1
|
Do TD, Mukhatov A, Tolebay A, Le TA, Pham TT. A comprehensive analysis of the impacts of Image Resolution and Scanning Times on the quality of MPI-reconstructed images. Sci Rep 2025; 15:5519. [PMID: 39953088 PMCID: PMC11828862 DOI: 10.1038/s41598-025-89296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
Scanning trajectories are essential and important components of trajectory-based scanning and imaging systems such as laser scanning confocal microscopes, atomic force microscopes (AFM), laser scanning systems for aerial surveying (LiDAR), micro-electromechanical systems (MEMS), medical imaging and 2D/3D printing. Previous study has demonstrated that Sinusoidal Lissajous is the optimal scanning trajectory and proposed that increasing the scanning repetition could further enhance image quality. However, it is challenging to pinpoint the essential elements needed to enhance the quality of the reconstructed images since there is currently no comprehensive analysis of how the scanning trajectory resolution and scanning time affect the reconstructed image quality. The purpose of this work is to look into the influence of scanning resolution and scanning time on the quality of magnetic particle imaging (MPI)-reconstructed images across a variety of scanning trajectories. This study offers a comprehensive analysis of how scanning repetition and scanning time affect the reconstructed images' quality at the individual pixel in the field of view (FOV) as well as throughout the entire FOV. The impacts of the scanning time were investigated both before and after image reconstruction. In the pre-reconstruction phase, the minimum and maximum distances to the closest neighboring points in the FOV and their distribution in different regions of the FOV were analyzed in order to investigate the density, homogeneity, and time spent on each pixel. Here, we demonstrated that the image resolution for any scanning trajectory is scale invariance, meaning that for a fixed frequency ratio [Formula: see text], the ratio of pixel size to image FOV size remains constant. Peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), normalized root mean square error (NRMSE), and normalized sum of squared error (NSSE) are used to evaluate and compare the reconstructed images' quality in the post-reconstruction stage. It is found that the Sinusoidal Lissajous scanning trajectory is the best in terms of accuracy, structural similarity, and signal-to-noise. We showed that only the image quality for bidirectional Cartesian and sinusoidal Lissajous trajectories are sensitive to scanning time, particularly at the pixel scale. Furthermore, contrary to expectations, we discovered that optimizing the scanning repetition did not enhance the MPI-reconstructed image quality. Nevertheless, the image quality would be enhanced by extending the scanning duration through decreasing the scanning frequency. The optimal scanning frequency is half of the frequently used 25 kHz for the chosen [Formula: see text] ratio of 100.
Collapse
Affiliation(s)
- Ton Duc Do
- Department of Robotics, School of Engineering and Digital Sciences (SEDS), Nazarbayev University, Astana, 010000, Kazakhstan.
| | - Azamat Mukhatov
- Department of Robotics, School of Engineering and Digital Sciences (SEDS), Nazarbayev University, Astana, 010000, Kazakhstan
| | - Aizhan Tolebay
- Department of Biology, School of Sciences, Humanities Nazarbayev University, Astana, 010000, Kazakhstan
| | - Tuan-Anh Le
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Tri T Pham
- Department of Biology, School of Sciences, Humanities Nazarbayev University, Astana, 010000, Kazakhstan.
| |
Collapse
|
2
|
Good HJ, Sanders T, Melnyk A, Mohtasebzadeh AR, Imhoff ED, Goodwill P, Rinaldi-Ramos CM. On the partial volume effect in magnetic particle imaging. Phys Med Biol 2025; 70:045006. [PMID: 39902767 DOI: 10.1088/1361-6560/ada417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025]
Abstract
Objective.Magnetic particle imaging (MPI) is an emerging tomographic 'hot spot' imaging modality with potential to visualize superparamagnetic iron oxide nanoparticle tracer distributions with high sensitivity and quantitative accuracy. MPI shares many similarities with positron emission tomography (PET), where the partial volume effect (PVE) can result in signal under- and over-quantification due to spill-over of signal arising from limited resolution. While the PVE has been alluded to in the MPI literature it has not been previously studied nor characterized. The objective of this study was to systematically characterize this PVE in MPI.Approach.This contribution characterizes the PVE using models of varying size and shape filled with a uniform concentration of tracer. The effect of object size on signal distribution was analyzed after application of a new image post-processing filter.Main results.As object size increased, signal distribution increased to a maximum signal value independent of object geometry and proportional to tracer concentration. Furthermore, for small objects with characteristic dimensions below the resolution of the tracer at the scanning conditions used, signal suppression was observed. These results are consistent with foundational observations of PVE in PET, suggesting that approaches to overcome the PVE in PET may be applicable to MPI.Significance.This finding has significant impact on the MPI field by demonstrating the presence of the PVE phenomenon that can directly influence imaging results.
Collapse
Affiliation(s)
- Hayden J Good
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32601, United States of America
| | - Toby Sanders
- Magnetic Insight Inc, Alameda, CA 94501, United States of America
| | - Andrii Melnyk
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32601, United States of America
| | | | - Eric Daniel Imhoff
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32601, United States of America
| | - Patrick Goodwill
- Magnetic Insight Inc, Alameda, CA 94501, United States of America
| | - Carlos M Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32601, United States of America
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32601, United States of America
| |
Collapse
|
3
|
Sehl OC, Yang Y, Anjier AR, Nevozhay D, Cheng D, Guo K, Fellows B, Mohtasebzadeh AR, Mason EE, Sanders T, Kim P, Trease D, Koul D, Goodwill PW, Sokolov K, Wintermark M, Gordon N, Greve JM, Gopalakrishnan V. Preclinical and Clinical-Scale Magnetic Particle Imaging of Natural Killer Cells: in vitro and ex vivo Demonstration of Cellular Sensitivity, Resolution, and Quantification. Mol Imaging Biol 2025; 27:78-88. [PMID: 39653984 DOI: 10.1007/s11307-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/23/2024] [Accepted: 11/20/2024] [Indexed: 02/08/2025]
Abstract
PURPOSE Clinical adoption of NK cell immunotherapy is underway for medulloblastoma and osteosarcoma, however there is currently little feedback on cell fate after administration. We propose magnetic particle imaging (MPI) may have applications for the quantitative detection of NK cells. PROCEDURES Human-derived NK-92 cells were labeled by co-incubation with iron oxide nanoparticles (VivoTrax™) for 24 h then excess nanoparticles were washed with centrifugation. Cytolytic activity of labeled versus unlabeled NK-92 cells was assessed after 4 h of co-incubation with medulloblastoma cells (DAOY) or osteosarcoma cells (LM7 or OS17). Labeled NK-92 cells at two different doses (0.5 or 1 × 106) were administered to excised mouse brains (cerebellum), fibulas, and lungs then imaged by 3D preclinical MPI (MOMENTUM™) for detection relative to fiducial markers. NK-92 cells were also imaged by clinical-scale MPI under development at Magnetic Insight Inc. RESULTS NK-92 cells were labeled with an average of 3.17 pg Fe/cell with no measurable effects on cell viability or cytolytic activity against 3 tumor cell lines. MPI signal was directly quantitative with the number of labeled NK-92 cells, with preclinical limit of detection of 3.1 × 104 cells on MOMENTUM imager. Labeled NK-92 cells could be accurately localized in mouse brains, fibulas, and lungs within < 1 mm of stereotactic injection coordinates with preclinical scanner. Feasibility for detection on a clinical-scale MPI scanner was demonstrated using 4 × 107 labeled NK-92 cells, which is in the range of NK cell doses administered in our previous clinical trial. CONCLUSION MPI can provide sensitive, quantitative, and accurate spatial information on NK cells soon after delivery, showing initial promise to address a significant unmet clinical need to track NK cell fate in patients.
Collapse
Affiliation(s)
- Olivia C Sehl
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA.
| | - Yanwen Yang
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Ariana R Anjier
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Dmitry Nevozhay
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Donghang Cheng
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Kelvin Guo
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | | | | | - Erica E Mason
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Toby Sanders
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Petrina Kim
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - David Trease
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Dimpy Koul
- Department of Neuroradiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Konstantin Sokolov
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Max Wintermark
- Department of Neuroradiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nancy Gordon
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA
| | - Joan M Greve
- Magnetic Insight Inc, 2020 N Loop Rd, Alameda, CA, 94502, USA
| | - Vidya Gopalakrishnan
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, USA.
- Brain Tumor Center, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson- UT Health Graduate School of Biomedical Science, Houston, TX, USA.
| |
Collapse
|
4
|
Velazquez-Albino AC, Imhoff ED, Rinaldi-Ramos CM. Advances in engineering nanoparticles for magnetic particle imaging (MPI). SCIENCE ADVANCES 2025; 11:eado7356. [PMID: 39772674 PMCID: PMC11708890 DOI: 10.1126/sciadv.ado7356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Magnetic particle imaging (MPI) is an emerging imaging modality with exciting biomedical applications, such as cell tracking, blood pool imaging, and image-guided magnetic hyperthermia. MPI is unique in that signal is generated entirely by synthetic nanoparticle tracers, motivating precise engineering of magnetic nanoparticle properties including size, shape, composition, and coating to address the needs of specific applications. However, success in many applications and in clinical transition requires development of high-sensitivity and high-resolution tracers, for which there is considerable room for improvement. This review summarizes recent advancements in MPI tracer synthesis and compares reported tracers in terms of sensitivity and resolution. In making these comparisons, we point out inconsistencies in reporting of MPI tracer properties. To overcome this challenge, we propose a list of properties to standardize characterization and reporting of new MPI tracers and improve communication within the field.
Collapse
Affiliation(s)
| | - Eric Daniel Imhoff
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Carlos M. Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA
| |
Collapse
|
5
|
Wang X, Fan R, Mu M, Zhou L, Zou B, Tong A, Guo G. Harnessing nanoengineered CAR-T cell strategies to advance solid tumor immunotherapy. Trends Cell Biol 2024:S0962-8924(24)00252-6. [PMID: 39721923 DOI: 10.1016/j.tcb.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
The efficacy and safety of chimeric antigen receptor (CAR) T cell therapy is still inconclusive in solid tumor treatment. Recently, nanotechnology has emerged as a potent strategy to reshape CAR-T cell therapy with promising outcomes. This review aims to discuss the significant potential of nano-engineered CAR-T cell therapy in addressing existing challenges, including CAR-T cell engineering evolution, tumor microenvironment (TME) modulation, and precise CAR-T cell therapy (precise targeting, monitoring, and activation), under the main consideration of clinical translation. It also focuses on the growing trend of technological convergence within this domain, such as mRNA therapeutics, organoids, neoantigen, and artificial intelligence. Moreover, safety management of nanomedicine is seriously emphasized to facilitate clinical translation.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Mu
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Aiping Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Baena JC, Pérez LM, Toro-Pedroza A, Kitawaki T, Loukanov A. CAR T Cell Nanosymbionts: Revealing the Boundless Potential of a New Dyad. Int J Mol Sci 2024; 25:13157. [PMID: 39684867 DOI: 10.3390/ijms252313157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer treatment has traditionally focused on eliminating tumor cells but faces challenges such as resistance and toxicity. A promising direction involves targeting the tumor microenvironment using CAR T cell immunotherapy, which has shown potential for treating relapsed and refractory cancers but is limited by high costs, resistance, and toxicity, especially in solid tumors. The integration of nanotechnology into ICAM cell therapy, a concept we have named "CAR T nanosymbiosis", offers new opportunities to overcome these challenges. Nanomaterials can enhance CAR T cell delivery, manufacturing, activity modulation, and targeting of the tumor microenvironment, providing better control and precision. This approach aims to improve the efficacy of CAR T cells against solid tumors, reduce associated toxicities, and ultimately enhance patient outcomes. Several studies have shown promising results, and developing this therapy further is essential for increasing its accessibility and effectiveness. Our "addition by subtraction model" synthesizes these multifaceted elements into a unified strategy to advance cancer treatment paradigms.
