1
|
Yangue E, Li Y, Ranjan A, Liu C. An Adaptive Image Segmentation Approach for Tumor Region Identification in Ultrasound Images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-6. [PMID: 40031473 DOI: 10.1109/embc53108.2024.10782614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Identifying and recognizing the tumor region, i.e., region of interest (ROI), in medical imaging always plays a critical role in image-guided drug delivery (IGDD). Recent cutting-edge studies have demonstrated the great potential to leverage ultrasound images in IGDD. However, the effect of interference also results in significant challenges to automatically identify the ROI in ultrasound images, as the state-of-the-art methods usually do not have enough capability of handling such a high level of interference. Thus, the objective of this work is to develop an ultrasound-oriented image segmentation method for accurate and robust ROI identification. To achieve this goal, this study proposed a novel adaptive approach, termed B-CLEAR, through an efficient collaboration framework among gradient-based Boundary detection, feature-based Center Locating, and an Edge-Assisted Region growing algorithm. The capability of this new method is validated by a real-world ultrasound image dataset, which is collected from the experiments of colon tumor treatment. The comparison with conventional segmentation algorithms has also demonstrated the superior performance of the proposed approach for ROI identification in ultrasound images.
Collapse
|
2
|
Chen S, Qiu M, Wang R, Zhang L, Li C, Ye C, Zhou X. Photoactivated Nanohybrid for Dual-Nuclei MR/US/PA Multimodal-Guided Photothermal Therapy. Bioconjug Chem 2022; 33:1729-1740. [PMID: 36053016 DOI: 10.1021/acs.bioconjchem.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanohybrids have gained immense popularity for the diagnosis and chemotherapy of lung cancer for their excellent biocompatibility, biodegradability, and targeting ability. However, most of them suffer from limited imaging information, low tumor-to-background ratios, and multidrug resistance, limiting their potential clinical application. Herein, we engineered a photoresponsive nanohybrid by assembling polypyrrole@bovine serum albumin (PPy@BSA) encapsulating perfluoropentane (PFP)/129Xe for selective magnetic resonance (MR)/ultrasonic (US)/photoacoustic (PA) trimodal imaging and photothermal therapy of lung cancer, overcoming these drawbacks of single imaging modality and chemotherapy. The nanohybrid exhibited superior US, PA, and MR multimodal imaging performance for lung cancer detection. The high sensitivity of the nanohybrid to near-infrared light (NIR) resulted in a rapid increase in temperature in a low-intensity laser state, which initiated the phase transition of liquid PFP into the gas. The ultrasound signal inside the tumor, which is almost zero initially, is dramatically increased. Beyond this, it led to the complete depression of 19F/129Xe Hyper-CEST (chemical exchange saturation transfer) MRI during laser irradiation, which can precisely locate lung cancer. In vitro and in vivo results of the nanohybrid exhibited a successful therapeutic effect on lung cancer. Under the guidance of imaging results, a sound effect of photothermal therapy (PTT) for lung cancer was achieved. We expect this nanohybrid and photosensitive behavior will be helpful as fundamental tools to decipher lung cancer in an earlier stage through trimodality imaging methods.
