1
|
Zhang H, Tian Y, Ren Y, Wang Y, Wang C, Hou L. Shear force and cholesterol affinity responsive drug delivery system for treating inflammation and abnormal lipid metabolism in atherosclerosis. J Control Release 2025; 381:113633. [PMID: 40118114 DOI: 10.1016/j.jconrel.2025.113633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/09/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
Inflammatory infiltration and lipid metabolism disorder are two main characteristics of atherosclerosis (AS) plaque microenvironment. They interact to form a malignant positive feedback cycle, which aggravates the development of AS disease. Therefore, simultaneous improvement of inflammation and lipid metabolism will provide a significant therapeutic effect on AS. To achieve this goal, we first prepared FCD (Fuc-TK-CD) by grafting β-cyclodextrin (β-CD) to fucoidan (Fuc) via reactive oxygen species (ROS)-responsive sulfhydryl disulfide bond (TK), then loaded resveratrol (Res) through the host-guest interaction. Finally, we coated it on the surface of SeNPs through SeO bonds to obtain FCD-Se/Res nanoplatforms. FCD-Se/Res can actively recognize P-selectin and penetrate the AS plaque interior. Subsequently, FCD-Se/Res responded to the high shear force and abundant cholesterol in the plaque microenvironment to release Res, reducing AS plaque inflammation by reversing M1 macrophages to M2 phenotype. Meanwhile, TK bonds broke in response to high ROS levels in the plaque, making β-CD free to clear excessive pathogenic cholesterol from plaques. Benefiting from the integrated multifunctionality, FCD-Se/Res can break the vicious cycle between inflammation and disrupted lipid metabolism, jointly stabilize vulnerable plaques, and exert efficient anti-AS effects. The pharmacodynamic results revealed a significantly reduced plaque vulnerability index (VI) from 4.07 to 0.40 after FCD-Se/Res treatment.
Collapse
Affiliation(s)
- Huijuan Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, China.
| | - Yingmei Tian
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaning Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Chaoqun Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Lin Hou
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China; Henan Key Laboratory of Nanomedicine for Targeting Diagnosis and Treatment, Zhengzhou, China.
| |
Collapse
|
2
|
Yang J, des Rieux A, Malfanti A. Stimuli-Responsive Nanomedicines for the Treatment of Non-cancer Related Inflammatory Diseases. ACS NANO 2025. [PMID: 40249331 DOI: 10.1021/acsnano.5c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Nanomedicines offer a means to overcome the limitations associated with traditional drug dosage formulations by affording drug protection, enhanced drug bioavailability, and targeted drug delivery to affected sites. Inflamed tissues possess unique microenvironmental characteristics (including excessive reactive oxygen species, low pH levels, and hypoxia) that stimuli-responsive nanoparticles can employ as triggers to support on-demand delivery, enhanced accumulation, controlled release, and activation of anti-inflammatory drugs. Stimuli-responsive nanomedicines respond to physicochemical and pathological factors associated with diseased tissues to improve the specificity of drug delivery, overcome multidrug resistance, ensure accurate diagnosis and precision therapy, and control drug release to improve efficacy and safety. Current stimuli-responsive nanoparticles react to intracellular/microenvironmental stimuli such as pH, redox, hypoxia, or specific enzymes and exogenous stimuli such as temperature, magnetic fields, light, and ultrasound via bioresponsive moieties. This review summarizes the general strategies employed to produce stimuli-responsive nanoparticles tailored for inflammatory diseases and all recent advances, reports their applications in drug delivery, and illustrates the progress made toward clinical translation.
Collapse
Affiliation(s)
- Jingjing Yang
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Anne des Rieux
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
| | - Alessio Malfanti
- UCLouvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier 73 B1.73.12, 1200, Brussels, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| |
Collapse
|
3
|
Vazquez-Prada KX, Moonshi SS, Wu Y, Peter K, Wang X, Xu ZP, Ta HT. Branched silver-iron oxide nanoparticles enabling highly effective targeted and localised drug-free thrombolysis. Biomater Sci 2025; 13:1683-1696. [PMID: 39960377 DOI: 10.1039/d4bm01089b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Ultrasound has been widely used as an external stimulus to trigger drug release from nanomaterials in thrombosis treatment. Here, we introduce a novel strategy leveraging nanomaterials not for drug delivery, but for enhancing US-induced thrombolysis. This innovative strategy is particularly significant, as thrombolytic drugs inherently pose a risk of systemic bleeding. We combined branched silver-iron oxide nanoparticles (AgIONPs) with low-intensity focused ultrasound to evaluate their thrombolytic potential. Binding assays in in vitro human blood clots and in a thrombosis mouse model confirmed that the targeted AgIONPs specifically bound to thrombi. Upon ultrasound activation, AgIONPs facilitated thrombolysis via two key mechanisms: hyperthermia driven by the nanoparticle-mediated thermal conversion, and mechanical shear forces induced by ultrasound. The combination of AgIONPs and US generated a synergistic thrombolytic effect, demonstrating significant efficacy in both in vitro and in vivo.
Collapse
Affiliation(s)
- Karla X Vazquez-Prada
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia.
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Queensland 4072, Australia
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane Queensland 4111, Australia
| | - Shehzahdi S Moonshi
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia.
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane Queensland 4111, Australia
| | - Yuao Wu
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia.
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane Queensland 4111, Australia
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Bio21, Victoria 3052, Australia
- Department of Medicine, Monash University, Victoria 3004, Australia
| | - Xiaowei Wang
- Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Bio21, Victoria 3052, Australia
- Department of Medicine, Monash University, Victoria 3004, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia.
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane Queensland 4111, Australia
| |
Collapse
|
4
|
Hang C, Guo H, Moawad MS, Sayes CM, Chen YH, Yang J. Application of Cerium Oxide Nanozymes (CeONZs) in Human Pluripotent Stem Cell-Derived Cardiomyocytes. Methods Mol Biol 2025. [PMID: 40106142 DOI: 10.1007/7651_2025_606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of death globally. Excessive production of reactive oxygen species (ROS) is detrimental to cardiomyocytes (CMs), triggering inflammation, inducing cell death, disrupting calcium homeostasis, and leading to arrhythmia. Thus, ROS is considered a common pathological factor in CVDs. Although the efficacy of antioxidants targeting ROS is currently limited, nanotechnology offers opportunities to develop antioxidants with improved selectivity and bioavailability, which can effectively prevent or treat oxidative stress-related CVDs. Cerium oxide nanozymes (CeONZs) can efficiently scavenge excessive ROS by mimicking the activity of endogenous antioxidant enzymes. However, their nanosafety and efficacy in human CMs remain unclear, posing a critical issue to be addressed before clinical applications. Due to the scarcity of primary human CMs, human pluripotent stem cells (hPSCs) and their derived cardiomyocytes (hPSC-CMs) provide a valuable source for modeling CVDs and their therapeutic interventions. This chapter presents a preparation method for CeONZs and outlines the assessment of their biosafety and antioxidant efficacy in hPSC-CMs.
Collapse
Affiliation(s)
- Chengwen Hang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huixin Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Mohamed S Moawad
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Yi-Han Chen
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Yang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
- Department of Cell Biology and Genetics, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Tang JL, Moonshi SS, Wu Y, Cowin G, Vazquez- Prada KX, Tran HD, Bulmer AC, Ta HT. A methotrexate labelled dual metal oxide nanocomposite for long-lasting anti-cancer theranostics. Mater Today Bio 2025; 30:101377. [PMID: 39742148 PMCID: PMC11683249 DOI: 10.1016/j.mtbio.2024.101377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025] Open
Abstract
We explored the feasibility of a self-assembled chitosan nanocomposite incorporating cerium oxide/nanoceria and superparamagnetic iron oxide nanoparticles (Chit-IOCO NPs), conjugated with methotrexate (MTX) and Cy5 dye, as an integrated cancer theranostic nanosystem (Chit-IOCO-MTX-Cy5). In this system, nanoceria serves as an anti-cancer agent, while the superparamagnetic iron oxide nanoparticles function as a negative contrast agent for MR imaging. This dual metal oxide nanocomposite is conjugated with MTX which is a structural analogue of folate, serving both as a targeting mechanism for folate receptors on cancer cells and as a chemotherapeutic drug. Chit-IOCO-MTX-Cy5 exhibited exceptional negative contrast in T2 and T2∗-weighted MRI, achieving a high relaxivity of 409.5 mM⁻1 s⁻1 which is superior to clinically approved agents. The nanocomposite demonstrated both pro-oxidative and antioxidative properties, significantly increasing reactive oxygen species (ROS) production in U87MG cells (1.4-fold change), which triggered apoptosis in these cancer cells. Simultaneously, it exhibited ROS scavenging activity in non-malignant endothelial cells (0.8-fold change). Intravenous infusion of Chit-IOCO-MTX-Cy5 (5 mg/kg MTX) led to significant tumor growth inhibition, indicating a synergistic enhancement of anti-cancer effects when combining MTX and nanoceria, compared to free MTX or nanoceria without MTX conjugation. Importantly, after treatment cessation, tumours in the nanocomposite group did not re-grow, while those in the free MTX group rapidly did. In vivo MR and fluorescence imaging revealed improved uptake and retention of Chit-IOCO-MTX-Cy5 in tumours compared to nanoceria without MTX. Notably, biosafety and biochemical analyses in mice showed no significant differences between the Chit-IOCO-MTX-Cy5 treatment group and control groups.
