1
|
Cui K, Ren F, Yu J, Pan H. Bioinspired nanomedicines for the management of osteosarcoma: Recent progress and perspectives. Mater Today Bio 2025; 32:101607. [PMID: 40151805 PMCID: PMC11946877 DOI: 10.1016/j.mtbio.2025.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Osteosarcoma (OS) is the most prevalent malignant primary bone tumor, predominantly affecting children and young adults between the ages of 11 and 20. OS presents huge challenges in treatment because of its aggressive nature and high metastatic potential. Chemotherapeutic drugs have attracted considerable interest for the treatment of OS, but they suffer from poor targeting, low bioavailability, severe side effects, and the multi-drug resistance acquired by the tumor. Therefore, it is imperative to develop novel therapeutic tactics that can improve OS outcomes while minimizing toxicity. Bioinspired nanoparticles, designed through exploiting or simulating the biological structures and processes, provide promising strategies for the treatment of OS. In this review, we elaborate on the biological properties and biomedical applications of state-of-the-art bioinspired nanoparticles, including cell membrane-based nanoparticles, exosome-based nanoparticles, protein template-based nanoparticles, and peptide template-based nanoparticles for the management of OS.
Collapse
Affiliation(s)
- Kai Cui
- Department of Orthopaedics, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshandong Road, Shenyang, 110032, China
| | - Fei Ren
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Jian Yu
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshandong Road, Shenyang, 110032, China
| | - Hong Pan
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, No.4 Chongshandong Road, Shenyang, 110032, China
| |
Collapse
|
2
|
El-Aal AAAA, Jayakumar FA, Tan KO, Lahiri C, Chung FFL, Reginald K. Whiteleg shrimp-derived Cryptides induce mitochondrial-mediated cytotoxicity in human breast Cancer. Bioorg Chem 2025; 160:108432. [PMID: 40199008 DOI: 10.1016/j.bioorg.2025.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/16/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
Breast cancer remains the most prevalent cancer in females. The triple negative subtype of breast cancer is associated with higher recurrence rates and poorer prognosis, lack of effective targeted therapy options, and frequently becoming unresponsive to chemotherapy. This study investigates the in vitro anti-cancer potential of our previously in silico-discovered cryptides, from Penaeus vannamei, against MCF-7, MCF-7-CR, and MDA-MB-231 cancer cell lines. Five cryptides-AD4, AD7, AD8, AD11, and AD12-were tested using the MTT assay, revealing selective toxicity against cancer cells. The lowest and highest calculated IC50 values were for AD12 against MCF-7-CR (∼4.6 μM) and MDA-MB-231 (∼20 μM), respectively. Mechanistic studies showed that the cytotoxicity mediated by cryptides, AD7 and AD8, induced loss of mitochondrial membrane potential, release of mitochondrial cytochrome C, and cleavage of caspases that were associated with BAX activation in MCF-7 and MDA-MB-231 cells. Furthermore, our results showed that both MCF-7 and MDA-MB-231 cells treated with AD7 or AD8 exhibited nuclei condensation, activation of Caspase 3/7, leading to apoptotic cell death associated with intrinsic apoptotic cell signaling mechanism. However, further investigation showed that both AD7 and AD8 peptides promoted up-regulation of FAS and p53 in MCF-7 cells while down-regulated the expression of both FAS and p53 in MDA-MB-231 cells, suggesting cell-type dependent apoptotic cell signaling mechanisms. Moreover, both AD7 and AD8 demonstrated cytotoxic and disintegration effects in 3D cancer model. This study highlights the anticancer potential of marine-derived cryptides against challenging breast cancer subtypes, including triple-negative breast cancer (TNBC), with selective cytotoxicity and potential to overcome resistance and recurrence.
Collapse
Affiliation(s)
- Amr Adel Ahmed Abd El-Aal
- Department of Biomedical Sciences, Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Sunway City 47500, Selangor, Malaysia; Marine Microbiology Laboratory, National Institute of Oceanography and Fisheries (NIOF), Alexandria 84511, Egypt
| | - Fairen Angelin Jayakumar
- Department of Biomedical Sciences, Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Sunway City 47500, Selangor, Malaysia; Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, 602105 Chennai, India
| | - Kuan Onn Tan
- Department of Biomedical Sciences, Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Sunway City 47500, Selangor, Malaysia
| | - Chandrajit Lahiri
- Department of Biomedical Sciences, Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Sunway City 47500, Selangor, Malaysia; Department of Biotechnology, Atmiya University, Rajkot, 360005, Gujarat, India
| | - Felicia Fei-Lei Chung
- Department of Biomedical Sciences, Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Sunway City 47500, Selangor, Malaysia
| | - Kavita Reginald
- Department of Biomedical Sciences, Sir Jeffrey Cheah Sunway Medical School, Faculty of Medical and Life Sciences, Sunway University, Sunway City 47500, Selangor, Malaysia.
| |
Collapse
|
3
|
Lin Z, Li Y, Wu Z, Liu Q, Li X, Luo W. Eriodictyol-cisplatin coated nanomedicine synergistically promote osteosarcoma cells ferroptosis and chemosensitivity. J Nanobiotechnology 2025; 23:109. [PMID: 39953537 PMCID: PMC11829430 DOI: 10.1186/s12951-025-03206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
The ever-increasing chemoresistance of osteosarcoma (OS) has been observed in the recent decades, impeding OS therapeutic improvement and posing an urgency to exploit to the alternative and/or supplementary therapies for the optimization of OS chemotherapeutic regimen. Ferroptosis, a regulated cell death, has been identified as a natural anticancer mechanism as well as a synergist for chemotherapeutics in various cancers. Herein, we affirmed the tumor-suppressing properties of eriodictyol and illustrated that its antitumor effects might ascribe to the ferroptosis-inducing activity, in which eriodictyol could bind with BACH1 to repress the transcription and translation of GPX4 and eventually result in the GPX4-related ferroptosis. Further investigation found that eriodictyol could exhibit a synergistic effect with cisplatin, facilitating the antitumor effects of cisplatin. Lastly, through utilizing hollow mesoporous prussian blue nanocubes loaded with eriodictyol and cisplatin, we formed the ferroptosis-synergistic nanocomplexes to facilitate OS cells ferroptosis and cisplatin sensitivity. Through direct catalytic oxidation of unsaturated lipids, exogenous iron delivery, GSH exhaustion, and GPX4 transcriptional inhibition, this ferroptosis-synergistic nanocomplex could excellently enhance OS cells ferroptosis in both vitro and vivo, with no obvious organ injury observed. Therefore, our ferroptosis-synergistic nanocomplex may represent a promising alternative therapeutic strategy for OS patients.
Collapse
Affiliation(s)
- Zili Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
| | - Ziyi Wu
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Qing Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
| | - Xiangyao Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Ji L, Huang J, Yu L, Jin H, Hu X, Sun Y, Yin F, Cai Y. Recent advances in nanoagents delivery system-based phototherapy for osteosarcoma treatment. Int J Pharm 2024; 665:124633. [PMID: 39187032 DOI: 10.1016/j.ijpharm.2024.124633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Osteosarcoma (OS) is a prevalent and highly malignant bone tumor, characterized by its aggressive nature, invasiveness, and rapid progression, contributing to a high mortality rate, particularly among adolescents. Traditional treatment modalities, including surgical resection, radiotherapy, and chemotherapy, face significant challenges, especially in addressing chemotherapy resistance and managing postoperative recurrence and metastasis. Phototherapy (PT), encompassing photodynamic therapy (PDT) and photothermal therapy (PTT), offers unique advantages such as low toxicity, minimal drug resistance, selective destruction, and temporal control, making it a promising approach for the clinical treatment of various malignant tumors. Constructing multifunctional delivery systems presents an opportunity to effectively combine tumor PDT, PTT, and chemotherapy, creating a synergistic anti-tumor effect. This review aims to consolidate the progress in the application of novel delivery system-mediated phototherapy in osteosarcoma. By summarizing advancements in this field, the objective is to propose a rational combination therapy involving targeted delivery systems and phototherapy for tumors, thereby expanding treatment options and enhancing the prognosis for osteosarcoma patients. In conclusion, the integration of innovative delivery systems with phototherapy represents a promising avenue in osteosarcoma treatment, offering a comprehensive approach to overcome challenges associated with conventional treatments and improve patient outcomes.
Collapse
Affiliation(s)
- Lichen Ji
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Jiaqing Huang
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China; Department of Hematology, Hangzhou First People's Hospital, Hangzhou 310003, China
| | - Liting Yu
- Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huihui Jin
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Xuanhan Hu
- Zhejiang Chinese Medical University, Hangzhou 310053, China; Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Yuan Sun
- College of Chemistry Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Feng Yin
- Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Yu Cai
- Center for Rehabilitation Medicine Rehabilitation & Sports Medicine Research Institute of Zhejiang Province Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| |
Collapse
|
5
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
6
|
Ma W, Wang X, Zhang D, Mu X. Research Progress of Disulfide Bond Based Tumor Microenvironment Targeted Drug Delivery System. Int J Nanomedicine 2024; 19:7547-7566. [PMID: 39071505 PMCID: PMC11283832 DOI: 10.2147/ijn.s471734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Cancer poses a significant threat to human life and health. Chemotherapy is currently one of the effective cancer treatments, but many chemotherapy drugs have cell toxicity, low solubility, poor stability, a narrow therapeutic window, and unfavorable pharmacokinetic properties. To solve the above problems, target drug delivery to tumor cells, and reduce the side effects of drugs, an anti-tumor drug delivery system based on tumor microenvironment has become a focus of research in recent years. The construction of a reduction-sensitive nanomedicine delivery system based on disulfide bonds has attracted much attention. Disulfide bonds have good reductive responsiveness and can effectively target the high glutathione (GSH) levels in the tumor environment, enabling precise drug delivery. To further enhance targeting and accelerate drug release, disulfide bonds are often combined with pH-responsive nanocarriers and highly expressed ligands in tumor cells to construct drug delivery systems. Disulfide bonds can connect drug molecules and polymer molecules in the drug delivery system, as well as between different drug molecules and carrier molecules. This article summarized the drug delivery systems (DDS) that researchers have constructed in recent years based on disulfide bond drug delivery systems targeting the tumor microenvironment, disulfide bond cleavage-triggering conditions, various drug loading strategies, and carrier design. In this review, we also discuss the controlled release mechanisms and effects of these DDS and further discuss the clinical applicability of delivery systems based on disulfide bonds and the challenges faced in clinical translation.