Collapse
Affiliation(s)
- Juan C Baena
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Lucy M Pérez
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Alejandro Toro-Pedroza
- Division of Oncology, Department of Medicine, Fundación Valle del Lili, ICESI University, Carrera 98 No. 18-49, Cali 760032, Colombia
- LiliCAR-T Group, Fundación Valle del Lili, ICESI University, Cali 760032, Colombia
| | - Toshio Kitawaki
- Department of Hematology, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Alexandre Loukanov
- Department of Chemistry and Materials Science, National Institute of Technology, Gunma College, Maebashi 371-8530, Japan
- Laboratory of Engineering Nanobiotechnology, University of Mining and Geology "St. Ivan Rilski", 1700 Sofia, Bulgaria
| |
Collapse
|
7
|
Trozzo S, Neupane B, Foster PJ. A Comparison of the Sensitivity and Cellular Detection Capabilities of Magnetic Particle Imaging and Bioluminescence Imaging. Tomography 2024; 10:1846-1866. [PMID: 39590944 PMCID: PMC11598277 DOI: 10.3390/tomography10110135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Preclinical cell tracking is enhanced with a multimodal imaging approach. Bioluminescence imaging (BLI) is a highly sensitive optical modality that relies on engineering cells to constitutively express a luciferase gene. Magnetic particle imaging (MPI) is a newer imaging modality that directly detects superparamagnetic iron oxide (SPIO) particles used to label cells. Here, we compare BLI and MPI for imaging cells in vitro and in vivo. METHODS Mouse 4T1 breast carcinoma cells were transduced to express firefly luciferase, labeled with SPIO (ProMag), and imaged as cell samples after subcutaneous injection into mice. RESULTS For cell samples, the BLI and MPI signals were strongly correlated with cell number. Both modalities presented limitations for imaging cells in vivo. For BLI, weak signal penetration, signal attenuation, and scattering prevented the detection of cells for mice with hair and for cells far from the tissue surface. For MPI, background signals obscured the detection of low cell numbers due to the limited dynamic range, and cell numbers could not be accurately quantified from in vivo images. CONCLUSIONS It is important to understand the shortcomings of these imaging modalities to develop strategies to improve cellular detection sensitivity.
Collapse
Affiliation(s)
- Sophia Trozzo
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (B.N.); (P.J.F.)
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Bijita Neupane
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (B.N.); (P.J.F.)
| | - Paula J. Foster
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada; (B.N.); (P.J.F.)
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
8
|
Chada NC, Wilson JT. Jump-starting chimeric antigen receptor-T cells to go the extra mile with nanotechnology. Curr Opin Biotechnol 2024; 89:103179. [PMID: 39168033 DOI: 10.1016/j.copbio.2024.103179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/16/2023] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
Despite success in treating hematologic malignancies, chimeric antigen receptor-T cell (CAR-T) therapy still faces multiple challenges that have halted progress, especially against solid tumors. Recent advances in nanoscale engineeirng provide several avenues for overcoming these challenges, including more efficienct programming of CAR-Ts ex vivo, promoting immune responsiveness in the tumor microenvironment (TME) in vivo, and boosting CAR-T function in situ. Here, we summarize recent innovations that leverage nanotechnology to directly address the major obstacles that impede CAR-T therapy from reaching its full potential across various cancer types. We conclude with a commentary on the state of the field and how nanotechnology can shape the future of CAR-T and adoptive cell therapy in immuno-oncology.
Collapse
Affiliation(s)
- Neil C Chada
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John T Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
9
|
Tay RE, P L, Pang ST, Low KE, Tay HC, Ho CM, Malleret B, Rötzschke O, Olivo M, Tay ZW. High-efficiency magnetophoretic labelling of adoptively-transferred T cells for longitudinal in vivo Magnetic Particle Imaging. Theranostics 2024; 14:6138-6160. [PMID: 39431019 PMCID: PMC11488102 DOI: 10.7150/thno.95527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/07/2024] [Indexed: 10/22/2024] Open
Abstract
While adoptive cell therapies (ACT) have been successful as therapies for blood cancers, they have limited efficacy in treating solid tumours, where the tumour microenvironment excludes and suppresses adoptively transferred tumour-specific immune cells. A major obstacle to improving cell therapies for solid tumours is a lack of accessible and quantitative imaging modalities capable of tracking the migration and immune functional activity of ACT products for an extended duration in vivo. Methods: A high-efficiency magnetophoretic method was developed for facile magnetic labelling of hard-to-label immune cells, which were then injected into tumour-bearing mice and imaged over two weeks with a compact benchtop Magnetic Particle Imager (MPI) design. Results: Labelling efficiency was improved more than 10-fold over prior studies enabling longer-term tracking for at least two weeks in vivo of the labelled immune cells and their biodistribution relative to the tumour. The new imager showed 5-fold improved throughput enabling much larger density of data (up to 20 mice per experiment). Conclusions: Taken together, our innovations enable the convenient and practical use of MPI to visualise the localisation of ACT products in in vivo preclinical models for longitudinal, non-invasive functional evaluation of therapeutic efficacy.
Collapse
Affiliation(s)
- Rong En Tay
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Republic of Singapore
| | - Lokamitra P
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Republic of Singapore
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Republic of Singapore
| | - Shun Toll Pang
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Republic of Singapore
| | - Kay En Low
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | - Hui Chien Tay
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Republic of Singapore
| | - Charmaine Min Ho
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Republic of Singapore
| | - Benoit Malleret
- Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| | - Olaf Rötzschke
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore 138648, Republic of Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Malini Olivo
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, #07-01 Nanos, Singapore 138669, Republic of Singapore
| | - Zhi Wei Tay
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Republic of Singapore
- National Institute of Advanced Industrial Science and Technology (AIST), Health and Medical Research Institute (HMRI), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564, Japan
| |
Collapse
|
10
|
Mohammadi V, Esmaeilzadeh K, Esmaeilzadeh A. Application of magnetic nanoparticles in adoptive cell therapy of cancer; training, guiding and imaging cells. Nanomedicine (Lond) 2024; 19:2315-2329. [PMID: 39258568 PMCID: PMC11488091 DOI: 10.1080/17435889.2024.2395239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
Adoptive cell therapy (ACT) is on the horizon as a thrilling therapeutic plan for cancer. However, widespread application of ACT is often restricted by several challenges, including complexity of priming tumor-specific T cells and poor trafficking in solid tumors. The convergence of nanotechnology and cancer immunotherapy is coming of age and could address the limitations of ACT. Recent studies have provided evidence on the application of magnetic nanoparticles (MNPs) to generate smart immune cells and to bypass problems associated with conventional ACT. Herein, we review current progress in the application of MNPs to improve preparing, guiding and tracking immune cells in cancer ACT. Besides, we comment on the challenges ahead and strategies to optimize MNPs for clinical settings.
Collapse
Affiliation(s)
- Vahid Mohammadi
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
11
|
Day NB, Orear CR, Velazquez-Albino AC, Good HJ, Melnyk A, Rinaldi-Ramos CM, Shields CW. Magnetic Cellular Backpacks for Spatial Targeting, Imaging, and Immunotherapy. ACS APPLIED BIO MATERIALS 2024; 7:4843-4855. [PMID: 38048258 PMCID: PMC11147956 DOI: 10.1021/acsabm.3c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Adoptive cell transfer (ACT) therapies are growing in popularity due to their ability to interact with diseased tissues in a specific manner. Disc-shaped particles, or "backpacks", that bind to cellular surfaces show promise for augmenting the therapeutic potential of adoptively transferred cells by resisting phagocytosis and locally releasing drugs to maintain cellular activity over time. However, many ACTs suffer from limited tumor infiltration and retention and lack a method for real-time spatial analysis. Therefore, we have designed biodegradable backpacks loaded with superparamagnetic iron oxide nanoparticles (SPIONs) to improve upon current ACT strategies by (i) controlling the localization of cell-backpack complexes using gradient magnetic fields and (ii) enabling magnetic particle imaging (MPI) to track complexes after injection. We show that magnetic backpacks bound to macrophages and loaded with a proinflammatory drug, resiquimod, maintain anticancer phenotypes of carrier macrophages for 5 days and create cytokine "factories" that continuously release IL-12. Furthermore, we establish that forces generated by gradient magnet fields are sufficient to displace cell-backpack complexes in physiological settings. Finally, we demonstrate that MPI can be used to visualize cell-backpack complexes in mouse tumors, enabling a potential strategy to track the biodistribution of ACTs in real time.
Collapse
Affiliation(s)
- Nicole B. Day
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO 80303, United States
| | - Christopher R. Orear
- Biomedical Engineering Program, University of Colorado Boulder, Boulder CO 80303, United States
| | | | - Hayden J. Good
- Department of Chemical Engineering, University of Florida, Gainesville FL 32611, United States
| | - Andrii Melnyk
- Department of Chemical Engineering, University of Florida, Gainesville FL 32611, United States
| | - Carlos M. Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, Gainesville FL 32611, United States
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville FL 32611, United States
| | - C. Wyatt Shields
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder CO 80303, United States
- Biomedical Engineering Program, University of Colorado Boulder, Boulder CO 80303, United States
| |
Collapse
|
12
|
Rentzeperis F, Rivera D, Zhang JY, Brown C, Young T, Rodriguez B, Schupper A, Price G, Gomberg J, Williams T, Bouras A, Hadjipanayis C. Recent Developments in Magnetic Hyperthermia Therapy (MHT) and Magnetic Particle Imaging (MPI) in the Brain Tumor Field: A Scoping Review and Meta-Analysis. MICROMACHINES 2024; 15:559. [PMID: 38793132 PMCID: PMC11123314 DOI: 10.3390/mi15050559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024]
Abstract
Magnetic hyperthermia therapy (MHT) is a promising treatment modality for brain tumors using magnetic nanoparticles (MNPs) locally delivered to the tumor and activated with an external alternating magnetic field (AMF) to generate antitumor effects through localized heating. Magnetic particle imaging (MPI) is an emerging technology offering strong signal-to-noise for nanoparticle localization. A scoping review was performed by systematically querying Pubmed, Scopus, and Embase. In total, 251 articles were returned, 12 included. Articles were analyzed for nanoparticle type used, MHT parameters, and MPI applications. Preliminary results show that MHT is an exciting treatment modality with unique advantages over current heat-based therapies for brain cancer. Effective application relies on the further development of unique magnetic nanoparticle constructs and imaging modalities, such as MPI, that can enable real-time MNP imaging for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Frederika Rentzeperis
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (F.R.); (D.R.); (J.Y.Z.); (C.B.); (T.Y.); (G.P.); (J.G.)
- Sinai BioDesign, Department of Neurosurgery, Mount Sinai, New York, NY 10029, USA;
| | - Daniel Rivera
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (F.R.); (D.R.); (J.Y.Z.); (C.B.); (T.Y.); (G.P.); (J.G.)
| | - Jack Y. Zhang
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (F.R.); (D.R.); (J.Y.Z.); (C.B.); (T.Y.); (G.P.); (J.G.)
| | - Cole Brown
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (F.R.); (D.R.); (J.Y.Z.); (C.B.); (T.Y.); (G.P.); (J.G.)
| | - Tirone Young
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (F.R.); (D.R.); (J.Y.Z.); (C.B.); (T.Y.); (G.P.); (J.G.)
- Sinai BioDesign, Department of Neurosurgery, Mount Sinai, New York, NY 10029, USA;
| | - Benjamin Rodriguez
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (F.R.); (D.R.); (J.Y.Z.); (C.B.); (T.Y.); (G.P.); (J.G.)
- Sinai BioDesign, Department of Neurosurgery, Mount Sinai, New York, NY 10029, USA;
| | - Alexander Schupper
- Department of Neurological Surgery, Mount Sinai Hospital, New York, NY 10029, USA;
| | - Gabrielle Price
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (F.R.); (D.R.); (J.Y.Z.); (C.B.); (T.Y.); (G.P.); (J.G.)
| | - Jack Gomberg
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (F.R.); (D.R.); (J.Y.Z.); (C.B.); (T.Y.); (G.P.); (J.G.)
| | - Tyree Williams
- Sinai BioDesign, Department of Neurosurgery, Mount Sinai, New York, NY 10029, USA;
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Alexandros Bouras
- Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA;
| | - Constantinos Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA;
- Center for Image-Guided Neurosurgery, Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
13
|
Xie X, Zhai J, Zhou X, Guo Z, Lo PC, Zhu G, Chan KWY, Yang M. Magnetic Particle Imaging: From Tracer Design to Biomedical Applications in Vasculature Abnormality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306450. [PMID: 37812831 DOI: 10.1002/adma.202306450] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Indexed: 10/11/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging non-invasive tomographic technique based on the response of magnetic nanoparticles (MNPs) to oscillating drive fields at the center of a static magnetic gradient. In contrast to magnetic resonance imaging (MRI), which is driven by uniform magnetic fields and projects the anatomic information of the subjects, MPI directly tracks and quantifies MNPs in vivo without background signals. Moreover, it does not require radioactive tracers and has no limitations on imaging depth. This article first introduces the basic principles of MPI and important features of MNPs for imaging sensitivity, spatial resolution, and targeted biodistribution. The latest research aiming to optimize the performance of MPI tracers is reviewed based on their material composition, physical properties, and surface modifications. While the unique advantages of MPI have led to a series of promising biomedical applications, recent development of MPI in investigating vascular abnormalities in cardiovascular and cerebrovascular systems, and cancer are also discussed. Finally, recent progress and challenges in the clinical translation of MPI are discussed to provide possible directions for future research and development.