Collapse
Affiliation(s)
- Joyce L.Y. Tang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Shehzahdi S. Moonshi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Gary Cowin
- National Imaging Facility, Centre for Advanced Imaging, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Karla X. Vazquez- Prada
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Huong D.N. Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Andrew C. Bulmer
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland, 4215, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
6
|
Wang X, Mu D, Liang J, Xin R, Zhang Y, Liu R, Yao M, Zhang B. Emerging nanoprobes for the features visualization of vulnerable atherosclerotic plaques. SMART MEDICINE 2024; 3:e20240033. [PMID: 39776593 PMCID: PMC11669784 DOI: 10.1002/smmd.20240033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/28/2024] [Indexed: 01/11/2025]
Abstract
Atherosclerosis (AS) is a major cause of cardiovascular disease. In particular, the unpredictable rupture of vulnerable atherosclerotic plaques (VASPs) can cause serious cardiovascular events such as myocardial infarction, stroke, and even sudden death. Therefore, early evaluation of the vulnerability of atherosclerotic plaques is of great importance. However, clinical imaging techniques are only marginally useful in the presence of severe anatomical structural changes, making it difficult to evaluate plaque vulnerability at an early stage. With the development of molecular imaging and nanotechnology, specific nanoprobes constructed for the pathological features of VASPs have attracted much attention for their ability to visualize VASPs early and noninvasively at the cellular and molecular levels. Here, we outline the pathological features of VASPs, analyze the superiority and limitations of current clinical imaging techniques, introduce the rational design principles of nanoprobes, and systematically summarize the application of nanoprobes to visualize the features of VASPs at the cellular and molecular levels. In addition, we discussed the prospects and urgent challenges in this field, and we believe it will provide new ideas for the early and accurate diagnosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Xin Wang
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Dan Mu
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Jing Liang
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Ruijing Xin
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yukun Zhang
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Renyuan Liu
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Mei Yao
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Bing Zhang
- Department of RadiologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Medical Imaging CenterAffiliated Drum Tower HospitalMedical School of Nanjing UniversityNanjingChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjingChina
- Department of RadiologyDrum Tower HospitalClinical College of Nanjing Medical UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
- Institute of Brain ScienceNanjing UniversityNanjingChina
| |
Collapse
|
7
|
Yadav S, Singh A, Palei NN, Pathak P, Verma A, Yadav JP. Chitosan-Based Nanoformulations: Preclinical Investigations, Theranostic Advancements, and Clinical Trial Prospects for Targeting Diverse Pathologies. AAPS PharmSciTech 2024; 25:263. [PMID: 39500815 DOI: 10.1208/s12249-024-02948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/15/2024] [Indexed: 12/12/2024] Open
Abstract
Chitosan, a biocompatible and biodegradable polymer, has attracted significant interest in the development of nanoformulations for targeted drug delivery and therapeutic applications. The versatility of chitosan lies in its modifiable functional groups, which can be tailored to diverse applications. Nanoparticles derived from chitosan and its derivatives typically exhibit a positive surface charge and mucoadhesive properties, enabling them to adhere to negatively charged biological membranes and gradually release therapeutic agents. This comprehensive review investigates the manifold roles of chitosan-based nanocarriers, ranging from preclinical research to theranostic applications and clinical trials, across a spectrum of diseases, including neurological disorders, cardiovascular diseases, cancer, wound healing, gastrointestinal disorders, and pulmonary diseases. The exploration starts with an overview of preclinical studies, emphasizing the potential of chitosan-based nanoformulations in optimizing drug delivery, improving therapeutic outcomes, and mitigating adverse effects in various disease categories. Advancements in theranostic applications of chitosan-based nanoformulations highlight their adaptability to diverse diseases. As these nanoformulations progress toward clinical translation, this review also addresses the regulatory challenges associated with their development and proposes potential solutions.
Collapse
Affiliation(s)
- Seema Yadav
- Amity Institute of Pharmacy, Amity University, Lucknow, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Abhishek Singh
- Amity Institute of Pharmacy, Amity University, Lucknow, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Narahari N Palei
- Amity Institute of Pharmacy, Amity University, Lucknow, Sector 125, Noida, Uttar Pradesh, 201313, India.
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM (Deemed to Be University), Hyderabad Campus, Visakhapatnam, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Jagat Pal Yadav
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
8
|
Mariotti M, Giacon N, Lo Cascio E, Cacaci M, Picchietti S, Di Vito M, Sanguinetti M, Arcovito A, Bugli F. Functionalized PLGA-Based Nanoparticles with Anti-HSV-2 Human Monoclonal Antibody: A Proof of Concept for Early Diagnosis and Targeted Therapy. Pharmaceutics 2024; 16:1218. [PMID: 39339254 PMCID: PMC11434782 DOI: 10.3390/pharmaceutics16091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Functionalized nanoparticles (NPs) represent a cutting edge in innovative clinical approaches, allowing for the delivery of selected compounds with higher specificity in a wider time frame. They also hold promise for novel theranostic applications that integrate both diagnostic and therapeutic functions. Pathogens are continuously evolving to try to escape the strategies designed to treat them. Objectives: In this work, we describe the development of a biotechnological device, Nano-Immuno-Probes (NIPs), for early detection and infections treatment. Human Herpes Simplex Virus 2 was chosen as model pathogen. Methods: NIPs consist of PLGA-PEG-Sulfone polymeric NPs conjugated to recombinant Fab antibody fragments targeting the viral glycoprotein G2. NIPs synthesis involved multiple steps and was validated through several techniques. Results: DLS analysis indicated an expected size increase with a good polydispersity index. Z-average and z-potential values were measured for PLGA-PEG-Bis-Sulfone NPs (86.6 ± 10.9 nm; -0.7 ± 0.3 mV) and NIPs (151 ± 10.4 nm; -5.1 ± 1.9 mV). SPR assays confirmed NIPs' specificity for the glycoprotein G2, with an apparent KD of 1.03 ± 0.61 µM. NIPs exhibited no cytotoxic effects on VERO cells at 24 and 48 h. Conclusions: This in vitro study showed that NIPs effectively target HSV-2, suggesting the potential use of these nanodevices to deliver both contrast agents as well as therapeutic compounds.
Collapse
Affiliation(s)
- Melinda Mariotti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
| | - Ettore Lo Cascio
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
| | - Margherita Cacaci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università snc, 01100 Viterbo, Italy;
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, Largo A. Gemelli 8, 00168 Roma, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (M.M.); (N.G.); (E.L.C.); (M.C.); (M.D.V.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
9
|
Manoharan D, Wang LC, Chen YC, Li WP, Yeh CS. Catalytic Nanoparticles in Biomedical Applications: Exploiting Advanced Nanozymes for Therapeutics and Diagnostics. Adv Healthc Mater 2024; 13:e2400746. [PMID: 38683107 DOI: 10.1002/adhm.202400746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Catalytic nanoparticles (CNPs) as heterogeneous catalyst reveals superior activity due to their physio-chemical features, such as high surface-to-volume ratio and unique optical, electric, and magnetic properties. The CNPs, based on their physio-chemical nature, can either increase the reactive oxygen species (ROS) level for tumor and antibacterial therapy or eliminate the ROS for cytoprotection, anti-inflammation, and anti-aging. In addition, the catalytic activity of nanozymes can specifically trigger a specific reaction accompanied by the optical feature change, presenting the feasibility of biosensor and bioimaging applications. Undoubtedly, CNPs play a pivotal role in pushing the evolution of technologies in medical and clinical fields, and advanced strategies and nanomaterials rely on the input of chemical experts to develop. Herein, a systematic and comprehensive review of the challenges and recent development of CNPs for biomedical applications is presented from the viewpoint of advanced nanomaterial with unique catalytic activity and additional functions. Furthermore, the biosafety issue of applying biodegradable and non-biodegradable nanozymes and future perspectives are critically discussed to guide a promising direction in developing span-new nanozymes and more intelligent strategies for overcoming the current clinical limitations.
Collapse
Affiliation(s)
- Divinah Manoharan
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Ying-Chi Chen
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Peng Li
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Interdisciplinary Research Center on Material and Medicinal Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
10
|
Shahalaei M, Azad AK, Sulaiman WMAW, Derakhshani A, Mofakham EB, Mallandrich M, Kumarasamy V, Subramaniyan V. A review of metallic nanoparticles: present issues and prospects focused on the preparation methods, characterization techniques, and their theranostic applications. Front Chem 2024; 12:1398979. [PMID: 39206442 PMCID: PMC11351095 DOI: 10.3389/fchem.2024.1398979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/04/2024] [Indexed: 09/04/2024] Open
Abstract
Metallic nanoparticles (MNPs) have garnered significant attention due to their ability to improve the therapeutic index of medications by reducing multidrug resistance and effectively delivering therapeutic agents through active targeting. In addition to drug delivery, MNPs have several medical applications, including in vitro and in vivo diagnostics, and they improve the biocompatibility of materials and nutraceuticals. MNPs have several advantages in drug delivery systems and genetic manipulation, such as improved stability and half-life in circulation, passive or active targeting into the desired target selective tissue, and gene manipulation by delivering genetic materials. The main goal of this review is to provide current information on the present issues and prospects of MNPs in drug and gene delivery systems. The current study focused on MNP preparation methods and their characterization by different techniques, their applications to targeted delivery, non-viral vectors in genetic manipulation, and challenges in clinical trial translation.