Collapse
Affiliation(s)
- Shizhen Chen
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Optics Valley Laboratory, Hubei 430074, P.R. China
| | - Maosong Qiu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ruifang Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Optics Valley Laboratory, Hubei 430074, P.R. China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Optics Valley Laboratory, Hubei 430074, P.R. China
| | - Chaohui Ye
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Optics Valley Laboratory, Hubei 430074, P.R. China
| | - Xin Zhou
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Optics Valley Laboratory, Hubei 430074, P.R. China
| |
Collapse
|
3
|
Fu C, Lu J, Wu Y, Li Y, Liu J. Chemodrug-gated mesoporous nanoplatform for new near-infrared light controlled drug release and synergistic chemophotothermal therapy of tumours. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211004. [PMID: 36061526 PMCID: PMC9428526 DOI: 10.1098/rsos.211004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/01/2022] [Indexed: 05/10/2023]
Abstract
Controlled drug release and synergistic therapies have an important impact on improving therapeutic efficacy in cancer theranostics. Herein, a new near-infrared (NIR) light-controlled multi-functional nanoplatform (GNR@mSiO2-DOX/PFP@PDA) was developed for synergistic chemo-photothermal therapy (PTT) of tumours. In this nano-system, doxorubicin hydrochloride (DOX) and perfluoro-n-pentane (PFP) were loaded into the channels of mesoporous SiO2 simultaneously as a first step. A polydopamine (PDA) layer as the gatekeeper was coated on their surface to reduce premature release of drugs at physiological temperature. Upon 808 nm NIR irradiation, the gold nanorods (GNR) in the core of the nanoplatform show high photothermal conversion efficiency, which not only can provide the heat for PTT, but also can decompose the polymer PDA to allow DOX release from the channels of mesoporous SiO2. Most importantly, the photothermal conversion of GNR can also lead the liquid-gas phase transition of PFP to generate bubbles to accelerate the release of DOX, which can realize the chemotherapy of tumours. The subsequent synergistic chemo-PTT (contributed by the DOX and GNR) shows good anti-cancer activity. This work shows that the NIR-triggered multi-functional nanoplatform is of capital significance for future potential applications in drug delivery and cancer treatment.
Collapse
Affiliation(s)
- Cuiping Fu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jialin Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
4
|
Fu C, Lu J, Wu Y, Li Y, Liu J. Chemodrug-gated mesoporous nanoplatform for new near-infrared light controlled drug release and synergistic chemophotothermal therapy of tumours. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211004. [PMID: 36061526 DOI: 10.6084/m9.figshare.c.6133913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/01/2022] [Indexed: 05/25/2023]
Abstract
Controlled drug release and synergistic therapies have an important impact on improving therapeutic efficacy in cancer theranostics. Herein, a new near-infrared (NIR) light-controlled multi-functional nanoplatform (GNR@mSiO2-DOX/PFP@PDA) was developed for synergistic chemo-photothermal therapy (PTT) of tumours. In this nano-system, doxorubicin hydrochloride (DOX) and perfluoro-n-pentane (PFP) were loaded into the channels of mesoporous SiO2 simultaneously as a first step. A polydopamine (PDA) layer as the gatekeeper was coated on their surface to reduce premature release of drugs at physiological temperature. Upon 808 nm NIR irradiation, the gold nanorods (GNR) in the core of the nanoplatform show high photothermal conversion efficiency, which not only can provide the heat for PTT, but also can decompose the polymer PDA to allow DOX release from the channels of mesoporous SiO2. Most importantly, the photothermal conversion of GNR can also lead the liquid-gas phase transition of PFP to generate bubbles to accelerate the release of DOX, which can realize the chemotherapy of tumours. The subsequent synergistic chemo-PTT (contributed by the DOX and GNR) shows good anti-cancer activity. This work shows that the NIR-triggered multi-functional nanoplatform is of capital significance for future potential applications in drug delivery and cancer treatment.
Collapse
Affiliation(s)
- Cuiping Fu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jialin Lu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yong Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
5
|
Qian R, Jing B, Jiang D, Gai Y, Zhu Z, Huang X, Gao Y, Lan X, An R. Multi-antitumor therapy and synchronous imaging monitoring based on exosome. Eur J Nucl Med Mol Imaging 2022; 49:2668-2681. [DOI: 10.1007/s00259-022-05696-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/19/2022] [Indexed: 02/06/2023]
|
6
|
Li Y, VanOsdol J, Ranjan A, Liu C. A multilayer network-enabled ultrasonic image series analysis approach for online cancer drug delivery monitoring. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 213:106505. [PMID: 34800806 DOI: 10.1016/j.cmpb.2021.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The objective of this study is to develop an effective data-driven methodology for the online monitoring of cancer drug delivery guided by the ultrasonic images. To achieve this goal, effective image quantification and accurate feature extraction play a critical role on image-guided drug delivery (IGDD) monitoring. However, the existing image-guided approaches in such area are mainly focused on the analysis for individual images rather than the image series. In fact, the temporal patterns between consecutive images may contain critical information and it is necessary to be considered in the monitoring analysis. In addition, the conventional approaches, such as the pure intensity-based method, also do not sufficiently consider the effects of noise in the ultrasonic images, which also limits the monitoring sensitivity and accuracy. To address the challenges, this paper proposed a novel multilayer network-enabled IGDD (MNE-IGDD) monitoring approach. The contributions of the proposed method can be summarized into three aspects: (1) formulate the sequential ultrasound images to a multilayer network by the proposed spatial-regularized distance; (2) detect drug delivery area based on community detection algorithm of multilayer network; and (3) quantify the drug delivery progress by incorporating the image intensity-based features with the detected community. Both the detected communities and feature increment percentages are applied as the evaluation metric for validation. A simulation study was conducted and this method was also applied to a real-world mouse colon tumor treatment case study under three temperature conditions. Both simulation and the real-world case studies demonstrated that the proposed method is promising to achieve satisfactory monitoring performance in clinical trials.