Collapse
Affiliation(s)
- Xulin Xie
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Jiao Zhai
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Zhengjun Guo
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
- Department of Oncology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Pui-Chi Lo
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| | - Guangyu Zhu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Kannie W Y Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Shenzhen Futian Research Institute, Shenzhen, 518057, China
- Department of Biomedical Sciences, and Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, China
| |
Collapse
|
14
|
Velazquez-Albino AC, Nozka A, Melnyk A, Good HJ, Rinaldi-Ramos CM. Post-synthesis Oxidation of Superparamagnetic Iron Oxide Nanoparticles to Enhance Magnetic Particle Imaging Performance. ACS APPLIED NANO MATERIALS 2024; 7:279-291. [PMID: 38606282 PMCID: PMC11008578 DOI: 10.1021/acsanm.3c04442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
This study investigates the impact of post-synthesis oxidation on the performance of superparamagnetic iron oxide nanoparticles (SPIONs) in magnetic particle imaging (MPI), an emerging technology with applications in diagnostic imaging and theranostics. SPIONs synthesized from iron oleate were subjected to a post-synthesis oxidation treatment with a 1% Oxygen in Argon mixture. MPI performance, gauged via signal intensity and resolution using a MOMENTUM™ scanner, was correlated to the nanoparticles' physical and magnetic properties. Post-synthesis oxidation did not alter physical attributes like size and shape, but significantly enhanced magnetic properties. Saturation magnetization increased from 52% to 93% of the bulk value for magnetite, leading to better MPI performance in terms of signal intensity and resolution. However, the observed MPI performance did not fully align with predictions based on the ideal Langevin model, indicating the need for considering factors like relaxation and shape anisotropy. The findings underscore the potential of post-synthesis oxidation as a method to fine-tune magnetic properties of SPIONs and improve MPI performance, and the need for reproducible synthesis methods that afford finely tuned control of nanoparticle size, shape, and magnetic properties.
Collapse
Affiliation(s)
| | - Aniela Nozka
- Department of Bioengineering, Clemson University, Clemson, SC 29634
| | - Andrii Melnyk
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611
| | - Hayden J Good
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611
| | - Carlos M Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131
| |
Collapse
|
15
|
Peng Z, Yin L, Sun Z, Liang Q, Ma X, An Y, Tian J, Du Y. DERnet: a deep neural network for end-to-end reconstruction in magnetic particle imaging. Phys Med Biol 2023; 69:015002. [PMID: 38064750 DOI: 10.1088/1361-6560/ad13cf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Objective. Magnetic particle imaging (MPI) shows potential for contributing to biomedical research and clinical practice. However, MPI images are effectively affected by noise in the signal as its reconstruction is an ill-posed inverse problem. Thus, effective reconstruction method is required to reduce the impact of the noise while mapping signals to MPI images. Traditional methods rely on the hand-crafted data-consistency (DC) term and regularization term based on spatial priors to achieve noise-reducing and reconstruction. While these methods alleviate the ill-posedness and reduce noise effects, they may be difficult to fully capture spatial features.Approach. In this study, we propose a deep neural network for end-to-end reconstruction (DERnet) in MPI that emulates the DC term and regularization term using the feature mapping subnetwork and post-processing subnetwork, respectively, but in a data-driven manner. By doing so, DERnet can better capture signal and spatial features without relying on hand-crafted priors and strategies, thereby effectively reducing noise interference and achieving superior reconstruction quality.Main results. Our data-driven method outperforms the state-of-the-art algorithms with an improvement of 0.9-8.8 dB in terms of peak signal-to-noise ratio under various noise levels. The result demonstrates the advantages of our approach in suppressing noise interference. Furthermore, DERnet can be employed for measured data reconstruction with improved fidelity and reduced noise. In conclusion, our proposed method offers performance benefits in reducing noise interference and enhancing reconstruction quality by effectively capturing signal and spatial features.Significance. DERnet is a promising candidate method to improve MPI reconstruction performance and facilitate its more in-depth biomedical application.
Collapse
Affiliation(s)
- Zhengyao Peng
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing, People's Republic of China
| | - Lin Yin
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing, People's Republic of China
| | - Zewen Sun
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing, People's Republic of China
| | - Qian Liang
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing, People's Republic of China
| | - Xiaopeng Ma
- School of Control Science and Engineering, Shandong University, Jinan, Shandon, People's Republic of China
| | - Yu An
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, People's Republic of China
- School of Engineering Medicine, Beihang University, Beijing, People's Republic of China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing, People's Republic of China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, People's Republic of China
- School of Engineering Medicine, Beihang University, Beijing, People's Republic of China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing, People's Republic of China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- Beijing Key Laboratory of Molecular Imaging, Beijing, People's Republic of China
| |
Collapse
|
16
|
Good HJ, Sehl OC, Gevaert JJ, Yu B, Berih MA, Montero SA, Rinaldi-Ramos CM, Foster PJ. Inter-user Comparison for Quantification of Superparamagnetic Iron Oxides with Magnetic Particle Imaging Across Two Institutions Highlights a Need for Standardized Approaches. Mol Imaging Biol 2023; 25:954-967. [PMID: 37386319 DOI: 10.1007/s11307-023-01829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE Magnetic particle imaging (MPI) is being explored in biological contexts that require accurate and reproducible quantification of superparamagnetic iron oxide nanoparticles (SPIONs). While many groups have focused on improving imager and SPION design to improve resolution and sensitivity, a few have focused on improving quantification and reproducibility of MPI. The aim of this study was to compare MPI quantification results by two different systems and the accuracy of SPION quantification performed by multiple users at two institutions. PROCEDURES Six users (3 from each institute) imaged a known amount of Vivotrax + (10 μg Fe), diluted in a small (10 μL) or large (500 μL) volume. These samples were imaged with or without calibration standards in the field of view, to create a total of 72 images (6 users × triplicate samples × 2 sample volumes × 2 calibration methods). These images were analyzed by the respective user with two region of interest (ROI) selection methods. Image intensities, Vivotrax + quantification, and ROI selection were compared across users, within and across institutions. RESULTS MPI imagers at two different institutes produce significantly different signal intensities, that differ by over 3 times for the same concentration of Vivotrax + . Overall quantification yielded measurements that were within [Formula: see text] 20% from ground truth; however, SPION quantification values obtained at each laboratory were significantly different. Results suggest that the use of different imagers had a stronger influence on SPION quantification compared to differences arising from user error. Lastly, calibration conducted from samples in the imaging field of view gave the same quantification results as separately imaged samples. CONCLUSIONS This study highlights that there are many factors that contribute to the accuracy and reproducibility of MPI quantification, including variation between MPI imagers and users, despite pre-defined experimental setup, image acquisition parameters, and ROI selection analysis.
Collapse
Affiliation(s)
- Hayden J Good
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville, FL, 32611, USA.
| | - Olivia C Sehl
- Department of Medical Biophysics, Imaging Research Laboratories, Western University, Robarts Research Institute, London, ON, N6A 5B7, Canada
| | - Julia J Gevaert
- Department of Medical Biophysics, Imaging Research Laboratories, Western University, Robarts Research Institute, London, ON, N6A 5B7, Canada
| | - Bo Yu
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville, FL, 32611, USA
| | - Maryam A Berih
- Department of Medical Biophysics, Imaging Research Laboratories, Western University, Robarts Research Institute, London, ON, N6A 5B7, Canada
| | - Sebastian A Montero
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville, FL, 32611, USA
| | - Carlos M Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville, FL, 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville, FL, 32611, USA
| | - Paula J Foster
- Department of Medical Biophysics, Imaging Research Laboratories, Western University, Robarts Research Institute, London, ON, N6A 5B7, Canada
| |
Collapse
|
17
|
Hunger J, Schregel K, Boztepe B, Agardy DA, Turco V, Karimian-Jazi K, Weidenfeld I, Streibel Y, Fischer M, Sturm V, Santarella-Mellwig R, Kilian M, Jähne K, Sahm K, Wick W, Bunse L, Heiland S, Bunse T, Bendszus M, Platten M, Breckwoldt MO. In vivo nanoparticle-based T cell imaging can predict therapy response towards adoptive T cell therapy in experimental glioma. Theranostics 2023; 13:5170-5182. [PMID: 37908732 PMCID: PMC10614679 DOI: 10.7150/thno.87248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/09/2023] [Indexed: 11/02/2023] Open
Abstract
Rationale: Intrinsic brain tumors, such as gliomas are largely resistant to immunotherapies including immune checkpoint blockade. Adoptive cell therapies (ACT) including chimeric antigen receptor (CAR) or T cell receptor (TCR)-transgenic T cell therapy targeting glioma-associated antigens are an emerging field in glioma immunotherapy. However, imaging techniques for non-invasive monitoring of adoptively transferred T cells homing to the glioma microenvironment are currently lacking. Methods: Ultrasmall iron oxide nanoparticles (NP) can be visualized non-invasively by magnetic resonance imaging (MRI) and dedicated MRI sequences such as T2* mapping. Here, we develop a protocol for efficient ex vivo labeling of murine and human TCR-transgenic and CAR T cells with iron oxide NPs. We assess labeling efficiency and T cell functionality by flow cytometry and transmission electron microscopy (TEM). NP labeled T cells are visualized by MRI at 9.4 T in vivo after adoptive T cell transfer and correlated with 3D models of cleared brains obtained by light sheet microscopy (LSM). Results: NP are incorporated into T cells in subcellular cytoplasmic vesicles with high labeling efficiency without interfering with T cell viability, proliferation and effector function as assessed by cytokine secretion and antigen-specific killing assays in vitro. We further demonstrate that adoptively transferred T cells can be longitudinally monitored intratumorally by high field MRI at 9.4 Tesla in a murine glioma model with high sensitivity. We find that T cell influx and homogenous spatial distribution of T cells within the TME as assessed by T2* imaging predicts tumor response to ACT whereas incomplete T cell coverage results in treatment resistance. Conclusion: This study showcases a rational for monitoring adoptive T cell therapies non-invasively by iron oxide NP in gliomas to track intratumoral T cell influx and ultimately predict treatment outcome.
Collapse
Affiliation(s)
- Jessica Hunger
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina Schregel
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Berin Boztepe
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dennis Alexander Agardy
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Verena Turco
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | | | - Ina Weidenfeld
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Yannik Streibel
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Manuel Fischer
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Volker Sturm
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Michael Kilian
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Kristine Jähne
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Katharina Sahm
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Wolfgang Wick
- Clinical Cooperation Unit Neurooncology, DKTK within DKFZ, Heidelberg, Germany
- Department of Neurology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
| | - Lukas Bunse
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Sabine Heiland
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Theresa Bunse
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| | - Martin Bendszus
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Mannheim, Germany
| | - Michael O. Breckwoldt
- Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
18
|
Tashkandi J, Brkljača R, Alt K. Progress in magnetic particle imaging signal and iron quantification methods in vivo - application to long circulating SPIONs. NANOSCALE ADVANCES 2023; 5:4873-4880. [PMID: 37705773 PMCID: PMC10496917 DOI: 10.1039/d3na00260h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023]
Abstract
The strengths of Magnetic Particle Imaging (MPI) lay in its sensitivity, quantitative nature, and lack of signal attenuation for Superparamagnetic Iron Oxide Nanoparticles (SPION). These advantages make MPI a powerful tool for the non-invasive monitoring of tracer behaviour over time. With more MPI studies emerging, a standardized method for determining the boundaries of a region of interest (ROI) and iron quantification is crucial. The current approaches are inconsistent, making it challenging to compare studies, hindering MPI progression. Here we showcase three different ROI selection methods for the quantification of iron in vivo and ex vivo. Healthy mice were intravenously administered a long circulating tracer, never before applied in MPI, and the ROI methods were tested for their ability to accurately quantify the total signal present, in addition to the accumulation of the tracer in individual organs. We discuss how the quantified iron amount can be vastly altered based on the choice of ROI, the importance of the standard curve and the challenges associated with each method. Lastly, the user variability and accuracy of each method was compared by 3 independent users to ensure their consistency and lack of bias.