Collapse
Affiliation(s)
- Mona Shahalaei
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Abul Kalam Azad
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University College of MAIWP International (UCMI), Kuala Lumpur, Malaysia
| | - Atefeh Derakhshani
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elmira Banaee Mofakham
- Biomaterial Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj, Iran
| | - Mireia Mallandrich
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| |
Collapse
|
11
|
Alradwan I, AL Fayez N, Alomary MN, Alshehri AA, Aodah AH, Almughem FA, Alsulami KA, Aldossary AM, Alawad AO, Tawfik YMK, Tawfik EA. Emerging Trends and Innovations in the Treatment and Diagnosis of Atherosclerosis and Cardiovascular Disease: A Comprehensive Review towards Healthier Aging. Pharmaceutics 2024; 16:1037. [PMID: 39204382 PMCID: PMC11360443 DOI: 10.3390/pharmaceutics16081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) are classed as diseases of aging, which are associated with an increased prevalence of atherosclerotic lesion formation caused by such diseases and is considered as one of the leading causes of death globally, representing a severe health crisis affecting the heart and blood vessels. Atherosclerosis is described as a chronic condition that can lead to myocardial infarction, ischemic cardiomyopathy, stroke, and peripheral arterial disease and to date, most pharmacological therapies mainly aim to control risk factors in patients with cardiovascular disease. Advances in transformative therapies and imaging diagnostics agents could shape the clinical applications of such approaches, including nanomedicine, biomaterials, immunotherapy, cell therapy, and gene therapy, which are emerging and likely to significantly impact CVD management in the coming decade. This review summarizes the current anti-atherosclerotic therapies' major milestones, strengths, and limitations. It provides an overview of the recent discoveries and emerging technologies in nanomedicine, cell therapy, and gene and immune therapeutics that can revolutionize CVD clinical practice by steering it toward precision medicine. CVD-related clinical trials and promising pre-clinical strategies that would significantly impact patients with CVD are discussed. Here, we review these recent advances, highlighting key clinical opportunities in the rapidly emerging field of CVD medicine.
Collapse
Affiliation(s)
- Ibrahim Alradwan
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Nojoud AL Fayez
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Mohammad N. Alomary
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Alhassan H. Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Fahad A. Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Khulud A. Alsulami
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Ahmad M. Aldossary
- Wellness and Preventative Medicine Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Abdullah O. Alawad
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Yahya M. K. Tawfik
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| |
Collapse
|
12
|
Choudhary P, Singh VK, Dixit A. 2D-Bio-FETs for sensitive detection of cardiovascular diseases. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:413004. [PMID: 38959912 DOI: 10.1088/1361-648x/ad5ee9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The biosensing industry has seen exponential growth in the past decade. Impact of biosensors in the current scenario cannot be overlooked. Cardiovascular diseases (CvDs) have been recognized as one of the major causes for millions of deaths globally. This mortality can be minimized by early and accurate detection/diagnosis of CvDs with the help of biosensing devices. This also presents a global market opportunity for the development of biosensors for CvDs. A vast variety of biosensing methods and devices have been developed for this problem. Most of commercially available platforms for CvD detection rely on optical (fluorometric and colorimetric analysis) techniques using serum biomarkers since optical testing is the gold standard in medical diagnosis. Field effect transistors-based biosensors, termed as Bio-FETs, are the upcoming devices for blood or serum analyte detection due to excellent sensitivity, low operational voltage, handheld device structure and simple chip-based operation. Further, the discovery of two dimensional (2D) materials and their integration with conventional FETs has improved the overvoltage problem, sensitivity and strict operating conditions as compared to conventional FETs. Graphene-FETs based biosensing devices have been proven as promising candidates due to their attractive properties. Despite the severe threat of CvDs which has further increased in post-covid era, the Bio-FET sensor studies in literature are still rare. In this review, we aim to provide a comprehensive view of all the multidisciplinary concepts related to 2D-BioFETs for CvDs. A critical review of the different platforms has been covered with detailed discussions of related studies to provide a clear concept and present status of 2D-BioFETs based CvD biosensors.
Collapse
Affiliation(s)
- Piyush Choudhary
- Advanced Material and Device (AMAD) Laboratory, Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan 342030, India
| | - Vijay K Singh
- Advanced Material and Device (AMAD) Laboratory, Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan 342030, India
| | - Ambesh Dixit
- Advanced Material and Device (AMAD) Laboratory, Department of Physics, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
13
|
Wang J, Zhang H, Wan W, Yang H, Zhao J. Advances in nanotechnological approaches for the detection of early markers associated with severe cardiac ailments. Nanomedicine (Lond) 2024; 19:1487-1506. [PMID: 39121377 PMCID: PMC11318751 DOI: 10.1080/17435889.2024.2364581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/31/2024] [Indexed: 08/11/2024] Open
Abstract
Mortality from cardiovascular disease (CVD) accounts for over 30% of all deaths globally, necessitating reliable diagnostic tools. Prompt identification and precise diagnosis are critical for effective personalized treatment. Nanotechnology offers promising applications in diagnostics, biosensing and drug delivery for prevalent cardiovascular diseases. Its integration into cardiovascular care enhances diagnostic accuracy, enabling early intervention and tailored treatment plans. By leveraging nanoscale innovations, healthcare professionals can address the complexities of CVD progression and customize interventions based on individual patient needs. Ongoing advancements in nanotechnology continue to shape the landscape of cardiovascular medicine, offering potential for improved patient outcomes and reduced mortality rates from these pervasive diseases.
Collapse
Affiliation(s)
- Jie Wang
- Department of Cardiac Care Unit, Yantaishan Hospital, Yantai, Shandong, 264003, China
| | - Haifeng Zhang
- Department of Cardiology, Yantai Yeda Hospital, Yantai, Shangdong, 264006, China
| | - Weiping Wan
- Department of Ultrasound, Yantaishan Hospital, Yantai, Shandong, 264003, China
| | - Haijiao Yang
- Department of Cardiac Care Unit, Yantaishan Hospital, Yantai, Shandong, 264003, China
| | - Jing Zhao
- Department of Critical Care Medicine, Yantaishan Hospital, Yantai, Shandong, 264003, China
| |
Collapse
|
14
|
Liu W, Li Y, Wang Y, Feng Y. Bioactive Metal-Organic Frameworks as a Distinctive Platform to Diagnosis and Treat Vascular Diseases. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310249. [PMID: 38312082 DOI: 10.1002/smll.202310249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/07/2024] [Indexed: 02/06/2024]
Abstract
Vascular diseases (VDs) pose the leading threat worldwide due to high morbidity and mortality. The detection of VDs is commonly dependent on individual signs, which limits the accuracy and timeliness of therapies, especially for asymptomatic patients in clinical management. Therefore, more effective early diagnosis and lesion-targeted treatments remain a pressing clinical need. Metal-organic frameworks (MOFs) are porous crystalline materials formed by the coordination of inorganic metal ions and organic ligands. Due to their unique high specific surface area, structural flexibility, and functional versatility, MOFs are recognized as highly promising candidates for diagnostic and therapeutic applications in the field of VDs. In this review, the potential of MOFs to act as biosensors, contrast agents, artificial nanozymes, and multifunctional therapeutic agents in the diagnosis and treatment of VDs from the clinical perspective, highlighting the integration between clinical methods with MOFs is generalized. At the same time, multidisciplinary cooperation from chemistry, physics, biology, and medicine to promote the substantial commercial transformation of MOFs in tackling VDs is called for.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yuanchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin, 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
15
|
Pang ASR, Dinesh T, Pang NYL, Dinesh V, Pang KYL, Yong CL, Lee SJJ, Yip GW, Bay BH, Srinivasan DK. Nanoparticles as Drug Delivery Systems for the Targeted Treatment of Atherosclerosis. Molecules 2024; 29:2873. [PMID: 38930939 PMCID: PMC11206617 DOI: 10.3390/molecules29122873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis continues to be a leading cause of morbidity and mortality globally. The precise evaluation of the extent of an atherosclerotic plaque is essential for forecasting its likelihood of causing health concerns and tracking treatment outcomes. When compared to conventional methods used, nanoparticles offer clear benefits and excellent development opportunities for the detection and characterisation of susceptible atherosclerotic plaques. In this review, we analyse the recent advancements of nanoparticles as theranostics in the management of atherosclerosis, with an emphasis on applications in drug delivery. Furthermore, the main issues that must be resolved in order to advance clinical utility and future developments of NP research are discussed. It is anticipated that medical NPs will develop into complex and advanced next-generation nanobotics that can carry out a variety of functions in the bloodstream.
Collapse
Affiliation(s)
- Alexander Shao-Rong Pang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (A.S.-R.P.); (N.Y.-L.P.); (C.L.Y.)
| | - Tarini Dinesh
- Department of Medicine, Government Kilpauk Medical College, Chennai 600010, Tamilnadu, India;
| | - Natalie Yan-Lin Pang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (A.S.-R.P.); (N.Y.-L.P.); (C.L.Y.)
| | - Vishalli Dinesh
- Department of Pathology, Dhanalakshmi Srinivasan Medical College Hospital, Perambalur 621113, Tamilnadu, India;
| | - Kimberley Yun-Lin Pang
- Division of Medicine, South Australia Health, Northern Adelaide Local Health Network, Adelaide, SA 5112, Australia; (K.Y.-L.P.); (S.J.J.L.)
| | - Cai Ling Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (A.S.-R.P.); (N.Y.-L.P.); (C.L.Y.)
| | - Shawn Jia Jun Lee
- Division of Medicine, South Australia Health, Northern Adelaide Local Health Network, Adelaide, SA 5112, Australia; (K.Y.-L.P.); (S.J.J.L.)
| | - George W. Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (G.W.Y.); (B.H.B.)
