1
|
Pham HG, Tran KN, Gomelsky L, Roy T, Gigley JP, Gomelsky M. Robust Inducible Gene Expression in Intracellular Listeria monocytogenes In Vivo. ACS Synth Biol 2025. [PMID: 40277175 DOI: 10.1021/acssynbio.5c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Attenuated strains of the intracellular pathogen Listeria monocytogenes can deliver genetically encoded payloads inside tumor cells. L. monocytogenes preferentially accumulates and propagates in immune-suppressed tumor microenvironments. To maximize the payload impact in tumors and minimize damage to healthy tissues, it is desirable to induce payload synthesis when bacteria are eliminated from the healthy tissues but are grown to high numbers intratumorally. Here, we have engineered a tightly controlled gene expression system for intracellular L. monocytogenes inducible with a cumin derivative, cumate. Upon cumate addition, expression of a reporter gene is increased in L. monocytogenes growing in vitro by 80-fold and in intracellular L. monocytogenes in murine tumors by 75-fold. This study demonstrates the feasibility of activating gene expression in intracellular bacteria in live animals using an edible inducer. The system is expected to enhance the efficacy and safety of the attenuated L. monocytogenes strains as antitumor payload delivery bacterial drones.
Collapse
Affiliation(s)
- Huong Giang Pham
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Kiet N Tran
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Larissa Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Tathagato Roy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071, United States
| |
Collapse
|
2
|
He X, Guo J, Bai Y, Sun H, Yang J. Salmonella-based therapeutic strategies: improving tumor microenvironment and bringing new hope for cancer immunotherapy. Med Oncol 2024; 42:27. [PMID: 39666238 DOI: 10.1007/s12032-024-02578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
Immunotherapy has revolutionized cancer treatment, yet its effectiveness is limited by immunosuppressive tumor microenvironment (TME). To overcome this challenge, innovative strategies to effectively modulate the TME are urgently needed. Over the past decades, bacteria-mediated cancer immunotherapy has recaptured increasing attention, driven by advances in synthetic biology, genetic engineering and our knowledge of host-pathogen interactions. Among various bacterial species, Salmonella has emerged as a leading candidate with significant therapeutic potential due to its broad-spectrum anti-tumor activity, tumor-targeting ability, immunomodulatory effects, oncolytic properties, genetic programmability, and engineering flexibility. These characteristics enable Salmonella to reshape the immunosuppressive TME, thereby enhancing anti-tumor efficacy. This review elaborates the regulatory effects of Salmonella on key components of the TME, the versatile engineering strategies for optimizing Salmonella's ability to modulate the TME, and recent advancements in combination cancer therapies. We also summarize current clinical applications and discuss challenges of developing safer and more effective Salmonella-based cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaoe He
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, 730030, Gansu, China
| | - Jiayin Guo
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, 730030, Gansu, China
| | - Yanrui Bai
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, 730030, Gansu, China
| | - Hui Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, 730030, Gansu, China
| | - Jing Yang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Cuiying Gate 82, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
3
|
Xie B, Dong L, Wang L, Wang R, Li C. Supramolecularly engineered bacteria mediated calcium overload and immunotherapy of tumors. Theranostics 2024; 14:6560-6570. [PMID: 39479452 PMCID: PMC11519789 DOI: 10.7150/thno.99931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Intracellular Ca2+ nanogenerators, such as calcium carbonate, calcium peroxide, and calcium phosphate nanoparticles, have shown promise in calcium overload-mediated tumor therapy. However, their effectiveness is often hampered by poor targeting, low accumulation, and limited penetration into tumor cells, leading to suboptimal therapeutic outcomes. This strategy aims to achieve synergistic Ca2+ overload and immunotherapy of tumors. Methods: A supramolecular conjugate of engineered living bacteria (facultative anaerobic Salmonella typhimurium VNP20009, VNP) with CaCO3 nanoparticles was developed for targeted delivery of curcumin-loaded CaCO3 into tumors. Results: Both CaCO3 nanoparticles and the loaded Ca2+ efflux inhibiting agent, curcumin (CUR), demonstrated significant enhancement of intracellular Ca2+ overload, resulting in apoptosis of tumor cells via mitochondrial dysfunction. Moreover, VNP exhibited excellent tumor-targeting ability, colonization in tumor tissues, and anticancer activity with minimal side effects. Conclusion: The conjugate of VNP and CaCO3 not only enhances the efficiency of common cancer treatments but also synergizes Ca2+ overload with cancer immunotherapy, thereby offering a promising approach for improving therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Beibei Xie
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Linmiao Dong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Leo Wang
- Kitsilano Secondary School, Vancouver, BC V6K 2J6, Canada
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Chunlai Li
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine; Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
| |
Collapse
|
4
|
Wu J, Guo J, Xia S, Chen J, Cao M, Xie L, Yang C, Qiu F, Wang J. A Single-Cell Transcriptome Profiling of Triptolide-Induced Nephrotoxicity in Mice. Adv Biol (Weinh) 2024; 8:e2400120. [PMID: 38864263 DOI: 10.1002/adbi.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Indexed: 06/13/2024]
Abstract
Triptolide (TP), an active component isolated from the traditional Chinese herb Tripterygium wilfordii Hook F (TWHF), shows great promise for treating inflammation-related diseases. However, its potential nephrotoxic effects remain concerning. The mechanism underlying TP-induced nephrotoxicity is inadequately elucidated, particularly at single-cell resolution. Hence, single-cell RNA sequencing (scRNA-seq) of kidney tissues from control and TP-treated mice is performed to generate a thorough description of the renal cell atlas upon TP treatment. Heterogeneous responses of nephron epithelial cells are observed after TP exposure, attributing differential susceptibility of cell subtypes to excessive reactive oxygen species and increased inflammatory responses. Moreover, TP disrupts vascular function by activating endothelial cell immunity and damaging fibroblasts. Severe immune cell damage and the activation of pro-inflammatory Macro_C1 cells are also observed with TP treatment. Additionally, ligand-receptor crosstalk analysis reveals that the SPP1 (osteopontin) signaling pathway targeting Macro_C1 cells is triggered by TP treatment, which may promote the infiltration of Macro_C1 cells to exacerbate renal toxicity. Overall, this study provides comprehensive information on the transcriptomic profiles and cellular composition of TP-associated nephrotoxicity at single-cell resolution, which can strengthen the understanding of the pathogenesis of TP-induced nephrotoxicity and provide valuable clues for the discovery of new therapeutic targets to ameliorate TP-associated nephrotoxicity.
Collapse
Affiliation(s)
- Jiangpeng Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Jinan Guo
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Siyu Xia
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Min Cao
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Lulin Xie
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Chuanbin Yang
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jigang Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Department of Urology, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (the Second Clinical Medical College, Jinan University, the First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, China
| |
Collapse
|
5
|
Wang X, Liu E, Hou C, Wang Y, Zhao Y, Guo J, Li M. Effects of natural products on angiogenesis in melanoma. Fitoterapia 2024; 177:106100. [PMID: 38972550 DOI: 10.1016/j.fitote.2024.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Melanoma is the most aggressive form of skin cancer and originates from genetic mutations in melanocytes. The disease is multifactorial, but its main cause is overexposure to UV radiation. Currently, available chemotherapy expresses little to no results, which may justify the extensive use of natural products to treat this cancer. In this study, we reviewed the inhibition of melanoma angiogenesis by natural products and its potential mechanisms using literature from PubMed, EMBASE, Web of Science, Ovid, ScienceDirect and China National Knowledge Infrastructure databases. According to summarizes 27 natural products including alkaloids, polyphenols, terpenoids, flavonoids, and steroids that effectively inhibit angiogenesis in melanoma. In addition to these there are 15 crude extracts that can be used as promising agents to inhibit angiogenesis, but their core components still deserve further investigation. There are current studies on melanoma angiogenesis involving oxidative stress, immune-inflammatory response, cell proliferation and migration and capillary formation. The above natural products can be involved in melanoma angiogenesis through core targets such as VE-cadherin, COX-2, iNOS, VEGF, bFGF, FGF2,MMP2,MMP9,IL-1β,IL-6 play a role in inhibiting melanoma angiogenesis. Effective excavation of natural products can not only clarify the mechanism of drug action and key targets, but also help to promote the preclinical research of natural products for melanoma treatment and further promote the development of new clinical drugs, which will bring the gospel to the vast number of patients who are deeply afflicted by melanoma.
Collapse
Affiliation(s)
- Xurui Wang
- Department of Chinese Medicine Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China,Chengdu, China; Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - E Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changcheng Hou
- Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yueyue Wang
- Jiangsu Province Hospital of Traditional Chinese Medicine Chongqing Hospital, Chongqing, China
| | - Yijia Zhao
- Department of Dermatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Mingyue Li
- Special Needs Outpatient Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
6
|
Kiaheyrati N, Babaei A, Ranji R, Bahadoran E, Taheri S, Farokhpour Z. Cancer therapy with the viral and bacterial pathogens: The past enemies can be considered the present allies. Life Sci 2024; 349:122734. [PMID: 38788973 DOI: 10.1016/j.lfs.2024.122734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Cancer continues to be one of the leading causes of mortality worldwide despite significant advancements in cancer treatment. Many difficulties have arisen as a result of the detrimental consequences of chemotherapy and radiotherapy as a common cancer therapy, such as drug inability to penetrate deep tumor tissue, and also the drug resistance in tumor cells continues to be a major concern. These obstacles have increased the need for the development of new techniques that are more selective and effective against cancer cells. Bacterial-based therapies and the use of oncolytic viruses can suppress cancer in comparison to other cancer medications. The tumor microenvironment is susceptible to bacterial accumulation and proliferation, which can trigger immune responses against the tumor. Oncolytic viruses (OVs) have also gained considerable attention in recent years because of their potential capability to selectively target and induce apoptosis in cancer cells. This review aims to provide a comprehensive summary of the latest literature on the role of bacteria and viruses in cancer treatment, discusses the limitations and challenges, outlines various strategies, summarizes recent preclinical and clinical trials, and emphasizes the importance of optimizing current strategies for better clinical outcomes.