Collapse
Affiliation(s)
- Weiran Ma
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
- Jilin University School of Pharmaceutical Sciences, Changchun, 130021, People’s Republic of China
| | - Xiaoying Wang
- Jilin University School of Pharmaceutical Sciences, Changchun, 130021, People’s Republic of China
| | - Dongqi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, People’s Republic of China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
7
|
Zhou XY, Wang CK, Shen ZF, Wang YF, Li YH, Hu YN, Zhang P, Zhang Q. Recent research progress on tumour-specific responsive hydrogels. J Mater Chem B 2024. [PMID: 38949411 DOI: 10.1039/d4tb00656a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Most existing hydrogels, even recently developed injectable hydrogels that undergo a reversible sol-gel phase transition in response to external stimuli, are designed to gel immediately before or after implantation/injection to prevent the free diffusion of materials and drugs; however, the property of immediate gelation leads to a very weak tumour-targeting ability, limiting their application in anticancer therapy. Therefore, the development of tumour-specific responsive hydrogels for anticancer therapy is imperative because tumour-specific responses improve their tumour-targeting efficacy, increase therapeutic effects, and decrease toxicity and side effects. In this review, we introduce the following three types of tumour-responsive hydrogels: (1) hydrogels that gel specifically at the tumour site; (2) hydrogels that decompose specifically at the tumour site; and (3) hydrogels that react specifically with tumours. For each type, their compositions, the mechanisms of tumour-specific responsiveness and their applications in anticancer treatment are comprehensively discussed.
Collapse
Affiliation(s)
- Xuan-Yi Zhou
- The Second School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen-Kai Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ze-Fan Shen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi-Fan Wang
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yu-Hang Li
- The Third Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yu-Ning Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Pu Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Institute of Urology, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qi Zhang
- The Second School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Institute of Urology, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Bauso LV, La Fauci V, Munaò S, Bonfiglio D, Armeli A, Maimone N, Longo C, Calabrese G. Biological Activity of Natural and Synthetic Peptides as Anticancer Agents. Int J Mol Sci 2024; 25:7264. [PMID: 39000371 PMCID: PMC11242495 DOI: 10.3390/ijms25137264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer is one of the leading causes of morbidity and death worldwide, making it a serious global health concern. Chemotherapy, radiotherapy, and surgical treatment are the most used conventional therapeutic approaches, although they show several side effects that limit their effectiveness. For these reasons, the discovery of new effective alternative therapies still represents an enormous challenge for the treatment of tumour diseases. Recently, anticancer peptides (ACPs) have gained attention for cancer diagnosis and treatment. ACPs are small bioactive molecules which selectively induce cancer cell death through a variety of mechanisms such as apoptosis, membrane disruption, DNA damage, immunomodulation, as well as inhibition of angiogenesis, cell survival, and proliferation pathways. ACPs can also be employed for the targeted delivery of drugs into cancer cells. With over 1000 clinical trials using ACPs, their potential for application in cancer therapy seems promising. Peptides can also be utilized in conjunction with imaging agents and molecular imaging methods, such as MRI, PET, CT, and NIR, improving the detection and the classification of cancer, and monitoring the treatment response. In this review we will provide an overview of the biological activity of some natural and synthetic peptides for the treatment of the most common and malignant tumours affecting people around the world.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Valeria La Fauci
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Serena Munaò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Desirèe Bonfiglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Alessandra Armeli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Noemi Maimone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Clelia Longo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31, 98168 Messina, Italy
| |
Collapse
|
9
|
Wang Y, Deng T, Liu X, Fang X, Mo Y, Xie N, Nie G, Zhang B, Fan X. Smart Nanoplatforms Responding to the Tumor Microenvironment for Precise Drug Delivery in Cancer Therapy. Int J Nanomedicine 2024; 19:6253-6277. [PMID: 38911497 PMCID: PMC11193972 DOI: 10.2147/ijn.s459710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
The tumor microenvironment (TME) is a complex and dynamic entity, comprising stromal cells, immune cells, blood vessels and extracellular matrix, which is intimately associated with the occurrence and development of cancers, as well as their therapy. Utilizing the shared characteristics of tumors, such as an acidic environment, enzymes and hypoxia, researchers have developed a promising cancer therapy strategy known as responsive release of nano-loaded drugs, specifically targeted at tumor tissues or cells. In this comprehensive review, we provide an in-depth overview of the current fundamentals and state-of-the-art intelligent strategies of TME-responsive nanoplatforms, which include acidic pH, high GSH levels, high-level adenosine triphosphate, overexpressed enzymes, hypoxia and reductive environment. Additionally, we showcase the latest advancements in TME-responsive nanoparticles. In conclusion, we thoroughly examine the immediate challenges and prospects of TME-responsive nanopharmaceuticals, with the expectation that the progress of these targeted nanoformulations will enable the exploitation, overcoming or modulation of the TME, ultimately leading to significantly more effective cancer therapy.
Collapse
Affiliation(s)
- Yujie Wang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Tingting Deng
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Xi Liu
- Department of Nephrology, Shenzhen Longgang Central Hospital, Shenzhen, 518116, People’s Republic of China
| | - Xueyang Fang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Yongpan Mo
- Department of Breast Surgery, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Ni Xie
- The Bio-Bank of Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
| | - Xiaoqin Fan
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, 518035, People’s Republic of China
- The Bio-Bank of Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, 518035, People’s Republic of China
| |
Collapse
|
10
|
Liu S, Liu C, Wang Y, Chen J, He Y, Hu K, Li T, Yang J, Peng J, Hao L. The role of programmed cell death in osteosarcoma: From pathogenesis to therapy. Cancer Med 2024; 13:e7303. [PMID: 38800967 PMCID: PMC11129166 DOI: 10.1002/cam4.7303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Osteosarcoma (OS) is a prevalent bone solid malignancy that primarily affects adolescents, particularly boys aged 14-19. This aggressive form of cancer often leads to deadly lung cancer due to its high migration ability. Experimental evidence suggests that programmed cell death (PCD) plays a crucial role in the development of osteosarcoma. Various forms of PCD, including apoptosis, ferroptosis, autophagy, necroptosis, and pyroptosis, contribute significantly to the progression of osteosarcoma. Additionally, different signaling pathways such as STAT3/c-Myc signal pathway, JNK signl pathway, PI3k/AKT/mTOR signal pathway, WNT/β-catenin signal pathway, and RhoA signal pathway can influence the development of osteosarcoma by regulating PCD in osteosarcoma cell. Therefore, targeting PCD and the associated signaling pathways could offer a promising therapeutic approach for treating osteosarcoma.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Chengtao Liu
- Shandong Wendeng Osteopathic HospitalWeihaiChina
| | - Yian Wang
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Jiewen Chen
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Yujin He
- Queen Marry CollegeNanchang UniversityNanchangChina
| | - Kaibo Hu
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Ting Li
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Junmei Yang
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Jie Peng
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- The Second Clinical Medical College, Jiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Sports Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Liang Hao
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
11
|
Neamtu I, Ghilan A, Rusu AG, Nita LE, Chiriac VM, Chiriac AP. Design and applications of polymer-like peptides in biomedical nanogels. Expert Opin Drug Deliv 2024; 21:713-734. [PMID: 38916156 DOI: 10.1080/17425247.2024.2364651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Polymer nanogels are among the most promising nanoplatforms for use in biomedical applications. The substantial interest for these drug carriers is to enhance the transportation of bioactive substances, reduce the side effects, and achieve optimal action on the curative sites by targeting delivery and triggering the release of the drugs in a controlled and continuous mode. AREA COVERED The review discusses the opportunities, applications, and challenges of synthetic polypeptide nanogels in biomedicine, with an emphasis on the recent progress in cancer therapy. It is evidenced by the development of polypeptide nanogels for better controlled drug delivery and release, in complex in vivo microenvironments in biomedical applications. EXPERT OPINION Polypeptide nanogels can be developed by choosing the amino acids from the peptide structure that are suitable for the type of application. Using a stimulus - sensitive peptide nanogel, it is possible to obtain the appropriate transport and release of the drug, as well as to achieve desirable therapeutic effects, including safety, specificity, and efficiency. The final system represents an innovative way for local and sustained drug delivery at a specific site of the body.
Collapse
Affiliation(s)
- Iordana Neamtu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Ghilan
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Alina Gabriela Rusu
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Loredana Elena Nita
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| | - Vlad Mihai Chiriac
- Faculty of Electronics Telecommunications and Information Technology, Gh. Asachi Technical University, Iaşi, Romania
| | - Aurica P Chiriac
- Natural Polymers, Bioactive and Biocompatible Materials Laboratory, Petru Poni Institute of Macromolecular Chemistry, Iasi, Romania
| |
Collapse
|
12
|
Chen Z, Wu FF, Li J, Dong JB, He HY, Li XF, Lu Q, Zhang WX, Shao CM, Yao ZN, Lin N, Ye ZM, Xu JT, Li HY. Investigating the synergy of Shikonin and Valproic acid in inducing apoptosis of osteosarcoma cells via ROS-mediated EGR1 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155459. [PMID: 38417243 DOI: 10.1016/j.phymed.2024.155459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND Osteosarcoma is the most prevalent malignant bone tumour with a poor prognosis. Shikonin (SHK) is derived from the traditional Chinese medicine Lithospermum that has been extensively studied for its notable anti-tumour effects, including for osteosarcoma. However, its application has certain limitations. Valproic acid (VPA) is a histone deacetylase inhibitor (HDACI) that has recently been employed as an adjunctive therapeutic agent that allows chromatin to assume a more relaxed state, thereby enhancing anti-tumour efficacy. PURPOSE This study was aimed to investigate the synergistic anti-tumour efficacy of SHK in combination with VPA and elucidate its underlying mechanism. METHODS/STUDY DESIGN CCK-8 assays were utilized to calculate the combination index. Additional assays, including colony formation, acridine orange/ethidium bromide double fluorescent staining, and flow cytometry, were employed to evaluate the effects on osteosarcoma cells. Wound healing and transwell assays were utilized to assess cell mobility. RNA sequencing, PCR, and Western blot analyses were conducted to uncover the underlying mechanism. Rescue experiments were performed to validate the mechanism of apoptotic induction. The impact of SHK and VPA combination treatment on primary osteosarcoma cells was also assessed. Finally, in vivo experiments were conducted to validate its anti-tumour effects and mechanism. RESULTS The combination of SHK and VPA synergistically inhibited the proliferation and migration of osteosarcoma cells in vitro and induced apoptosis in these cells. Through a comprehensive analysis involving RNA sequencing, PCR, Western blot, and rescue experiments, we have substantiated our hypothesis that the combination of SHK and VPA induced apoptosis via the ROS-EGR1-Bax axis. Importantly, our in vivo experiments corroborated these findings, demonstrating the potential of the SHK and VPA combination as a promising therapeutic approach for osteosarcoma. CONCLUSION The combination of SHK and VPA exerted an anti-tumour effect by inducing apoptosis through the ROS-EGR1-Bax pathway. Repurposing the old drug VPA demonstrated its effectiveness as an adjunctive therapeutic agent for SHK, enhancing its anti-tumour efficacy and revealing its potential value. Furthermore, our study expanded the application of natural compounds in the anti-tumour field and overcame some of their limitations through combination therapy. Finally, we enhanced the understanding of the mechanistic pathways linking reactive oxygen species (ROS) accumulation and apoptosis in osteosarcoma cells. Additionally, we elucidated the role of EGR1 in osteosarcoma cells, offering novel strategies and concepts for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Zhuo Chen
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, PR China
| | - Feng-Feng Wu
- Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, PR China; The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, PR China; The Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, PR China; Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Huzhou, Zhejiang, PR China
| | - Jing Li
- School of Medicine, Huzhou University, Huzhou, Zhejiang, PR China
| | - Jia-Bao Dong
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, PR China
| | - Hong-Yi He
- School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei, PR China
| | - Xiong-Feng Li
- Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, PR China; The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, PR China; The Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, PR China; Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Huzhou, Zhejiang, PR China
| | - Qian Lu
- Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, PR China; The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, PR China; The Affiliated Central Hospital, Huzhou University, Huzhou, Zhejiang, PR China; Huzhou Basic and Clinical Translation of Orthopaedics Key Laboratory, Huzhou, Zhejiang, PR China
| | - Wen-Xuan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chang-Ming Shao
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China
| | - Zhao-Nong Yao
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Nong Lin
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Zhao-Ming Ye
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China
| | - Jun-Tao Xu
- Huzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Zhejiang, PR China.