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (G.W.Y.); (B.H.B.)
| | - Dinesh Kumar Srinivasan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore; (G.W.Y.); (B.H.B.)
| |
Collapse
|
16
|
Liu Y, Jiang Z, Yang X, Wang Y, Yang B, Fu Q. Engineering Nanoplatforms for Theranostics of Atherosclerotic Plaques. Adv Healthc Mater 2024; 13:e2303612. [PMID: 38564883 DOI: 10.1002/adhm.202303612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Atherosclerotic plaque formation is considered the primary pathological mechanism underlying atherosclerotic cardiovascular diseases, leading to severe cardiovascular events such as stroke, acute coronary syndromes, and even sudden cardiac death. Early detection and timely intervention of plaques are challenging due to the lack of typical symptoms in the initial stages. Therefore, precise early detection and intervention play a crucial role in risk stratification of atherosclerotic plaques and achieving favorable post-interventional outcomes. The continuously advancing nanoplatforms have demonstrated numerous advantages including high signal-to-noise ratio, enhanced bioavailability, and specific targeting capabilities for imaging agents and therapeutic drugs, enabling effective visualization and management of atherosclerotic plaques. Motivated by these superior properties, various noninvasive imaging modalities for early recognition of plaques in the preliminary stage of atherosclerosis are comprehensively summarized. Additionally, several therapeutic strategies are proposed to enhance the efficacy of treating atherosclerotic plaques. Finally, existing challenges and promising prospects for accelerating clinical translation of nanoplatform-based molecular imaging and therapy for atherosclerotic plaques are discussed. In conclusion, this review provides an insightful perspective on the diagnosis and therapy of atherosclerotic plaques.
Collapse
Affiliation(s)
- Yuying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zeyu Jiang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
17
|
Akther F, Fallahi H, Zhang J, Nguyen NT, Ta HT. Evaluating thrombosis risk and patient-specific treatment strategy using an atherothrombosis-on-chip model. LAB ON A CHIP 2024; 24:2927-2943. [PMID: 38591995 DOI: 10.1039/d4lc00131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Platelets play an essential role in thrombotic processes. Recent studies suggest a direct link between increased plasma glucose, lipids, and inflammatory cytokines with platelet activation and aggregation, resulting in an increased risk of atherothrombotic events in cardiovascular patients. Antiplatelet therapies are commonly used for the primary prevention of atherosclerosis. Transitioning from a population-based strategy to patient-specific care requires a better understanding of the risks and advantages of antiplatelet therapy for individuals. This proof-of-concept study evaluates the potential to assess an individual's risk of forming atherothrombosis using a dual-channel microfluidic model emulating multiple atherogenic factors in vitro, including high glucose, high cholesterol, and inflammatory cytokines along with stenosis vessel geometry. The model shows precise sensitivity toward increased plasma glucose, cholesterol, and tumour necrosis factor-alpha (TNF-α)-treated groups in thrombus formation. An in vivo-like dose-dependent increment in platelet aggregation is observed in different treated groups, benefiting the evaluation of thrombosis risk in the individual condition. Moreover, the model could help decide the effective dosing of aspirin in multi-factorial complexities. In the high glucose-treated group, a 50 μM dose of aspirin could significantly reduce platelet aggregation, while a 100 μM dose of aspirin was required to reduce platelet aggregation in the glucose-TNF-α-treated group, which proves the model's potentiality as a tailored tool for customised therapy.
Collapse
Affiliation(s)
- Fahima Akther
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hedieh Fallahi
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Jun Zhang
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
18
|
Akther F, Sajin D, Moonshi SS, Wu Y, Vazquez-Prada KX, Ta HT. Modeling Foam Cell Formation in A Hydrogel-Based 3D-Intimal Model: A Study of The Role of Multi-Diseases During Early Atherosclerosis. Adv Biol (Weinh) 2024; 8:e2300463. [PMID: 38200677 DOI: 10.1002/adbi.202300463] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Monocyte recruitment and transmigration are crucial in atherosclerotic plaque development. The multi-disease complexities aggravate the situation and continue to be a constant concern for understanding atherosclerosis plaque development. Herein, a 3D hydrogel-based model that integrates disease-induced microenvironments is sought to be designed, allowing us to explore the early stages of atherosclerosis, specifically examining monocyte fate in multi-disease complexities. As a proof-of-concept study, murine cells are employed to develop the model. The model is constructed with collagen embedded with murine aortic smooth muscle cells and a murine endothelial monolayer lining. The model achieves in vitro disease complexities using external stimuli such as glucose and lipopolysaccharide (LPS). Hyperglycemia exhibits a significant increase in monocyte adhesion but no enhancement in monocyte transmigration and foam cell conversion compared to euglycemia. Chronic infection achieved by LPS stimulation results in a remarkable augment in initial monocyte attachment and a significant increment in monocyte transmigration and foam cells in all concentrations. Moreover, the model exhibits synergistic sensitivity under multi-disease conditions such as hyperglycemia and infection, enhancing initial monocyte attachment, cell transmigration, and foam cell formation. Additionally, western blot data prove the enhanced levels of inflammatory biomarkers, indicating the model's capability to mimic disease-induced complexities during early atherosclerosis progression.
Collapse
Affiliation(s)
- Fahima Akther
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Dimple Sajin
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
| | - Shehzahdi S Moonshi
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
| | - Karla X Vazquez-Prada
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
19
|
Ali I, Zhang H, Zaidi SAA, Zhou G. Understanding the intricacies of cellular senescence in atherosclerosis: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 96:102273. [PMID: 38492810 DOI: 10.1016/j.arr.2024.102273] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Cardiovascular disease is currently the largest cause of mortality and disability globally, surpassing communicable diseases, and atherosclerosis is the main contributor to this epidemic. Aging is intimately linked to atherosclerosis development and progression, however, the mechanism of aging in atherosclerosis is not well known. To emphasize the significant research on the involvement of senescent cells in atherosclerosis, we begin by outlining compelling evidence that indicates various types of senescent cells and SASP factors linked to atherosclerotic phenotypes. We subsequently provide a comprehensive summary of the existing knowledge, shedding light on the intricate mechanisms through which cellular senescence contributes to the pathogenesis of atherosclerosis. Further, we cover that senescence can be identified by both structural changes and several senescence-associated biomarkers. Finally, we discuss that preventing accelerated cellular senescence represents an important therapeutic potential, as permanent changes may occur in advanced atherosclerosis. Together, the review summarizes the relationship between cellular senescence and atherosclerosis, and inspects the molecular knowledge, and potential clinical significance of senescent cells in developing senescent-based therapy, thus providing crucial insights into their biology and potential therapeutic exploration.
Collapse
Affiliation(s)
- Ilyas Ali
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China
| | - Hongliang Zhang
- Shenzhen University General Hospital, Shenzhen University, Shenzhen 518060, PR China
| | - Syed Aqib Ali Zaidi
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China.
| |
Collapse
|
20
|
Arshad I, Kanwal A, Zafar I, Unar A, Mouada H, Razia IT, Arif S, Ahsan M, Kamal MA, Rashid S, Khan KA, Sharma R. Multifunctional role of nanoparticles for the diagnosis and therapeutics of cardiovascular diseases. ENVIRONMENTAL RESEARCH 2024; 242:117795. [PMID: 38043894 DOI: 10.1016/j.envres.2023.117795] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/26/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
The increasing burden of cardiovascular disease (CVD) remains responsible for morbidity and mortality worldwide; their effective diagnostic or treatment methods are of great interest to researchers. The use of NPs and nanocarriers in cardiology has drawn much interest. The present comprehensive review provides deep insights into the use of current and innovative approaches in CVD diagnostics to offer practical ways to utilize nanotechnological interventions and the critical elements in the CVD diagnosis, associated risk factors, and management strategies of patients with chronic CVDs. We proposed a decision tree-based solution by discussing the emerging applications of NPs for the higher number of rules to increase efficiency in treating CVDs. This review-based study explores the screening methods, tests, and toxicity to provide a unique way of creating a multi-parametric feature that includes cutting-edge techniques for identifying cardiovascular problems and their treatments. We discussed the benefits and drawbacks of various NPs in the context of cost, space, time and complexity that have been previously suggested in the literature for the diagnosis of CVDs risk factors. Also, we highlighted the advances in using NPs for targeted and improved drug delivery and discussed the evolution toward the nano-cardiovascular potential for medical science. Finally, we also examined the mixed-based diagnostic approaches crucial for treating cardiovascular disorders, broad applications and the potential future applications of nanotechnology in medical sciences.
Collapse
Affiliation(s)
- Ihtesham Arshad
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Ayesha Kanwal
- Department of Biotechnology, Faculty of Life Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University, Punjab, 54700, Pakistan.
| | - Ahsanullah Unar
- Department of Precision Medicine, University of Campania 'L. Vanvitelli', Naples, Italy.
| | - Hanane Mouada
- Department of Process Engineering, Institute of science University Center of Tipaza, Tipaza, Algeria.
| | | | - Safina Arif
- Medical Lab Technology, University of Lahore, Lahore, 54590, Pakistan.
| | - Muhammad Ahsan
- Institute of Environmental and Agricultural Sciences, University of Okara, Okara, 56300, Pakistan.
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China; King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh; Enzymoics, 7 Peterlee place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia.