Collapse
Affiliation(s)
- Niloofar Kiaheyrati
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran.
| | - Reza Ranji
- Department of Genetics, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ensiyeh Bahadoran
- School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Shiva Taheri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Farokhpour
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
7
|
Tu Y, Luo Y, Zhao Q, Zeng Y, Leng K, Zhu M. Role of macrophage in ocular neovascularization. Heliyon 2024; 10:e30840. [PMID: 38770313 PMCID: PMC11103465 DOI: 10.1016/j.heliyon.2024.e30840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Ocular neovascularization is the leading cause of blindness in clinical settings. Pathological angiogenesis of the eye can be divided into corneal neovascularization (CoNV), retinal neovascularization (RNV, including diabetic retinopathy and retinopathy of prematurity), and choroidal neovascularization (CNV) based on the anatomical location of abnormal neovascularization. Although anti-Vascular endothelial growth factor (VEGF) agents have wide-ranging clinical applications and are an effective treatment for neovascular eye disease, many deficiencies in this treatment strategy remain. Recently, emerging evidence has demonstrated that macrophages are vital during the process of physiological and pathological angiogenesis. Monocyte-macrophage lineage is diverse and plastic, they can shift between different activation modes and have different functions. Due to the obvious regulatory effect of macrophages on inflammation and angiogenesis, macrophages have been increasingly studied in the field of ophthalmology. Here, we detail how macrophage activated and the role of different subtypes of macrophages in the pathogenesis of ocular neovascularization. The complexity of macrophages has recently taken center stage owing to their subset diversity and tightly regulated molecular and metabolic phenotypes. In this review, we reveal the functional and phenotypic characterization of macrophage subsets associated with ocular neovascularization, more in-depth research is needed to explore the specific mechanisms by which macrophages regulate angiogenesis as well as macrophage polarization. Targeted regulation of macrophage differentiation based on their phenotype and function could be an effective approach to treat and manage ocular neovascularization in the future.
Collapse
Affiliation(s)
- Yuanyuan Tu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yalu Luo
- Suzhou Medical College, Soochow University, Suzhou, China
| | - Qingliang Zhao
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanfeng Zeng
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kai Leng
- Department of Medical Informatics, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
8
|
Bao S, Yi M, Xiang B, Chen P. Antitumor mechanisms and future clinical applications of the natural product triptolide. Cancer Cell Int 2024; 24:150. [PMID: 38678240 PMCID: PMC11055311 DOI: 10.1186/s12935-024-03336-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Triptolide (TPL) is a compound sourced from Tripterygium wilfordii Hook. F., a traditional Chinese medicinal herb recognized for its impressive anti-inflammatory, anti-angiogenic, immunosuppressive, and antitumor qualities. Notwithstanding its favorable attributes, the precise mechanism through which TPL influences tumor cells remains enigmatic. Its toxicity and limited water solubility significantly impede the clinical application of TPL. We offer a comprehensive overview of recent research endeavors aimed at unraveling the antitumor mechanism of TPL in this review. Additionally, we briefly discuss current strategies to effectively manage the challenges associated with TPL in future clinical applications. By compiling this information, we aim to enhance the understanding of the underlying mechanisms involved in TPL and identify potential avenues for further advancement in antitumor therapy.
Collapse
Affiliation(s)
- Shiwei Bao
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China
- FuRong Laboratory, Changsha, 410078, Hunan, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Mei Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- FuRong Laboratory, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Provincial Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
9
|
Zhao Y, Li M, Guo Y, Jin J, Pei F, Wang W, Liu C, Yu W, Shi J, Yin N. Neutrophil hitchhiking nanoparticles enhance bacteria-mediated cancer therapy via NETosis reprogramming. J Control Release 2024; 367:661-675. [PMID: 38301928 DOI: 10.1016/j.jconrel.2024.01.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Bacteria have shown great potential in anti-tumor treatment, and an attenuated strain of Salmonella named VNP20009 has been shown to be safe in clinical trials. However, colonized bacteria recruit neutrophils into the tumor, which release NETs to capture and eliminate bacteria, compromising bacterial-based tumor treatment. In this study, we report a neutrophil hitchhiking nanoparticles (SPPS) that block the formation of NET to enhance bacteria-mediated tumor therapy. In the 4 T1 tumor-bearing mouse model, following 24 h of bacterial therapy, there was an approximately 3.0-fold increase in the number of neutrophils in the bloodstream, while the amount of SPPS homing to tumor tissue through neutrophil hitchhiking increased approximately 2.0-fold. It is worth noting that the NETs in tumors significantly decreased by approximately 2.0-fold through an intracellular ROS scavenging-mediated NETosis reprogramming, thereby increasing bacterial vitality by 1.9-fold in tumors. More importantly, the gene drug (siBcl-2) loaded in SPPS can be re-encapsulated in apoptotic bodies by reprogramming neutrophils from NETosis to apoptosis, and enable the redelivery of drugs to tumor cells, further boosting the antitumor efficacy with a synergistic effect, resulting in about 98% tumor inhibition rate and 90% survival rate.
Collapse
Affiliation(s)
- Yuzhen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou 450001, PR China
| | - Mingge Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou 450001, PR China
| | - Yue Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou 450001, PR China
| | - Jian Jin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province 450000, PR China
| | - Fei Pei
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou 450001, PR China
| | - Wenya Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou 450001, PR China
| | - Changhua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou 450001, PR China
| | - Wenyan Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou 450001, PR China.
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou 450001, PR China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, PR China.
| | - Na Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, PR China; Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou 450001, PR China.
| |
Collapse
|
10
|
Liu LN, Chen C, Xin WJ, Li Q, Han C, Hua ZC. The oncolytic bacteria-mediated delivery system of CCDC25 nucleic acid drug inhibits neutrophil extracellular traps induced tumor metastasis. J Nanobiotechnology 2024; 22:69. [PMID: 38369519 PMCID: PMC10875894 DOI: 10.1186/s12951-024-02335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs), antibacterial weapons of neutrophils (NEs), have been found to play a crucial role in cancer metastasis in recent years. More and more cancer research is focusing on anti-NETs. However, almost all anti-NETs treatments have limitations such as large side effects and limited efficacy. Therefore, exploring new anti-NETs therapeutic strategies is a long-term goal. RESULTS The transmembrane protein coiled-coil domain containing 25 (CCDC25) on tumor cell membranes can bind NETs-DNA with high specificity and affinity, enabling tumor cells to sense NETs and thus promote distant metastasis. We transformed shCCDC25 into VNP20009 (VNP), an oncolytic bacterium, to generate VNP-shCCDC25 and performed preclinical evaluation of the inhibitory effect of shCCDC25 on cancer metastasis in B16F10 lung metastasis and 4T1 orthotopic lung metastasis models. VNP-shCCDC25 effectively blocked the downstream prometastatic signaling pathway of CCDC25 at tumor sites and reduced the formation of NETs while recruiting more neutrophils and macrophages to the tumor core, ultimately leading to excellent metastasis inhibition in the two lung metastasis models. CONCLUSION This study is a pioneer in focusing on the effect of anti-NET treatment on CCDC25. shCCDC25 is effectively delivered to tumor sites via the help of oncolytic bacteria and has broad application in the inhibition of cancer metastasis via anti-NETs.
Collapse
Affiliation(s)
- Li-Na Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Chen Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Wen-Jie Xin
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Qiang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Chao Han
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu, Changzhou, China.
- TargetPharma Laboratories Inc., Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
11
|
Xing W, Liu G, Zhang Y, Zhang T, Lou H, Fan P. Selective Antitumor Effect and Lower Toxicity of Mitochondrion-Targeting Derivatization of Triptolide. J Med Chem 2024; 67:1093-1114. [PMID: 38169372 DOI: 10.1021/acs.jmedchem.3c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Triptolide has a significant antitumor activity, but its toxicity limits its clinical application. As the mitochondrion-targeting strategy showed an advantage in selective antitumor effect based on the higher mitochondrial membrane potential (MMP) in tumor cells than normal cells, the lipophilic cations triphenylphosphonium and E-4-(1H-indol-3-yl vinyl)-N-methylpyridinium iodide (F16) were selected as targeting carriers for structural modification of triptolide. The derivatives bearing F16 generally retained most antitumor activities, overcame its inhibition plateau phenomena, and enhanced its selective antitumor effect in lung cancer. The representative derivative F9 could accumulate in the mitochondria of NCI-H1975 cells, inducing apoptosis and a dose-dependent increase in intracellular reactive oxygen species and reducing MMP. Moreover, no effects were observed in normal cells BEAS-2B. In vivo studies showed that the developmental, renal, and liver toxicities of F9 to zebrafish were significantly lower than those of triptolide. This study provides a promising idea to relieve the toxicity problem of triptolide.