Collapse
Affiliation(s)
- Jurie Tashkandi
- Australian Centre for Blood Diseases, Central Clinical School, Monash University Australia
| | | | - Karen Alt
- Australian Centre for Blood Diseases, Central Clinical School, Monash University Australia
| |
Collapse
|
19
|
Pfister F, Dörrie J, Schaft N, Buchele V, Unterweger H, Carnell LR, Schreier P, Stein R, Kubánková M, Guck J, Hackstein H, Alexiou C, Janko C. Human T cells loaded with superparamagnetic iron oxide nanoparticles retain antigen-specific TCR functionality. Front Immunol 2023; 14:1223695. [PMID: 37662937 PMCID: PMC10470061 DOI: 10.3389/fimmu.2023.1223695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Background Immunotherapy of cancer is an emerging field with the potential to improve long-term survival. Thus far, adoptive transfer of tumor-specific T cells represents an effective treatment option for tumors of the hematological system such as lymphoma, leukemia or myeloma. However, in solid tumors, treatment efficacy is low owing to the immunosuppressive microenvironment, on-target/off-tumor toxicity, limited extravasation out of the blood vessel, or ineffective trafficking of T cells into the tumor region. Superparamagnetic iron oxide nanoparticles (SPIONs) can make cells magnetically controllable for the site-specific enrichment. Methods In this study, we investigated the influence of SPION-loading on primary human T cells for the magnetically targeted adoptive T cell therapy. For this, we analyzed cellular mechanics and the T cell response after stimulation via an exogenous T cell receptor (TCR) specific for the melanoma antigen MelanA or the endogenous TCR specific for the cytomegalovirus antigen pp65 and compared them to T cells that had not received SPIONs. Results SPION-loading of human T cells showed no influence on cellular mechanics, therefore retaining their ability to deform to external pressure. Additionally, SPION-loading did not impair the T cell proliferation, expression of activation markers, cytokine secretion, and tumor cell killing after antigen-specific activation mediated by the TCR. Conclusion In summary, we demonstrated that SPION-loading of T cells did not affect cellular mechanics or the functionality of the endogenous or an exogenous TCR, which allows future approaches using SPIONs for the magnetically enrichment of T cells in solid tumors.
Collapse
Affiliation(s)
- Felix Pfister
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Vera Buchele
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Lucas R. Carnell
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Erlangen, Germany
- Organic Chemisty Laboratory, Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Patrick Schreier
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Erlangen, Germany
- Faculty of Applied Natural Sciences and Health, Hochschule Coburg, Coburg, Germany
| | - Rene Stein
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Markéta Kubánková
- Max-Planck-Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Jochen Guck
- Max-Planck-Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Erlangen, Germany
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
20
|
Wu W, Chang E, Jin L, Liu S, Huang CH, Kamal R, Liang T, Aissaoui NM, Theruvath AJ, Pisani L, Moseley M, Stoyanova T, Paulmurugan R, Huang J, Mitchell DA, Daldrup-Link HE. Multimodal In Vivo Tracking of Chimeric Antigen Receptor T Cells in Preclinical Glioblastoma Models. Invest Radiol 2023; 58:388-395. [PMID: 36729074 PMCID: PMC10164035 DOI: 10.1097/rli.0000000000000946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Iron oxide nanoparticles have been used to track the accumulation of chimeric antigen receptor (CAR) T cells with magnetic resonance imaging (MRI). However, the only nanoparticle available for clinical applications to date, ferumoxytol, has caused rare but severe anaphylactic reactions. MegaPro nanoparticles (MegaPro-NPs) provide an improved safety profile. We evaluated whether MegaPro-NPs can be applied for in vivo tracking of CAR T cells in a mouse model of glioblastoma multiforme. MATERIALS AND METHODS We labeled tumor-targeted CD70CAR (8R-70CAR) T cells and non-tumor-targeted controls with MegaPro-NPs, followed by inductively coupled plasma optical emission spectroscopy, Prussian blue staining, and cell viability assays. Next, we treated 42 NRG mice bearing U87-MG/eGFP-fLuc glioblastoma multiforme xenografts with MegaPro-NP-labeled/unlabeled CAR T cells or labeled untargeted T cells and performed serial MRI, magnetic particle imaging, and histology studies. The Kruskal-Wallis test was conducted to evaluate overall group differences, and the Mann-Whitney U test was applied to compare the pairs of groups. RESULTS MegaPro-NP-labeled CAR T cells demonstrated significantly increased iron uptake compared with unlabeled controls ( P < 0.01). Cell viability, activation, and exhaustion markers were not significantly different between the 2 groups ( P > 0.05). In vivo, tumor T2* relaxation times were significantly lower after treatment with MegaPro-NP-labeled CAR T cells compared with untargeted T cells ( P < 0.01). There is no significant difference in tumor growth inhibition between mice injected with labeled and unlabeled CAR T cells. CONCLUSIONS MegaPro-NPs can be used for in vivo tracking of CAR T cells. Because MegaPro-NPs recently completed phase II clinical trial investigation as an MRI contrast agent, MegaPro-NP is expected to be applied to track CAR T cells in cancer immunotherapy trials in the near future.
Collapse
Affiliation(s)
- Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 265 Campus Drive, Room G2045, Stanford, CA 94305
- Institute of Stem Cell Research and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 265 Campus Drive, Room G2045, Stanford, CA 94305
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Shiqin Liu
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Ching-Hsin Huang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 265 Campus Drive, Room G2045, Stanford, CA 94305
| | - Rozy Kamal
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 265 Campus Drive, Room G2045, Stanford, CA 94305
| | - Tie Liang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 265 Campus Drive, Room G2045, Stanford, CA 94305
| | - Nour Mary Aissaoui
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 265 Campus Drive, Room G2045, Stanford, CA 94305
| | - Ashok J. Theruvath
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 265 Campus Drive, Room G2045, Stanford, CA 94305
| | - Laura Pisani
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 265 Campus Drive, Room G2045, Stanford, CA 94305
| | - Michael Moseley
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 265 Campus Drive, Room G2045, Stanford, CA 94305
| | - Tanya Stoyanova
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University, Stanford, CA, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 265 Campus Drive, Room G2045, Stanford, CA 94305
| | - Jianping Huang
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Duane A. Mitchell
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Heike E. Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, 265 Campus Drive, Room G2045, Stanford, CA 94305
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
21
|
Good HJ, Sehl OC, Gevaert JJ, Yu B, Berih MA, Montero SA, Rinaldi-Ramos CM, Foster PJ. Inter-user comparison for quantification of superparamagnetic iron oxides with magnetic particle imaging across two institutions highlights a need for standardized approaches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535446. [PMID: 37066180 PMCID: PMC10104026 DOI: 10.1101/2023.04.03.535446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Purpose Magnetic particle imaging (MPI) is being explored in biological contexts that require accurate and reproducible quantification of superparamagnetic iron oxide nanoparticles (SPIONs). While many groups have focused on improving imager and SPION design to improve resolution and sensitivity, few have focused on improving quantification and reproducibility of MPI. The aim of this study was to compare MPI quantification results by two different systems and the accuracy of SPION quantification performed by multiple users at two institutions. Procedures Six users (3 from each institute) imaged a known amount of Vivotrax+ (10 μg Fe), diluted in a small (10 μL) or large (500 μL) volume. These samples were imaged with or without calibration standards in the field of view, to create a total of 72 images (6 users x triplicate samples x 2 sample volumes x 2 calibration methods). These images were analyzed by the respective user with two region of interest (ROI) selection methods. Image intensities, Vivotrax+ quantification, and ROI selection was compared across users, within and across institutions. Results MPI imagers at two different institutes produce significantly different signal intensities, that differ by over 3 times for the same concentration of Vivotrax+. Overall quantification yielded measurements that were within ± 20% from ground truth, however SPION quantification values obtained at each laboratory were significantly different. Results suggest that the use of different imagers had a stronger influence on SPION quantification compared to differences arising from user error. Lastly, calibration conducted from samples in the imaging field of view gave the same quantification results as separately imaged samples. Conclusions This study highlights that there are many factors that contribute to the accuracy and reproducibility of MPI quantification, including variation between MPI imagers and users, despite pre-defined experimental set up, image acquisition parameters, and ROI selection analysis.
Collapse
Affiliation(s)
- Hayden J. Good
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville Fl, 32611, United States of America
| | - Olivia C. Sehl
- Department of Medical Biophysics, Western University; Imaging Research Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada
| | - Julia J. Gevaert
- Department of Medical Biophysics, Western University; Imaging Research Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada
| | - Bo Yu
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville Fl, 32611, United States of America
| | - Maryam A. Berih
- Department of Medical Biophysics, Western University; Imaging Research Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada
| | - Sebastian A. Montero
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville Fl, 32611, United States of America
| | - Carlos M. Rinaldi-Ramos
- Department of Chemical Engineering, University of Florida, 1006 Center Dr. P.O. Box 116005, Gainesville Fl, 32611, United States of America
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Dr. JG56, P.O. Box 116131, Gainesville FL, 32611, United States of America
| | - Paula J. Foster
- Department of Medical Biophysics, Western University; Imaging Research Laboratories, Robarts Research Institute, London, ON N6A 5B7, Canada
| |
Collapse
|
22
|
Ajayi TO, Liu S, Rosen C, Rinaldi-Ramos CM, Allen KD, Sharma B. Application of magnetic particle imaging to evaluate nanoparticle fate in rodent joints. J Control Release 2023; 356:347-359. [PMID: 36868518 PMCID: PMC11565467 DOI: 10.1016/j.jconrel.2023.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Nanoparticles are a promising approach for improving intra-articular drug delivery and tissue targeting. However, techniques to non-invasively track and quantify their concentration in vivo are limited, resulting in an inadequate understanding of their retention, clearance, and biodistribution in the joint. Currently, fluorescence imaging is often used to track nanoparticle fate in animal models; however, this approach has limitations that impede long-term quantitative assessment of nanoparticles over time. The goal of this work was to evaluate an emerging imaging modality, magnetic particle imaging (MPI), for intra-articular tracking of nanoparticles. MPI provides 3D visualization and depth-independent quantification of superparamagnetic iron oxide nanoparticle (SPION) tracers. Here, we developed and characterized a polymer-based magnetic nanoparticle system incorporated with SPION tracers and cartilage targeting properties. MPI was then used to longitudinally assess nanoparticle fate after intra-articular injection. Magnetic nanoparticles were injected into the joints of healthy mice, and evaluated for nanoparticle retention, biodistribution, and clearance over 6 weeks using MPI. In parallel, the fate of fluorescently tagged nanoparticles was tracked using in vivo fluorescence imaging. The study was concluded at day 42, and MPI and fluorescence imaging demonstrated different profiles in nanoparticle retention and clearance from the joint. MPI signal was persistent over the study duration, suggesting NP retention of at least 42 days, much longer than the 14 days observed based on fluorescence signal. These data suggest that the type of tracer - SPIONs or fluorophores - and modality of imaging can affect interpretation of nanoparticle fate in the joint. Given that understanding particle fate over time is paramount for attaining insights about therapeutic profiles in vivo, our data suggest MPI may yield a quantitative and robust method to non-invasively track nanoparticles following intra-articular injection on an extended timeline.
Collapse
Affiliation(s)
- Tolulope O Ajayi
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Sitong Liu
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Chelsea Rosen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Carlos M Rinaldi-Ramos
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Kyle D Allen
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Blanka Sharma
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
23
|
Magnetic Particle Imaging in Vascular Imaging, Immunotherapy, Cell Tracking, and Noninvasive Diagnosis. Mol Imaging 2023. [DOI: 10.1155/2023/4131117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Magnetic particle imaging (MPI) is a new tracer-based imaging modality that is useful in diagnosing various pathophysiology related to the vascular system and for sensitive tracking of cytotherapies. MPI uses nonradioactive and easily assimilated nanometer-sized iron oxide particles as tracers. MPI images the nonlinear Langevin behavior of the iron oxide particles and has allowed for the sensitive detection of iron oxide-labeled therapeutic cells in the body. This review will provide an overview of MPI technology, the tracer, and its use in vascular imaging and cytotherapies using molecular targets.