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam BinAbdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia.
| | - Khalid Ali Khan
- Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Applied College, King Khalid University, P. O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
21
|
Luu CH, Nguyen N, Ta HT. Unravelling Surface Modification Strategies for Preventing Medical Device-Induced Thrombosis. Adv Healthc Mater 2024; 13:e2301039. [PMID: 37725037 PMCID: PMC11468451 DOI: 10.1002/adhm.202301039] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/29/2023] [Indexed: 09/21/2023]
Abstract
The use of biomaterials in implanted medical devices remains hampered by platelet adhesion and blood coagulation. Thrombus formation is a prevalent cause of failure of these blood-contacting devices. Although systemic anticoagulant can be used to support materials and devices with poor blood compatibility, its negative effects such as an increased chance of bleeding, make materials with superior hemocompatibility extremely attractive, especially for long-term applications. This review examines blood-surface interactions, the pathogenesis of clotting on blood-contacting medical devices, popular surface modification techniques, mechanisms of action of anticoagulant coatings, and discusses future directions in biomaterial research for preventing thrombosis. In addition, this paper comprehensively reviews several novel methods that either entirely prevent interaction between material surfaces and blood components or regulate the reaction of the coagulation cascade, thrombocytes, and leukocytes.
Collapse
Affiliation(s)
- Cuong Hung Luu
- School of Environment and ScienceGriffith UniversityNathanQueensland4111Australia
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| | - Nam‐Trung Nguyen
- School of Environment and ScienceGriffith UniversityNathanQueensland4111Australia
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| | - Hang Thu Ta
- School of Environment and ScienceGriffith UniversityNathanQueensland4111Australia
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityNathanQueensland4111Australia
| |
Collapse
|
22
|
Singh V, Bansal K, Bhati H, Bajpai M. New Insights into Pharmaceutical Nanocrystals for the Improved Topical Delivery of Therapeutics in Various Skin Disorders. Curr Pharm Biotechnol 2024; 25:1182-1198. [PMID: 37921127 DOI: 10.2174/0113892010276223231027075527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Nanotechnology has provided nanostructure-based delivery of drugs, among which nanocrystals have been investigated and explored for feasible topical drug delivery. Nanocrystals are nano-sized colloidal carriers, considered pure solid particles with a maximum drug load and a very small amount of stabilizer. The size or mean diameter of the nanocrystals is less than 1 μm and has a crystalline character. Prominent synthesis methods include the utilization of microfluidic- driven platforms as well as the milling approach, which is both adaptable and adjustable. Nanocrystals have shown a high capacity for loading drugs, utilization of negligible amounts of excipients, greater chemical stability, lower toxic effects, and ease of scale-up, as well as manufacturing. They have gained interest as drug delivery platforms, and the significantly large surface area of the skin makes it a potential approach for topical therapeutic formulations for different skin disorders including fungal and bacterial infections, psoriasis, wound healing, and skin cancers, etc. This article explores the preparation techniques, applications, and recent patents of nanocrystals for treating various skin conditions.
Collapse
Affiliation(s)
- Vanshita Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
23
|
Shariati L, Esmaeili Y, Rahimmanesh I, Babolmorad S, Ziaei G, Hasan A, Boshtam M, Makvandi P. Advances in nanobased platforms for cardiovascular diseases: Early diagnosis, imaging, treatment, and tissue engineering. ENVIRONMENTAL RESEARCH 2023; 238:116933. [PMID: 37652218 DOI: 10.1016/j.envres.2023.116933] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Cardiovascular diseases (CVDs) present a significant threat to health, with traditional therapeutics based treatment being hindered by inefficiencies, limited biological effects, and resistance to conventional drug. Addressing these challenges requires advanced approaches for early disease diagnosis and therapy. Nanotechnology and nanomedicine have emerged as promising avenues for personalized CVD diagnosis and treatment through theranostic agents. Nanoparticles serve as nanodevices or nanocarriers, efficiently transporting drugs to injury sites. These nanocarriers offer the potential for precise drug and gene delivery, overcoming issues like bioavailability and solubility. By attaching specific target molecules to nanoparticle surfaces, controlled drug release to targeted areas becomes feasible. In the field of cardiology, nanoplatforms have gained popularity due to their attributes, such as passive or active targeting of cardiac tissues, enhanced sensitivity and specificity, and easy penetration into heart and artery tissues due to their small size. However, concerns persist about the immunogenicity and cytotoxicity of nanomaterials, necessitating careful consideration. Nanoparticles also hold promise for CVD diagnosis and imaging, enabling straightforward diagnostic procedures and real-time tracking during therapy. Nanotechnology has revolutionized cardiovascular imaging, yielding multimodal and multifunctional vehicles that outperform traditional methods. The paper provides an overview of nanomaterial delivery routes, targeting techniques, and recent advances in treating, diagnosing, and engineering tissues for CVDs. It also discusses the future potential of nanomaterials in CVDs, including theranostics, aiming to enhance cardiovascular treatment in clinical practice. Ultimately, refining nanocarriers and delivery methods has the potential to enhance treatment effectiveness, minimize side effects, and improve patients' well-being and outcomes.
Collapse
Affiliation(s)
- Laleh Shariati
- Department of Biomaterials, Nanotechnology, and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Yasaman Esmaeili
- Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ilnaz Rahimmanesh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzad Babolmorad
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ghazal Ziaei
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, 2713, Qatar; Biomedical Research Center, Qatar University, Doha, 2713, Qatar
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK.
| |
Collapse
|
24
|
Gao F, Chen J, Zhou Y, Cheng L, Hu M, Wang X. Recent progress of small-molecule-based theranostic agents in Alzheimer's disease. RSC Med Chem 2023; 14:2231-2245. [PMID: 37974955 PMCID: PMC10650505 DOI: 10.1039/d3md00330b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/11/2023] [Indexed: 11/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative dementia. As a multifactorial disease, AD involves several etiopathogenic mechanisms, in which multiple pathological factors are interconnected with each other. This complicated and unclear pathogenesis makes AD lack effective diagnosis and treatment. Theranostics, exerting the synergistic effect of diagnostic and therapeutic functions, would provide a promising strategy for exploring AD pathogenesis and developing drugs for combating AD. With the efforts in small drug-like molecules for both diagnosis and treatment of AD, small-molecule-based theranostic agents have attracted significant attention owing to their facile synthesis, high biocompatibility and reproducibility, and easy clearance from the body through the excretion systems. In this review, the small-molecule-based theranostic agents reported in the literature for anti-AD are classified into four groups according to their diagnostic modalities. Their design rationales, chemical structures, and working mechanisms for theranostics are summarized. Finally, the opportunities for small-molecule-based theranostic agents in AD are also proposed.
Collapse
Affiliation(s)
- Furong Gao
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Jiefang Chen
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Yuancun Zhou
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Letong Cheng
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Ming Hu
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| | - Xiaohui Wang
- Institute of Chemical Biology and Functional Molecules, State Key Laboratory of Materials-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 P. R. China
| |
Collapse
|
25
|
Pickett JR, Wu Y, Zacchi LF, Ta HT. Targeting endothelial vascular cell adhesion molecule-1 in atherosclerosis: drug discovery and development of vascular cell adhesion molecule-1-directed novel therapeutics. Cardiovasc Res 2023; 119:2278-2293. [PMID: 37595265 PMCID: PMC10597632 DOI: 10.1093/cvr/cvad130] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) has been well established as a critical contributor to atherosclerosis and consequently as an attractive therapeutic target for anti-atherosclerotic drug candidates. Many publications have demonstrated that disrupting the VCAM-1 function blocks monocyte infiltration into the sub-endothelial space, which effectively prevents macrophage maturation and foam cell transformation necessary for atherosclerotic lesion formation. Currently, most VCAM-1-inhibiting drug candidates in pre-clinical and clinical testing do not directly target VCAM-1 itself but rather down-regulate its expression by inhibiting upstream cytokines and transcriptional regulators. However, the pleiotropic nature of these regulators within innate immunity means that optimizing dosage to a level that suppresses pathological activity while preserving normal physiological function is extremely challenging and oftentimes infeasible. In recent years, highly specific pharmacological strategies that selectively inhibit VCAM-1 function have emerged, particularly peptide- and antibody-based novel therapeutics. Studies in such VCAM-1-directed therapies so far remain scarce and are limited by the constraints of current experimental atherosclerosis models in accurately representing the complex pathophysiology of the disease. This has prompted the need for a comprehensive review that recounts the evolution of VCAM-1-directed pharmaceuticals and addresses the current challenges in novel anti-atherosclerotic drug development.