Collapse
Affiliation(s)
- Wenlan Xing
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Guoliang Liu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Yue Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Tao Zhang
- Shandong Provincial Key Laboratory of Neuroprotective Drugs, Shandong Qidu Pharmaceutical Research Institute, Zibo 255400, P. R. China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| | - Peihong Fan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China
| |
Collapse
|
12
|
Pérez Jorge G, Gontijo MTP, Brocchi M. Salmonella enterica and outer membrane vesicles are current and future options for cancer treatment. Front Cell Infect Microbiol 2023; 13:1293351. [PMID: 38116133 PMCID: PMC10728604 DOI: 10.3389/fcimb.2023.1293351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Conventional cancer therapies have many limitations. In the last decade, it has been suggested that bacteria-mediated immunotherapy may circumvent the restrictions of traditional treatments. For example, Salmonella enterica is the most promising bacteria for treating cancer due to its intrinsic abilities, such as killing tumor cells, targeting, penetrating, and proliferating into the tumor. S. enterica has been genetically modified to ensure safety and increase its intrinsic antitumor efficacy. This bacterium has been used as a vector for delivering anticancer agents and as a combination therapy with chemotherapy, radiotherapy, or photothermic. Recent studies have reported the antitumor efficacy of outer membrane vesicles (OMVs) derived from S. enterica. OMVs are considered safer than attenuated bacteria and can stimulate the immune system as they comprise most of the immunogens found on the surface of their parent bacteria. Furthermore, OMVs can also be used as nanocarriers for antitumor agents. This review describes the advances in S. enterica as immunotherapy against cancer and the mechanisms by which Salmonella fights cancer. We also highlight the use of OMVs as immunotherapy and nanocarriers of anticancer agents. OMVs derived from S. enterica are innovative and promising strategies requiring further investigation.
Collapse
Affiliation(s)
- Genesy Pérez Jorge
- Universidade Estadual de Campinas (UNICAMP), Departamento de Genética, Evolução, Microbiologia e Imunologia, Laboratório de Doenças Tropicais, Instituto de Biologia, Campinas, Brazil
| | - Marco Túlio Pardini Gontijo
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Marcelo Brocchi
- Universidade Estadual de Campinas (UNICAMP), Departamento de Genética, Evolução, Microbiologia e Imunologia, Laboratório de Doenças Tropicais, Instituto de Biologia, Campinas, Brazil
| |
Collapse
|
13
|
Xie B, Zhao H, Ding Y, Wang Z, Gao C, Li S, Zhang K, Ip SW, Yu H, Wang R. Supramolecularly Engineered Conjugate of Bacteria and Cell Membrane-Coated Magnetic Nanoparticles for Enhanced Ferroptosis and Immunotherapy of Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304407. [PMID: 37850572 PMCID: PMC10700203 DOI: 10.1002/advs.202304407] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/06/2023] [Indexed: 10/19/2023]
Abstract
Although various ferroptosis inducers including magnetic nanoparticles (Fe3 O4 ) and iron-organic frameworks have been applied in cancer treatment, the mild immunogenicity, low targeting efficiency to the tumor, and poor tissue penetration have limited the therapeutic efficacy. Herein, a supramolecularly engineered conjugate between living bacteria (facultative anaerobic Salmonella typhimurium VNP20009, VNP) and cancer cell membranes-coated Fe3 O4 nanoparticles is developed for improving targeted delivery of Fe3 O4 nanoparticles into the tumor tissue and for synergistic ferroptosis and immunotherapy of tumor. The enhanced ferroptosis induced by both Fe3 O4 nanoparticles and the loaded ferroptosis inducing agent (sulfasalazine (SAS)) effectively inhibits tumor growth and generates immune response via immunogenic cell death (ICD). The colonization of VNP in tumors also induces adaptive immune responses and further promotes ferroptosis. Fundamentally, the supramolecular conjugate of VNP and cell membranes-coated Fe3 O4 can potentiate the therapeutic capability of each other through mutually magnifying the ferroptosis and immunotherapy, resulting in significantly enhanced antitumor effects.
Collapse
Affiliation(s)
- Beibei Xie
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacau999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacau999078China
| | - Huichao Zhao
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacau999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacau999078China
| | - Yuan‐Fu Ding
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacau999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacau999078China
| | - Ziyi Wang
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacau999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacau999078China
| | - Cheng Gao
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacau999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacau999078China
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacau999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacau999078China
| | | | | | - Huazhong Yu
- Department of Chemistryand Department of Molecular Biology and BiochemistrySimon Fraser UniversityBritish ColumbiaBurnabyV5A 1S6Canada
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical SciencesUniversity of MacauTaipaMacau999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacau999078China
| |
Collapse
|
14
|
Liu L, Xin W, Li Q, Huang B, Yin T, Hua S, Yang C, Chen C, Han C, Hua Z. Neutrophil-Mediated Tumor-Targeting Delivery System of Oncolytic Bacteria Combined with ICB for Melanoma Lung Metastasis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301835. [PMID: 37565362 PMCID: PMC10582430 DOI: 10.1002/advs.202301835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Oncolytic bacteria are the most promising tumor target vector. Questions also remain regarding finding a balance between the therapeutic efficacy and safety of oncolytic bacteria. The critical measure of how this balance is maintained is the improvement in tumor colonization. Attenuated Salmonella typhimurium (VNP20009) as the only Salmonella strain to be evaluated in a clinical trial is a potential tumor therapeutic bacterium. A delivery system with controlled release of VNP after being loaded into neutrophils, which significantly increases the tumor-targeting of VNP and enhances its therapeutic efficacy in a melanoma lung metastasis model is constructed. To improve the synergistic therapeutic effect, a PD1 nanobody is applied to this system (NE(PD1nb)). NE(PD1nb) activate dendritic cells (DCs) differentiation and stimulate the M1-like differentiation of macrophages, and induce CD4+ T-cells maturity and cytotoxic CD8+ T-cells activation through DCs tumor antigen presentation.
Collapse
Affiliation(s)
- Lina Liu
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Wenjie Xin
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Qiang Li
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Baolian Huang
- School of BiopharmacyChina Pharmaceutical UniversityNanjingJiangsu210023China
| | - Te Yin
- School of BiopharmacyChina Pharmaceutical UniversityNanjingJiangsu210023China
| | - Siqi Hua
- School of BiopharmacyChina Pharmaceutical UniversityNanjingJiangsu210023China
| | - Chen Yang
- School of BiopharmacyChina Pharmaceutical UniversityNanjingJiangsu210023China
| | - Chen Chen
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Chao Han
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
- School of BiopharmacyChina Pharmaceutical UniversityNanjingJiangsu210023China
- Changzhou High‐Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc.ChangzhouJiangsu213164China
| |
Collapse
|
15
|
Zhao X, Xie N, Zhang H, Zhou W, Ding J. Bacterial Drug Delivery Systems for Cancer Therapy: "Why" and "How". Pharmaceutics 2023; 15:2214. [PMID: 37765183 PMCID: PMC10534357 DOI: 10.3390/pharmaceutics15092214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is one of the major diseases that endanger human health. However, the use of anticancer drugs is accompanied by a series of side effects. Suitable drug delivery systems can reduce the toxic side effects of drugs and enhance the bioavailability of drugs, among which targeted drug delivery systems are the main development direction of anticancer drug delivery systems. Bacteria is a novel drug delivery system that has shown great potential in cancer therapy because of its tumor-targeting, oncolytic, and immunomodulatory properties. In this review, we systematically describe the reasons why bacteria are suitable carriers of anticancer drugs and the mechanisms by which these advantages arise. Secondly, we outline strategies on how to load drugs onto bacterial carriers. These drug-loading strategies include surface modification and internal modification of bacteria. We focus on the drug-loading strategy because appropriate strategies play a key role in ensuring the stability of the delivery system and improving drug efficacy. Lastly, we also describe the current state of bacterial clinical trials and discuss current challenges. This review summarizes the advantages and various drug-loading strategies of bacteria for cancer therapy and will contribute to the development of bacterial drug delivery systems.
Collapse
Affiliation(s)
- Xiangcheng Zhao
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| | - Nuli Xie
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| | - Hailong Zhang
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
- Changsha Jingyi Pharmaceutical Technology Co., Ltd., Changsha 410006, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Science, Central South University, Changsha 410006, China; (X.Z.); (N.X.); (H.Z.)
| |
Collapse
|
16
|
Cai J, Zhong M, Xu J, Cheng H, Xu S. Codelivery of triptolide and IFN-γ to boost antitumor immunity for triple-negative breast cancer. Int Immunopharmacol 2023; 120:110346. [PMID: 37210915 DOI: 10.1016/j.intimp.2023.110346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
Triple-negative breast cancer (TNBC) is a specific type of breast cancer that exhibits poor prognosis and complex tumor heterogeneity. The unique immune tumor microenvironment reveals great potential of immunotherapy in TNBC. Triptolide, a potential regulator of immune-related signaling, has shown potent antitumor activity in TNBC. However, the molecular mechanism of triptolide in TNBC is still controversial. This study identified interferon-γ (IFN-γ) as a therapeutical target of triptolide based on the analysis of prognostic biomarkers in TNBC. IFN-γ is an important component of immunotherapy and contributes to antitumor immune activation. Triptolide was found to significantly reverse the IFN-γ-inducible programmed death-ligand 1 (PD-L1) in TNBC. The combined treatment of triptolide and IFN-γ in a hydrogel delivery system remarkably induced the cytotoxic CD8 + T lymphocytes activation, showing a synergistic effect on the potent tumor inhibition.
Collapse
Affiliation(s)
- Jianya Cai
- Department of Surgery, Quanzhou Medical College, Quanzhou, China
| | - Minjie Zhong
- Department of Surgery, The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Jianhua Xu
- Department of Surgery, The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
| | - Hongwei Cheng
- Center of molecular imaging translational medicine, School of public health, Xiamen University, Xiamen, China
| | - Shuangta Xu
- Department of Surgery, The Second Clinical Medical College of Fujian Medical University, Quanzhou, China.
| |
Collapse
|
17
|
Liu Y, Niu L, Li N, Wang Y, Liu M, Su X, Bao X, Yin B, Shen S. Bacterial-Mediated Tumor Therapy: Old Treatment in a New Context. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205641. [PMID: 36908053 PMCID: PMC10131876 DOI: 10.1002/advs.202205641] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Targeted therapy and immunotherapy have brought hopes for precision cancer treatment. However, complex physiological barriers and tumor immunosuppression result in poor efficacy, side effects, and resistance to antitumor therapies. Bacteria-mediated antitumor therapy provides new options to address these challenges. Thanks to their special characteristics, bacteria have excellent ability to destroy tumor cells from the inside and induce innate and adaptive antitumor immune responses. Furthermore, bacterial components, including bacterial vesicles, spores, toxins, metabolites, and other active substances, similarly inherit their unique targeting properties and antitumor capabilities. Bacteria and their accessory products can even be reprogrammed to produce and deliver antitumor agents according to clinical needs. This review first discusses the role of different bacteria in the development of tumorigenesis and the latest advances in bacteria-based delivery platforms and the existing obstacles for application. Moreover, the prospect and challenges of clinical transformation of engineered bacteria are also summarized.