Collapse
|
24
|
The Role of Exosomes in Pancreatic Ductal Adenocarcinoma Progression and Their Potential as Biomarkers. Cancers (Basel) 2023; 15:cancers15061776. [PMID: 36980662 PMCID: PMC10046651 DOI: 10.3390/cancers15061776] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic malignancy, is an aggressive and lethal cancer with a dismal five-year survival rate. Despite remarkable improvements in cancer therapeutics, the clinical outcome of PDAC patients remains poor due to late diagnosis of the disease. This highlights the importance of early detection, wherein biomarker evaluation including exosomes would be helpful. Exosomes, small extracellular vesicles (sEVs), are cell-secreted entities with diameters ranging from 50 to 150 nm that deliver cellular contents (e.g., proteins, lipids, and nucleic acids) from parent cells to regulate the cellular processes of targeted cells. Recently, an increasing number of studies have reported that exosomes serve as messengers to facilitate stromal-immune crosstalk within the PDAC tumor microenvironment (TME), and their contents are indicative of disease progression. Moreover, evidence suggests that exosomes with specific surface markers are capable of distinguishing patients with PDAC from healthy individuals. Detectable exosomes in bodily fluids (e.g., blood, urine, saliva, and pancreatic juice) are omnipresent and may serve as promising biomarkers for improving early detection and evaluating patient prognosis. In this review, we shed light on the involvement of exosomes and their cargos in processes related to disease progression, including chemoresistance, angiogenesis, invasion, metastasis, and immunomodulation, and their potential as prognostic markers. Furthermore, we highlight feasible clinical applications and the limitations of exosomes in liquid biopsies as tools for early diagnosis as well as disease monitoring. Taking advantage of exosomes to improve diagnostic capacity may provide hope for PDAC patients, although further investigation is urgently needed.
Collapse
|
25
|
Rhee JY, Ghannam JY, Choi BD, Gerstner ER. Labeling T Cells to Track Immune Response to Immunotherapy in Glioblastoma. Tomography 2023; 9:274-284. [PMID: 36828374 PMCID: PMC9959194 DOI: 10.3390/tomography9010022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
While the advent of immunotherapy has revolutionized cancer treatment, its use in the treatment of glioblastoma (GBM) has been less successful. Most studies using immunotherapy in GBM have been negative and the reasons for this are still being studied. In clinical practice, interpreting response to immunotherapy has been challenging, particularly when trying to differentiate between treatment-related changes (i.e., pseudoprogression) or true tumor progression. T cell tagging is one promising technique to noninvasively monitor treatment efficacy by assessing the migration, expansion, and engagement of T cells and their ability to target tumor cells at the tumor site.
Collapse
Affiliation(s)
- John Y. Rhee
- Department of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
- Department of Neuro-Oncology, Dana Farber Cancer Institute, Brigham and Women’s Cancer Center, Boston, MA 02215, USA
| | - Jack Y. Ghannam
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Bryan D. Choi
- Department of Neurosurgery, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Elizabeth R. Gerstner
- Department of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| |
Collapse
|
26
|
Dual Magnetic Particle Imaging and Akaluc Bioluminescence Imaging for Tracking Cancer Cell Metastasis. Tomography 2023; 9:178-194. [PMID: 36828368 PMCID: PMC9968184 DOI: 10.3390/tomography9010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
Magnetic particle imaging (MPI) provides hotspot tracking and direct quantification of superparamagnetic iron oxide nanoparticle (SPIO)-labelled cells. Bioluminescence imaging (BLI) with the luciferase reporter gene Akaluc can provide complementary information on cell viability. Thus, we explored combining these technologies to provide a more holistic view of cancer cell fate in mice. Akaluc-expressing 4T1Br5 cells were labelled with the SPIO Synomag-D and injected into the mammary fat pads (MFP) of four nude mice. BLI was performed on days 0, 6 and 13, and MPI was performed on days 1, 8 and 14. Ex vivo histology and fluorescence microscopy of MFP and a potential metastatic site was conducted. The BLI signal in the MFP increased significantly from day 0 to day 13 (p < 0.05), mirroring tumor growth. The MPI signal significantly decreased from day 1 to day 14 (p < 0.05) due to SPIO dilution in proliferating cells. Both modalities detected secondary metastases; however, they were visualized in different anatomical regions. Akaluc BLI complemented MPI cell tracking, allowing for longitudinal measures of cell viability and sensitive detection of distant metastases at different locations. We predict this multimodal imaging approach will help to evaluate novel therapeutics and give a better understanding of metastatic mechanisms.
Collapse
|
27
|
Mukhatov A, Le T, Pham TT, Do TD. A comprehensive review on magnetic imaging techniques for biomedical applications. NANO SELECT 2023. [DOI: 10.1002/nano.202200219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Azamat Mukhatov
- Department of Robotics School of Engineering and Digital Sciences Nazarbayev University Astana Kazakhstan
| | - Tuan‐Anh Le
- Department of Physiology and Biomedical Engineering Mayo Clinic Scottsdale Arizona USA
| | - Tri T. Pham
- Department of Biology School of Sciences and Humanities Nazarbayev University Astana Kazakhstan
| | - Ton Duc Do
- Department of Robotics School of Engineering and Digital Sciences Nazarbayev University Astana Kazakhstan
| |
Collapse
|
28
|
Wiart M, Tavakoli C, Hubert V, Hristovska I, Dumot C, Parola S, Lerouge F, Chauveau F, Canet-Soulas E, Pascual O, Cormode DP, Brun E, Elleaume H. Use of metal-based contrast agents for in vivo MR and CT imaging of phagocytic cells in neurological pathologies. J Neurosci Methods 2023; 383:109729. [PMID: 36272462 DOI: 10.1016/j.jneumeth.2022.109729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
Abstract
The activation of phagocytic cells is a hallmark of many neurological diseases. Imaging them in their 3-dimensional cerebral environment over time is crucial to better understand their role in disease pathogenesis and to monitor their potential therapeutic effects. Phagocytic cells have the ability to internalize metal-based contrast agents both in vitro and in vivo and can thus be tracked by magnetic resonance imaging (MRI) or computed tomography (CT). In this review article, we summarize the different labelling strategies, contrast agents, and in vivo imaging modalities that can be used to monitor cells with phagocytic activity in the central nervous system using MRI and CT, with a focus on clinical applications. Metal-based nanoparticle contrast agents such as gadolinium, gold and iron are ideal candidates for these applications as they have favourable magnetic and/or radiopaque properties and can be fine-tuned for optimal uptake by phagocytic cells. However, they also come with downsides due to their potential toxicity, especially in the brain where they might accumulate. We therefore conclude our review by discussing the pitfalls, safety and potential for clinical translation of these metal-based neuroimaging techniques. Early results in patients with neuropathologies such as multiple sclerosis, stroke, trauma, cerebral aneurysm and glioblastoma are promising. If the challenges represented by safety issues are overcome, phagocytic cells imaging will be a very valuable tool for studying and understanding the inflammatory response and evaluating treatments that aim at mitigating this response in patients with neurological diseases.
Collapse
Affiliation(s)
- Marlène Wiart
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; CNRS, Lyon, France.
| | - Clément Tavakoli
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| | - Violaine Hubert
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | | | - Chloé Dumot
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Stéphane Parola
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, 69364 Lyon, France
| | - Frédéric Lerouge
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, 69364 Lyon, France
| | - Fabien Chauveau
- CNRS, Lyon, France; Univ. Lyon, Lyon Neurosciences Research Center, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | - Emmanuelle Canet-Soulas
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | | | - David P Cormode
- Department of Radiology, University of Pennsylvania, Pennsylvania, United States
| | - Emmanuel Brun
- Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| | - Hélène Elleaume
- Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| |
Collapse
|
29
|
Bulte JWM, Wang C, Shakeri-Zadeh A. In Vivo Cellular Magnetic Imaging: Labeled vs. Unlabeled Cells. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2207626. [PMID: 36589903 PMCID: PMC9798832 DOI: 10.1002/adfm.202207626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 06/17/2023]
Abstract
Superparamagnetic iron oxide (SPIO)-labeling of cells has been applied for magnetic resonance imaging (MRI) cell tracking for over 30 years, having resulted in a dozen or so clinical trials. SPIO nanoparticles are biodegradable and can be broken down into elemental iron, and hence the tolerance of cells to magnetic labeling has been overall high. Over the years, however, single reports have accumulated demonstrating that the proliferation, migration, adhesion and differentiation of magnetically labeled cells may differ from unlabeled cells, with inhibition of chondrocytic differentiation of labeled human mesenchymal stem cells (hMSCs) as a notable example. This historical perspective provides an overview of some of the drawbacks that can be encountered with magnetic labeling. Now that magnetic particle imaging (MPI) cell tracking is emerging as a new in vivo cellular imaging modality, there has been a renaissance in the formulation of SPIO nanoparticles this time optimized for MPI. Lessons learned from the occasional past pitfalls encountered with SPIO-labeling of cells for MRI may expedite possible future clinical translation of (combined) MRI/MPI cell tracking.
Collapse
Affiliation(s)
- Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chao Wang
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ali Shakeri-Zadeh
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
30
|
Jia G, Huang L, Wang Z, Liang X, Zhang Y, Zhang Y, Miao Q, Hu K, Li T, Wang Y, Xi L, Feng X, Hui H, Tian J. Gradient-Based Pulsed Excitation and Relaxation Encoding in Magnetic Particle Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:3725-3733. [PMID: 35862339 DOI: 10.1109/tmi.2022.3193219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic particle imaging (MPI) is a radiation-free vessel- and target-imaging modality that can sensitively detect nanoparticles. A static magnetic gradient field, referred to as a selection field, is required in MPI to provide a field-free region (FFR) for spatial encoding. The image resolution of MPI is closely related to the size of the FFR, which is determined by the selection field gradient amplitude. Because of the limitations of existing gradient coil hardware, the image resolution of MPI cannot satisfy the clinical requirements of human in vivo imaging. Pulsed excitation has been confirmed to improve the image resolution of MPI by breaking down the 'relaxation wall.' This work proposes the use of a pulsed waveform magnetic gradient from magnetic resonance imaging to further improve the image resolution of MPI. Through alignment of the gradient direction along the field-free line (FFL), each location on the FFL is able to have a unique excitation field strength that generates a specific relaxation-induced decay signal. Through excitation of nanoparticles on the FFL with many gradient profiles, a high-resolution, one-dimensional (1D) image can be reconstructed on the FFL. For larger magnetic nanoparticles, simulation results revealed that a pulsed excitation field with a greater flat portion generates a 1D bar pattern phantom image with a higher correlation and spatial resolution. With parallel FFL and gradient coil movements, high-resolution, two-dimensional (2D) Shepp-Logan phantom and brain vessel maps were reconstructed through repetition of the spatially resolved measurement of magnetic nanoparticles on the FFL.
Collapse
|
31
|
Betzer O, Gao Y, Shamul A, Motiei M, Sadan T, Yehuda R, Atkins A, Cohen CJ, Shen M, Shi X, Popovtzer R. Multifunctional nanoprobe for real-time in vivo monitoring of T cell activation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 46:102596. [PMID: 36031044 DOI: 10.1016/j.nano.2022.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Genetically engineered T cells are a powerful new modality for cancer immunotherapy. However, their clinical application for solid tumors is challenging, and crucial knowledge on cell functionality in vivo is lacking. Here, we fabricated a nanoprobe composed of dendrimers incorporating a calcium sensor and gold nanoparticles, for dual-modal monitoring of engineered T cells within a solid tumor. T cells engineered to express a melanoma-specific T-cell receptor and loaded with the nanoprobe were longitudinally monitored within melanoma xenografts in mice. Fluorescent imaging of the nanoprobe's calcium sensor revealed increased intra-tumoral activation of the T cells over time, up to 24 h. Computed tomography imaging of the nanoprobe's gold nanoparticles revealed the cells' intra-tumoral distribution pattern. Quantitative analysis revealed the intra-tumoral T cell quantities. Thus, this nanoprobe reveals intra-tumoral persistence, penetration and functional status of genetically engineered T cells, which can advance T cell-based immunotherapy and promote next-generation live cell imaging.
Collapse
Affiliation(s)
- Oshra Betzer
- The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel; Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Astar Shamul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Menachem Motiei
- The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel; Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Sadan
- The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ronen Yehuda
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ayelet Atkins
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Cyrille J Cohen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.
| | - Rachela Popovtzer
- The Alexander Kofkin Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel; Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
32
|
Yee PP, Wang J, Chih SY, Aregawi DG, Glantz MJ, Zacharia BE, Thamburaj K, Li W. Temporal radiographic and histological study of necrosis development in a mouse glioblastoma model. Front Oncol 2022; 12:993649. [PMID: 36313633 PMCID: PMC9614031 DOI: 10.3389/fonc.2022.993649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor necrosis is a poor prognostic marker in glioblastoma (GBM) and a variety of other solid cancers. Accumulating evidence supports that necrosis could facilitate tumor progression and resistance to therapeutics. GBM necrosis is typically first detected by magnetic resonance imaging (MRI), after prominent necrosis has already formed. Therefore, radiological appearances of early necrosis formation and the temporal-spatial development of necrosis alongside tumor progression remain poorly understood. This knowledge gap leads to a lack of reliable radiographic diagnostic/prognostic markers in early GBM progression to detect necrosis. Recently, we reported an orthotopic xenograft GBM murine model driven by hyperactivation of the Hippo pathway transcriptional coactivator with PDZ-binding motif (TAZ) which recapitulates the extent of GBM necrosis seen among patients. In this study, we utilized this model to perform a temporal radiographic and histological study of necrosis development. We observed tumor tissue actively undergoing necrosis first appears more brightly enhancing in the early stages of progression in comparison to the rest of the tumor tissue. Later stages of tumor progression lead to loss of enhancement and unenhancing signals in the necrotic central portion of tumors on T1-weighted post-contrast MRI. This central unenhancing portion coincides with the radiographic and clinical definition of necrosis among GBM patients. Moreover, as necrosis evolves, two relatively more contrast-enhancing rims are observed in relationship to the solid enhancing tumor surrounding the central necrosis in the later stages. The outer more prominently enhancing rim at the tumor border probably represents the infiltrating tumor edge, and the inner enhancing rim at the peri-necrotic region may represent locally infiltrating immune cells. The associated inflammation at the peri-necrotic region was further confirmed by immunohistochemical study of the temporal development of tumor necrosis. Neutrophils appear to be the predominant immune cell population in this region as necrosis evolves. This study shows central, brightly enhancing areas associated with inflammation in the tumor microenvironment may represent an early indication of necrosis development in GBM.