Collapse
Affiliation(s)
- Jessica R Pickett
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Kessels Road, Nathan, QLD 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
| | - Lucia F Zacchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, St. Lucia, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, the University of Queensland, St. Lucia, QLD 4072, Australia
| | - Hang T Ta
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, West Creek Road, Nathan, QLD 4111, Australia
- School of Environment and Science, Griffith University, Kessels Road, Nathan, QLD 4111, Australia
| |
Collapse
|
26
|
Adelnia H, Moonshi SS, Wu Y, Bulmer AC, Mckinnon R, Fastier-Wooller JW, Blakey I, Ta HT. A Bioactive Disintegrable Polymer Nanoparticle for Synergistic Vascular Anticalcification. ACS NANO 2023; 17:18775-18791. [PMID: 37650798 DOI: 10.1021/acsnano.3c03041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Although poly(aspartic acid) (PASP), a strong calcium chelating agent, may be potentially effective in inhibition of vascular calcification, its direct administration may lead to side effects. In this study, we employed polysuccinimide, a precursor of PASP, to prepare targeted polysuccinimide-based nanoparticles (PSI NPs) that not only acted as a prodrug but also functioned as a carrier of additional therapeutics to provide powerful synergistic vascular anticalcification effect. This paper shows that chemically modified PSI-NPs can serve as effective nanocarriers for loading of hydrophobic drugs, in addition to anticalcification and antireactive oxygen species (anti-ROS) activities. Curcumin (Cur), with high loading efficiency, was encapsulated into the NPs. The NPs were stable for 16 h in physiological conditions and then slowly dissolved/hydrolyzed to release the therapeutic PASP and the encapsulated drug. The drug release profile was found to be in good agreement with the NP dissolution profile such that complete release occurred after 48 h at physiological conditions. However, under acidic conditions, the NPs were stable, and Cur cumulative release reached only 30% after 1 week. Though highly effective in the prevention of calcium deposition, PSI NPs could not prevent the osteogenic trans-differentiation of vascular smooth muscle cells (VSMCs). The presence of Cur addressed this problem. It not only further reduced ROS level in macrophages but also prevented osteogenic differentiation of VSMCs in vitro. The NPs were examined in vivo in a rat model of vascular calcification induced by kidney failure through an adenine diet. The inclusion of Cur and PSI NPs combined the therapeutic effects of both. Cur-loaded NPs significantly reduced calcium deposition in the aorta without adversely affecting bone integrity or noticeable side effects/toxicity as examined by organ histological and serum biochemistry analyses.
Collapse
Affiliation(s)
- Hossein Adelnia
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
| | - Andrew C Bulmer
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland 4222, Australia
| | - Ryan Mckinnon
- School of Pharmacy and Medical Sciences, Griffith University, Southport, Queensland 4222, Australia
| | | | - Idriss Blakey
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
27
|
Setia A, Mehata AK, Priya V, Pawde DM, Jain D, Mahto SK, Muthu MS. Current Advances in Nanotheranostics for Molecular Imaging and Therapy of Cardiovascular Disorders. Mol Pharm 2023; 20:4922-4941. [PMID: 37699355 DOI: 10.1021/acs.molpharmaceut.3c00582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Cardiovascular diseases (CVDs) refer to a collection of conditions characterized by abnormalities in the cardiovascular system. They are a global problem and one of the leading causes of mortality and disability. Nanotheranostics implies to the combination of diagnostic and therapeutic capabilities inside a single nanoscale platform that has allowed for significant advancement in cardiovascular diagnosis and therapy. These advancements are being developed to improve imaging capabilities, introduce personalized therapies, and boost cardiovascular disease patient treatment outcomes. Significant progress has been achieved in the integration of imaging and therapeutic capabilities within nanocarriers. In the case of cardiovascular disease, nanoparticles provide targeted delivery of therapeutics, genetic material, photothermal, and imaging agents. Directing and monitoring the movement of these therapeutic nanoparticles may be done with pinpoint accuracy by using imaging modalities such as cardiovascular magnetic resonance (CMR), computed tomography (CT), positron emission tomography (PET), photoacoustic/ultrasound, and fluorescence imaging. Recently, there has been an increasing demand of noninvasive for multimodal nanotheranostic platforms. In these platforms, various imaging technologies such as optical and magnetic resonance are integrated into a single nanoparticle. This platform helps in acquiring more accurate descriptions of cardiovascular diseases and provides clues for accurate diagnosis. Advances in surface functionalization methods have strengthened the potential application of nanotheranostics in cardiovascular diagnosis and therapy. In this Review, we have covered the potential impact of nanomedicine on CVDs. Additionally, we have discussed the recently developed various nanoparticles for CVDs imaging. Moreover, advancements in the CMR, CT, PET, ultrasound, and photoacoustic imaging for the CVDs have been discussed. We have limited our discussion to nanomaterials based clinical trials for CVDs and their patents.
Collapse
Affiliation(s)
- Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Datta Maroti Pawde
- School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Shirpur, Dhule, Maharashtra 425405, India
| | - Dharmendra Jain
- Department of Cardiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanjeev Kumar Mahto
- School of Biomedical Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
28
|
Perera B, Wu Y, Nguyen NT, Ta HT. Advances in drug delivery to atherosclerosis: Investigating the efficiency of different nanomaterials employed for different type of drugs. Mater Today Bio 2023; 22:100767. [PMID: 37600355 PMCID: PMC10433009 DOI: 10.1016/j.mtbio.2023.100767] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
Atherosclerosis is the build-up of fatty deposits in the arteries, which is the main underlying cause of cardiovascular diseases and the leading cause of global morbidity and mortality. Current pharmaceutical treatment options are unable to effectively treat the plaque in the later stages of the disease. Instead, they are aimed at resolving the risk factors. Nanomaterials and nanoparticle-mediated therapies have become increasingly popular for the treatment of atherosclerosis due to their targeted and controlled release of therapeutics. In this review, we discuss different types of therapeutics used to treat this disease and focus on the different nanomaterial strategies employed for the delivery of these drugs, enabling the effective and efficient resolution of the atherosclerotic plaque. The ideal nanomaterial strategy for each drug type (e.g. statins, nucleic acids, small molecule drugs, peptides) will be comprehensively discussed.
Collapse
Affiliation(s)
- Binura Perera
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Yuao Wu
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Nam-Trung Nguyen
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
29
|
Moonshi SS, Vazquez-Prada KX, Tang J, Westra van Holthe NJ, Cowin G, Wu Y, Tran HDN, Mckinnon R, Bulmer AC, Ta HT. Spiky Silver-Iron Oxide Nanohybrid for Effective Dual-Imaging and Synergistic Thermo-Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42153-42169. [PMID: 37602893 DOI: 10.1021/acsami.3c04696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Nanophotothermal therapy based on nanoparticles (NPs) that convert near-infrared (NIR) light to generate heat to selectively kill cancer cells has attracted immense interest due to its high efficacy and being free of ionizing radiation damage. Here, for the first time, we have designed a novel nanohybrid, silver-iron oxide NP (AgIONP), which was successfully tuned for strong absorbance at NIR wavelengths to be effective in photothermal treatment and dual-imaging strategy using MRI and photoacoustic imaging (PAI) in a cancer model in vivo and in vitro, respectively. We strategically combine the inherent anticancer activity of silver and photothermal therapy to render excellent therapeutic capability of AgIONPs. In vitro phantoms and in vivo imaging studies displayed preferential uptake of folate-targeted NPs in a cancer mice model, indicating the selective targeting efficiency of NPs. Importantly, a single intravenous injection of NPs in a cancer mice model resulted in significant tumor reduction, and photothermal laser resulted in a further substantial synergistic decrease in tumor size. Additionally, biosafety and biochemical assessment performed in mice displayed no significant difference between NP treatment and control groups. Overall, our folic acid AgIONPs displayed excellent potential in the simultaneous application for safe and successful targeted synergistic photothermal treatment and imaging of a cancer model.
Collapse
Affiliation(s)
- Shehzahdi S Moonshi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan 4111, Australia
- School of Environment and Science, Griffith University, Nathan 4111, Queensland, Australia
| | - Karla X Vazquez-Prada
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Nathan 4111, Australia
| | - Joyce Tang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan 4111, Australia
- School of Environment and Science, Griffith University, Nathan 4111, Queensland, Australia
| | - Nicholas J Westra van Holthe
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Nathan 4111, Australia
- National Imaging Facility, Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Gary Cowin
- National Imaging Facility, Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan 4111, Australia
- School of Environment and Science, Griffith University, Nathan 4111, Queensland, Australia
| | - Huong D N Tran
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Nathan 4111, Australia
| | - Ryan Mckinnon
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast 4222, Australia
| | - Andrew C Bulmer
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast 4222, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan 4111, Australia
- School of Environment and Science, Griffith University, Nathan 4111, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Nathan 4111, Australia
| |
Collapse
|
30
|
Kakaei N, Amirian R, Azadi M, Mohammadi G, Izadi Z. Perfluorocarbons: A perspective of theranostic applications and challenges. Front Bioeng Biotechnol 2023; 11:1115254. [PMID: 37600314 PMCID: PMC10436007 DOI: 10.3389/fbioe.2023.1115254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/15/2023] [Indexed: 08/22/2023] Open
Abstract
Perfluorocarbon (PFC) are biocompatible compounds, chemically and biologically inert, and lacks toxicity as oxygen carriers. PFCs nanoemulsions and nanoparticles (NPs) are highly used in diagnostic imaging and enable novel imaging technology in clinical imaging modalities to notice and image pathological and physiological alterations. Therapeutics with PFCs such as the innovative approach to preventing thrombus formation, PFC nanodroplets utilized in ultrasonic medication delivery in arthritis, or PFC-based NPs such as Perfluortributylamine (PFTBA), Pentafluorophenyl (PFP), Perfluorohexan (PFH), Perfluorooctyl bromide (PFOB), and others, recently become renowned for oxygenating tumors and enhancing the effects of anticancer treatments as oxygen carriers for tumor hypoxia. In this review, we will discuss the recent advancements that have been made in PFC's applications in theranostic (therapeutics and diagnostics) as well as assess the benefits and drawbacks of these applications.