| | - Heng-Yuan Li
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
13
|
Shanmugavadivu A, Lekhavadhani S, Miranda PJ, Selvamurugan N. Current approaches in tissue engineering-based nanotherapeutics for osteosarcoma treatment. Biomed Mater 2024; 19:022003. [PMID: 38324905 DOI: 10.1088/1748-605x/ad270b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Osteosarcoma (OS) is a malignant bone neoplasm plagued by poor prognosis. Major treatment strategies include chemotherapy, radiotherapy, and surgery. Chemotherapy to treat OS has severe adverse effects due to systemic toxicity to healthy cells. A possible way to overcome the limitation is to utilize nanotechnology. Nanotherapeutics is an emerging approach in treating OS using nanoparticulate drug delivery systems. Surgical resection of OS leaves a critical bone defect requiring medical intervention. Recently, tissue engineered scaffolds have been reported to provide physical support to bone defects and aid multimodal treatment of OS. These scaffolds loaded with nanoparticulate delivery systems could also actively repress tumor growth and aid new bone formation. The rapid developments in nanotherapeutics and bone tissue engineering have paved the way for improved treatment efficacy for OS-related bone defects. This review focuses on current bifunctional nanomaterials-based tissue engineered (NTE) scaffolds that use novel approaches such as magnetic hyperthermia, photodynamic therapy, photothermal therapy, bioceramic and polymeric nanotherapeutics against OS. With further optimization and screening, NTE scaffolds could meet clinical applications for treating OS patients.
Collapse
Affiliation(s)
- Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | | | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
14
|
Li X, Sun Z, Ma J, Yang M, Cao H, Jiao G. Identification of TNFRSF21 as an inhibitory factor of osteosarcoma based on a necroptosis-related prognostic gene signature and molecular experiments. Cancer Cell Int 2024; 24:14. [PMID: 38184626 PMCID: PMC10770912 DOI: 10.1186/s12935-023-03198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Osteosarcoma is one of the most common malignant bone tumors with bad prognosis. Necroptosis is a form of programmed cell death. Recent studies showed that targeting necroptosis was a new promising approach for tumor therapy. This study aimed to establish a necroptosis-related gene signature to evaluated prognosis and explore the relationship between necroptosis and osteosarcoma. METHODS Data from The Cancer Genome Atlas was used for developing the signature and the derived necroptosis score (NS). Data from Gene Expression Omnibus served as validation. Principal component analysis (PCA), Cox regression, receiver operating characteristic (ROC) curves and Kaplan-Meier survival analysis were used to assess the performance of signature. The association between the NS and osteosarcoma was analyzed via gene set enrichment analysis, gene set variation analysis and Pearson test. Single-cell data was used for further exploration. Among the genes that constituted the signature, the role of TNFRSF21 in osteosarcoma was unclear. Molecular experiments were used to explore TNFRSF21 function. RESULTS Our data revealed that lower NS indicated more active necroptosis in osteosarcoma. Patients with lower NS had a better prognosis. PCA and ROC curves demonstrated NS was effective to predict prognosis. NS was negatively associated with immune infiltration levels and tumor microenvironment scores and positively associated with tumor purity and stemness index. Single-cell data showed necroptosis heterogeneity in osteosarcoma. The cell communication pattern of malignant cells with high NS was positively correlated with tumor progression. The expression of TNFRSF21 was down-regulated in osteosarcoma cell lines. Overexpression of TNFRSF21 inhibited proliferation and motility of osteosarcoma cells. Mechanically, TNFRSF21 upregulated the phosphorylation levels of RIPK1, RIPK3 and MLKL to promote necroptosis in osteosarcoma. CONCLUSIONS The necroptosis prognostic signature and NS established in this study could be used as an independent prognostic factor, TNFRSF21 may be a necroptosis target in osteosarcoma therapy.
Collapse
Affiliation(s)
- Xiang Li
- Department of Orthopedics, Qilu Hospital of Shandong University, No.107, Wenhuaxi Road, Lixia District, Jinan, 250000, Shandong Province, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Zhenqian Sun
- Department of Orthopedics, Qilu Hospital of Shandong University, No.107, Wenhuaxi Road, Lixia District, Jinan, 250000, Shandong Province, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jinlong Ma
- Department of Orthopedics, Qilu Hospital of Shandong University, No.107, Wenhuaxi Road, Lixia District, Jinan, 250000, Shandong Province, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Miaomiao Yang
- Department of Oncology, Yantai Yuhuangding Hospital, Yantai, Shandong Province, China
| | - Hongxin Cao
- Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Guangjun Jiao
- Department of Orthopedics, Qilu Hospital of Shandong University, No.107, Wenhuaxi Road, Lixia District, Jinan, 250000, Shandong Province, China.
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
15
|
Luo Y, Sun M, Tan L, Li T, Min L. Nano-Based Drug Delivery Systems: Potential Developments in the Therapy of Metastatic Osteosarcoma-A Narrative Review. Pharmaceutics 2023; 15:2717. [PMID: 38140058 PMCID: PMC10747574 DOI: 10.3390/pharmaceutics15122717] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Osteosarcoma, a predominant malignant bone tumor, poses significant challenges due to its high metastatic and recurrent nature. Although various therapeutic strategies are currently in use, they often inadequately target osteosarcoma metastasis. This review focuses on the potential of nanoscale drug delivery systems to bridge this clinical gap. It begins with an overview of the molecular mechanisms underlying metastatic osteosarcoma, highlighting the limitations of existing treatments. The review then transitions to an in-depth examination of nanoscale drug delivery technologies, emphasizing their potential to enhance drug bioavailability and reduce systemic toxicity. Central to this review is a discussion of recent advancements in utilizing nanotechnology for the potential intervention of metastatic osteosarcoma, with a critical analysis of several preclinical studies. This review aims to provide insights into the potential applications of nanotechnology in metastatic osteosarcoma therapy, setting the stage for future clinical breakthroughs and innovative cancer treatments.
Collapse
Affiliation(s)
- Yuanrui Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
| | - Minghao Sun
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Linyun Tan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Tao Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
16
|
Tian H, Shang H, Chen Y, Wu B, Wang C, Wang X, Cheng W. Sonosensitizer Nanoplatforms Augmented Sonodynamic Therapy-Sensitizing Shikonin-Induced Necroptosis Against Hepatocellular Carcinoma. Int J Nanomedicine 2023; 18:7079-7092. [PMID: 38050474 PMCID: PMC10693983 DOI: 10.2147/ijn.s435104] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023] Open
Abstract
Background Apoptosis resistance of hepatocellular carcinoma (HCC) often leads to treatment failure. Nonetheless, overcoming the resistance of HCC to apoptosis by inducing necroptosis of tumor cells to bypass the apoptotic pathway may be a promising treatment strategy. Sonodynamic therapy (SDT) has broad prospects in disease treatment because of its noninvasive characteristic and spatiotemporal control. The combination of SDT and shikonin in the treatment of HCC is expected to be a new tumor treatment method that can overcome apoptosis resistance. Methods In this study, the antitumor effect was evaluated using normal liver cell line WRL68, HCC cell line HepG2 and HepG2 xenograft mouse models. Indocyanine green (ICG) was loaded on nanobubbles (NBs) to construct ICG-loaded nanobubbles (ICG-NBs). Combined sonosensitizer nanoplatforms with ultrasound (US) to achieve efficient SDT, the combination of SDT and shikonin in treating HCC can activate shikonin-induced necroptosis. As a result, tumor cells that produced apoptosis resistance were destroyed by necroptosis. Results The results indicated a successful preparation of ICG-NBs with a uniform particle size of 273.0 ± 118.9 nm spherical structures. ICG-NB-mediated SDT, in combination with shikonin treatment, inhibited the viability, invasion, and migration of tumor cells. SDT + shikonin treatment group caused a substantial increase in necroptotic cells. The increased degree of tumor necrosis and the upregulated expression of receptor-interacting protein 3 kinase were observed in vivo studies, which indicated that the antitumor effect was accompanied by enhanced necroptosis in the SDT + shikonin treatment group. Conclusion ICG-NB-mediated SDT combined with shikonin inhibits the growth of HCC by increasing the necroptosis of tumor cells. Therefore, this combination therapy is a promising treatment strategy against the specific cancer.
Collapse
Affiliation(s)
- Huimin Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Haitao Shang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yichi Chen
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Xiaodong Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| |
Collapse
|
17
|
Cao J, Wu C, Han Z, Liu Z, Yang Z, Ren M, Wang X. Revealing the potential of necroptosis-related genes in prognosis, immune characteristics, and treatment strategies for head and neck squamous cell carcinoma. Sci Rep 2023; 13:20382. [PMID: 37989855 PMCID: PMC10663615 DOI: 10.1038/s41598-023-47096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023] Open
Abstract
Necroptosis is a recently discovered apoptotic mechanism that has been linked to tumor formation, prognosis, and treatment response. However, the relationship between the TME and NRGs remains unclear. In this study, we analyzed the expression patterns of NRGs in 769 HNSCC cases from two distinct data sets. Our findings revealed distinct genetic groups and a correlation between patient clinical features, prognosis, TME cell infiltration characteristics, and NRG alterations. We then developed an NRG model to predict OS and confirmed its accuracy in predicting OS in HNSCC patients. Moreover, we have devised a precise nomogram that enhances the clinical utility of the NRG model substantially. The low-risk group had a better OS, and they were associated with immune suppression, more mutated genes, and higher TIDE scores. The risk score also had a significant correlation with the CSC index and susceptibility to anti-tumor agents. Our study provides insights into how NRGs affect prognosis, clinically significant features, TME, and immunotherapy response in HNSCC. With a better knowledge of NRGs in HNSCC, we could assess the prognosis and develop immunotherapy regimens that are more successful at opening up new doors.