Collapse
Affiliation(s)
- Patricia P. Yee
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
- Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, United States
| | - Jianli Wang
- Department of Radiology, Penn State College of Medicine, Hershey, PA, United States
| | - Stephen Y. Chih
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
- Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, United States
| | - Dawit G. Aregawi
- Neuro-Oncology Program, Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, United States
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
- Department of Neurology, Penn State College of Medicine, Hershey, PA, United States
| | - Michael J. Glantz
- Neuro-Oncology Program, Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, United States
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
- Department of Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Brad E. Zacharia
- Neuro-Oncology Program, Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, United States
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
| | | | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
- Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, United States
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, United States
- *Correspondence: Wei Li,
| |
Collapse
|
33
|
Duong HTK, Abdibastami A, Gloag L, Barrera L, Gooding JJ, Tilley RD. A guide to the design of magnetic particle imaging tracers for biomedical applications. NANOSCALE 2022; 14:13890-13914. [PMID: 36004758 DOI: 10.1039/d2nr01897g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Magnetic Particle Imaging (MPI) is a novel and emerging non-invasive technique that promises to deliver high quality images, no radiation, high depth penetration and nearly no background from tissues. Signal intensity and spatial resolution in MPI are heavily dependent on the properties of tracers. Hence the selection of these nanoparticles for various applications in MPI must be carefully considered to achieve optimum results. In this review, we will provide an overview of the principle of MPI and the key criteria that are required for tracers in order to generate the best signals. Nanoparticle materials such as magnetite, metal ferrites, maghemite, zero valent iron@iron oxide core@shell, iron carbide and iron-cobalt alloy nanoparticles will be discussed as well as their synthetic pathways. Since surface modifications play an important role in enabling the use of these tracers for biomedical applications, coating options including the transfer from organic to inorganic media will also be discussed. Finally, we will discuss different biomedical applications and provide our insights into the most suitable tracer for each of these applications.
Collapse
Affiliation(s)
- H T Kim Duong
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| | | | - Lucy Gloag
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| | - Liam Barrera
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
| | - J Justin Gooding
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
- Australian Centre for NanoMedicine, University of New South Wales, NSW 2052, Australia
| | - Richard D Tilley
- School of Chemistry, UNSW Sydney, NSW 2052, Australia.
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, NSW 2052, Australia
| |
Collapse
|
34
|
Volpe A, Adusumilli PS, Schöder H, Ponomarev V. Imaging cellular immunotherapies and immune cell biomarkers: from preclinical studies to patients. J Immunother Cancer 2022; 10:jitc-2022-004902. [PMID: 36137649 PMCID: PMC9511655 DOI: 10.1136/jitc-2022-004902] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 01/26/2023] Open
Abstract
Cellular immunotherapies have emerged as a successful therapeutic approach to fight a wide range of human diseases, including cancer. However, responses are limited to few patients and tumor types. An in-depth understanding of the complexity and dynamics of cellular immunotherapeutics, including what is behind their success and failure in a patient, the role of other immune cell types and molecular biomarkers in determining a response, is now paramount. As the cellular immunotherapy arsenal expands, whole-body non-invasive molecular imaging can shed a light on their in vivo fate and contribute to the reliable assessment of treatment outcome and prediction of therapeutic response. In this review, we outline the non-invasive strategies that can be tailored toward the molecular imaging of cellular immunotherapies and immune-related components, with a focus on those that have been extensively tested preclinically and are currently under clinical development or have already entered the clinical trial phase. We also provide a critical appraisal on the current role and consolidation of molecular imaging into clinical practice.
Collapse
Affiliation(s)
- Alessia Volpe
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Cellular Therapeutics Center, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York, USA,Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
35
|
Younis MH, Tang Z, Cai W. Multimodality imaging of nanoparticle-based vaccines: Shedding light on immunology. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1807. [PMID: 35501142 PMCID: PMC9481661 DOI: 10.1002/wnan.1807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
In recent years, there have been significant innovations in the development of nanoparticle-based vaccines and vaccine delivery systems. For the purposes of both design and evaluation, these nanovaccines are imaged using the wealth of understanding established around medical imaging of nanomaterials. An important insight to the advancement of the field of nanovaccines can be given by an analysis of the design rationale of an imaging platform, as well as the significance of the information provided by imaging. Nanovaccine imaging strategies can be categorized by the imaging modality leveraged, but it is also worth understanding the superiority or convenience of a given modality over others in a given context of a particular nanovaccine. The most important imaging modalities in this endeavor are optical imaging including near-infrared fluorescence imaging (NIRF), emission tomography methods such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) with or without computed tomography (CT) or magnetic resonance (MR), the emerging magnetic particle imaging (MPI), and finally, multimodal applications of imaging which include molecular imaging with magnetic resonance imaging (MRI) and photoacoustic (PA) imaging. One finds that each of these modalities has strengths and weaknesses, but optical and PET imaging tend, in this context, to be currently the most accessible, convenient, and informative modalities. Nevertheless, an important principle is that there is not a one-size-fits-all solution, and that the specific nanovaccine in question must be compatible with a particular imaging modality. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Muhsin H. Younis
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Zhongmin Tang
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
36
|
Sarna NS, Marrero‐Morales L, DeGroff R, Rivera‐Rodriguez A, Liu S, Chiu‐Lam A, Good HJ, Rinaldi‐Ramos CM. An anatomically correct 3D-printed mouse phantom for magnetic particle imaging studies. Bioeng Transl Med 2022; 7:e10299. [PMID: 36176627 PMCID: PMC9472006 DOI: 10.1002/btm2.10299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 11/11/2022] Open
Abstract
We report anatomically correct 3D-printed mouse phantoms that can be used to plan experiments and evaluate analysis protocols for magnetic particle imaging (MPI) studies. The 3D-printed phantoms were based on the Digimouse 3D whole body mouse atlas and incorporate cavities representative of a liver, brain tumor, and orthotopic breast cancer tumor placed in anatomically correct locations, allowing evaluation of the effect of precise doses of MPI tracer. To illustrate their use, a constant tracer iron mass was present in the liver for the breast (200 μgFe) and brain tumor (10 μgFe) model, respectively, while a series of decreasing tracer iron mass was placed in the tumor region. MPI scans were acquired in 2D and 3D high sensitivity and high sensitivity/high resolution (HSHR) modes using a MOMENTUM imager. A thresholding algorithm was used to define regions of interest (ROIs) in the scans and the tracer mass in the liver and tumors was calculated by comparison of the signal in their respective ROI against that of known mass fiducials that were included in each scan. The results demonstrate that this approach to image analysis provides accurate estimates of tracer mass. Additionally, the results show how the limit of detection in MPI is sensitive to the details of tracer distribution in the subject, as we found that a greater tracer mass in the liver cavity resulted in poorer sensitivity in tumor regions. These experiments illustrate the utility of the reported 3D-printed anatomically correct mouse phantoms in evaluating methods to analyze MPI scans and plan in vivo experiments.
Collapse
Affiliation(s)
- Nicole S. Sarna
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleFloridaUSA
| | - Leyda Marrero‐Morales
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleFloridaUSA
| | - Ryan DeGroff
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleFloridaUSA
| | - Angelie Rivera‐Rodriguez
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleFloridaUSA
| | - Sitong Liu
- Department of Chemical EngineeringUniversity of FloridaGainesvilleFloridaUSA
| | - Andreina Chiu‐Lam
- Department of Chemical EngineeringUniversity of FloridaGainesvilleFloridaUSA
| | - Hayden J. Good
- Department of Chemical EngineeringUniversity of FloridaGainesvilleFloridaUSA
| | - Carlos M. Rinaldi‐Ramos
- J. Crayton Pruitt Family Department of Biomedical EngineeringUniversity of FloridaGainesvilleFloridaUSA
- Department of Chemical EngineeringUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
37
|
Fekrirad Z, Barzegar Behrooz A, Ghaemi S, Khosrojerdi A, Zarepour A, Zarrabi A, Arefian E, Ghavami S. Immunology Meets Bioengineering: Improving the Effectiveness of Glioblastoma Immunotherapy. Cancers (Basel) 2022; 14:3698. [PMID: 35954362 PMCID: PMC9367505 DOI: 10.3390/cancers14153698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) therapy has seen little change over the past two decades. Surgical excision followed by radiation and chemotherapy is the current gold standard treatment. Immunotherapy techniques have recently transformed many cancer treatments, and GBM is now at the forefront of immunotherapy research. GBM immunotherapy prospects are reviewed here, with an emphasis on immune checkpoint inhibitors and oncolytic viruses. Various forms of nanomaterials to enhance immunotherapy effectiveness are also discussed. For GBM treatment and immunotherapy, we outline the specific properties of nanomaterials. In addition, we provide a short overview of several 3D (bio)printing techniques and their applications in stimulating the GBM microenvironment. Lastly, the susceptibility of GBM cancer cells to the various immunotherapy methods will be addressed.
Collapse
Affiliation(s)
- Zahra Fekrirad
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran 18735-136, Iran;
| | - Amir Barzegar Behrooz
- Brain Cancer Research Group, Department of Cancer, Asu Vanda Gene Industrial Research Company, Tehran 1533666398, Iran;
| | - Shokoofeh Ghaemi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
| | - Arezou Khosrojerdi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 14155-6619, Iran;
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
38
|
Wang X, Wang T, Chen X, Law J, Shan G, Tang W, Gong Z, Pan P, Liu X, Yu J, Ru C, Huang X, Sun Y. Microrobotic Swarms for Intracellular Measurement with Enhanced Signal-to-Noise Ratio. ACS NANO 2022; 16:10824-10839. [PMID: 35786860 DOI: 10.1021/acsnano.2c02938] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In cell biology, fluorescent dyes are routinely used for biochemical measurements. The traditional global dye treatment method suffers from low signal-to-noise ratios (SNR), especially when used for detecting a low concentration of ions, and increasing the concentration of fluorescent dyes causes more severe cytotoxicity. Here, we report a robotic technique that controls how a low amount of fluorescent-dye-coated magnetic nanoparticles accurately forms a swarm and increases the fluorescent dye concentration in a local region inside a cell for intracellular measurement. Different from existing magnetic micromanipulation systems that generate large swarms (several microns and above) or that cannot move the generated swarm to an arbitrary position, our system is capable of generating a small swarm (e.g., 1 μm) and accurately positioning the swarm inside a single cell (position control accuracy: 0.76 μm). In experiments, the generated swarm inside the cell showed an SNR 10 times higher than the traditional global dye treatment method. The high-SNR robotic swarm enabled intracellular measurements that had not been possible to achieve with traditional global dye treatment. The robotic swarm technique revealed an apparent pH gradient in a migrating cell and was used to measure the intracellular apparent pH in a single oocyte of living C. elegans. With the position control capability, the swarm was also applied to measure calcium changes at the perinuclear region of a cell before and after mechanical stimulation. The results showed a significant calcium increase after mechanical stimulation, and the calcium increase was regulated by the mechanically sensitive ion channel, PIEZO1.