Collapse
Affiliation(s)
- Yao Liu
- Key Laboratory of Spine and Spinal Cord Injury Repairand Regeneration of Ministry of EducationOrthopaedic Department of Tongji Hospital, The Institute for Biomedical Engineering and Nano ScienceTongji University School of MedicineShanghai200092P. R. China
- Pharmacy Department and Center for Medical Research and InnovationShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| | - Lili Niu
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Nannan Li
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Yang Wang
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Mingyang Liu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical University155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Xiaomin Su
- Central LaboratoryFirst Affiliated HospitalInstitute (College) of Integrative MedicineDalian Medical UniversityDalian116021China
| | - Xuhui Bao
- Institute for Therapeutic Cancer VaccinesFudan University Pudong Medical CenterShanghai201399China
| | - Bo Yin
- Institute for Therapeutic Cancer Vaccines and Department of OncologyFudan University Pudong Medical CenterShanghai201399China
| | - Shun Shen
- Pharmacy Department and Center for Medical Research and InnovationShanghai Pudong HospitalFudan University Pudong Medical CenterShanghai201399China
| |
Collapse
|
18
|
ECM-targeting bacteria enhance chemotherapeutic drug efficacy by lowering IFP in tumor mouse models. J Control Release 2023; 355:199-210. [PMID: 36750146 DOI: 10.1016/j.jconrel.2023.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Bacterial cancer therapies aim to manipulate bacteria to effectively deploy therapeutic payloads to tumors. Attenuated bacteria alone often cannot eradicate solid tumors. Attenuated Salmonella can be engineered to deliver cytotoxic drugs to either trigger an immune response or increase antitumor efficacy when combined with chemotherapeutic drugs. However, the extracellular matrix (ECM) surrounding cancer cells forms a barrier that often limits the ability of chemotherapeutic and cytotoxic drugs to penetrate and eliminate tumors. To overcome this limitation, we developed a strategy to combine chemotherapy with an attenuated Salmonella typhimurium strain engineered to secrete HysA protein (from Staphylococcus aureus; Hyaluronidase, HAase) in tumors. The engineered Salmonella effectively degraded hyaluronan (HA), which is a major ECM constituent in tumors, and suppressed tumor growth in mouse models of pancreatic adenocarcinoma (ASPC-1) and breast cancer (4T1). Furthermore, it prolonged survival when combined with chemotherapeutic drugs (doxorubicin or gemcitabine). Upon bacterial colonization, the HAase-mediated ECM degradation decreased interstitial fluid pressure (IFP) in the tumor microenvironment. Additionally, HA degradation using HAase-expressing bacteria in vivo led to decreased binding to the receptor, CD44, expressed in tumors. This may modulate proliferation- and apoptosis-related signal pathways. Therefore, ECM-targeting bacteria can be used as a synergistic anticancer therapeutic agent to maximize chemotherapeutic drug delivery into highly invasive tumors.
Collapse
|
19
|
<italic>Salmonella typhimurium</italic> may support cancer treatment: a review. Acta Biochim Biophys Sin (Shanghai) 2023; 55:331-342. [PMID: 36786073 PMCID: PMC10160236 DOI: 10.3724/abbs.2023007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
<p indent="0mm">Antitumour treatments are evolving, including bacteria-mediated cancer therapy which is concurrently an ancient and cutting-edge approach. <italic>Salmonella typhimurium</italic> is a widely studied bacterial species that colonizes tumor tissues, showing oncolytic and immune system-regulating properties. It can be used as a delivery vector for genes and drugs, supporting conventional treatments that lack tumor-targeting abilities. This article summarizes recent evidence on the anticancer mechanisms of <italic>S</italic>. <italic>typhimurium</italic> alone and in combination with other anticancer treatments, suggesting that it may be a suitable approach to disease management. </p>.
Collapse
|
20
|
Xu YY, Chen YH, Jin J, Yuan Y, Li JM, Cai XJ, Zhang RY. Modulating tumour vascular normalisation using triptolide-loaded NGR-functionalized liposomes for enhanced cancer radiotherapy. J Liposome Res 2023:1-7. [PMID: 36601687 DOI: 10.1080/08982104.2022.2161095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Radiotherapy is an effective therapy in tumour treatment. However, the characteristics of the tumour microenvironment, including hypoxia, low pH, and interstitial fluid pressure bring about radioresistance. To improve the anti-tumour effect of radiotherapy, it has been demonstrated that antiangiogenic therapy can be employed to repair the structural and functional defects of tumour angiogenic vessels, thereby preventing radioresistance or poor therapeutic drug delivery. In this study, we prepared triptolide (TP)-loaded Asn-Gly-Arg (NGR) peptide conjugated mPEG2000-DSPE-targeted liposomes (NGR-PEG-TP-LPs) to induce tumour blood vessel normalisation, to the end of increasing the sensitivity of tumour cells to radiotherapy. Further, to quantify the tumour vessel normalisation window, the structure and functionality of tumour blood vessels post NGR-PEG-TP-LPs treatment were evaluated. Thereafter, the anti-tumour effect of radiotherapy following these treatments was evaluated using HCT116 xenograft-bearing mouse models based on the tumour vessel normalisation period window. The results obtained showed that NGR-PEG-TP-LPs could modulate tumour vascular normalisation to increase the oxygen content of the tumour microenvironment and enhance the efficacy of radiotherapy. Further, liver and kidney toxicity tests indicated that NGR-PEG-TP-LPs are safe for application in cancer treatment.
Collapse
Affiliation(s)
- Ying-Ying Xu
- Department of Pharmacy, Hangzhou Red Cross Hospital (Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College), Hangzhou, People's Republic of China
| | - Yan-Hong Chen
- Laboratory Animal Center of Zhejiang University, Hangzhou, People's Republic of China
| | - Jie Jin
- Department of Pharmacy, Hangzhou Red Cross Hospital (Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College), Hangzhou, People's Republic of China
| | - Yuan Yuan
- Department of Pharmacy, Hangzhou Red Cross Hospital (Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College), Hangzhou, People's Republic of China
| | - Jin-Meng Li
- Department of Pharmacy, Hangzhou Red Cross Hospital (Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College), Hangzhou, People's Republic of China
| | - Xin-Jun Cai
- Department of Pharmacy, Hangzhou Red Cross Hospital (Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College), Hangzhou, People's Republic of China
| | - Ruo-Ying Zhang
- Department of Pharmacy, Hangzhou Red Cross Hospital (Hangzhou Chest Hospital Affiliated to Zhejiang University Medical College), Hangzhou, People's Republic of China
| |
Collapse
|
21
|
Roviello G, Catalano M. Editorial: Microbiota and metabolites in cancer immunotherapy. Front Oncol 2022; 12:1093941. [PMID: 36568163 PMCID: PMC9768668 DOI: 10.3389/fonc.2022.1093941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | | |
Collapse
|
22
|
Gao F, Yu B, Rao B, Sun Y, Yu J, Wang D, Cui G, Ren Z. The effect of the intratumoral microbiome on tumor occurrence, progression, prognosis and treatment. Front Immunol 2022; 13:1051987. [PMID: 36466871 PMCID: PMC9718533 DOI: 10.3389/fimmu.2022.1051987] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/03/2022] [Indexed: 10/26/2023] Open
Abstract
In the past few decades, great progress has been achieved in the understanding of microbiome-cancer interactions. However, most of the studies have focused on the gut microbiome, ignoring how other microbiomes interact with tumors. Emerging evidence suggests that in many types of cancers, such as lung cancer, pancreatic cancer, and colorectal cancer, the intratumoral microbiome plays a significant role. In addition, accumulating evidence suggests that intratumoral microbes have multiple effects on the biological behavior of tumors, for example, regulating tumor initiation and progression and altering the tumor response to chemotherapy and immunotherapy. However, to fully understand the role of the intratumoral microbiome in cancer, further investigation of the effects and mechanisms is still needed. This review discusses the role of intratumoral bacteria in tumorigenesis and tumor progression, recurrence and metastasis, as well as their effect on cancer prognosis and treatment outcome, and summarizes the relevant mechanisms.