Collapse
Affiliation(s)
- Yuxuan Li
- The School of Industrial Engineering & Management, Oklahoma State University, Stillwater, OK, United States
| | - Joshua VanOsdol
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
| | - Ashish Ranjan
- College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, United States
| | - Chenang Liu
- The School of Industrial Engineering & Management, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
7
|
Yang L, Hou X, Zhang Y, Wang D, Liu J, Huang F, Liu J. NIR-activated self-sensitized polymeric micelles for enhanced cancer chemo-photothermal therapy. J Control Release 2021; 339:114-129. [PMID: 34536448 DOI: 10.1016/j.jconrel.2021.09.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 01/20/2023]
Abstract
NIR-activated therapies based on light-responsive drug delivery systems are emerging as a remote-controlled method for cancer precise therapy. In this work, fluorescent dye indocyanine green (ICG)-conjugated and bioactive compound gambogic acid (GA)-loaded polymeric micelles (GA@PEG-TK-ICG PMs) were smoothly fabricated via the self-assembly of the reactive oxygen species (ROS)-responsive thioketal (TK)-linked amphiphilic polymer poly(ethyleneglycol)-thioketal-(indocyanine green) (PEG-TK-ICG). The resultant micelles demonstrated increased resistance to photobleaching, enhanced photothermal conversion efficiency, NIR-controlled drug release behavior, preferable biocompatibility, and excellent tumor accumulation performance. Moreover, upon an 808 nm laser irradiation, the micellar photoactive chromophore ICG converted the absorbed optical energy to both hyperthermia for photothermal therapy (PTT) and ROS as the feedback trigger to the micelles for the tumor-specific release of GA, which could serve as not only a chemotherapeutic drug to directly kill tumor cells but also a heat shock protein 90 (HSP90) inhibitor to realize the photothermal sensitization. As a result, an extremely high tumor inhibition rate (97.9%) of mouse 4 T1 breast cancer models was achieved with negligible side effects after the chemo-photothermal synergistic therapy. This NIR-activated nanosystem with photothermal self-sensitization function may provide a feasible option for the effective treatment of aggressive breast cancers.
Collapse
Affiliation(s)
- Lijun Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Xiaoxue Hou
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Yumin Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Dianyu Wang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| | - Fan Huang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
8
|
Zhang Y, Fowlkes JB. Liposomes-based nanoplatform enlarges ultrasound-related diagnostic and therapeutic precision. Curr Med Chem 2021; 29:1331-1341. [PMID: 34348609 DOI: 10.2174/0929867328666210804092624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/07/2022]
Abstract
Ultrasound (US) is notable in the medical field as a safe and effective imaging modality due to its lack of ionizing radiation, non-invasive approach, and real-time monitoring capability. Accompanying recent progress in nanomedicine, US has been providing hope of theranostic capability not only for imaging-based diagnosis but also for US-based therapy by taking advantage of the bioeffects induced by US. Cavitation, sonoporation, thermal effects, and other cascade effects stimulated by acoustic energy conversion have contributed to medical problem-solving in the past decades although to varying degrees of efficacy in comparisons to other methods. Recently, the usage of liposomes-based nanoplatform fuels the development of nanomedicine and provides novel clinical strategies for antitumor, thrombolysis, and controlled drug release. Merging of novel liposome-based nanoplatforms and US-induced reactions has promise for a new blueprint for future medicine. In the present review article, the value of liposome-based nanoplatforms in US-related diagnosis and therapy will be discussed and summarized along with potential future directions for further investigations.