Collapse
Affiliation(s)
- Junhua Cao
- Plastic Surgery of the First Affiliated Hospital of Zhengzhou University, 1 East Road, JianShe, Erqi District, Zhengzhou City, 450052, Henan, China
| | - Congxiao Wu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangdong, China
| | - Zhaofeng Han
- Plastic Surgery of the First Affiliated Hospital of Zhengzhou University, 1 East Road, JianShe, Erqi District, Zhengzhou City, 450052, Henan, China
| | - Zheng Liu
- Plastic Surgery of the First Affiliated Hospital of Zhengzhou University, 1 East Road, JianShe, Erqi District, Zhengzhou City, 450052, Henan, China
| | - Zheng Yang
- Plastic Surgery of the First Affiliated Hospital of Zhengzhou University, 1 East Road, JianShe, Erqi District, Zhengzhou City, 450052, Henan, China
| | - Minge Ren
- Plastic Surgery of the First Affiliated Hospital of Zhengzhou University, 1 East Road, JianShe, Erqi District, Zhengzhou City, 450052, Henan, China
| | - Ximei Wang
- Plastic Surgery of the First Affiliated Hospital of Zhengzhou University, 1 East Road, JianShe, Erqi District, Zhengzhou City, 450052, Henan, China.
| |
Collapse
|
18
|
Li J, Cao Y, Zhang X, An M, Liu Y. The Application of Nano-drug Delivery System With Sequential Drug Release Strategies in Cancer Therapy. Am J Clin Oncol 2023; 46:459-473. [PMID: 37533151 DOI: 10.1097/coc.0000000000001030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Currently, multidrug combinations are often used clinically to improve the efficacy of oncology chemotherapy, but multidrug combinations often lead to multidrug resistance and decreased performance, resulting in more severe side effects than monotherapy. Therefore, sequential drug release strategies in time and space as well as nano-carriers that respond to the tumor microenvironment have been developed. First, the advantage of the sequential release strategy is that they can load multiple drugs simultaneously to meet their spatiotemporal requirements and stability, thus exerting synergistic effects of two or more drugs. Second, in some cases, sequential drug delivery of different molecular targets can improve the sensitivity of cancer cells to drugs. Control the metabolism of cancer cells, and remodel tumor vasculature. Finally, some drug combinations with built-in release control are used for sequential administration. This paper focuses on the use of nanotechnology and built-in control device to construct drug delivery carriers with different stimulation responses, thus achieving the sequential release of drugs. Therefore, the nano-sequential delivery carrier provides a new idea and platform for the therapeutic effect of various drugs and the synergistic effect among drugs.
Collapse
Affiliation(s)
- Juan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, China
| | | | | | | | | |
Collapse
|
19
|
Duan QY, Zhu YX, Jia HR, Wang SH, Wu FG. Nanogels: Synthesis, properties, and recent biomedical applications. PROGRESS IN MATERIALS SCIENCE 2023; 139:101167. [DOI: 10.1016/j.pmatsci.2023.101167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Chen L, Zhao D, Ren X, Ren J, Meng X, Fu C, Li X. Shikonin-Loaded Hollow Fe-MOF Nanoparticles for Enhanced Microwave Thermal Therapy. ACS Biomater Sci Eng 2023; 9:5405-5417. [PMID: 37638660 PMCID: PMC10498989 DOI: 10.1021/acsbiomaterials.3c00644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Microwave (MW) thermal therapy has been widely used for the treatment of cancer in clinics, but it still shows limited efficacy and a high recurrence rate owing to non-selective heat delivery and thermo-resistance. Regulating glycolysis shows great promise to improve MW thermal therapy since glycolysis plays an important role in thermo-resistance, progression, metabolism, and recurrence. Herein, we developed a delivery nanosystem of shikonin (SK)-loaded and hyaluronic acid (HA)-modified hollow Fe-MOF (HFM), HFM@SK@HA, as an efficient glycolysis-meditated agent to improve the efficacy of MW thermal therapy. The HFM@SK@HA nanosystem shows a high SK loading capacity of 31.7 wt %. The loaded SK can be effectively released from the HFM@SK@HA under the stimulation of an acidic tumor microenvironment and MW irradiation, overcoming the intrinsically low solubility and severe toxicity of SK. We also find that the HFM@SK@HA can not only greatly improve the heating effect of MW in the tumor site but also mediate MW-enhancing dynamic therapy efficiency by catalyzing the endogenous H2O2 to generate reactive oxygen species (ROS). As such, the MW irradiation treatment in the presence of HFM@SK@HA in vitro enables a highly improved anti-tumor efficacy due to the combined effect of released SK and generated ROS on inhibiting glycolysis in cancer cells. Our in vivo experiments show that the tumor inhibition rate is up to 94.75% ± 3.63% with no obvious recurrence during the 2 weeks after treatment. This work provides a new strategy for improving the efficacy of MW thermal therapy.
Collapse
Affiliation(s)
- Lufeng Chen
- Department
of Radiation Oncology, First Clinical Medical
School and First Hospital of Shanxi Medical University, No.85 Jiefang Road, Taiyuan City 030001, PR China
| | - Dongming Zhao
- Department
of Radiation Oncology, First Clinical Medical
School and First Hospital of Shanxi Medical University, No.85 Jiefang Road, Taiyuan City 030001, PR China
- Department
of Pathology, Basic Medical School, Shanxi
Medical University, No.56 Xinjian Road, Taiyuan City 030001, PR China
| | - Xiangling Ren
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Ren
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianwei Meng
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Changhui Fu
- Laboratory
of Controllable Preparation and Application of Nanomaterials, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, No.29 East Road Zhongguancun, Beijing 100190, PR China
- CAS
Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianfeng Li
- Department
of Radiation Oncology, First Clinical Medical
School and First Hospital of Shanxi Medical University, No.85 Jiefang Road, Taiyuan City 030001, PR China
- Department
of Pathology, Basic Medical School, Shanxi
Medical University, No.56 Xinjian Road, Taiyuan City 030001, PR China
| |
Collapse
|
21
|
Yu T, Cai Z, Chang X, Xing C, White S, Guo X, Jin J. Research Progress of Nanomaterials in Chemotherapy of Osteosarcoma. Orthop Surg 2023; 15:2244-2259. [PMID: 37403654 PMCID: PMC10475694 DOI: 10.1111/os.13806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Osteosarcoma (OS) is a common malignant bone tumor that occurs mostly in children and adolescents. At present, surgery after chemotherapy or postoperative adjuvant chemotherapy is the main treatment plan. However, the efficacy of chemotherapeutic drugs is limited by the occurrence of chemotherapeutic resistance, toxicity to normal cells, poor pharmacokinetic performance, and drug delivery failure. The delivery of chemotherapy drugs to the bone to treat OS may fail for a variety of reasons, such as a lack of selectivity for OS cells, initial sudden release, short-term release, and the presence of biological barriers (such as the blood-bone marrow barrier). Nanomaterials are new materials with at least one dimension on the nanometer scale (1-100 nm) in three-dimensional space. These materials have the ability to penetrate biological barriers and can accumulate preferentially in tumor cells. Studies have shown that the effective combination of nanomaterials and traditional chemotherapy can significantly improve the therapeutic effect. Therefore, this article reviews the latest research progress on the use of nanomaterials in OS chemotherapy.
Collapse
Affiliation(s)
- Tianci Yu
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Zongyan Cai
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Xingyu Chang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Chengwei Xing
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Sylvia White
- Pathology DepartmentYale School of MedicineNew HavenCTUSA
| | - Xiaoxue Guo
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Jiaxin Jin
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouChina
- Department of OrthopaedicsThe Second Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
22
|
Ye H, Lu M, Tu C, Min L. Necroptosis in the sarcoma immune microenvironment: From biology to therapy. Int Immunopharmacol 2023; 122:110603. [PMID: 37467689 DOI: 10.1016/j.intimp.2023.110603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/21/2023]
Abstract
Apoptosis resistance remains a major obstacle to treatment failure in sarcoma. Necroptosis is a caspase-independent programmed cell death, investigated as a novel strategy to eradicate anti-apoptotic tumor cells. The process is mediated by the receptor-interacting proteins kinase family and mixed lineage kinase domain-like proteins, which is morphologically similar to necrosis. Recent studies suggest that necroptosis in the tumor microenvironment has pro- or anti-tumor effects on immune response and cancer development. Necroptosis-related molecules display a remarkable value in prognosis prediction and therapeutic response evaluation of sarcoma. Furthermore, the induction of tumor necroptosis has been explored as a feasible therapeutic strategy against sarcoma and to synergize with immunotherapy. This review discusses the dual roles of necroptosis in the immune microenvironment and tumor progression, and explores the potential of necroptosis as a new target for sarcoma treatment.
Collapse
Affiliation(s)
- Huali Ye
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Minxun Lu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Chongqi Tu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Hsieh MC, Hsieh YH, Chou CH, Yang JS, Lu PWA, Huang TY, Yang SF, Lu KH. Apoptotic effect and cell arrest of deoxyshikonin in human osteosarcoma cells through the p38 pathway. J Cell Mol Med 2023. [PMID: 37155410 DOI: 10.1111/jcmm.17764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
Osteosarcoma is the most common primary bone cancer that affects adolescents with early metastatic potential and drastically reduces their long-term survival rate if pulmonary metastases are detected at diagnosis. The natural naphthoquinol compound deoxyshikonin exhibits anticancer properties, so we hypothesized that it has an apoptotic effect on osteosarcoma U2OS and HOS cells and studied its mechanisms. After deoxyshikonin treatment, dose-dependent decreases in cell viability, induction of cell apoptosis and arrest in the sub-G1 phase of U2OS and HOS cells were observed. The increases in cleaved caspase 3 expression and the decreases in X-chromosome-linked IAP (XIAP) and cellular inhibitors of apoptosis 1 (cIAP-1) expressions after deoxyshikonin treatment in the human apoptosis array were identified in HOS cells, and dose-dependent expression changes of IAPs and cleaved caspase 3, 8 and 9 were verified by Western blotting in U2OS and HOS cells. Phosphorylation of extracellular signal-regulated protein kinases (ERK)1/2, c-Jun N-terminal kinases (JNK)1/2 and p38 expressions in U2OS and HOS cells was also increased by deoxyshikonin in a dose-dependent manner. Subsequently, cotreatment with inhibitors of ERK (U0126), JNK (JNK-IN-8) and p38 (SB203580) was performed to show that p38 signalling is responsible for deoxyshikonin-induced apoptosis in U2OS and HOS cells, but not via the ERK and JNK pathways. These discoveries demonstrate that deoxyshikonin may be a possible chemotherapeutic candidate to induce cell arrest and apoptosis by activating extrinsic and intrinsic pathways through p38 for human osteosarcoma.