Collapse
Affiliation(s)
- Feng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Yu
- Henan Key Laboratory of Ion-beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jia Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daming Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
23
|
Wu L, Chen F, Chang X, Li L, Yin X, Li C, Wang F, Li C, Xu Q, Zhuang H, Gu N, Hua ZC. Combined Cellular Thermometry Reveals That Salmonella typhimurium Warms Macrophages by Inducing a Pyroptosis-like Phenotype. J Am Chem Soc 2022; 144:19396-19409. [PMID: 36228296 DOI: 10.1021/jacs.2c07287] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The attenuated Salmonella typhimurium VNP20009, enriched in tumors, is known to have antitumor effects and recruit macrophages. Little is known, however, about whether VNP will lead to specific changes in macrophages, e.g., cell temperature. Here, using a real-time wireless multicell thermometry system, we reported for the first time that VNP20009 increases the macrophage temperature by 0.2 °C. Nigericin, recognized as an inducer of pyroptosis, was found to induce macrophage warming. Moreover, the ΔsipD-VNP20009 strain failed to induce macrophage pyroptosis and simultaneously failed to warm macrophages, and the Gsdmd-/- macrophages that were unable to achieve pyroptosis were no longer warmed following VNP20009 induction. These results suggested that the occurrence of macrophage pyroptosis is the key to VNP20009-mediated cell warming. With the aid of a single-cell thermometry system, it was further confirmed that cell warming occurred in pyroptosis-like macrophages. Cellular warming was not detected after the induction of pyroptosis in macrophages with loss of mitochondrial biological function, suggesting a critical role of mitochondria in warming. Moreover, we found that VNP20009 caused local tumor temperature increases. The local tumor warming induced by VNP20009 was significantly reduced after macrophage clearance. Notably, this temperature increase contributed to M1-type polarization. These findings expanded our knowledge of the cellular biological changes induced by the strain on macrophages, as well as the biochemical phenomena accompanying pyroptosis, and provide a reference for the study of biochemical signals transduced to biothermal signals with a combined cell-level temperature detector.
Collapse
Affiliation(s)
- Leyang Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing210023, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou213164, China
| | - Feng Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, China
| | - Xiaoyao Chang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing210023, China
| | - Lin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing210023, China
| | - Xingpeng Yin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing210023, China
| | - Can Li
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing210096, China.,School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing210023, China
| | - Fangxu Wang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing210096, China
| | - Chenyang Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing210023, China
| | - Qin Xu
- Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, College of Engineering and Applied Sciences, Nanjing University, Nanjing210023, China
| | - Hongqin Zhuang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing210023, China
| | - Ning Gu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, China.,State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing210096, China
| | - Zi-Chun Hua
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing210023, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou213164, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing211198, China
| |
Collapse
|
24
|
Luo M, Chen X, Gao H, Yang F, Chen J, Qiao Y. Bacteria-mediated cancer therapy: A versatile bio-sapper with translational potential. Front Oncol 2022; 12:980111. [PMID: 36276157 PMCID: PMC9585267 DOI: 10.3389/fonc.2022.980111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria are important symbionts for humans, which sustain substantial influences on our health. Interestingly, some bastrains have been identified to have therapeutic applications, notably for antitumor activity. Thereby, oncologists have developed various therapeutic models and investigated the potential antitumor mechanisms for bacteria-mediated cancer therapy (BCT). Even though BCT has a long history and exhibits remarkable therapeutic efficacy in pre-clinical animal models, its clinical translation still lags and requires further breakthroughs. This review aims to focus on the established strains of therapeutic bacteria and their antitumor mechanisms, including the stimulation of host immune responses, direct cytotoxicity, the interference on cellular signal transduction, extracellular matrix remodeling, neoangiogenesis, and metabolism, as well as vehicles for drug delivery and gene therapy. Moreover, a brief discussion is proposed regarding the important future directions for this fantastic research field of BCT at the end of this review.
Collapse
Affiliation(s)
- Miao Luo
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyu Chen
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Haojin Gao
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Fan Yang
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
| | - Jianxiang Chen
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Yiting Qiao, ; Jianxiang Chen,
| | - Yiting Qiao
- School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Yiting Qiao, ; Jianxiang Chen,
| |
Collapse
|
25
|
Xu H, Piao L, Wu Y, Liu X. IFN-γ enhances the antitumor activity of attenuated salmonella-mediated cancer immunotherapy by increasing M1 macrophage and CD4 and CD8 T cell counts and decreasing neutrophil counts. Front Bioeng Biotechnol 2022; 10:996055. [PMID: 36246355 PMCID: PMC9556780 DOI: 10.3389/fbioe.2022.996055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Bacteria-mediated cancer immunotherapy (BCI) inhibits tumor progression and has a synergistic antitumor effect when combined with chemotherapy. The anti- or pro-tumorigenic effects of interferon-γ (IFN-γ) are controversial; hence, we were interested in the antitumor effects of IFN-γ/BCI combination therapy. Here, we demonstrated that IFN-γ increased the tumor cell killing efficacy of attenuated Salmonella by prolonging the survival of tumor-colonizing bacteria via blockade of tumor-infiltrating neutrophil recruitment. In addition, IFN-γ attenuated Salmonella-stimulated immune responses by stimulating tumor infiltration by M1-like macrophages and CD4+ and CD8+ T cells, thereby facilitating tumor eradication. Taken together, these findings suggest that combination treatment with IFN-γ boosts the therapeutic response of BCI with S. tΔppGpp, suggesting that IFN-γ/BCI is a promising approach to immunotherapy.
Collapse
Affiliation(s)
- Huimin Xu
- School of Life Sciences, Hainan University, Haikou, China
| | - Linghua Piao
- Department of Physiology, Hainan Medical University, Haikou, China
| | - Yundi Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
- *Correspondence: Yundi Wu, ; Xiande Liu,
| | - Xiande Liu
- School of Life Sciences, Hainan University, Haikou, China
- *Correspondence: Yundi Wu, ; Xiande Liu,
| |
Collapse
|
26
|
Mu L, Wu P, Zhang Y, Li S, Yang R, Wang S. Development of a novel oral complex lipid emulsion containing triptolide for targeting pancreatic cancer. Pharm Dev Technol 2022; 27:881-891. [PMID: 36154850 DOI: 10.1080/10837450.2022.2127767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Triptolide (TP), a diterpenoid triepoxide, exhibits strong anti-cancer activities, especially against pancreatic cancer, but its clinical application is limited by organ toxicity. TP was combined with diammonium glycyrrhizinate (DG), as a cytoprotective agent, in a novel oral complex lipid emulsion (TP/DG-CLE) to increase the therapeutic index of TP against pancreatic cancer. The emulsion was produced by subjecting phospholipid and active components to high shear conditions using high-pressure homogenization resulting in droplets of essentially neutral or small positive charge and consistent size below 200nm. Pharmacokinetic studies in Sprague Dawley rats revealed an AUC (0-8h) of TP following oral dosing of TP/DG-CLE that was 4-fold higher than that achieved for triptolide/diammonium glycyrrhizinate suspension, demonstrating significantly higher TP bioavailability and longer residence time in the bloodstream. Tissue distribution data obtained in mice demonstrated that TP/DG-CLE having a TP/DG weight ratio of 1:22.5 preferentially accumulated in the pancreas. Moreover, toxicology assays in rats provided indications of minor liver damage following daily administration of the emulsion for two weeks. Together these studies establish complex lipid emulsions containing triptolide and DG as a promising oral formulation for treatment of pancreatic cancer and establish a platform for developing new chemotherapeutic treatments.
Collapse
Affiliation(s)
- Liangyu Mu
- Shenyang Pharmaceutical University, Shenyang, China
| | - Peiyao Wu
- Shenyang Pharmaceutical University, Shenyang, China.,Peking University, Beijing, China
| | - Ying Zhang
- Shenyang Pharmaceutical University, Shenyang, China
| | - Shiqi Li
- Shenyang Pharmaceutical University, Shenyang, China
| | - Rui Yang
- Shenyang Pharmaceutical University, Shenyang, China.,Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - ShuJun Wang
- Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
27
|
Wang J, Guo N, Hou W, Qin H. Coating bacteria for anti-tumor therapy. Front Bioeng Biotechnol 2022; 10:1020020. [PMID: 36185433 PMCID: PMC9520470 DOI: 10.3389/fbioe.2022.1020020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
Therapeutic bacteria have shown great potential on anti-tumor therapy. Compared with traditional therapeutic strategy, living bacteria present unique advantages. Bacteria show high targeting and great colonization ability in tumor microenvironment with hypoxic and nutritious conditions. Bacterial-medicated antitumor therapy has been successfully applied on mouse models, but the low therapeutic effect and biosafe limit its application on clinical treatment. With the development of material science, coating living bacteria with suitable materials has received widespread attention to achieve synergetic therapy on tumor. In this review, we summarize various materials for coating living bacteria in cancer therapy and envision the opportunities and challenges of bacteria-medicated antitumor therapy.
Collapse
Affiliation(s)
- Jiahui Wang
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Ning Guo
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Ning Guo, ; Weiliang Hou, ; Huanlong Qin,
| | - Weiliang Hou
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Ning Guo, ; Weiliang Hou, ; Huanlong Qin,
| | - Huanlong Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
- *Correspondence: Ning Guo, ; Weiliang Hou, ; Huanlong Qin,
| |
Collapse
|
28
|
Liu X, Guo Y, Sun Y, Chen Y, Tan W, Min JJ, Zheng JH. Comparison of Anticancer Activities and Biosafety Between Salmonella enterica Serovar Typhimurium ΔppGpp and VNP20009 in a Murine Cancer Model. Front Microbiol 2022; 13:914575. [PMID: 35847095 PMCID: PMC9277105 DOI: 10.3389/fmicb.2022.914575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/27/2022] [Indexed: 11/23/2022] Open
Abstract
Salmonella Typhimurium defective in guanosine 5′-diphosphate-3′-diphosphate (ppGpp) synthesis (ΔppGpp) is an attenuated strain with good biosafety and excellent anticancer efficacy. It has been widely applied in preclinical studies of anticancer therapy for various types of solid cancer. VNP20009 is another genetically modified auxotrophic strain with 108-kb deletion, purI−, msbB−, and many single nucleotide polymorphisms (SNPs); it has shown promising therapeutic efficacy in various preclinical tumor models and entered phase I clinical trials. Here, the invasion activities and virulence of ΔppGpp were obviously lower than those of the VNP20009 strain when tested with cancer cells in vitro. In addition, the MC38 tumor-bearing mice showed comparable cancer suppression when treated with ΔppGpp or VNP20009 intravenously. However, the ΔppGpp-treated mice showed 16.7% of complete cancer eradication and prolonged survival in mice, whereas VNP20009 showed higher toxicity to animals, even with equal tumor size individually. Moreover, we found decreased levels of inflammatory cytokines in circulation but strengthened immune boost in tumor microenvironments of ΔppGpp-treated mice. Therefore, the engineered ΔppGpp has high potential for cancer therapeutics, and it is a promising option for future clinical cancer therapy.