Collapse
Affiliation(s)
- Ying Zhang
- Dept. Radiology, University of Michigan, Ann Arbor, Michigan, 48109. United States
| | - J Brian Fowlkes
- Dept. Radiology, University of Michigan, Ann Arbor, Michigan, 48109. United States
| |
Collapse
|
9
|
Liu Y, Zhou J, Li Q, Li L, Jia Y, Geng F, Zhou J, Yin T. Tumor microenvironment remodeling-based penetration strategies to amplify nanodrug accessibility to tumor parenchyma. Adv Drug Deliv Rev 2021; 172:80-103. [PMID: 33705874 DOI: 10.1016/j.addr.2021.02.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
Remarkable advances in nano delivery systems have provided new hope for tumor prevention, diagnosis and treatment. However, only limited clinical therapeutic effects against solid tumors were achieved. One of the main reasons is the presence of abundant physiological and pathological barriers in vivo that impair tumoral penetration and distribution of the nanodrugs. These barriers are related to the components of tumor microenvironment (TME) including abnormal tumor vasculature, rich composition of the extracellular matrix (ECM), and abundant stroma cells. Herein, we review the advanced strategies of TME remodeling to overcome these biological obstacles against nanodrug delivery. This review aims to offer a perspective guideline for the implementation of promising approaches to facilitate intratumoral permeation of nanodrugs through alleviation of biological barriers. At the same time, we analyze the advantages and disadvantages of the corresponding methods and put forward possible directions for the future researches.
Collapse
Affiliation(s)
- Yanhong Liu
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jiyuan Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Qiang Li
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Lingchao Li
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Yue Jia
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Feiyang Geng
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Jianping Zhou
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| | - Tingjie Yin
- Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
10
|
Li D, Lin L, Fan Y, Liu L, Shen M, Wu R, Du L, Shi X. Ultrasound-enhanced fluorescence imaging and chemotherapy of multidrug-resistant tumors using multifunctional dendrimer/carbon dot nanohybrids. Bioact Mater 2021; 6:729-739. [PMID: 33024894 PMCID: PMC7519212 DOI: 10.1016/j.bioactmat.2020.09.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Development of innovative nanomedicine enabling enhanced theranostics of multidrug-resistant (MDR) tumors remains to be challenging. Herein, we report the development of a newly designed multifunctional yellow-fluorescent carbon dot (y-CD)/dendrimer nanohybrids as a platform for ultrasound (US)-enhanced fluorescence imaging and chemotherapy of MDR tumors. Generation 5 (G5) poly(amidoamine) dendrimers covalently modified with efflux inhibitor of d-α-tocopheryl polyethylene glycol 1000 succinate (G5-TPGS) were complexed with one-step hydrothermally synthesized y-CDs via electrostatic interaction. The formed G5-TPGS@y-CDs complexes were then physically loaded with anticancer drug doxorubicin (DOX) to generate (G5-TPGS@y-CDs)-DOX complexes. The developed nanohybrids display a high drug loading efficiency (40.7%), strong y-CD-induced fluorescence emission, and tumor microenvironment pH-preferred DOX release profile. Attributing to the DOX/TPGS dual drug design, the (G5-TPGS@y-CDs)-DOX complexes can overcome the multidrug resistance (MDR) of cancer cells and effectively inhibit the growth of cancer cells and tumors. Furthermore, the introduction of US-targeted microbubble destruction technology was proven to render the complexes with enhanced intracellular uptake and anticancer efficacy in vitro and improved chemotherapeutic efficacy and fluorescence imaging of tumors in vivo due to the produced sonoporation effect. The developed multifunctional dendrimer/CD nanohybrids may represent an advanced design of nanomedicine for US-enhanced theranostics of different types of MDR tumors.