Collapse
Affiliation(s)
- Ming-Chang Hsieh
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Hsuan Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jia-Sin Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | - Tzu-Yu Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
24
|
A.Alamir HT, Ismaeel GL, Jalil AT, Hadi WH, Jasim IK, Almulla AF, Radhea ZA. Advanced injectable hydrogels for bone tissue regeneration. Biophys Rev 2023; 15:223-237. [PMID: 37124921 PMCID: PMC10133430 DOI: 10.1007/s12551-023-01053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Diseases or defects of the skeleton are hazardous because of their specificity and intricacy. Bone tissue engineering has become an important area of research that offers promising new tools for making biomimetic hydrogels that can be used to treat bone diseases. New hydrogels with a distinctive 3D network structure, high water content, and functional capabilities are ranked among the most promising candidates for bone tissue engineering. This makes them helpful in treating cartilage injury, skull deformity, and arthritis. This review will briefly introduce the variety of biocompatible functional hydrogels used in cell culture and bone tissue regeneration. Many gel design concepts, such as crosslinking procedures, controlled release properties, and alternative bionic methodology, were stressed regarding injectable hydrogels to form bone tissue. Hydrogels manufactured from biocompatible materials are a promising option for minimally invasive surgery because of their adaptable physicochemical qualities, ability to fill irregularly shaped defect sites, and ability to grow hormones or release drugs in response to external stimuli. Also included in this overview is a quick rundown of the more practical designs employed in treating bone disorders. Essential details on injectable hydrogel scaffolds for bone tissue regeneration are described in this article.
Collapse
Affiliation(s)
| | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla, Babylon, 51001 Iraq
| | | | - Ihsan K. Jasim
- Department of Pharmacology, Al-Turath University College, Baghdad, Iraq
| | - Abbas F. Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | |
Collapse
|
25
|
Shi P, Cheng Z, Zhao K, Chen Y, Zhang A, Gan W, Zhang Y. Active targeting schemes for nano-drug delivery systems in osteosarcoma therapeutics. J Nanobiotechnology 2023; 21:103. [PMID: 36944946 PMCID: PMC10031984 DOI: 10.1186/s12951-023-01826-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/18/2023] [Indexed: 03/23/2023] Open
Abstract
Osteosarcoma, the most common malignant tumor of the bone, seriously influences people's lives and increases their economic burden. Conventional chemotherapy drugs achieve limited therapeutic effects owing to poor targeting and severe systemic toxicity. Nanocarrier-based drug delivery systems can significantly enhance the utilization efficiency of chemotherapeutic drugs through targeting ligand modifications and reduce the occurrence of systemic adverse effects. A variety of ligand-modified nano-drug delivery systems have been developed for different targeting schemes. Here we review the biological characteristics and the main challenges of current drug therapy of OS, and further elaborate on different targeting schemes and ligand selection for nano-drug delivery systems of osteosarcoma, which may provide new horizons for the development of advanced targeted drug delivery systems in the future.
Collapse
Affiliation(s)
- Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weikang Gan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
26
|
Hu H, Yin Y, Jiang B, Feng Z, Cai T, Wu S. Cuproptosis signature and PLCD3 predicts immune infiltration and drug responses in osteosarcoma. Front Oncol 2023; 13:1156455. [PMID: 37007130 PMCID: PMC10060837 DOI: 10.3389/fonc.2023.1156455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
Osteosarcoma (OS) is a cancer that is frequently found in children and adolescents and has made little improvement in terms of prognosis in recent years. A recently discovered type of programmed cell death called cuproptosis is mediated by copper ions and the tricarboxylic acid (TCA) cycle. The expression patterns, roles, and prognostic and predictive capabilities of the cuproptosis regulating genes were investigated in this work. TARGET and GEO provided transcriptional profiling of OS. To find different cuproptosis gene expression patterns, consensus clustering was used. To identify hub genes linked to cuproptosis, differential expression (DE) and weighted gene co-expression network analysis (WGCNA) were used. Cox regression and Random Survival Forest were used to build an evaluation model for prognosis. For various clusters/subgroups, GSVA, mRNAsi, and other immune infiltration experiments were carried out. The drug-responsive study was carried out by the Oncopredict algorithm. Cuproptosis genes displayed two unique patterns of expression, and high expression of FDX1 was associated with a poor outcome in OS patients. The TCA cycle and other tumor-promoting pathways were validated by the functional study, and activation of the cuproptosis genes may also be connected with immunosuppressive state. The robust survival prediction ability of a five-gene prognostic model was verified. This rating method also took stemness and immunosuppressive characteristics into account. Additionally, it can be associated with a higher sensitivity to medications that block PI3K/AKT/mTOR signaling as well as numerous chemoresistances. U2OS cell migration and proliferation may be encouraged by PLCD3. The relevance of PLCD3 in immunotherapy prediction was verified. The prognostic significance, expressing patterns, and functions of cuproptosis in OS were revealed in this work on a preliminary basis. The cuproptosis-related scoring model worked well for predicting prognosis and chemoresistance.
Collapse
Affiliation(s)
- Hai Hu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yuesong Yin
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Binbin Jiang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhennan Feng
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ting Cai
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ting Cai, ; Song Wu,
| | - Song Wu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ting Cai, ; Song Wu,
| |
Collapse
|
27
|
Yan C, Li Q, Sun Q, Yang L, Liu X, Zhao Y, Shi M, Li X, Luo K. Promising Nanomedicines of Shikonin for Cancer Therapy. Int J Nanomedicine 2023; 18:1195-1218. [PMID: 36926681 PMCID: PMC10013574 DOI: 10.2147/ijn.s401570] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Malignant tumor, the leading cause of death worldwide, poses a serious threat to human health. For decades, natural product has been proven to be an essential source for novel anticancer drug discovery. Shikonin (SHK), a natural molecule separated from the root of Lithospermum erythrorhizon, shows great potential in anticancer therapy. However, its further clinical application is significantly restricted by poor bioavailability, adverse effects, and non-selective toxicity. With the development of nanotechnology, nano drug delivery systems have emerged as promising strategies to improve bioavailability and enhance the therapeutic efficacy of drugs. To overcome the shortcoming of SHK, various nano drug delivery systems such as liposomes, polymeric micelles, nanoparticles, nanogels, and nanoemulsions, were developed to achieve efficient delivery for enhanced antitumor effects. Herein, this review summarizes the anticancer pharmacological activities and pharmacokinetics of SHK. Additionally, the latest progress of SHK nanomedicines in cancer therapy is outlined, focusing on long circulation, tumor targeting ability, tumor microenvironment responsive drug release, and nanosystem-mediated combination therapy. Finally, the challenges and prospects of SHK nanomedicines in the future clinical application are spotlighted.
Collapse
Affiliation(s)
- Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiang Sun
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuxin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Mingyi Shi
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Kaipei Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
28
|
Du X, Wei H, Zhang B, Wang B, Li Z, Pang LK, Zhao R, Yao W. Molecular mechanisms of osteosarcoma metastasis and possible treatment opportunities. Front Oncol 2023; 13:1117867. [PMID: 37197432 PMCID: PMC10183593 DOI: 10.3389/fonc.2023.1117867] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
In osteosarcoma patients, metastasis of the primary cancer is the leading cause of death. At present, management options to prevent metastasis are limited and non-curative. In this study, we review the current state of knowledge on the molecular mechanisms of metastasis and discuss promising new therapies to combat osteosarcoma metastasis. Genomic and epigenomic changes, metabolic reprogramming, transcription factors, dysregulation of physiologic pathways, and alterations to the tumor microenvironment are some of the changes reportedly involved in the regulation of osteosarcoma metastasis. Key factors within the tumor microenvironment include infiltrating lymphocytes, macrophages, cancer-associated fibroblasts, platelets, and extracellular components such as vesicles, proteins, and other secreted molecules. We conclude by discussing potential osteosarcoma-limiting agents and their clinical studies.
Collapse
Affiliation(s)
- Xinhui Du
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
- *Correspondence: Xinhui Du,
| | - Hua Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Boya Zhang
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Bangmin Wang
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Zhehuang Li
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| | - Lon Kai Pang
- Baylor College of Medicine, Houston, TX, United States
| | - Ruiying Zhao
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Weitao Yao
- Bone Soft Tissue Department, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
- Key Laboratory for Digital Assessment of Spinal-Pelvic Tumor and Surgical Aid Tools Design (Zhengzhou), Zhengzhou, Henan, China
- Key Laboratory for Perioperative Digital Assessment of Bone Tumors (Henan), Zhengzhou, Henan, China
| |
Collapse
|
29
|
Wang J, Li M, Jin L, Guo P, Zhang Z, Zhanghuang C, Tan X, Mi T, Liu J, Wu X, Wei G, He D. Exosome mimetics derived from bone marrow mesenchymal stem cells deliver doxorubicin to osteosarcoma in vitro and in vivo. Drug Deliv 2022; 29:3291-3303. [PMID: 36352741 PMCID: PMC9662035 DOI: 10.1080/10717544.2022.2141921] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Osteosarcoma is a bone tumor with a high incidence in children and adolescents. Chemotherapy for osteosarcoma is limited, and effective targeted drugs are urgently needed to treat osteosarcoma. Exosomes as a natural nano drug delivery platform have been widely studied and proven to have good drug delivery performance. However, the low production of exosomes hinders its development as a carrier. Exosome mimetics (EMs) as an alternative product of exosomes solve the problem of low production of exosomes and maintain the good performance of exosomes as carriers. In this study, bone marrow mesenchymal stem cells (BMSCs) were sequentially extruded to generate EMs to encapsulate doxorubicin (EM-Dox) to treat osteosarcoma. The results showed that we successfully prepared EMs of BMSC, and EM-Dox was prepared using an active-loading approach. Our engineered EM-Dox demonstrated significantly more potent tumor inhibition activity and fewer side effects than free doxorubicin. This novel biological nanomedicine system provides a promising opportunity to develop novel precision medicine for osteosarcoma.