Collapse
Affiliation(s)
- Xiaoqing Liu
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yanxia Guo
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yujie Sun
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yu Chen
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Wenzhi Tan
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Jung-Joon Min
- Department of Nuclear Medicine, Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School and Hwasun Hospital, Hwasun, South Korea
- Jung-Joon Min,
| | - Jin Hai Zheng
- School of Biomedical Sciences, Hunan University, Changsha, China
- *Correspondence: Jin Hai Zheng,
| |
Collapse
|
29
|
Wu L, Li L, Li S, Liu L, Xin W, Li C, Yin X, Xu X, Bao F, Hua Z. Macrophage-mediated tumor-targeted delivery of engineered Salmonella typhimurium VNP20009 in anti-PD1 therapy against melanoma. Acta Pharm Sin B 2022; 12:3952-3971. [PMID: 36213533 PMCID: PMC9532557 DOI: 10.1016/j.apsb.2022.05.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial antitumor therapy has great application potential given its unique characteristics, including genetic manipulation, tumor targeting specificity and immune system modulation. However, the nonnegligible side effects and limited efficacy of clinical treatment limit their biomedical applications. Engineered bacteria for therapeutic applications ideally need to avoid their accumulation in normal organs and possess potent antitumor activity. Here, we show that macrophage-mediated tumor-targeted delivery of Salmonella typhimurium VNP20009 can effectively reduce the toxicity caused by administrating VNP20009 alone in a melanoma mouse model. This benefits from tumor-induced chemotaxis for macrophages combined with their slow release of loaded strains. Inspired by changes in the tumor microenvironment, including a decrease in intratumoral dysfunctional CD8+ T cells and an increase in PDL1 on the tumor cell surface, macrophages were loaded with the engineered strain VNP-PD1nb, which can express and secrete anti-PD1 nanoantibodies after they are released from macrophages. This novel triple-combined immunotherapy significantly inhibited melanoma tumors by reactivating the tumor microenvironment by increasing immune cell infiltration, inhibiting tumor cell proliferation, remodeling TAMs to an M1-like phenotype and prominently activating CD8+ T cells. These data suggest that novel combination immunotherapy is expected to be a breakthrough relative to single immunotherapy.
Collapse
|
30
|
Bacteria therapeutics for cancer oncology: a crossroads for new paradigms. Drug Discov Today 2022; 27:2043-2050. [PMID: 35304339 DOI: 10.1016/j.drudis.2022.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 11/05/2021] [Accepted: 03/11/2022] [Indexed: 12/23/2022]
Abstract
A promising treatment for cancer remains challenging owing to insufficient tumor targeting and predictable resistance. Current therapies have their drawbacks and there is a need for innovative treatment that can overcome all the limitations with the traditional approaches. One of the novel treatments is bacteria-mediated cancer therapy, which has shown a beneficial impact on tumor regression and metastasis inhibition. It can selectively target cancer cells and potentially serve as a therapeutic-gene-drug delivery approach. In their original form, genetically or chemically modified, or combined with conventional therapeutic approaches, bacteria produce safe and effective cancer with minimized cytotoxicity. This review discusses the key benefits, applicability and further implementations in the clinical translation of bacteriotherapy for cancer treatments.
Collapse
|
31
|
Jing X, Hu H, Sun Y, Yu B, Cong H, Shen Y. The Intracellular and Extracellular Microenvironment of Tumor Site: The Trigger of Stimuli-Responsive Drug Delivery Systems. SMALL METHODS 2022; 6:e2101437. [PMID: 35048560 DOI: 10.1002/smtd.202101437] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The tumor microenvironment (TME), including intracellular and extracellular microenvironment, contains many biochemical indicators (such as acidity/alkalinity, oxygen content, and enzymatic activity) that are different from the normal physiological environment. These abnormal biochemical indicators can accelerate the heterogeneity of tumors, but on the other hand, they also provide opportunities for the design of intelligent drug delivery systems (DDSs). The TME-responsive DDSs have shown great potential in reducing the side effects of chemotherapy and improving the curative effect of tumors. In this review, the abnormal biochemical indicators of TME are introduced in detail from both the extracellular and intracellular aspects. In view of the various physiological barriers encountered during drug delivery, the strategy of constructing TME-responsive DDSs is discussed. By summarizing the typical research progress, the authors prospect the development of TME-responsive DDS in the future.
Collapse
Affiliation(s)
- Xiaodong Jing
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Yanzhen Sun
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
32
|
Lai K, Li Y, Li L, Gong Y, Huang C, Zhang Y, Cheng L, Xu F, Zhao H, Li C, Zhong X, Jin C. Intravitreal injection of triptolide attenuates subretinal fibrosis in laser-induced murine model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153747. [PMID: 34620548 DOI: 10.1016/j.phymed.2021.153747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/16/2020] [Accepted: 02/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Choroidal neovascularization (CNV) is a common cause of irreversible blindness in elderly patients in developed countries, and subretinal fibrosis is an advanced stage of CNV. Currently, there is no effective clinical treatment for subretinal fibrosis. PURPOSE To investigate whether intravitreal injection of triptolide (TP) could attenuate subretinal fibrosis and determine its underlying mechanisms. METHODS CNV was induced by laser photocoagulation in C57BL/6J mice. Immediately after laser photocoagulation, 1 μl of free TP (10 μg), TP-nanolip-PEG (TP-loaded PEGylated nanoliposomes containing 10 μg TP), or the same volume of phosphate-buffered saline (PBS) was intravitreally administered to each respective group. Areas and ratios of subretinal fibrosis were calculated seven days after laser injury. Additionally, expression levels of M2 macrophage-related markers, molecules of the transforming growth factor (TGF)-β1/Smad signaling pathway, and markers for epithelial-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndoMT) were detected both in vitro and in vivo. RESULTS The areas of subretinal fibrosis were significantly reduced in both the free TP (10993.87 ± 2416.90 μm2) and TP-nanolip-PEG (7695.32 ± 2121.91 μm2) groups when compared with the PBS group (15971.97 ± 3203.10 μm2) (p < 0.05, n = 6). The ratio of subretinal fibrosis in the free TP monomer (20.8 ± 4.2%) and TP-nanolip-PEG (12.5 ± 4.0%) groups was lower than that in the PBS control group (41.7 ± 5.3%) (p < 0.01, n = 6). Moreover, both TP and TP-nanolip-PEG suppressed the polarization of M2 macrophages and downregulated gene expressions of TGF-β1, Smad 2, Smad 3, α-SMA, and collagen I (p < 0.05), but upregulated the gene expression of E-cadherin (p < 0.05), thus reversing TGF-β1 induced EMT/EndoMT and attenuating subretinal fibrosis. CONCLUSIONS TP could attenuate subretinal fibrosis by suppressing the polarization of M2 macrophages and TGF-β1 induced EMT/EndoMT. TP-nanolip-PEG enhanced the inhibitory effects of TP on subretinal fibrosis, suggesting its therapeutic potential for CNV-related subretinal fibrosis.
Collapse
Affiliation(s)
- Kunbei Lai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong 510060, China
| | - Yingqin Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong 510060, China
| | - Longhui Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong 510060, China
| | - Yajun Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong 510060, China
| | - Chuangxin Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong 510060, China
| | - Yali Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong 510060, China
| | - Lin Cheng
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Fabao Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong 510060, China
| | - Hongkun Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong 510060, China
| | - Cong Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong 510060, China
| | - Xiaojing Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong 510060, China
| | - Chenjin Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, Guangdong 510060, China.
| |
Collapse
|
33
|
Current status of intratumour microbiome in cancer and engineered exogenous microbiota as a promising therapeutic strategy. Biomed Pharmacother 2021; 145:112443. [PMID: 34847476 DOI: 10.1016/j.biopha.2021.112443] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Research on the relationship between microbiome and cancer has made significant progress in the past few decades. It is now known that the gut microbiome has multiple effects on tumour biology. However, the relationship between intratumoral bacteria and cancers remains unclear. Growing evidence suggests that intratumoral bacteria are important components of the microenvironment in several types of cancers. Furthermore, several studies have demonstrated that intratumoral bacteria may directly influence tumorigenesis, progression and responses to treatment. Limited studies have been conducted on intratumoral bacteria, and using intratumoral bacteria to treat tumours remains a challenge. Bacteria have been studied as anticancer therapeutics since the 19th century when William B. Coley successfully treated patients with inoperable sarcomas using Streptococcus pyogenes. With the development of synthetic biological approaches, several bacterial species have been genetically engineered to increase their applicability for cancer treatment. Genetically engineered bacteria for cancer therapy have unique properties compared to other treatment methods. They can specifically accumulate within tumours and inhibit cancer growth. In addition, genetically engineered bacteria may be used as a vector to deliver antitumour agents or combined with radiation and chemotherapy to synergise the effectiveness of cancer treatment. However, various problems in treating tumours with genetically engineered bacteria need to be addressed. In this review, we focus on the role of intratumoral bacteria on tumour initiation, progression and responses to chemotherapy or immunotherapy. Moreover, we summarised the recent progress in the treatment of tumours with genetically engineered bacteria.