Collapse
Affiliation(s)
- Dan Li
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Lizhou Lin
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Yu Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Long Liu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Rong Wu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Lianfang Du
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Xiangyang Shi
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| |
Collapse
|
11
|
He H, Du L, Guo H, An Y, Lu L, Chen Y, Wang Y, Zhong H, Shen J, Wu J, Shuai X. Redox Responsive Metal Organic Framework Nanoparticles Induces Ferroptosis for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001251. [PMID: 32677157 DOI: 10.1002/smll.202001251] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Ferroptosis is attracting significant attention due to its effectiveness in tumor treatment. The efficiency to produce toxic lipid peroxides (LPOs) at the tumor site plays a key role in ferroptosis. A hybrid PFP@Fe/Cu-SS metal organic framework (MOF) is synthesized and shown to increase intratumoral LPO content through redox reactions generating ·OH. In addition, glutathione (GSH) depletion through disulfide-thiol exchange leads to the inactivation of glutathione peroxide 4 (GPX4), which results in a further increase in LPO content. This MOF exhibits high inhibitory effect on the growth of xenografted Huh-7 tumors in mice. The coadministration of a ferroptosis inhibitor reduces the antitumor effect of the MOF, leading to a restoration of GPX4 activity and an increase in tumor growth. Moreover, the construction of Cu into mesoporous PFP@Fe/Cu-SS not only allows the MOF to be used as a contrast agent for T1 -weighted magnetic resonance imaging, but also renders its photothermal conversion capacity. Thus, near-infrared irradiation is able to induce photothermal therapy and transform the encapsulated liquid perfluoropentane into microbubbles for ultrasound imaging.
Collapse
Affiliation(s)
- Haozhe He
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Lihua Du
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huanling Guo
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yongcheng An
- University of Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510275, China
| | - Liejing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yali Chen
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yong Wang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Huihai Zhong
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xintao Shuai
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
12
|
de Maar JS, Sofias AM, Porta Siegel T, Vreeken RJ, Moonen C, Bos C, Deckers R. Spatial heterogeneity of nanomedicine investigated by multiscale imaging of the drug, the nanoparticle and the tumour environment. Am J Cancer Res 2020; 10:1884-1909. [PMID: 32042343 PMCID: PMC6993242 DOI: 10.7150/thno.38625] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic and phenotypic tumour heterogeneity is an important cause of therapy resistance. Moreover, non-uniform spatial drug distribution in cancer treatment may cause pseudo-resistance, meaning that a treatment is ineffective because the drug does not reach its target at sufficient concentrations. Together with tumour heterogeneity, non-uniform drug distribution causes “therapy heterogeneity”: a spatially heterogeneous treatment effect. Spatial heterogeneity in drug distribution occurs on all scales ranging from interpatient differences to intratumour differences on tissue or cellular scale. Nanomedicine aims to improve the balance between efficacy and safety of drugs by targeting drug-loaded nanoparticles specifically to tumours. Spatial heterogeneity in nanoparticle and payload distribution could be an important factor that limits their efficacy in patients. Therefore, imaging spatial nanoparticle distribution and imaging the tumour environment giving rise to this distribution could help understand (lack of) clinical success of nanomedicine. Imaging the nanoparticle, drug and tumour environment can lead to improvements of new nanotherapies, increase understanding of underlying mechanisms of heterogeneous distribution, facilitate patient selection for nanotherapies and help assess the effect of treatments that aim to reduce heterogeneity in nanoparticle distribution. In this review, we discuss three groups of imaging modalities applied in nanomedicine research: non-invasive clinical imaging methods (nuclear imaging, MRI, CT, ultrasound), optical imaging and mass spectrometry imaging. Because each imaging modality provides information at a different scale and has its own strengths and weaknesses, choosing wisely and combining modalities will lead to a wealth of information that will help bring nanomedicine forward.