Collapse
Affiliation(s)
- Jinkui Wang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Mujie Li
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Liming Jin
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Peng Guo
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Zhaoxia Zhang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Chenghao Zhanghuang
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xiaojun Tan
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Tao Mi
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jiayan Liu
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xin Wu
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Guanghui Wei
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Dawei He
- Department of Urology, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Chongqing Key Laboratory of Pediatrics, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- Ministry of Education Key Laboratory of Child Development and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
- National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
30
|
Gupta A, Sood A, Dhiman A, Shrimali N, Singhmar R, Guchhait P, Agrawal G. Redox responsive poly(allylamine)/eudragit S-100 nanoparticles for dual drug delivery in colorectal cancer. BIOMATERIALS ADVANCES 2022; 143:213184. [PMID: 36371969 DOI: 10.1016/j.bioadv.2022.213184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Herein, we report redox responsive, colon cancer targeting poly(allylamine) (PA)/eudragit S-100 (EU) nanoparticles (PAEU NPs) (≈59 nm). These disulfide crosslinked PAEU NPs are developed via air oxidation of thiolated PA and thiolated EU, eliminating the need of any external crosslinking agent for dual drug delivery. PAEU NPs can effectively encapsulate both hydrophilic doxorubicin (DOX) and hydrophobic curcumin (Cur) drug with ≈85 % and ≈97 % encapsulation efficiency respectively. Here, the combination of drugs having different anticancer mechanism offers the possibility of developing nanosystem with enhanced anticancer efficacy. The developed PAEU NPs show good colloidal stability and low drug release under physiological conditions, while high DOX (≈98 %) and Cur (≈93 %) release is observed in reducing environment (10 mM GSH). Further, DOX and Cur loaded PAEU NPs exhibit higher cancer cell killing efficiency as compared to individual free drugs. In vivo biodistribution studies with Balb/C mice display the retention of PAEU NPs in the colon region up to 24 h presenting the developed approach as an efficient way for colorectal cancer therapy.
Collapse
Affiliation(s)
- Aastha Gupta
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Ankur Sood
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Ankita Dhiman
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Nishith Shrimali
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Ritu Singhmar
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Prasenjit Guchhait
- Disease Biology Laboratory, Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India.
| |
Collapse
|
31
|
Li K, Zhao D, Chen H, Zhang W, Zhao W, Zhang Z. Thermo-sensitive hydrogel-mediated locally sequential release of doxorubicin and palbociclib for chemo-immunotherapy of osteosarcoma. MATERIALS & DESIGN 2022; 224:111365. [DOI: 10.1016/j.matdes.2022.111365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
32
|
Li T, Zhou T, Liu Y, Wang J, Yu Z. Efficacy analysis of targeted nanodrug for non-small cell lung cancer therapy. Front Bioeng Biotechnol 2022; 10:1068699. [DOI: 10.3389/fbioe.2022.1068699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Biological macromolecules have been widely used as biomedical carriers in treating non-small cell lung cancer (NSCLC) due to their biocompatibility, targeting, biodegradability, and antitumor efficacy. Nanotechnology has been used in clinics to treat many diseases, including cancer. Nanoparticles (NPs) can accumulate drugs into tumors because of their enhanced permeability and retention (EPR) effects. However, the lack of active targeting ligands affects NPs drug delivery. Arginine-glycine-aspartic (RGD), as a targeting ligand, has distinct advantages in targeting and safety. In the present study, an RGD peptide-modified nanogel called RGD−polyethylene glycol−poly (L-phenylalanine-co-L-cystine) (RGD−PEG−P (LP-co-LC−P (LP-co-LC) was investigated to deliver vincristine (VCR) as NSCLC therapy. The VCR-loaded targeted nanoparticle (RGD-NP/VCR) demonstrated excellent antitumor efficacy compared to the free drug (VCR) and untargeted nanoparticle (NP/VCR) without any significant side effects. RGD-NP/VCR has better tumor inhibition and fewer side effects, indicating its potential benefit in NSCLC treatment.
Collapse
|
33
|
Biodegradable disulfide crosslinked chitosan/stearic acid nanoparticles for dual drug delivery for colorectal cancer. Carbohydr Polym 2022; 294:119833. [PMID: 35868778 DOI: 10.1016/j.carbpol.2022.119833] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 01/12/2023]
Abstract
Herein, redox responsive chitosan/stearic acid nanoparticles (CSSA NPs) (≈200 nm) are developed for dual drug delivery. These degradable nanoparticles are prepared based on disulfide (SS) crosslinking chemistry avoiding the use of any external crosslinking agent. CSSA NPs are further loaded with both DOX (hydrophilic) and curcumin (hydrophobic) drugs with ≈86 % and ≈82 % encapsulation efficiency respectively. This approach of combining anticancer therapeutics having different mode of anticancer action allows to develop systems for cancer therapy with enhanced efficacy. In vitro drug release experiments clearly exhibit the low leakage of drug under physiological conditions while ≈98 % DOX and ≈96 % curcumin is released after 136 h under GSH reducing conditions. The cytotoxicity experiments against HCT116 cells demonstrate higher cytotoxicity of dual drug loaded CSSA NPs. In vivo biodistribution experiments with c57bl/6j mice confirms the retention of CSSA NPs in the colon area up to 24 h exhibiting their potential for colorectal cancer therapy.
Collapse
|
34
|
The Discovery and Development of Natural-Based Biomaterials with Demonstrated Wound Healing Properties: A Reliable Approach in Clinical Trials. Biomedicines 2022; 10:biomedicines10092226. [PMID: 36140332 PMCID: PMC9496351 DOI: 10.3390/biomedicines10092226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Current research across the globe still focuses strongly on naturally derived biomaterials in various fields, particularly wound care. There is a need for more effective therapies that will address the physiological deficiencies underlying chronic wound treatment. The use of moist bioactive scaffolds has significantly increased healing rates compared to local and traditional treatments. However, failure to heal or prolonging the wound healing process results in increased financial and social stress imposed on health institutions, caregivers, patients, and their families. The urgent need to identify practical, safe, and cost-effective wound healing scaffolding from natural-based biomaterials that can be introduced into clinical practice is unequivocal. Naturally derived products have long been used in wound healing; however, clinical trial evaluations of these therapies are still in their infancy. Additionally, further well-designed clinical trials are necessary to confirm the efficacy and safety of natural-based biomaterials in treating wounds. Thus, the focus of this review is to describe the current insight, the latest discoveries in selected natural-based wound healing implant products, the possible action mechanisms, and an approach to clinical studies. We explore several tested products undergoing clinical trials as a novel approach to counteract the debilitating effects of impaired wound healing.
Collapse
|
35
|
IL-11Rα-targeted nanostrategy empowers chemotherapy of relapsed and patient-derived osteosarcoma. J Control Release 2022; 350:460-470. [PMID: 36041590 DOI: 10.1016/j.jconrel.2022.08.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022]
Abstract
Osteosarcoma (OS) is a rare but frequently lethal bone malignancy in children and adolescents. The adjuvant chemotherapy with doxorubicin (Dox) and cisplatin remains a mainstream clinical practice though it affords only limited clinical benefits due to low tumor deposition, dose-limiting toxicity and high rate of relapse/metastasis. Here, taking advantage of high IL-11Rα expression in the OS patients, we installed IL-11Rα specific peptide (sequence: CGRRAGGSC) onto redox-responsive polymersomes encapsulating Dox (IL11-PDox) to boost the specificity and anti-OS efficacy of chemotherapy. Of note, IL-11Rα peptide at a density of 20% greatly augmented the internalization, apoptotic activity, and migration inhibition of Dox in IL-11Rα-overexpressing 143B OS cells. The active targeting effect of IL-11-PDox was supported in orthotopic and relapsed 143B OS models, as shown by striking repression of tumor growth and lung metastasis and substantial survival benefits over free Dox control. We further verified that IL11-PDox could effectively inhibit patient-derived OS xenografts. IL-11Rα-targeted nanodelivery of chemotherapeutics provides a potential therapeutic strategy for advanced osteosarcoma.
Collapse
|
36
|
Huang R, Zhou X, Chen G, Su L, Liu Z, Zhou P, Weng J, Min Y. Advances of functional nanomaterials for magnetic resonance imaging and biomedical engineering applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1800. [PMID: 35445588 DOI: 10.1002/wnan.1800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 11/12/2022]
Abstract
Functional nanomaterials have been widely used in biomedical fields due to their good biocompatibility, excellent physicochemical properties, easy surface modification, and easy regulation of size and morphology. Functional nanomaterials for magnetic resonance imaging (MRI) can target specific sites in vivo and more easily detect disease-related specific biomarkers at the molecular and cellular levels than traditional contrast agents, achieving a broad application prospect in MRI. This review focuses on the basic principles of MRI, the classification, synthesis and surface modification methods of contrast agents, and their clinical applications to provide guidance for designing novel contrast agents and optimizing the contrast effect. Furthermore, the latest biomedical advances of functional nanomaterials in medical diagnosis and disease detection, disease treatment, the combination of diagnosis and treatment (theranostics), multi-model imaging and nanozyme are also summarized and discussed. Finally, the bright application prospects of functional nanomaterials in biomedicine are emphasized and the urgent need to achieve significant breakthroughs in the industrial transformation and the clinical translation is proposed. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Ruijie Huang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Xingyu Zhou
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Guiyuan Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Lanhong Su
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Zhaoji Liu
- Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Peijie Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuanzeng Min
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Chemistry, University of Science and Technology of China, Hefei, China
| |
Collapse
|
37
|
Liu T, Lang M. Preparation and characterization of novel functional tri-block copolymer for constructing temperature/redox dual-stimuli responsive micelles. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2092409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Tianyue Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Meidong Lang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
38
|
Macrophage-targeted shikonin-loaded nanogels for modulation of inflammasome activation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102548. [PMID: 35301158 DOI: 10.1016/j.nano.2022.102548] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 10/18/2022]
Abstract
This study reports the formulation and delivery of hyaluronic acid-Zein (HA-Zein) nanogels loaded with Shikonin (SK) to selectively attenuate macrophage inflammasome. The self-assembled nanogels, produced by nanoprecipitation, exhibited high encapsulation efficiency, and were selectively internalized by human THP-1-derived macrophages without eliciting cytotoxic responses. Cell treatment with HA-Zein-SK nanogels before stimulation with LPS and Nigericin significantly suppressed caspase-1 activation and IL-1β production, indicating inflammasome inhibition. Importantly, HA-Zein-SK nanogels bioinstructed inflammasome activated macrophages towards an anti-inflammatory CD163highHLA-DRlow phenotype and led to a marked reduction in the release of pro-inflammatory mediators (TNF-α, IL-6 and IP-10). Extracellular metabolic profiling additionally revealed SK-mediated downregulation of cellular glycolytic activity, which was corroborated by a significant decrease of glycolytic genes transcription. All in all, our findings demonstrate the potential of bioactive SK-containing, self-assembled nanogels to modulate exacerbated responses in innate immune cells and, prospectively, in human tissues where NRLP3 inflammasome is abnormally activated upon injury or disease.