Collapse
Affiliation(s)
- Nasrin Kakaei
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshanak Amirian
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Azadi
- Student Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
31
|
Chen X, Wu Y, Dau VT, Nguyen NT, Ta HT. Polymeric nanomaterial strategies to encapsulate and deliver biological drugs: points to consider between methods. Biomater Sci 2023; 11:1923-1947. [PMID: 36735240 DOI: 10.1039/d2bm01594c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Biological drugs (BDs) play an increasingly irreplaceable role in treating various diseases such as cancer, and cardiovascular and neurodegenerative diseases. The market share of BDs is increasingly promising. However, the effectiveness of BDs is currently limited due to challenges in efficient administration and delivery, and issues with stability and degradation. Thus, the field is using nanotechnology to overcome these limitations. Specifically, polymeric nanomaterials are common BD carriers due to their biocompatibility and ease of synthesis. Different strategies are available for BD transportation, but the use of core-shell encapsulation is preferable for BDs. This review discusses recent articles on manufacturing methods for encapsulating BDs in polymeric materials, including emulsification, nanoprecipitation, self-encapsulation and coaxial electrospraying. The advantages and disadvantages of each method are analysed and discussed. We also explore the impact of critical synthesis parameters on BD activity, such as sonication in emulsifications. Lastly, we provide a vision of future challenges and perspectives for scale-up production and clinical translation.
Collapse
Affiliation(s)
- Xiangxun Chen
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia. .,Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia
| | - Van Thanh Dau
- School of Engineering and Built Environment, Griffith University, Gold Coast, Queensland 4215, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia. .,Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4067, Australia
| |
Collapse
|
32
|
Sharma AK. Current Trends in Nanotheranostics: A Concise Review on Bioimaging and Smart Wearable Technology. Nanotheranostics 2023; 7:258-269. [PMID: 37064611 PMCID: PMC10093415 DOI: 10.7150/ntno.82886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
The area of interventional nanotheranostics combines the use of interventional procedures with nanotechnology for the detection and treatment of physiological disorders. Using catheters or endoscopes, for example, interventional techniques make use of minimally invasive approaches to diagnose and treat medical disorders. It is feasible to increase the precision of these approaches and potency by integrating nanotechnology. To visualize and target various parts of the body, such as tumors or obstructed blood veins, one can utilize nanoscale probes or therapeutic delivery systems. Interventional nanotheranostics offers targeted, minimally invasive therapies that can reduce side effects and enhance patient outcomes, and it has the potential to alter the way that many medical illnesses are handled. Clinical enrollment and implementation of such laboratory scale theranostics approach in medical practice is promising for the patients where the user can benefit by tracking its physiological state. This review aims to introduce the most recent advancements in the field of clinical imaging and diagnostic techniques as well as newly developed on-body wearable devices to deliver therapeutics and monitor its due alleviation in the biological milieu.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
33
|
Adelnia H, Sirous F, Blakey I, Ta HT. Metal ion chelation of poly(aspartic acid): From scale inhibition to therapeutic potentials. Int J Biol Macromol 2023; 229:974-993. [PMID: 36584782 DOI: 10.1016/j.ijbiomac.2022.12.256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Poly(aspartic acid) (PASP) is a biodegradable, biocompatible water-soluble synthetic anionic polypeptide. PASP has shown a strong affinity and thus robust complexation with heavy and alkaline earth metal ions, from which several applications are currently benefiting, and several more could also originate. This paper discusses different areas where the ion chelation ability of PASP has thus far been exploited. Due to its calcium chelation ability, PASP prevents precipitation of calcium salts and hence is widely used as an effective scale inhibitor in industry. Due to potassium chelation, PASP prevents precipitation of potassium tartrate and is employed as an efficient and edible stabilizer for wine preservation. Due to iron chelation, PASP inhibits corrosion of steel surfaces in harsh environments. Due to chelation, PASP can also enhance stability of various colloidal systems that contain metal ions. The chelation ability of PASP alleviated the toxicity of heavy metals in Zebrafish, inhibited the formation of kidney stones and dissolved calcium phosphate which is the main mineral of the calcified vasculature. These findings and beyond, along with the biocompatibility and biodegradability of the polymer could direct future investigations towards chelation therapy by PASP and other novel and undiscovered areas where metal ions play a key role.
Collapse
Affiliation(s)
- Hossein Adelnia
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Fariba Sirous
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Idriss Blakey
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia; Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
34
|
Nandi D, Forster J, Ramesh A, Nguyen A, Bharadwaj H, Kulkarni A. Nanoreporter for Real-Time Monitoring of Inflammasome Activity and Targeted Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204900. [PMID: 36603165 PMCID: PMC9951342 DOI: 10.1002/advs.202204900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Inflammasome activation is associated with a myriad of inflammatory diseases. However, existing methods provides a limited understanding of spatiotemporal kinetics of inflammasome activation, with restricted scope for early detection of associated treatment efficacy. This limitation offers an opportunity for the development of biocompatible in-vivo inflammasome monitoring tools with translational prospects. To achieve this, they report developing a pair of lipid-based nanoparticle systems, a reporter nanoparticle consisting of a caspase-1 activatable probe alone, and a theranostic nanoparticle combining the probe with an inflammasome-inhibiting drug. This biocompatible platform enhances the probe's residence time in circulation by preventing its opsonization and allowing its sustained release over time. Their results demonstrate the specificity of reporter nanoparticles towards caspase-1 activity and provides early-on monitoring of inflammasome activation both in-vitro as well as in-vivo. Additionally, the delivery of disulfiram, an inflammasome-inhibiting drug, along with reporter probe using theranostic nanoparticles enables real-time tracking of treatment efficacy in the gouty-arthritis inflammatory model. In summary, they report an unparalleled pair of the inflammasome-associated reporter and theranostic platforms suited not only for diagnostic applications but can also detect inflammasome-targeted treatment efficiency in real-time. These findings establish two novel, sensitive nanotools for non-invasive evaluation of inflammasome-targeted immunotherapy.
Collapse
Affiliation(s)
- Dipika Nandi
- Department of Chemical EngineeringUniversity of MassachusettsAmherstMA01003USA
- Department of Veterinary and Animal SciencesUniversity of MassachusettsAmherstMA01003USA
| | - James Forster
- Department of Chemical EngineeringUniversity of MassachusettsAmherstMA01003USA
| | - Anujan Ramesh
- Department of Chemical EngineeringUniversity of MassachusettsAmherstMA01003USA
- Department of Biomedical EngineeringUniversity of MassachusettsAmherstMA01003USA
| | - Anh Nguyen
- Department of Chemical EngineeringUniversity of MassachusettsAmherstMA01003USA
| | - Hariharan Bharadwaj
- Department of PathologyUMass ChanMedical School‐BaystateSpringfieldMA01107USA
| | - Ashish Kulkarni
- Department of Chemical EngineeringUniversity of MassachusettsAmherstMA01003USA
- Department of Veterinary and Animal SciencesUniversity of MassachusettsAmherstMA01003USA
- Department of Biomedical EngineeringUniversity of MassachusettsAmherstMA01003USA
- Center for Bioactive DeliveryInstitute for Applied Life SciencesUniversity of MassachusettsAmherstMA01003USA
| |
Collapse
|
35
|
Vallejo-Zamora JA, Vega-Cantu YI, Rodriguez C, Cordell GA, Rodriguez-Garcia A. Drug-Eluting, Bioresorbable Cardiovascular Stents─Challenges and Perspectives. ACS APPLIED BIO MATERIALS 2022; 5:4701-4717. [PMID: 36150217 DOI: 10.1021/acsabm.2c00551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Globally, the leading causes of natural death are attributed to coronary heart disease and type 1 and type 2 diabetes. High blood pressure levels, high cholesterol levels, smoking, and poor eating habits lead to the agglomeration of plaque in the arteries, reducing the blood flow. The implantation of devices used to unclog vessels, known as stents, sometimes results in a lack of irrigation due to the excessive proliferation of endothelial tissue within the blood vessels and is known as restenosis. The use of drug-eluting stents (DESs) to deliver antiproliferative drugs has led to the development of different encapsulation techniques. However, due to the potency of the drugs used in the initial stent designs, a chronic inflammatory reaction of the arterial wall known as thrombosis can cause a myocardial infarction (MI). One of the most promising drugs to reduce this risk is everolimus, which can be encapsulated in lipid systems for controlled release directly into the artery. This review aims to discuss the current status of stent design, fabrication, and functionalization. Variables such as the mechanical properties, metals and their alloys, drug encapsulation and controlled elution, and stent degradation are also addressed. Additionally, this review covers the use of polymeric surface coatings on stents and the recent advances in layer-by-layer coating and drug delivery. The advances in nanoencapsulation techniques such as liposomes and micro- and nanoemulsions and their functionalization in bioresorbable, drug-eluting stents are also highlighted.
Collapse
Affiliation(s)
- Julio A Vallejo-Zamora
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
| | - Yadira I Vega-Cantu
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
| | - Ciro Rodriguez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
- Laboratorio Nacional de Manufactura Aditiva y Digital (MADIT), Apodaca, Nuevo León66629, Mexico
| | - Geoffrey A Cordell
- Natural Products, Inc., Evanston, Illinois60201, United States
- College of Pharmacy, University of Florida, Gainesville, Florida32610, United States
| | - Aida Rodriguez-Garcia
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, Nuevo León64849, Mexico
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, Ciudad Universitaria, Ave. Pedro de Alba S/N, San Nicolás de los Garza, Nuevo León66455, Mexico
| |
Collapse
|
36
|
Wu M, Zhang Z, Yong J, Schenk PM, Tian D, Xu ZP, Zhang R. Determination and Imaging of Small Biomolecules and Ions Using Ruthenium(II) Complex-Based Chemosensors. Top Curr Chem (Cham) 2022; 380:29. [PMID: 35695976 PMCID: PMC9192387 DOI: 10.1007/s41061-022-00392-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/27/2022] [Indexed: 01/13/2023]
Abstract
Luminescence chemosensors are one of the most useful tools for the determination and imaging of small biomolecules and ions in situ in real time. Based on the unique photo-physical/-chemical properties of ruthenium(II) (Ru(II)) complexes, the development of Ru(II) complex-based chemosensors has attracted increasing attention in recent years, and thus many Ru(II) complexes have been designed and synthesized for the detection of ions and small biomolecules in biological and environmental samples. In this work, we summarize the research advances in the development of Ru(II) complex-based chemosensors for the determination of ions and small biomolecules, including anions, metal ions, reactive biomolecules and amino acids, with a particular focus on binding/reaction-based chemosensors for the investigation of intracellular analytes' evolution through luminescence analysis and imaging. The advances, challenges and future research directions in the development of Ru(II) complex-based chemosensors are also discussed.