Collapse
Affiliation(s)
- Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
- Program in Developmental and Stem Cell Biology and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Tiancong Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Xin Chen
- Program in Developmental and Stem Cell Biology and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Guanqiao Shan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Wentian Tang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Zheyuan Gong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
| | - Peng Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
- Department of Mechanical Engineering, McGill University, Montreal H3A 0C3, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518172, China
| | - Changhai Ru
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xi Huang
- Program in Developmental and Stem Cell Biology and Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto M5G 1X8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada
- Department of Computer Science, University of Toronto, Toronto M5S 3G4, Canada
| |
Collapse
|
39
|
Yang X, Shao G, Zhang Y, Wang W, Qi Y, Han S, Li H. Applications of Magnetic Particle Imaging in Biomedicine: Advancements and Prospects. Front Physiol 2022; 13:898426. [PMID: 35846005 PMCID: PMC9285659 DOI: 10.3389/fphys.2022.898426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/16/2022] [Indexed: 01/09/2023] Open
Abstract
Magnetic particle imaging (MPI) is a novel emerging noninvasive and radiation-free imaging modality that can quantify superparamagnetic iron oxide nanoparticles tracers. The zero endogenous tissue background signal and short image scanning times ensure high spatial and temporal resolution of MPI. In the context of precision medicine, the advantages of MPI provide a new strategy for the integration of the diagnosis and treatment of diseases. In this review, after a brief explanation of the simplified theory and imaging system, we focus on recent advances in the biomedical application of MPI, including vascular structure and perfusion imaging, cancer imaging, the MPI guidance of magnetic fluid hyperthermia, the visual monitoring of cell and drug treatments, and intraoperative navigation. We finally optimize MPI in terms of the system and tracers, and present future potential biomedical applications of MPI.
Collapse
Affiliation(s)
- Xue Yang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | | | - Yanyan Zhang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Yu Qi
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Shuai Han
- Beijing You’an Hospital, Capital Medical University, Beijing, China
| | - Hongjun Li
- Beijing You’an Hospital, Capital Medical University, Beijing, China,*Correspondence: Hongjun Li,
| |
Collapse
|
40
|
Nguyen DT, Ogando-Rivas E, Liu R, Wang T, Rubin J, Jin L, Tao H, Sawyer WW, Mendez-Gomez HR, Cascio M, Mitchell DA, Huang J, Sawyer WG, Sayour EJ, Castillo P. CAR T Cell Locomotion in Solid Tumor Microenvironment. Cells 2022; 11:1974. [PMID: 35741103 PMCID: PMC9221866 DOI: 10.3390/cells11121974] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 01/25/2023] Open
Abstract
The promising outcomes of chimeric antigen receptor (CAR) T cell therapy in hematologic malignancies potentiates its capability in the fight against many cancers. Nevertheless, this immunotherapy modality needs significant improvements for the treatment of solid tumors. Researchers have incrementally identified limitations and constantly pursued better CAR designs. However, even if CAR T cells are armed with optimal killer functions, they must overcome and survive suppressive barriers imposed by the tumor microenvironment (TME). In this review, we will discuss in detail the important role of TME in CAR T cell trafficking and how the intrinsic barriers contribute to an immunosuppressive phenotype and cancer progression. It is of critical importance that preclinical models can closely recapitulate the in vivo TME to better predict CAR T activity. Animal models have contributed immensely to our understanding of human diseases, but the intensive care for the animals and unreliable representation of human biology suggest in vivo models cannot be the sole approach to CAR T cell therapy. On the other hand, in vitro models for CAR T cytotoxic assessment offer valuable insights to mechanistic studies at the single cell level, but they often lack in vivo complexities, inter-individual heterogeneity, or physiologically relevant spatial dimension. Understanding the advantages and limitations of preclinical models and their applications would enable more reliable prediction of better clinical outcomes.
Collapse
Affiliation(s)
- Duy T. Nguyen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elizabeth Ogando-Rivas
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Ruixuan Liu
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Theodore Wang
- College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Jacob Rubin
- Warrington College of Business, University of Florida, Gainesville, FL 32610, USA;
| | - Linchun Jin
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Haipeng Tao
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - William W. Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Hector R. Mendez-Gomez
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Matthew Cascio
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Duane A. Mitchell
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - Jianping Huang
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
| | - W. Gregory Sawyer
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA; (D.T.N.); (W.W.S.); (W.G.S.)
| | - Elias J. Sayour
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA; (E.O.-R.); (R.L.); (L.J.); (H.T.); (H.R.M.-G.); (D.A.M.); (J.H.); (E.J.S.)
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| | - Paul Castillo
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
41
|
Gawne P, Man F, Blower PJ, T. M. de Rosales R. Direct Cell Radiolabeling for in Vivo Cell Tracking with PET and SPECT Imaging. Chem Rev 2022; 122:10266-10318. [PMID: 35549242 PMCID: PMC9185691 DOI: 10.1021/acs.chemrev.1c00767] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 02/07/2023]
Abstract
The arrival of cell-based therapies is a revolution in medicine. However, its safe clinical application in a rational manner depends on reliable, clinically applicable methods for determining the fate and trafficking of therapeutic cells in vivo using medical imaging techniques─known as in vivo cell tracking. Radionuclide imaging using single photon emission computed tomography (SPECT) or positron emission tomography (PET) has several advantages over other imaging modalities for cell tracking because of its high sensitivity (requiring low amounts of probe per cell for imaging) and whole-body quantitative imaging capability using clinically available scanners. For cell tracking with radionuclides, ex vivo direct cell radiolabeling, that is, radiolabeling cells before their administration, is the simplest and most robust method, allowing labeling of any cell type without the need for genetic modification. This Review covers the development and application of direct cell radiolabeling probes utilizing a variety of chemical approaches: organic and inorganic/coordination (radio)chemistry, nanomaterials, and biochemistry. We describe the key early developments and the most recent advances in the field, identifying advantages and disadvantages of the different approaches and informing future development and choice of methods for clinical and preclinical application.
Collapse
Affiliation(s)
- Peter
J. Gawne
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Francis Man
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
- Institute
of Pharmaceutical Science, School of Cancer
and Pharmaceutical Sciences, King’s College London, London, SE1 9NH, U.K.
| | - Philip J. Blower
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Rafael T. M. de Rosales
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| |
Collapse
|
42
|
Wu C, Lorenzo G, Hormuth DA, Lima EABF, Slavkova KP, DiCarlo JC, Virostko J, Phillips CM, Patt D, Chung C, Yankeelov TE. Integrating mechanism-based modeling with biomedical imaging to build practical digital twins for clinical oncology. BIOPHYSICS REVIEWS 2022; 3:021304. [PMID: 35602761 PMCID: PMC9119003 DOI: 10.1063/5.0086789] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/29/2022] [Indexed: 12/11/2022]
Abstract
Digital twins employ mathematical and computational models to virtually represent a physical object (e.g., planes and human organs), predict the behavior of the object, and enable decision-making to optimize the future behavior of the object. While digital twins have been widely used in engineering for decades, their applications to oncology are only just emerging. Due to advances in experimental techniques quantitatively characterizing cancer, as well as advances in the mathematical and computational sciences, the notion of building and applying digital twins to understand tumor dynamics and personalize the care of cancer patients has been increasingly appreciated. In this review, we present the opportunities and challenges of applying digital twins in clinical oncology, with a particular focus on integrating medical imaging with mechanism-based, tissue-scale mathematical modeling. Specifically, we first introduce the general digital twin framework and then illustrate existing applications of image-guided digital twins in healthcare. Next, we detail both the imaging and modeling techniques that provide practical opportunities to build patient-specific digital twins for oncology. We then describe the current challenges and limitations in developing image-guided, mechanism-based digital twins for oncology along with potential solutions. We conclude by outlining five fundamental questions that can serve as a roadmap when designing and building a practical digital twin for oncology and attempt to provide answers for a specific application to brain cancer. We hope that this contribution provides motivation for the imaging science, oncology, and computational communities to develop practical digital twin technologies to improve the care of patients battling cancer.
Collapse
Affiliation(s)
- Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | - Kalina P. Slavkova
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | - Caleb M. Phillips
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Debra Patt
- Texas Oncology, Austin, Texas 78731, USA
| | - Caroline Chung
- Department of Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas 77030, USA
| | | |
Collapse
|
43
|
Park Y, Demessie AA, Luo A, Taratula OR, Moses AS, Do P, Campos L, Jahangiri Y, Wyatt CR, Albarqi HA, Farsad K, Slayden OD, Taratula O. Targeted Nanoparticles with High Heating Efficiency for the Treatment of Endometriosis with Systemically Delivered Magnetic Hyperthermia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107808. [PMID: 35434932 PMCID: PMC9232988 DOI: 10.1002/smll.202107808] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/01/2022] [Indexed: 05/31/2023]
Abstract
Endometriosis is a devastating disease in which endometrial-like tissue forms lesions outside the uterus. It causes infertility and severe pelvic pain in ≈176 million women worldwide, and there is currently no cure for this disease. Magnetic hyperthermia could potentially eliminate widespread endometriotic lesions but has not previously been considered for treatment because conventional magnetic nanoparticles have relatively low heating efficiency and can only provide ablation temperatures (>46 °C) following direct intralesional injection. This study is the first to describe nanoparticles that enable systemically delivered magnetic hyperthermia for endometriosis treatment. When subjected to an alternating magnetic field (AMF), these hexagonal iron-oxide nanoparticles exhibit extraordinary heating efficiency that is 6.4× greater than their spherical counterparts. Modifying nanoparticles with a peptide targeted to vascular endothelial growth factor receptor 2 (VEGFR-2) enhances their endometriosis specificity. Studies in mice bearing transplants of macaque endometriotic tissue reveal that, following intravenous injection at a low dose (3 mg per kg), these nanoparticles efficiently accumulate in endometriotic lesions, selectively elevate intralesional temperature above 50 °C upon exposure to external AMF, and completely eradicate them with a single treatment. These nanoparticles also demonstrate promising potential as magnetic resonance imaging (MRI) contrast agents for precise detection of endometriotic tissue before AMF application.
Collapse
Affiliation(s)
- Youngrong Park
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Ananiya A Demessie
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Addie Luo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue Beaverton, Portland, Oregon, 97006, USA
| | - Olena R Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Abraham S Moses
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Peter Do
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| | - Leonardo Campos
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Younes Jahangiri
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Cory R Wyatt
- Department of Diagnostic Radiology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
- Advanced Imaging Research Center, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Hassan A Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, King Abdulaziz Road, Najran, 55461, Saudi Arabia
| | - Khashayar Farsad
- Dotter Interventional Institute, Department of Interventional Radiology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97239, USA
| | - Ov D Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue Beaverton, Portland, Oregon, 97006, USA
| | - Oleh Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, Oregon, 97201, USA
| |
Collapse
|
44
|
Sato N, Choyke PL. Whole-Body Imaging to Assess Cell-Based Immunotherapy: Preclinical Studies with an Update on Clinical Translation. Mol Imaging Biol 2022; 24:235-248. [PMID: 34816284 PMCID: PMC8983636 DOI: 10.1007/s11307-021-01669-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
In the past decades, immunotherapies against cancers made impressive progress. Immunotherapy includes a broad range of interventions that can be separated into two major groups: cell-based immunotherapies, such as adoptive T cell therapies and stem cell therapies, and immunomodulatory molecular therapies such as checkpoint inhibitors and cytokine therapies. Genetic engineering techniques that transduce T cells with a cancer-antigen-specific T cell receptor or chimeric antigen receptor have expanded to other cell types, and further modulation of the cells to enhance cancer targeting properties has been explored. Because cell-based immunotherapies rely on cells migrating to target organs or tissues, there is a growing interest in imaging technologies that non-invasively monitor transferred cells in vivo. Here, we review whole-body imaging methods to assess cell-based immunotherapy using a variety of examples. Following a review of preclinically used cell tracking technologies, we consider the status of their clinical translation.
Collapse
Affiliation(s)
- Noriko Sato
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 10/Rm. B3B406, 10 Center Dr, Bethesda, MD, 20892, USA.
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 10/Rm. B3B69F, 10 Center Dr, Bethesda, MD, 20892, USA
| |
Collapse
|
45
|
Harvell-Smith S, Tung LD, Thanh NTK. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. NANOSCALE 2022; 14:3658-3697. [PMID: 35080544 DOI: 10.1039/d1nr05670k] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body. These characteristics enable various biomedical applications of clinical interest. In the opening sections of this review, the principles of image generation are introduced, along with a detailed comparison of the fundamental properties of this technique with other common imaging modalities. The main feature is a presentation on the up-to-date literature for the development of SPIONs tailored for improved imaging performance, and developments in the current and promising biomedical applications of this emerging technique, with a specific focus on theranostics, cell tracking and perfusion imaging. Finally, we will discuss recent progress in the clinical translation of MPI. As signal detection in MPI is almost entirely dependent on the properties of the SPION employed, this work emphasises the importance of tailoring the synthetic process to produce SPIONs demonstrating specific properties and how this impacts imaging in particular applications and MPI's overall performance.