Collapse
|
39
|
Wang G, Zhang X, Feng W, Wang J. Prediction of Prognosis and Immunotherapy of Osteosarcoma Based on Necroptosis-Related lncRNAs. Front Genet 2022; 13:917935. [PMID: 35692813 PMCID: PMC9178207 DOI: 10.3389/fgene.2022.917935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Osteosarcoma (OS) is the most common primary tumor of bone in adolescents, and its survival rate is generally less than 20% when metastases occur. Necroptosis, a novel form of programmed necrotic cell death distinct from apoptosis, has been increasingly recognized as a promising therapeutic strategy. This study sought to identify long non-coding RNAs (lncRNAs) associated with necrotizing apoptosis to predict prognosis and target drug use to improve patient survival. Methods: Transcriptomic data and clinical data from 85 OS patients with survival time data and expression profiles from 85 random normal adipose tissue samples were extracted from the UCSC Xena website (http://xena.ucsc.edu/). Nine necroptosis-associated differential prognostic lncRNAs were then identified by analysis of variance, correlation analysis, univariate Cox (uni-Cox) regression, and Kaplan–Meier analysis. Then, patients were randomized into training or testing groups. According to uni-Cox, we obtained prognostic lncRNAs in the training group and intersected them with the abovementioned nine lncRNAs to obtain the final necrotizing apoptosis–related differential prognostic lncRNAs (NRlncRNAs). Next, we performed the least absolute shrinkage and selection operator (LASSO) to construct a risk model of NRlncRNAs. Kaplan–Meier analysis, ROC curves, nomograms, calibration curves, and PCA were used to validate and evaluate the models and grouping. We also analyzed the differences in tumor immunity and drugs between risk groups. Results: We constructed a model containing three NRlncRNAs (AL391121.1, AL354919.2, and AP000851.2) and validated its prognostic predictive power. The value of the AUC curve of 1-, 3-, and 5-year survival probability was 0.806, 0.728, and 0.731, respectively. Moreover, we found that the overall survival time of patients in the high-risk group was shorter than that in the low-risk group. GSEA and ssGSEA showed that immune-related pathways were mainly abundant in the low-risk group. We also validated the differential prediction of immune checkpoint expression, tumor immunity, and therapeutic compounds in the two risk groups. Conclusion: Overall, NRlncRNAs have important functions in OS, and these three NRlncRNAs can predict the prognosis of OS and provide guidance for immunotherapy in OS.
Collapse
|
40
|
Liu Y, Wang M, Liu W, Jing J, Ma H. Olaparib and Doxorubicin Co-Loaded Polypeptide Nanogel for Enhanced Breast Cancer Therapy. Front Bioeng Biotechnol 2022; 10:904344. [PMID: 35586554 PMCID: PMC9108339 DOI: 10.3389/fbioe.2022.904344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 12/12/2022] Open
Abstract
Although great progress has been made in improving the efficacy of cancer treatment through combination treatment using drug agents, there are still challenges in improving the efficiency of drug delivery. In this study, olaparib and doxorubicin were co-loaded on disulfide bond cross-linked polypeptide nanogels for the treatment of breast cancer in mouse models. Under stimulation of a high glutathione environment in cancer cells, the drug is quickly released from the nanogel to target cancer cells. In addition, compared with free drugs and single-drug-loaded nanogels, dual-drug- co-loaded nanogels exhibit the best anti-cancer effect and demonstrated excellent biological safety. Therefore, the co-delivery of olaparib and doxorubicin through polypeptide nanogels presents good prospects for application as anti-cancer treatment.
Collapse
Affiliation(s)
- Yanhong Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Meiyan Wang
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Wanru Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Jili Jing
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Hongshuang Ma
- Department of Rheumatology and Immunology, First Hospital, Jilin University, Changchun, China
- *Correspondence: Hongshuang Ma,
| |
Collapse
|
41
|
Vène E, Jarnouen K, Ribault C, Vlach M, Verres Y, Bourgeois M, Lepareur N, Cammas-Marion S, Loyer P. Circumsporozoite Protein of Plasmodium berghei- and George Baker Virus A-Derived Peptides Trigger Efficient Cell Internalization of Bioconjugates and Functionalized Poly(ethylene glycol)- b-poly(benzyl malate)-Based Nanoparticles in Human Hepatoma Cells. Pharmaceutics 2022; 14:804. [PMID: 35456637 PMCID: PMC9028075 DOI: 10.3390/pharmaceutics14040804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
In order to identify the peptides, selected from the literature, that exhibit the strongest tropism towards human hepatoma cells, cell uptake assays were performed using biotinylated synthetic peptides bound to fluorescent streptavidin or engrafted onto nanoparticles (NPs), prepared from biotin-poly(ethylene glycol)-block-poly(benzyl malate) (Biot-PEG-b-PMLABe) via streptavidin bridging. Two peptides, derived from the circumsporozoite protein of Plasmodium berghei- (CPB) and George Baker (GB) Virus A (GBVA10-9), strongly enhanced the endocytosis of both streptavidin conjugates and NPs in hepatoma cells, compared to primary human hepatocytes and non-hepatic cells. Unexpectedly, the uptake of CPB- and GBVA10-9 functionalized PEG-b-PMLABe-based NPs by hepatoma cells involved, at least in part, the peptide binding to apolipoproteins, which would promote NP's interactions with cell membrane receptors of HDL particles. In addition, CPB and GBVA10-9 peptide-streptavidin conjugates favored the uptake by hepatoma cells over that of the human macrophages, known to strongly internalize nanoparticles by phagocytosis. These two peptides are promising candidate ligands for targeting hepatocellular carcinomas.
Collapse
Affiliation(s)
- Elise Vène
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- Pôle Pharmacie, Service Hospitalo-Universitaire de Pharmacie, CHU Rennes, F-35033 Rennes, France
| | - Kathleen Jarnouen
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
| | - Catherine Ribault
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
| | - Manuel Vlach
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- INRAE, Institut AGRO, PEGASE UMR 1348, F-35590 Saint-Gilles, France
| | - Yann Verres
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
| | - Mickaël Bourgeois
- CRCINA, Inserm, CNRS, Université de Nantes, F-44000 Nantes, France;
- ARRONAX Cyclotron, F-44817 Saint Herblain, France
| | - Nicolas Lepareur
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- Comprehensive Cancer Center Eugène Marquis, F-35000 Rennes, France
| | - Sandrine Cammas-Marion
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
- Institut des Sciences Chimiques de Rennes (ISCR), Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, University of Rennes, F-35042 Rennes, France
| | - Pascal Loyer
- Institut NUMECAN (Nutrition Metabolisms and Cancer), Inserm, UMR-S 1241, INRAE UMR-A 1341, Univ Rennes, F-35000 Rennes, France; (E.V.); (K.J.); (C.R.); (M.V.); (Y.V.)
| |
Collapse
|
42
|
Wang X, Hua P, He C, Chen M. Non-apoptotic cell death-based cancer therapy: Molecular mechanism, pharmacological modulators, and nanomedicine. Acta Pharm Sin B 2022; 12:3567-3593. [PMID: 36176912 PMCID: PMC9513500 DOI: 10.1016/j.apsb.2022.03.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/25/2022] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
As an emerging cancer therapeutic target, non-apoptotic cell death such as ferroptosis, necroptosis and pyroptosis, etc., has revealed significant potential in cancer treatment for bypassing apoptosis to enhance the undermined therapeutic efficacy triggered by apoptosis resistance. A variety of anticancer drugs, synthesized compounds and natural products have been proven recently to induce non-apoptotic cell death and exhibit excellent anti-tumor effects. Moreover, the convergence of nanotechnology with functional materials and biomedicine science has provided tremendous opportunities to construct non-apoptotic cell death-based nanomedicine for innovative cancer therapy. Nanocarriers are not only employed in targeted delivery of non-apoptotic inducers, but also used as therapeutic components to induce non-apoptotic cell death to achieve efficient tumor treatment. This review first introduces the main characteristics, the mechanism and various pharmacological modulators of different non-apoptotic cell death forms, including ferroptosis, necroptosis, pyroptosis, autophagy, paraptosis, lysosomal-dependent cell death, and oncosis. Second, we comprehensively review the latest progresses of nanomedicine that induces various forms of non-apoptotic cell death and focus on the nanomedicine targeting different pathways and components. Furthermore, the combination therapies of non-apoptotic cell death with photothermal therapy, photodynamic therapy, immunotherapy and other modalities are summarized. Finally, the challenges and future perspectives in this regard are also discussed.
Collapse
|
43
|
Advanced drug delivery systems containing herbal components for wound healing. Int J Pharm 2022; 617:121617. [PMID: 35218900 DOI: 10.1016/j.ijpharm.2022.121617] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 12/18/2022]
Abstract
Management of chronic wound has an immense impact on social and economic conditions in the world. Healthcare costs, aging population, physical trauma, and comorbidities of diabetes and obesity seem to be the major factors of this increasing incidence of chronic wounds. Conditions of chronic wound could not restore functional epidermis; thus, delaying the closure of the wound opening in an expected manner. Failures in restoration of skin integrity delay healing due to changes in skin pathology, such as chronic ulceration or nonhealing. The role of different traditional medicines has been explored for use in the healing of cutaneous wounds, where several phytochemicals, such as flavonoids, alkaloids, phenolic acids, tannins are known to provide potential wound healing properties. However, the delivery of plant-based therapeutics could be improved by the novel platform of nanotechnology. Thus, the objectives of novel delivery strategies of principal bioactive from plant sources are to accelerate the wound healing process, avoid wound complications and enhance patient compliance. Therefore, the opportunities of nanotechnology-based drug delivery of natural wound healing therapeutics have been included in the present discussion with special emphasis on nanofibers, vesicular structures, nanoparticles, nanoemulsion, and nanogels.
Collapse
|
44
|
Markowitsch SD, Vakhrusheva O, Schupp P, Akele Y, Kitanovic J, Slade KS, Efferth T, Thomas A, Tsaur I, Mager R, Haferkamp A, Juengel E. Shikonin Inhibits Cell Growth of Sunitinib-Resistant Renal Cell Carcinoma by Activating the Necrosome Complex and Inhibiting the AKT/mTOR Signaling Pathway. Cancers (Basel) 2022; 14:cancers14051114. [PMID: 35267423 PMCID: PMC8909272 DOI: 10.3390/cancers14051114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Therapy resistance remains a major challenge in treating advanced renal cell carcinoma (RCC), making more effective treatment strategies crucial. Shikonin (SHI) from traditional Chinese medicine has exhibited antitumor properties in several tumor entities. We, therefore, currently investigated SHI's impact on progressive growth and metastatic behavior in therapy-sensitive (parental) and therapy-resistant Caki-1, 786-O, KTCTL-26, and A498 RCC cells. Tumor cell growth, proliferation, clonogenic capacity, cell cycle phase distribution, induction of cell death (apoptosis and necroptosis), and the expression and activity of regulating and signaling proteins were evaluated. Moreover, the adhesion and chemotactic activity of the RCC cells after exposure to SHI were investigated. SHI significantly inhibited the growth, proliferation, and clone formation in parental and sunitinib-resistant RCC cells by G2/M phase arrest through down-regulation of cell cycle activating proteins. Furthermore, SHI induced apoptosis and necroptosis by activating necrosome complex proteins. Concomitantly, SHI impaired the AKT/mTOR pathway. Adhesion and motility were cell line specifically affected by SHI. Thus, SHI may hold promise as an additive option in treating patients with advanced and therapy-resistant RCC.