Collapse
|
13
|
Remotely Triggered Nanotheranostics. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
14
|
Ektate K, Munteanu MC, Ashar H, Malayer J, Ranjan A. Chemo-immunotherapy of colon cancer with focused ultrasound and Salmonella-laden temperature sensitive liposomes (thermobots). Sci Rep 2018; 8:13062. [PMID: 30166607 PMCID: PMC6117346 DOI: 10.1038/s41598-018-30106-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 07/04/2018] [Indexed: 12/27/2022] Open
Abstract
Using attenuated Salmonella that efficiently homes in solid tumors, here we developed thermobots that actively transported membrane attached low-temperature sensitive liposome (LTSL) inside colon cancer cells for triggered doxorubicin release and simultaneous polarized macrophages to M1 phenotype with high intensity focused ultrasound (HIFU) heating (40-42 °C). Biocompatibility studies showed that the synthesized thermobots were highly efficient in LTSL loading without impacting its viability. Thermobots demonstrated efficient intracellular trafficking, high nuclear localization of doxorubicin, and induced pro-inflammatory cytokine expression in colon cancer cells in vitro. Combination of thermobots and HIFU heating (~30 min) in murine colon tumors significantly enhanced polarization of macrophages to M1 phenotype and therapeutic efficacy in vivo compared to control. Our data suggest that the thermobots and focused ultrasound treatments have the potential to improve colon cancer therapy.
Collapse
Affiliation(s)
- Kalyani Ektate
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | | | - Harshini Ashar
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Jerry Malayer
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA.
| |
Collapse
|
15
|
Liu C, Kapoor A, VanOsdol J, Ektate K, Kong Z, Ranjan A. A Spectral Fiedler Field-based Contrast Platform for Imaging of Nanoparticles in Colon Tumor. Sci Rep 2018; 8:11390. [PMID: 30061558 PMCID: PMC6065424 DOI: 10.1038/s41598-018-29675-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/14/2018] [Indexed: 12/24/2022] Open
Abstract
The temporal and spatial patterns of nanoparticle that ferry both imaging and therapeutic agent in solid tumors is significantly influenced by target tissue movement, low spatial resolution, and inability to accurately define regions of interest (ROI) at certain tissue depths. These combine to limit and define nanoparticle untreated regions in tumors. Utilizing graph and matrix theories, the objective of this project was to develop a novel spectral Fiedler field (SFF) based-computational technology for nanoparticle mapping in tumors. The novelty of SFF lies in the utilization of the changes in the tumor topology from baseline for contrast variation assessment. Data suggest that SFF can enhance the spatiotemporal contrast compared to conventional method by 2–3 folds in tumors. Additionally, the SFF contrast is readily translatable for assessment of tumor drug distribution. Thus, our SFF computational platform has the potential for integration into devices that allow contrast and drug delivery applications.
Collapse
Affiliation(s)
- Chenang Liu
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Ankur Kapoor
- Siemens Healthineers, Princeton, New Jersey, USA
| | - Joshua VanOsdol
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kalyani Ektate
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Zhenyu Kong
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia, USA.
| | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma, USA.