Collapse
Affiliation(s)
- Stanley Harvell-Smith
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
46
|
Kiru L, Zlitni A, Tousley AM, Dalton GN, Wu W, Lafortune F, Liu A, Cunanan KM, Nejadnik H, Sulchek T, Moseley ME, Majzner RG, Daldrup-Link HE. In vivo imaging of nanoparticle-labeled CAR T cells. Proc Natl Acad Sci U S A 2022; 119:e2102363119. [PMID: 35101971 PMCID: PMC8832996 DOI: 10.1073/pnas.2102363119] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/10/2021] [Indexed: 01/20/2023] Open
Abstract
Metastatic osteosarcoma has a poor prognosis with a 2-y, event-free survival rate of ∼15 to 20%, highlighting the need for the advancement of efficacious therapeutics. Chimeric antigen receptor (CAR) T-cell therapy is a potent strategy for eliminating tumors by harnessing the immune system. However, clinical trials with CAR T cells in solid tumors have encountered significant challenges and have not yet demonstrated convincing evidence of efficacy for a large number of patients. A major bottleneck for the success of CAR T-cell therapy is our inability to monitor the accumulation of the CAR T cells in the tumor with clinical-imaging techniques. To address this, we developed a clinically translatable approach for labeling CAR T cells with iron oxide nanoparticles, which enabled the noninvasive detection of the iron-labeled T cells with magnetic resonance imaging (MRI), photoacoustic imaging (PAT), and magnetic particle imaging (MPI). Using a custom-made microfluidics device for T-cell labeling by mechanoporation, we achieved significant nanoparticle uptake in the CAR T cells, while preserving T-cell proliferation, viability, and function. Multimodal MRI, PAT, and MPI demonstrated homing of the T cells to osteosarcomas and off-target sites in animals administered with T cells labeled with the iron oxide nanoparticles, while T cells were not visualized in animals infused with unlabeled cells. This study details the successful labeling of CAR T cells with ferumoxytol, thereby paving the way for monitoring CAR T cells in solid tumors.
Collapse
Affiliation(s)
- Louise Kiru
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | - Aimen Zlitni
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | | | | | - Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | - Famyrah Lafortune
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | - Anna Liu
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Kristen May Cunanan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | - Hossein Nejadnik
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Todd Sulchek
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | - Michael Eugene Moseley
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305
| | - Robbie G Majzner
- Department of Pediatrics, Stanford University, Stanford, CA 94305
- Stanford Cancer Institute, Stanford University, Stanford, CA 94305
| | - Heike Elisabeth Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305;
- Department of Pediatrics, Stanford University, Stanford, CA 94305
- Stanford Cancer Institute, Stanford University, Stanford, CA 94305
| |
Collapse
|
47
|
Polasky C, Studt T, Steuer AK, Loyal K, Lüdtke-Buzug K, Bruchhage KL, Pries R. Impact of Superparamagnetic Iron Oxide Nanoparticles on THP-1 Monocytes and Monocyte-Derived Macrophages. Front Mol Biosci 2022; 9:811116. [PMID: 35211509 PMCID: PMC8862141 DOI: 10.3389/fmolb.2022.811116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are currently under examination for magnetic particle imaging, which represents a radiation free technology for three-dimensional imaging with high sensitivity, resolution and imaging speed. SPIONs are rapidly taken up by monocytes and other phagocytes which carry them to the site of inflammation. Therefore, the SPION biocompatibility is an essential parameter for a widespread MPI usage. Many improvements are expected from SPION development and its applications for cell visualization, but the impact of MPI optimized dextran coated SPIONs on the cellular characteristics of monocytic cells has been poorly studied up to now. THP-1 monocytes, monocyte-derived macrophages (MDM) as well as peripheral blood monocytes were incubated with MPI-optimized dextran-coated SPIONs of a size between 83.5 and 86 nm. SPION uptake was measured by FITC fluorescence of labeled SPIONs and Prussian blue staining. The activation of monocytes and MDMs was evaluated by CD14, CD11b and CD86 in flow cytometry. The secretion of IL-1β, and IL-10 was analyzed in supernatants. SPIONs were rapidly taken up by monocytes and monocyte-derived macrophages while no decrease in cell viability was observed. Expression patterns of CD11b, CD14, and CD86 were not affected in THP-1 monocytes and MDMs. Monocyte differentiation in macrophages was hindered during SPION uptake. THP-1 monocytes as well as monocyte-derived macrophages showed significantly increased IL-1β and decreased IL-10 secretion by tendency after SPION treatment. Dextran-coated SPIONs showed a low cytotoxicity on monocytes but exert undesirable inflammatory side effects that have to be considered for imaging applications.
Collapse
Affiliation(s)
- Christina Polasky
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Tim Studt
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Ann-Kathrin Steuer
- Institute of Medical Engineering, University of Luebeck, Luebeck, Germany
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Luebeck, Germany
| | - Kristin Loyal
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | | | - Karl-Ludwig Bruchhage
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
| | - Ralph Pries
- Department of Otorhinolaryngology, University Hospital of Schleswig-Holstein, Luebeck, Germany
- *Correspondence: Ralph Pries,
| |
Collapse
|
48
|
Utkur M, Saritas EU. Simultaneous temperature and viscosity estimation capability via magnetic nanoparticle relaxation. Med Phys 2022; 49:2590-2601. [PMID: 35103333 DOI: 10.1002/mp.15509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/05/2022] Open
Abstract
PURPOSE Magnetic particle imaging (MPI) is emerging as a highly promising imaging modality. Magnetic nanoparticles (MNPs) are used as imaging tracers in MPI, and their relaxation behavior provides the foundation for its functional imaging capability. Since MNPs are also utilized in magnetic fluid hyperthermia (MFH) and MPI enables localized MFH, temperature mapping arises as an important application area of MPI. To achieve accurate temperature estimations, however, one must also take into account the confounding effects of viscosity on the MPI signal. In this work, we analyze the effects of temperature and viscosity on MNP relaxation, and determine temperature and viscosity sensitivities of relaxation time constant estimations via TAURUS (TAU estimation via Recovery of Underlying mirror Symmetry) at a wide range of operating points to empower simultaneous mapping of these two parameters. METHODS A total of 15 samples were prepared to reach 4 target viscosity levels (0.9-3.6 mPa·s) at 5 different temperatures (25-45°C). Experiments were performed on a magnetic particle spectrometer (MPS) setup at 60 different operating points at drive field amplitudes ranging between 5-25 mT and frequencies ranging between 1-7 kHz. To enable these extensive experiments, an in-house arbitrary-waveform MPS setup with temperature-controlled heating capability was developed. The operating points were divided into 4 groups with comparable signal levels to maximize signal gain during rapid signal acquisition. The relaxation time constants were estimated via TAURUS, by restoring the underlying mirror symmetry property of the positive and negative half cycles of the time-domain MNP response. The relative time constants with respect to the drive field period, τ̂, were computed to enable quantitative comparison across different operating points. At each operating point, a linear fit was performed to τ̂ as a function of each functional parameter (i.e., temperature or viscosity). The slopes of these linear fits were utilized to compute the temperature and viscosity sensitivities of TAURUS. RESULTS Except for outlier behaviors at 1 kHz, the following global trends were observed: τ̂ decreases with drive field amplitude, increases with drive field frequency, decreases with temperature, and increases with viscosity. The temperature sensitivity varies slowly across the operating points and reaches a maximum value of 1.18%/°C. In contrast, viscosity sensitivity is high at low frequencies around 1 kHz with a maximum value of 13.4%/(mPa·s), but rapidly falls down after 3 kHz. These results suggest that the simultaneous estimation of temperature and viscosity can be achieved by performing measurements at two different drive field settings that provide complementary temperature/viscosity sensitivities. Alternatively, temperature estimation alone can be achieved with a single measurement at drive field frequencies above 3 kHz, where viscosity sensitivity is minimized. CONCLUSIONS This work demonstrates highly promising temperature and viscosity sensitivities for TAURUS, highlighting its potential for simultaneous estimation of these two environmental parameters via MNP relaxation. The findings of this work reveal the potential of a hybrid MPI-MFH system for real-time monitored and localized thermal ablation treatment of cancer. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mustafa Utkur
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, 06800, Turkey
| | - Emine Ulku Saritas
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, 06800, Turkey.,National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, 06800, Turkey.,Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, 06800, Turkey
| |
Collapse
|
49
|
Tay ZW, Chandrasekharan P, Fellows BD, Arrizabalaga IR, Yu E, Olivo M, Conolly SM. Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer. Cancers (Basel) 2021; 13:5285. [PMID: 34771448 PMCID: PMC8582440 DOI: 10.3390/cancers13215285] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Magnetic Particle Imaging (MPI) is an emerging imaging modality for quantitative direct imaging of superparamagnetic iron oxide nanoparticles (SPION or SPIO). With different physics from MRI, MPI benefits from ideal image contrast with zero background tissue signal. This enables clear visualization of cancer with image characteristics similar to PET or SPECT, but using radiation-free magnetic nanoparticles instead, with infinite-duration reporter persistence in vivo. MPI for cancer imaging: demonstrated months of quantitative imaging of the cancer-related immune response with in situ SPION-labelling of immune cells (e.g., neutrophils, CAR T-cells). Because MPI suffers absolutely no susceptibility artifacts in the lung, immuno-MPI could soon provide completely noninvasive early-stage diagnosis and treatment monitoring of lung cancers. MPI for magnetic steering: MPI gradients are ~150 × stronger than MRI, enabling remote magnetic steering of magneto-aerosol, nanoparticles, and catheter tips, enhancing therapeutic delivery by magnetic means. MPI for precision therapy: gradients enable focusing of magnetic hyperthermia and magnetic-actuated drug release with up to 2 mm precision. The extent of drug release from the magnetic nanocarrier can be quantitatively monitored by MPI of SPION's MPS spectral changes within the nanocarrier. CONCLUSION MPI is a promising new magnetic modality spanning cancer imaging to guided-therapy.
Collapse
Affiliation(s)
- Zhi Wei Tay
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Prashant Chandrasekharan
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Benjamin D. Fellows
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Irati Rodrigo Arrizabalaga
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Elaine Yu
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| | - Malini Olivo
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02 Helios Building, Singapore 138667, Singapore;
| | - Steven M. Conolly
- Department of Bioengineering, 340 Hearst Memorial Mining Building, University of California Berkeley, Berkeley, CA 94720-1762, USA; (P.C.); (B.D.F.); (I.R.A.); (E.Y.); (S.M.C.)
| |
Collapse
|
50
|
Shalaby N, Dubois VP, Ronald J. Molecular imaging of cellular immunotherapies in experimental and therapeutic settings. Cancer Immunol Immunother 2021; 71:1281-1294. [PMID: 34657195 PMCID: PMC9122865 DOI: 10.1007/s00262-021-03073-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
Cell-based cancer immunotherapies are becoming a routine part of the armamentarium against cancer. While remarkable successes have been seen, including durable remissions, not all patients will benefit from these therapies and many can suffer from life-threatening side effects. These differences in efficacy and safety across patients and across tumor types (e.g., blood vs. solid), are thought to be due to differences in how well the immune cells traffic to their target tissue (e.g., tumor, lymph nodes, etc.) whilst avoiding non-target tissues. Across patient variability can also stem from whether the cells interact with (i.e., communicate with) their intended target cells (e.g., cancer cells), as well as if they proliferate and survive long enough to yield potent and long-lasting therapeutic effects. However, many cell-based therapies are monitored by relatively simple blood tests that lack any spatial information and do not reflect how many immune cells have ended up at particular tissues. The ex vivo labeling and imaging of infused therapeutic immune cells can provide a more precise and dynamic understanding of whole-body immune cell biodistribution, expansion, viability, and activation status in individual patients. In recent years numerous cellular imaging technologies have been developed that may provide this much-needed information on immune cell fate. For this review, we summarize various ex vivo labeling and imaging approaches that allow for tracking of cellular immunotherapies for cancer. Our focus is on clinical imaging modalities and summarize the progression from experimental to therapeutic settings. The imaging information provided by these technologies can potentially be used for many purposes including improved real-time understanding of therapeutic efficacy and potential side effects in individual patients after cell infusion; the ability to more readily compare new therapeutic cell designs to current designs for various parameters such as improved trafficking to target tissues and avoidance of non-target tissues; and the long-term ability to identify patient populations that are likely to be positive responders and at low-risk of side effects.
Collapse
Affiliation(s)
- Nourhan Shalaby
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Robarts Research Institute, London, Ontario, Canada
| | - Veronica Phyllis Dubois
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada.,Robarts Research Institute, London, Ontario, Canada
| | - John Ronald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Canada. .,Robarts Research Institute, London, Ontario, Canada. .,Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|