Collapse
Affiliation(s)
- Sascha D. Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Olesya Vakhrusheva
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Patricia Schupp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Yasminn Akele
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Jovana Kitanovic
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Kimberly S. Slade
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Thomas Efferth
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, 55128 Mainz, Germany;
| | - Anita Thomas
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - René Mager
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (S.D.M.); (O.V.); (P.S.); (Y.A.); (J.K.); (K.S.S.); (A.T.); (I.T.); (R.M.); (A.H.)
- Correspondence: ; Tel.: +49-6131-17-5433; Fax: +49-6131-17-4410
| |
Collapse
|
45
|
Arredondo-Ochoa T, Silva-Martínez GA. Microemulsion Based Nanostructures for Drug Delivery. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.753947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Most of the active pharmaceutical compounds are often prone to display low bioavailability and biological degradation represents an important drawback. Due to the above, the development of a drug delivery system (DDS) that enables the introduction of a pharmaceutical compound through the body to achieve a therapeutic effect in a controlled manner is an expanding application. Henceforth, new strategies have been developed to control several parameters considered essential for enhancing delivery of drugs. Nanostructure synthesis by microemulsions (ME) consist of enclosing a substance within a wall material at the nanoscale level, allowing to control the size and surface area of the resulting particle. This nanotechnology has shown the importance on targeted drug delivery to improve their stability by protecting a bioactive compound from an adverse environment, enhanced bioavailability as well as controlled release. Thus, a lower dose administration could be achieved by minimizing systemic side effects and decreasing toxicity. This review will focus on describing the different biocompatible nanostructures synthesized by ME as controlled DDS for therapeutic purposes.
Collapse
|
46
|
Feng W, Shi W, Liu S, Liu H, Liu Y, Ge P, Zhang H. Fe(III)-Shikonin Supramolecular Nanomedicine for Combined Therapy of Tumor via Ferroptosis and Necroptosis. Adv Healthc Mater 2022; 11:e2101926. [PMID: 34738742 DOI: 10.1002/adhm.202101926] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/26/2021] [Indexed: 01/15/2023]
Abstract
Most of the antitumor chemotherapeutic drugs execute the therapeutic performance upon eliciting tumor cell apoptosis, which may cause chemoresistance of tumors. Design of novel drugs to eradicate apoptosis-resistant tumors via non-apoptotic cell death pathways is promising for improving the long-term chemotherapeutic efficacy. Herein, a Fe(III)-Shikonin metal-polyphenol-coordinated supramolecular nanomedicine for combined therapy of tumor via ferroptosis and necroptosis is designed. The construction of the nanomedicine based on the coordinated self-assembly between Fe3+ and Shikonin not only overcomes the shortcomings of Shikonin including its low bioavailability and high toxicity toward normal tissues, but also integrates the theranostics functions of Fe ions. Under the exposure of the high concentration of glutathione (GSH) in tumor cells, the as-prepared nanomedicine will disassemble into Fe2+ and Shikonin, followed by stimulating the tumor cell death through ferroptosis and necroptosis. In addition, benefiting from the stealth effect of polyethylene glycol (PEG) and the targeting ability of cyclo(Arg-Gly-Asp-d-Phe-Lys) (cRGD) to αv β3 -integrin, NH2 -PEG-cRGD-modified nanomedicine exhibits a GSH-responsive therapy toward 4T1 tumor in vivo and self-enhanced longitudinal relaxation (T1 )-weighted imaging property. Since the self-assembly of natural Shikonin and human body-necessary Fe element is facile and feasible, the work may provide a promising supramolecular nanomedicine for next-generation chemotherapeutic applications.
Collapse
Affiliation(s)
- Wenjie Feng
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Wanrui Shi
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Shuwei Liu
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Huiwen Liu
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Pengfei Ge
- Department of Neurosurgery The First Hospital of Jilin University Changchun 130021 P. R. China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 P. R. China
| |
Collapse
|
47
|
Sun Q, Gong T, Liu M, Ren S, Yang H, Zeng S, Zhao H, Chen L, Ming T, Meng X, Xu H. Shikonin, a naphthalene ingredient: Therapeutic actions, pharmacokinetics, toxicology, clinical trials and pharmaceutical researches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153805. [PMID: 34749177 DOI: 10.1016/j.phymed.2021.153805] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/15/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Shikonin is one of the major phytochemical components of Lithospermum erythrorhizon (Purple Cromwell), which is a type of medicinal herb broadly utilized in traditional Chinese medicine. It is well established that shikonin possesses remarkable therapeutic actions on various diseases, with the underlying mechanisms, pharmacokinetics and toxicological effects elusive. Also, the clinical trial and pharmaceutical study of shikonin remain to be comprehensively delineated. PURPOSE The present review aimed to systematically summarize the updated knowledge regarding the therapeutic actions, pharmacokinetics, toxicological effects, clinical trial and pharmaceutical study of shikonin. METHODS The information contained in this review article were retrieved from some authoritative databases including Web of Science, PubMed, Google scholar, Chinese National Knowledge Infrastructure (CNKI), Wanfang Database and so on, till August 2021. RESULTS Shikonin exerts multiple therapeutic efficacies, such as anti-inflammation, anti-cancer, cardiovascular protection, anti-microbiomes, analgesia, anti-obesity, brain protection, and so on, mainly by regulating the NF-κB, PI3K/Akt/MAPKs, Akt/mTOR, TGF-β, GSK3β, TLR4/Akt signaling pathways, NLRP3 inflammasome, reactive oxygen stress, Bax/Bcl-2, etc. In terms of pharmacokinetics, shikonin has an unfavorable oral bioavailability, 64.6% of the binding rate of plasma protein, and enhances some metabolic enzymes, particularly including cytochrome P450. In regard to the toxicological effects, shikonin may potentially cause nephrotoxicity and skin allergy. The above pharmacodynamics and pharmacokinetics of shikonin have been validated by few clinical trials. In addition, pharmaceutical innovation of shikonin with novel drug delivery system such as nanoparticles, liposomes, microemulsions, nanogel, cyclodextrin complexes, micelles and polymers are beneficial to the development of shikonin-based drugs. CONCLUSIONS Shikonin is a promising phytochemical for drug candidates. Extensive and intensive explorations on shikonin are warranted to expedite the utilization of shikonin-based drugs in the clinical setting.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ting Gong
- Department of Ultrasound, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
48
|
Kaewruethai T, Laomeephol C, Pan Y, Luckanagul JA. Multifunctional Polymeric Nanogels for Biomedical Applications. Gels 2021; 7:228. [PMID: 34842728 PMCID: PMC8628665 DOI: 10.3390/gels7040228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/30/2021] [Accepted: 11/13/2021] [Indexed: 12/17/2022] Open
Abstract
Currently, research in nanoparticles as a drug delivery system has broadened to include their use as a delivery system for bioactive substances and a diagnostic or theranostic system. Nanogels, nanoparticles containing a high amount of water, have gained attention due to their advantages of colloidal stability, core-shell structure, and adjustable structural components. These advantages provide the potential to design and fabricate multifunctional nanosystems for various biomedical applications. Modified or functionalized polymers and some metals are components that markedly enhance the features of the nanogels, such as tunable amphiphilicity, biocompatibility, stimuli-responsiveness, or sensing moieties, leading to specificity, stability, and tracking abilities. Here, we review the diverse designs of core-shell structure nanogels along with studies on the fabrication and demonstration of the responsiveness of nanogels to different stimuli, temperature, pH, reductive environment, or radiation. Furthermore, additional biomedical applications are presented to illustrate the versatility of the nanogels.
Collapse
Affiliation(s)
- Tisana Kaewruethai
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; (T.K.); (C.L.)
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| | - Chavee Laomeephol
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; (T.K.); (C.L.)
- Biomaterial Engineering for Medical and Health Research Unit, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China;
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand; (T.K.); (C.L.)
- Biomaterial Engineering for Medical and Health Research Unit, Chulalongkorn University, Phayathai Road, Bangkok 10330, Thailand
| |
Collapse
|
49
|
Liu Y, Chen L, Shi Q, Zhao Q, Ma H. Tumor Microenvironment-Responsive Polypeptide Nanogels for Controlled Antitumor Drug Delivery. Front Pharmacol 2021; 12:748102. [PMID: 34776965 PMCID: PMC8578677 DOI: 10.3389/fphar.2021.748102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Tumor microenvironment-responsive polypeptide nanogels belong to a biomaterial with excellent biocompatibility, easily adjustable performance, biodegradability, and non-toxic properties. They are developed for selective delivery of antitumor drugs into target organs to promote tumor cell uptake, which has become an effective measure of tumor treatment. Endogenous (such as reduction, reactive oxygen species, pH, and enzyme) and exogenous (such as light and temperature) responsive nanogels can release drugs in response to tumor tissues or cells to improve drug distribution and reduce drug side effects. This article systematically introduces the research progress in tumor microenvironment-responsive polypeptide nanogels to deliver antitumor drugs and provides a reference for the development of antitumor nanoformulations.
Collapse
Affiliation(s)
- Yanhong Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Linjiao Chen
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Qingyang Shi
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Qing Zhao
- Department of Obstetrics, First Hospital, Jilin University, Changchun, China
| | - Hongshuang Ma
- Department of Rheumatology and Immunology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
50
|
Shikonin induces programmed death of fibroblast synovial cells in rheumatoid arthritis by inhibiting energy pathways. Sci Rep 2021; 11:18263. [PMID: 34521930 PMCID: PMC8440543 DOI: 10.1038/s41598-021-97713-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/21/2021] [Indexed: 01/31/2023] Open
Abstract
Shikonin is the main component of the traditional Chinese medicine comfrey, which can inhibit the activity of PKM2 by regulating glycolysis and ATP production. Rheumatoid arthritis synovial cells (RA-FLSs) have been reported to increase glycolytic activity and have other similar hallmarks of metabolic activity. In this study, we investigated the effects of shikonin on glycolysis, mitochondrial function, and cell death in RA-FLSs. The results showed that shikonin induced apoptosis and autophagy in RA-FLSs by activating the production of reactive oxygen species (ROS) and inhibiting intracellular ATP levels, glycolysis-related proteins, and the PI3K-AKT-mTOR signaling pathway. Shikonin can significantly reduce the expression of apoptosis-related proteins, paw swelling in rat arthritic tissues, and the levels of inflammatory factors in peripheral blood, such as TNF-α, IL-6, IL-8, IL-10, IL-17A, and IL-1β while showing less toxicity to the liver and kidney.
Collapse
|