| |
Collapse
|
16
|
Affiliation(s)
- Chaopin Yang
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yue Li
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng Du
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhiyi Chen
- Department of Ultrasound Medicine, Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Lin L, Fan Y, Gao F, Jin L, Li D, Sun W, Li F, Qin P, Shi Q, Shi X, Du L. UTMD-Promoted Co-Delivery of Gemcitabine and miR-21 Inhibitor by Dendrimer-Entrapped Gold Nanoparticles for Pancreatic Cancer Therapy. Theranostics 2018; 8:1923-1939. [PMID: 29556365 PMCID: PMC5858509 DOI: 10.7150/thno.22834] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/23/2017] [Indexed: 12/22/2022] Open
Abstract
Conventional chemotherapy of pancreatic cancer (PaCa) suffers the problems of low drug permeability and inherent or acquired drug resistance. Development of new strategies for enhanced therapy still remains a great challenge. Herein, we report a new ultrasound-targeted microbubble destruction (UTMD)-promoted delivery system based on dendrimer-entrapped gold nanoparticles (Au DENPs) for co-delivery of gemcitabine (Gem) and miR-21 inhibitor (miR-21i). Methods: In this study, Gem-Au DENPs/miR-21i was designed and synthesized. The designed polyplexes were characterized via transmission electron microscopy (TEM), Gel retardation assay and dynamic light scattering (DLS). Then, the optimum exposure parameters were examined by an ultrasound exposure platform. The cellular uptake, cytotoxicity and anticancer effects in vitro were analyzed by confocal laser microscopy, spectra microplate reader, flow cytometry and a chemiluminescence imaging system. Lastly, the anticancer effects in vivo were evaluated by contrast-enhanced ultrasound (CEUS), hematoxylin and eosin (H&E) staining, TUNEL staining and comparison of tumor volume. Results: The results showed that the Gem-Au DENPs/miR-21i can be uptake by cancer cells and the cellular uptake was further facilitated by UTMD with an ultrasound power of 0.4 W/cm2 to enhance the cell permeability. Further, the co-delivery of Gem and miR-21i with or without UTMD treatment displayed 82-fold and 13-fold lower IC50 values than the free Gem, respectively. The UTMD-promoted co-delivery of Gem and miR-21i was further validated by in vivo treatment and showed a significant tumor volume reduction and an increase in blood perfusion of xenografted pancreatic tumors. Conclusion: The co-delivery of Gem and miR-21i using Au DENPs can be significantly promoted by UTMD technology, hence providing a promising strategy for effective pancreatic cancer treatments.
Collapse
|
18
|
Cao Y, Chen Y, Yu T, Guo Y, Liu F, Yao Y, Li P, Wang D, Wang Z, Chen Y, Ran H. Drug Release from Phase-Changeable Nanodroplets Triggered by Low-Intensity Focused Ultrasound. Am J Cancer Res 2018; 8:1327-1339. [PMID: 29507623 PMCID: PMC5835939 DOI: 10.7150/thno.21492] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022] Open
Abstract
Background: As one of the most effective triggers with high tissue-penetrating capability and non-invasive feature, ultrasound shows great potential for controlling the drug release and enhancing the chemotherapeutic efficacy. In this study, we report, for the first time, construction of a phase-changeable drug-delivery nanosystem with programmable low-intensity focused ultrasound (LIFU) that could trigger drug-release and significantly enhance anticancer drug delivery. Methods: Liquid-gas phase-changeable perfluorocarbon (perfluoropentane) and an anticancer drug (doxorubicin) were simultaneously encapsulated in two kinds of nanodroplets. By triggering LIFU, the nanodroplets could be converted into microbubbles locally in tumor tissues for acoustic imaging and the loaded anticancer drug (doxorubicin) was released after the microbubble collapse. Based on the acoustic property of shell materials, such as shell stiffness, two types of nanodroplets (lipid-based nanodroplets and PLGA-based nanodroplets) were activated by different acoustic pressure levels. Ultrasound irradiation duration and power of LIFU were tested and selected to monitor and control the drug release from nanodroplets. Various ultrasound energies were introduced to induce the phase transition and microbubble collapse of nanodroplets in vitro (3 W/3 min for lipid nanodroplets; 8 W/3 min for PLGA nanodroplets). Results: We detected three steps in the drug-releasing profiles exhibiting the programmable patterns. Importantly, the intratumoral accumulation and distribution of the drug with LIFU exposure were significantly enhanced, and tumor proliferation was substantially inhibited. Co-delivery of two drug-loaded nanodroplets could overcome the physical barriers of tumor tissues during chemotherapy. Conclusion: Our study provides a new strategy for the efficient ultrasound-triggered chemotherapy by nanocarriers with programmable LIFU capable of achieving the on-demand drug release.