Collapse
|
34
|
The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors. NANOMATERIALS 2021; 11:nano11113018. [PMID: 34835785 PMCID: PMC8623458 DOI: 10.3390/nano11113018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
While many classes of chemotherapeutic agents exist to treat solid tumors, few can generate a lasting response without substantial off-target toxicity despite significant scientific advancements and investments. In this review, the paths of development for nanoparticles, oncolytic viruses, and oncolytic bacteria over the last 20 years of research towards clinical translation and acceptance as novel cancer therapeutics are compared. Novel nanoparticle, oncolytic virus, and oncolytic bacteria therapies all start with a common goal of accomplishing therapeutic drug activity or delivery to a specific site while avoiding off-target effects, with overlapping methodology between all three modalities. Indeed, the degree of overlap is substantial enough that breakthroughs in one therapeutic could have considerable implications on the progression of the other two. Each oncotherapeutic modality has accomplished clinical translation, successfully overcoming the potential pitfalls promising therapeutics face. However, once studies enter clinical trials, the data all but disappears, leaving pre-clinical researchers largely in the dark. Overall, the creativity, flexibility, and innovation of these modalities for solid tumor treatments are greatly encouraging, and usher in a new age of pharmaceutical development.
Collapse
|
35
|
Highlights of Immunomodulation in Salmonella-Based Cancer Therapy. Biomedicines 2021; 9:biomedicines9111566. [PMID: 34829795 PMCID: PMC8615479 DOI: 10.3390/biomedicines9111566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Bacteria-mediated cancer therapy (BMCT) is an emerging tool that may advance potential approaches in cancer immunotherapy, whereby tumors are eradicated by the hosts’ immune system upon recruitment and activation by bacteria such as Salmonella. This paper provides an emphasis on the immunomodulatory effects that encompasses both the innate and adaptive immune responses inherently triggered by Salmonella. Furthermore, modifications of Salmonella-based treatment in the attempt to improve tumor-specific immune responses including cytokine therapy, gene therapy, and DNA vaccine delivery are likewise discussed. The majority of the findings described herein incorporate cell-based experiments and murine model studies, and only a few accounts describe clinical trials. Salmonella-based cancer therapy is still under development; nonetheless, the pre-clinical research and early-phase clinical trials that have been completed so far have shown promising and convincing results. Certainly, the continuous development of, and innovation on, Salmonella-based therapy could pave the way for its eventual emergence as one of the mainstream therapeutic interventions addressing various types of cancer.
Collapse
|
36
|
Chen J, Qiao Y, Chen G, Chang C, Dong H, Tang B, Cheng X, Liu X, Hua Z. Salmonella flagella confer anti-tumor immunological effect via activating Flagellin/TLR5 signalling within tumor microenvironment. Acta Pharm Sin B 2021; 11:3165-3177. [PMID: 34729307 PMCID: PMC8546927 DOI: 10.1016/j.apsb.2021.04.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 12/30/2022] Open
Abstract
mediated cancer therapy has achieved remarkable anti-tumor effects in experimental animal models, but the detailed mechanism remains unsolved. In this report, the active involvement of the host immune response in this process was confirmed by comparing the tumor-suppressive effects of Salmonella in immunocompetent and immunodeficient mice bearing melanoma allografts. Since flagella are key inducers of the host immune response during bacterial infection, flagella were genetically disrupted to analyse their involvement in Salmonella-mediated cancer therapy. The results showed that flagellum-deficient strains failed to induce significant anti-tumor effects, even when more bacteria were administered to offset the difference in invasion efficiency. Flagella mainly activate immune cells via Flagellin/Toll-like receptor 5 (TLR5) signalling pathway. Indeed, we showed that exogenous activation of TLR5 signalling by recombinant Flagellin and exogenous expression of TLR5 both enhanced the therapeutic efficacy of flagellum-deficient Salmonella against melanoma. Our study highlighted the therapeutic value of the interaction between Salmonella and the host immune response through Flagellin/TLR5 signalling pathway during Salmonella-mediated cancer therapy, thereby suggesting the potential application of TLR5 agonists in the cancer immune therapy.
Collapse
Key Words
- AKT, Akt serine/threonine kinase
- Bacteria-mediated cancer therapy
- CFU, colony-forming units
- CTLA-4, cytotoxic T-lymphocyte-associated protein 4
- Cancer immune therapy
- DN, dominant-negative
- ERBB2, Erb-B2 receptor tyrosine kinase 2
- ERKl, extracellular regulated protein kinase 1
- Flagellin
- Flagellum
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GFP, green fluorescent protein
- IFN-γ, interferon-γ
- IL, interleukins
- IκB, inhibitor of NF-κB
- JNK, c-Jun N-terminal kinase
- LPS, lipopolysaccharide
- LRR, leucine-rich repeat
- MyD88, myeloid differentiation factor 88
- NF-κB
- NF-κB, nuclear factor kappa-B
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- PD-1, programmed cell death protein-1
- PD-L1, programmed cell death-ligand 1
- PEI, polyethylenimine
- Salmonella
- TIR, Toll/Interleukin-1 receptor
- TLR, Toll-like receptor
- TLR5
- TME, tumor microenvironment
- TRAF6, TNF receptor associated factor 6
- VNP20009
- i.p., intraperitoneally
- i.t., intratumorally
Collapse
|
37
|
Al-Saafeen BH, Fernandez-Cabezudo MJ, al-Ramadi BK. Integration of Salmonella into Combination Cancer Therapy. Cancers (Basel) 2021; 13:cancers13133228. [PMID: 34203478 PMCID: PMC8269432 DOI: 10.3390/cancers13133228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Despite significant advances in the development of new treatments, cancer continues to be a major public health concern due to the high mortality associated with the disease. The introduction of immunotherapy as a new modality for cancer treatment has led to unprecedented clinical responses, even in terminal cancer patients. However, for reasons that remain largely unknown, the percentage of patients who respond to this treatment remains rather modest. In the present article, we highlight the potential of using attenuated Salmonella strains in cancer treatment, particularly as a means to enhance therapeutic efficacy of other cancer treatments, including immunotherapy, chemotherapy, and radiotherapy. The challenges associated with the clinical application of Salmonella in cancer therapy are discussed. An increased understanding of the potential of Salmonella bacteria in combination cancer therapy may usher in a major breakthrough in its clinical application, resulting in more favorable and durable outcomes. Abstract Current modalities of cancer treatment have limitations related to poor target selectivity, resistance to treatment, and low response rates in patients. Accumulating evidence over the past few decades has demonstrated the capacity of several strains of bacteria to exert anti-tumor activities. Salmonella is the most extensively studied entity in bacterial-mediated cancer therapy, and has a good potential to induce direct tumor cell killing and manipulate the immune components of the tumor microenvironment in favor of tumor inhibition. In addition, Salmonella possesses some advantages over other approaches of cancer therapy, including high tumor specificity, deep tissue penetration, and engineering plasticity. These aspects underscore the potential of utilizing Salmonella in combination with other cancer therapeutics to improve treatment effectiveness. Herein, we describe the advantages that make Salmonella a good candidate for combination cancer therapy and summarize the findings of representative studies that aimed to investigate the therapeutic outcome of combination therapies involving Salmonella. We also highlight issues associated with their application in clinical use.
Collapse
Affiliation(s)
- Besan H. Al-Saafeen
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
- Correspondence:
| |
Collapse
|
38
|
Mughal MJ, Kwok HF. Multidimensional role of bacteria in cancer: Mechanisms insight, diagnostic, preventive and therapeutic potential. Semin Cancer Biol 2021; 86:1026-1044. [PMID: 34119644 DOI: 10.1016/j.semcancer.2021.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
The active role of bacteria in oncogenesis has long been a topic of debate. Although, it was speculated to be a transmissible cause of cancer as early as the 16th-century, yet the idea about the direct involvement of bacteria in cancer development has only been explored in recent decades. More recently, several studies have uncovered the mechanisms behind the carcinogenic potential of bacteria which are inflammation, immune evasion, pro-carcinogenic metabolite production, DNA damage and genomic instability. On the other side, the recent development on the understanding of tumor microenvironment and technological advancements has turned this enemy into an ally. Studies using bacteria for cancer treatment and detection have shown noticeable effects. Therapeutic abilities of bioengineered live bacteria such as high specificity, selective cytotoxicity to cancer cells, responsiveness to external signals and control after ingestion have helped to overcome the challenges faced by conventional cancer therapies and highlighted the bacterial based therapy as an ideal approach for cancer treatment. In this review, we have made an effort to compile substantial evidence to support the multidimensional role of bacteria in cancer. We have discussed the multifaceted role of bacteria in cancer by highlighting the wide impact of bacteria on different cancer types, their mechanisms of actions in inducing carcinogenicity, followed by the diagnostic and therapeutic potential of bacteria in cancers. Moreover, we have also highlighted the existing gaps in the knowledge of the association between bacteria and cancer as well as the limitation and advantage of bacteria-based therapies in cancer. A better understanding of these multidimensional roles of bacteria in cancer can open up the new doorways to develop early detection strategies, prevent cancer, and develop therapeutic tactics to cure this devastating disease.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; MOE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
39
|
Badie F, Ghandali M, Tabatabaei SA, Safari M, Khorshidi A, Shayestehpour M, Mahjoubin-Tehran M, Morshedi K, Jalili A, Tajiknia V, Hamblin MR, Mirzaei H. Use of Salmonella Bacteria in Cancer Therapy: Direct, Drug Delivery and Combination Approaches. Front Oncol 2021; 11:624759. [PMID: 33738260 PMCID: PMC7960920 DOI: 10.3389/fonc.2021.624759] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Over the years, conventional cancer treatments, such as chemotherapy with only a limited specificity for tumors, have undergone significant improvement. Moreover, newer therapies such as immunotherapy have undergone a revolution to stimulate the innate as well as adaptive immune responses against the tumor. However, it has been found that tumors can be selectively colonized by certain bacteria, where they can proliferate, and exert direct oncolytic effects as well as stimulating the immune system. Bacterial-mediated cancer therapy (BMCT) is now one example of a hot topic in the antitumor field. Salmonella typhimurium is a Gram-negative species that generally causes self-limiting gastroenteritis in humans. This species has been designed and engineered in order to be used in cancer-targeted therapeutics. S. typhimurium can be used in combination with other treatments such as chemotherapy or radiotherapy for synergistic modification of the tumor microenvironment. Considerable benefits have been shown by using engineered attenuated strains for the diagnosis and treatment of tumors. Some of these treatment approaches have received FDA approval for early-phase clinical trials. This review summarizes the use of Salmonella bacteria for cancer therapy, which could pave the way towards routine clinical application. The benefits of this therapy include an automatic self-targeting ability, and the possibility of genetic manipulation to produce newly engineered attenuated strains. Nevertheless, Salmonella-mediated anticancer therapy has not yet been clinically established, and requires more research before its use in cancer treatment.