Collapse
Affiliation(s)
- Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zexi Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jiaxi Yong
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peer M Schenk
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dihua Tian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
37
|
Aprotosoaie AC, Costache AD, Costache II. Therapeutic Strategies and Chemoprevention of Atherosclerosis: What Do We Know and Where Do We Go? Pharmaceutics 2022; 14:722. [PMID: 35456556 PMCID: PMC9025701 DOI: 10.3390/pharmaceutics14040722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/15/2022] Open
Abstract
Despite progress in understanding the pathogenesis of atherosclerosis, the development of effective therapeutic strategies is a challenging task that requires more research to attain its full potential. This review discusses current pharmacotherapy in atherosclerosis and explores the potential of some important emerging therapies (antibody-based therapeutics, cytokine-targeting therapy, antisense oligonucleotides, photodynamic therapy and theranostics) in terms of clinical translation. A chemopreventive approach based on modern research of plant-derived products is also presented. Future perspectives on preventive and therapeutic management of atherosclerosis and the design of tailored treatments are outlined.
Collapse
Affiliation(s)
- Ana Clara Aprotosoaie
- Faculty of Pharmacy, Grigore T. Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Alexandru-Dan Costache
- Department of Cardiovascular Rehabilitation, Clinical Rehabilitation Hospital, 700661 Iasi, Romania
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
| | - Irina-Iuliana Costache
- Department of Internal Medicine I, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iasi, Romania;
- Department of Cardiology, “St. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| |
Collapse
|
38
|
Bai S, Lu Z, Jiang Y, Shi X, Xu D, Shi Y, Lin G, Liu C, Zhang Y, Liu G. Nanotransferrin-Based Programmable Catalysis Mediates Three-Pronged Induction of Oxidative Stress to Enhance Cancer Immunotherapy. ACS NANO 2022; 16:997-1012. [PMID: 34928122 DOI: 10.1021/acsnano.1c08619] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Current oxidative stress amplifying strategies for immunogenic cell death (ICD) promotion are mainly restricted to immune tolerance induced by adaptive cellular antioxidation, limited tumor-selectivity, and tumoral immunosuppression. Herein, a facile and efficient scenario of genetically engineering transferrin-expressing cell membrane nanovesicle encapsulated IR820-dihydroartemisinin nanomedicine (Tf@IR820-DHA) was developed to boost a-PD-L1-mediated immune checkpoint blocking (ICB) via synergetic triple stimuli-activated oxidative stress-associated ICD. We demonstrate that the engineered transferrin of Tf@IR820-DHA has excellent tumor targeting and Fe(III)-loading properties and thus delivered Fe(III) and IR820-DHA nanoparticles (NPs) to the lesion location effectively. We found that the self-carrying Fe(III)-mediated programmable catalysis of DHA and glutathione (GSH) depletion generated plenty of reactive oxygen species (ROS). Moreover, DHA also acted as an immunomodulator to decrease the number of T regulatory cells, thereby remodeling the tumor immune microenvironment and achieving double T cell activation. Furthermore, the IR820 molecule served as a competent sonosensitizer to produce ROS under ultrasound activation and guide precise immunotherapy via fluorescent/photoacoustic (FL/PA) imaging. Through its three-pronged delivery of stimuli-activated oxidative stress (DHA-induced chemodynamic therapy, catalysis-conferred GSH depletion, and IR820-mediated sonodynamic therapy), Tf@IR820-DHA caused high levels of targeted ICD. This significantly increased the proportions of IFN-γ-secreting T cells (CD4+ T and CD8+ T) and enhanced a-PD-L1-mediated ICB against primary and distant tumors, which represents a promising approach for cancer nanoimmunotherapy.
Collapse
Affiliation(s)
- Shuang Bai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhixiang Lu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yonghe Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaoxiao Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yesi Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
39
|
Engineering chitosan nano-cocktail containing iron oxide and ceria: A two-in-one approach for treatment of inflammatory diseases and tracking of material delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112477. [PMID: 34857262 DOI: 10.1016/j.msec.2021.112477] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/19/2021] [Accepted: 10/01/2021] [Indexed: 01/07/2023]
Abstract
In this study, modular two-in-one nano-cocktails were synthesised to provide treatment of inflammatory diseases and also enable tracking of their delivery to the disease sites. Chitosan nano-cocktails loaded with treatment module (cerium oxide nanoparticles) and imaging module (iron oxide nanoparticles) were synthesised by electrostatic self-assembly (Chit-IOCO) and ionic gelation method (Chit-TPP-IOCO), respectively. Their MRI capability, anti-inflammatory and anti-fibrosis ability were investigated. Results demonstrated that Chit-IOCO significantly reduced the expression of TNF-α and COX-2, while Chit-TPP-IOCO reduced IL-6 in the LPS-stimulated macrophages RAW264.7. Cytotoxicity studies showed that the nano-cocktails inhibited the proliferation of macrophages. Additionally, Chit-IOCO exhibited higher in vitro MRI relaxivity than Chit-TPP-IOCO, indicating that Chit-IOCO is a better MRI contrast agent in macrophages. It was possible to track the delivery of Chit-IOCO to the inflamed livers of CCl4-treated C57BL/6 mice, demonstrated by a shortened T2⁎ relaxation time of the livers after injecting Chit-IOCO into mice. In vivo anti-inflammatory and blood tests demonstrated that Chit-IOCO reduced inflammation-related proteins (TNF-a, iNOS and Cox-2) and bilirubin in CCl4 treated C57BL/6. Histology images indicated that the nano-cocktails at the treatment doses did not affect the organs of the mice. Importantly, the nano-cocktail reduced fibrosis of CCl4-treated mouse liver. This is the first reported data on the anti-inflammation and anti-fibrosis efficacy of Chit-IOCO in C57BL/6 mouse liver inflammation model. Overall, Chit-IOCO nanoparticles have shown great potential in MR imaging/detecting and treating/therapeutic capabilities for inflammatory diseases.
Collapse
|
40
|
Tran HDN, Moonshi SS, Xu ZP, Ta HT. Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. Biomater Sci 2021; 10:10-50. [PMID: 34775503 DOI: 10.1039/d1bm01351c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maintenance of a delicate haemostatic balance or a balance between clotting and bleeding is critical to human health. Irrespective of administration route, nanoparticles can reach the bloodstream and might interrupt the haemostatic balance by interfering with one or more components of the coagulation, anticoagulation, and fibrinolytic systems, which potentially lead to thrombosis or haemorrhage. However, inadequate understanding of their effects on the haemostatic balance, along with the fact that most studies mainly focus on the functionality of nanoparticles while forgetting or leaving behind their risk to the body's haemostatic balance, is a major concern. Hence, our review aims to provide a comprehensive depiction of nanoparticle-haemostatic balance interactions, which has not yet been covered. The synergistic roles of cells and plasma factors participating in haemostatic balance are presented. Possible interactions and interference of each type of nanoparticle with the haemostatic balance are comprehensively discussed, particularly focusing on the underlying mechanisms. Interactions of nanoparticles with innate immunity potentially linked to haemostasis are mentioned. Various physicochemical characteristics that influence the nanoparticle-haemostatic balance are detailed. Challenges and future directions are also proposed. This insight would be valuable for the establishment of nanoparticles that can either avoid unintended interference with the haemostatic balance or purposely downregulate/upregulate its key components in a controlled manner.
Collapse
Affiliation(s)
- Huong D N Tran
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
41
|
Moonshi SS, Wu Y, Ta HT. Visualizing stem cells in vivo using magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1760. [PMID: 34651465 DOI: 10.1002/wnan.1760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022]
Abstract
Stem cell (SC) therapies displayed encouraging efficacy and clinical outcome in various disorders. Despite this huge hype, clinical translation of SC therapy has been disheartening due to contradictory results from clinical trials. The ability to monitor migration and engraftment of cells in vivo represents an ideal strategy in cell therapy. Therefore, suitable imaging approach to track MSCs would allow understanding of migratory and homing efficiency, optimal route of delivery and engraftment of cells at targeted location. Hence, longitudinal tracking of SCs is crucial for the optimization of treatment parameters, leading to improved clinical outcome and translation. Magnetic resonance imaging (MRI) represents a suitable imaging modality to observe cells non-invasively and repeatedly. Tracking is achieved when cells are incubated prior to implantation with appropriate contrast agents (CA) or tracers which can then be detected in an MRI scan. This review explores and emphasizes the importance of monitoring the distribution and fate of SCs post-implantation using current contrast agents, such as positive CAs including paramagnetic metals (gadolinium), negative contrast agents such as superparamagnetic iron oxides and 19 F containing tracers, specifically for the in vivo tracking of MSCs using MRI. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Shehzahdi Shebbrin Moonshi
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia
| | - Yuao Wu
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia
| | - Hang Thu Ta
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia.,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|