Collapse
|
19
|
Li C, Zhang Y, Li Z, Mei E, Lin J, Li F, Chen C, Qing X, Hou L, Xiong L, Hao H, Yang Y, Huang P. Light-Responsive Biodegradable Nanorattles for Cancer Theranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1706150. [PMID: 29271515 DOI: 10.1002/adma.201706150] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/15/2017] [Indexed: 05/25/2023]
Abstract
Cancer nanotheranostics, integrating both diagnostic and therapeutic functions into nanoscale agents, are advanced solutions for cancer management. Herein, a light-responsive biodegradable nanorattle-based perfluoropentane-(PFP)-filled mesoporous-silica-film-coated gold nanorod (GNR@SiO2 -PFP) is strategically designed and prepared for enhanced ultrasound (US)/photoacoustic (PA) dual-modality imaging guided photothermal therapy of melanoma. The as-prepared nanorattles are composed of a thin mesoporous silica film as the shell, which endows the nanoplatform with flexible morphology and excellent biodegradability, as well as large cavity for PFP filling. Upon 808 nm laser irradiation, the loaded PFP will undergo a liquid-gas phase transition due to the heat generation from GNRs, thus generating nanobubbles followed by the coalescence into microbubbles. The conversion of nanobubbles to microbubbles can improve the intratumoral permeation and retention in nonmicrovascular tissue, as well as enhance the tumor-targeted US imaging signals. This nanotheranostic platform exhibits excellent biocompatibility and biodegradability, distinct gas bubbling phenomenon, good US/PA imaging contrast, and remarkable photothermal efficiency. The results demonstrate that the GNR@SiO2 -PFP nanorattles hold great potential for cancer nanotheranostics.
Collapse
Affiliation(s)
- Chunxiao Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yifan Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhiming Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Enci Mei
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Jing Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Fan Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Cunguo Chen
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Xialing Qing
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Liyue Hou
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Lingling Xiong
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, P. R. China
| | - Hui Hao
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang, 325027, P. R. China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
20
|
VanOsdol J, Ektate K, Ramasamy S, Maples D, Collins W, Malayer J, Ranjan A. Sequential HIFU heating and nanobubble encapsulation provide efficient drug penetration from stealth and temperature sensitive liposomes in colon cancer. J Control Release 2016; 247:55-63. [PMID: 28042085 DOI: 10.1016/j.jconrel.2016.12.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023]
Abstract
Mild hyperthermia generated using high intensity focused ultrasound (HIFU) and microbubbles (MBs) can improve tumor drug delivery from non-thermosensitive liposomes (NTSLs) and low temperature sensitive liposomes (LTSLs). However, MB and HIFU are limited by the half-life of the contrast agent and challenges in accurate control of large volume tumor hyperthermia for longer duration (>30min.). The objectives of this study were to: 1) synthesize and characterized long-circulating echogenic nanobubble encapsulated LTSLs (ELTSLs) and NTSLs (ENTSLs), 2) evaluate in vivo drug release following short duration (~20min each) HIFU treatments administered sequentially over an hour in a large volume of mouse xenograft colon tumor, and 3) determine the impact of the HIFU/nanobubble combination on intratumoral drug distribution. LTSLs and NTSLs containing doxorubicin (Dox) were co-loaded with a nanobubble contrast agent (perfluoropentane, PFP) using a one-step sonoporation method to create ELTSLs and ENTSLs, which then were characterized for size, release in a physiological buffer, and ability to encapsulate PFP. For the HIFU group, mild hyperthermia (40-42°C) was completed within 90min after liposome infusion administered sequentially in three regions of the tumor. Fluorescence microscopy and high performance liquid chromatography analysis were performed to determine the spatial distribution and concentration of Dox in the treated regions. PFP encapsulation within ELTSLs and ENTSLs did not impact size or caused premature drug release in physiological buffer. As time progressed, the delivery of Dox decreased in HIFU-treated tumors with ELTSLs, but this phenomenon was absent in the LTSL, NTSL, and ENTSL groups. Most importantly, PFP encapsulation improved Dox penetration in the tumor periphery and core and did not impact the distribution of Dox in non-tumor organs/tissues. Data from this study suggest that short duration and sequential HIFU treatment could have significant benefits and that its action can be potentiated by nanobubble agents to result in improved drug penetration.
Collapse
Affiliation(s)
- Joshua VanOsdol
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Kalyani Ektate
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Selvarani Ramasamy
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Danny Maples
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Willie Collins
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Jerry Malayer
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|