Collapse
Affiliation(s)
- Fereshteh Badie
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Ghandali
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Tabatabaei
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Mahmood Safari
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Khorshidi
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Shayestehpour
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amin Jalili
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vida Tajiknia
- Department of Surgery, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
40
|
Wang D, Wei X, Kalvakolanu DV, Guo B, Zhang L. Perspectives on Oncolytic Salmonella in Cancer Immunotherapy-A Promising Strategy. Front Immunol 2021; 12:615930. [PMID: 33717106 PMCID: PMC7949470 DOI: 10.3389/fimmu.2021.615930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Since the first reported spontaneous regression of tumors in patients with streptococcus infection, cancer biological therapy was born and it evolved into today's immunotherapy over the last century. Although the original strategy was unable to impart maximal therapeutic benefit at the beginning, it laid the foundations for the development of immune checkpoint blockade and CAR-T which are currently used for cancer treatment in the clinics. However, clinical applications have shown that current cancer immunotherapy can cause a series of adverse reactions and are captious for patients with preexisting autoimmune disorders. Salmonellae was first reported to exert antitumor effect in 1935. Until now, numerous studies have proved its potency as an antitumor agent in the near future. In this review, we summarize the currently available data on the antitumor effects of Salmonella, and discussed a possibility of integrating Salmonella into cancer immunotherapy to overcome current obstacles.
Collapse
Affiliation(s)
- Ding Wang
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaodong Wei
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dhan V. Kalvakolanu
- Department of Microbiology and Immunology and Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ling Zhang
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
41
|
Qi JL, He JR, Jin SM, Yang X, Bai HM, Liu CB, Ma YB. P. aeruginosa Mediated Necroptosis in Mouse Tumor Cells Induces Long-Lasting Systemic Antitumor Immunity. Front Oncol 2021; 10:610651. [PMID: 33643911 PMCID: PMC7908819 DOI: 10.3389/fonc.2020.610651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/21/2020] [Indexed: 01/12/2023] Open
Abstract
Necroptosis is a form of programmed cell death (PCD) characterized by RIP3 mediated MLKL activation and increased membrane permeability via MLKL oligomerization. Tumor cell immunogenic cell death (ICD) has been considered to be essential for the anti-tumor response, which is associated with DC recruitment, activation, and maturation. In this study, we found that P. aeruginosa showed its potential to suppress tumor growth and enable long-lasting anti-tumor immunity in vivo. What's more, phosphorylation- RIP3 and MLKL activation induced by P. aeruginosa infection resulted in tumor cell necrotic cell death and HMGB1 production, indicating that P. aeruginosa can cause immunogenic cell death. The necrotic cell death can further drive a robust anti-tumor response via promoting tumor cell death, inhibiting tumor cell proliferation, and modulating systemic immune responses and local immune microenvironment in tumor. Moreover, dying tumor cells killed by P. aeruginosa can catalyze DC maturation, which enhanced the antigen-presenting ability of DC cells. These findings demonstrate that P. aeruginosa can induce immunogenic cell death and trigger a robust long-lasting anti-tumor response along with reshaping tumor microenvironment.
Collapse
Affiliation(s)
- Jia-long Qi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jin-rong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- Institute of Medical Biology, Kunming Medical University, Kunming, China
| | - Shu-mei Jin
- Department of Pathology, Yunnan Institute of Materia, Kunming, China
| | - Xu Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hong-mei Bai
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Cun-bao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yan-bing Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
42
|
Mi Z, Guo L, Liu P, Qi Y, Feng Z, Liu J, He Z, Yang X, Jiang S, Wu J, Ding J, Zhou W, Rong P. "Trojan Horse" Salmonella Enabling Tumor Homing of Silver Nanoparticles via Neutrophil Infiltration for Synergistic Tumor Therapy and Enhanced Biosafety. NANO LETTERS 2021; 21:414-423. [PMID: 33356313 DOI: 10.1021/acs.nanolett.0c03811] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salmonella selectively colonizes into the hypoxic tumor region and exerts antitumor effects via multiple mechanisms, while the tumor colonized Salmonella recruits host neutrophils into the tumor, presenting a key immunological restraint to compromise the Salmonella efficacy. Here, we develop a combinatorial strategy by employing silver nanoparticles (AgNPs) to improve the efficacy and biosafety of Salmonella. The AgNPs were decorated with sialic acid (SA) to allow selective recognition of L-selectin on neutrophil surfaces, based on which the tumor-homing of AgNPs was achieved by neutrophil infiltration in the Salmonella colonized tumor. The tumor-targeting AgNPs exert the functions of (1) local depletion of neutrophils in tumors to boost the efficacy of Salmonella, (2) direct killing tumor cells via L-selectin-mediated intracellular delivery, and (3) clearing the residual Salmonella after complete tumor eradication to minimize the side effects. With a single tail vein injection of such combination treatment, the tumor was eliminated with high biosafety, resulting in a superior therapeutic outcome.
Collapse
Affiliation(s)
- Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lina Guo
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Peng Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yan Qi
- Department of Pathology, Shihezi University School of Medicine & The First Affiliated Hospital to Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Zhichao Feng
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jiahao Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhenhu He
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Xiao Yang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shengnan Jiang
- Department of Radiology, Xiangya School of Medicine Affiliated Haikou Hospital, Central South University, Hunan 410013, China
| | - Jianzhen Wu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Wenhu Zhou
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
- Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha, Hunan 410008, China
- Molecular Imaging Research Center, Central South University, Hunan 410013, China
| |
Collapse
|
43
|
Sawant SS, Patil SM, Gupta V, Kunda NK. Microbes as Medicines: Harnessing the Power of Bacteria in Advancing Cancer Treatment. Int J Mol Sci 2020; 21:ijms21207575. [PMID: 33066447 PMCID: PMC7589870 DOI: 10.3390/ijms21207575] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Conventional anti-cancer therapy involves the use of chemical chemotherapeutics and radiation and are often non-specific in action. The development of drug resistance and the inability of the drug to penetrate the tumor cells has been a major pitfall in current treatment. This has led to the investigation of alternative anti-tumor therapeutics possessing greater specificity and efficacy. There is a significant interest in exploring the use of microbes as potential anti-cancer medicines. The inherent tropism of the bacteria for hypoxic tumor environment and its ability to be genetically engineered as a vector for gene and drug therapy has led to the development of bacteria as a potential weapon against cancer. In this review, we will introduce bacterial anti-cancer therapy with an emphasis on the various mechanisms involved in tumor targeting and tumor suppression. The bacteriotherapy approaches in conjunction with the conventional cancer therapy can be effective in designing novel cancer therapies. We focus on the current progress achieved in bacterial cancer therapies that show potential in advancing existing cancer treatment options and help attain positive clinical outcomes with minimal systemic side-effects.
Collapse
|
44
|
Cai XJ, Fei WD, Xu YY, Xu H, Yang GY, Cao JW, Ni JJ, Wang Z. Combination of metronomic administration and target delivery strategies to improve the anti-angiogenic and anti-tumor effects of triptolide. Drug Deliv Transl Res 2020; 10:93-107. [PMID: 31418132 DOI: 10.1007/s13346-019-00665-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The metronomic administration of a low-dose cytotoxic agent with no prolonged drug-free breaks is an anti-angiogenic cancer treatment method. The use of nano-formulations in this manner enhances anti-tumor efficacy and reduces toxicity by inhibiting angiogenic activity, reduces adverse effects, and changes the biodistribution of TP in the body, steering TP away from potentially endangering healthy tissues. The present study uses liposomes and Asn-Gly-Arg (NGR) peptide conjugated aminopeptidase N(APN)-targeted liposomes for triptolide (TP), as a model for the investigation of targeted metronomic administration and subsequent effects on the toxicity profile and efficacy of the chemotherapeutic agent. Metronomic NGR-PEG-TP-LPs have been found to have enhanced anti-tumor activity, a phenomenon that is attributed to an increase in angiogenic inhibition properties. In vitro experiments demonstrate that the viability, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) are obviously suppressed in comparison with that of other treatment groups. In vivo experiments also demonstrate that the anti-tumor efficacy of targeted metronomic administration is superior to that of liposome-administered treatments given at maximum tolerated dose (MTD) schemes, as is evidenced by markedly decreased tumor volume, vessel density, and the volume of circulating endothelial progenitor cells (CEPCs) in serum. Moreover, we observed that the metronomic administration of NGR-PEG-TP-LPs could elevate thrombospondin-1 (TSP-1) expression in tumors, a finding that is consistent with the promotion of TSP-1 secretion specifically from HUVECs. Additionally, metronomic NGR-PEG-TP-LPs have minimal drug-associated toxicity (weight loss, hepatotoxicity and nephrotoxicity in mice). Our research demonstrates the significance of targeted metronomic administration using liposomes for anti-angiogenic cancer therapy.
Collapse
Affiliation(s)
- Xin-Jun Cai
- