectively, at the conclusion of the experiment. These results highlight the potential of UTMD mediated Gem / PTX as a treatment for pancreatic cancer and the facile preparation of Lipid-Gem-PTX MBs using a gemcitabine functionalised lipid should expedite clinical translation of this technology.
Collapse
|
21
|
Nicolson F, Ali A, Kircher MF, Pal S. DNA Nanostructures and DNA-Functionalized Nanoparticles for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001669. [PMID: 33304747 PMCID: PMC7709992 DOI: 10.1002/advs.202001669] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/27/2020] [Indexed: 05/12/2023]
Abstract
In the last two decades, DNA has attracted significant attention toward the development of materials at the nanoscale for emerging applications due to the unparalleled versatility and programmability of DNA building blocks. DNA-based artificial nanomaterials can be broadly classified into two categories: DNA nanostructures (DNA-NSs) and DNA-functionalized nanoparticles (DNA-NPs). More importantly, their use in nanotheranostics, a field that combines diagnostics with therapy via drug or gene delivery in an all-in-one platform, has been applied extensively in recent years to provide personalized cancer treatments. Conveniently, the ease of attachment of both imaging and therapeutic moieties to DNA-NSs or DNA-NPs enables high biostability, biocompatibility, and drug loading capabilities, and as a consequence, has markedly catalyzed the rapid growth of this field. This review aims to provide an overview of the recent progress of DNA-NSs and DNA-NPs as theranostic agents, the use of DNA-NSs and DNA-NPs as gene and drug delivery platforms, and a perspective on their clinical translation in the realm of oncology.
Collapse
Affiliation(s)
- Fay Nicolson
- Department of ImagingDana‐Farber Cancer Institute & Harvard Medical SchoolBostonMA02215USA
- Center for Molecular Imaging and NanotechnologyMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
| | - Akbar Ali
- Department of ChemistryIndian Institute of Technology‐ BhilaiRaipurChhattisgarh492015India
| | - Moritz F. Kircher
- Department of ImagingDana‐Farber Cancer Institute & Harvard Medical SchoolBostonMA02215USA
- Center for Molecular Imaging and NanotechnologyMemorial Sloan Kettering Cancer CenterNew YorkNY10065USA
- Department of RadiologyBrigham and Women's Hospital & Harvard Medical SchoolBostonMA02215USA
| | - Suchetan Pal
- Department of ChemistryIndian Institute of Technology‐ BhilaiRaipurChhattisgarh492015India
| |
Collapse
|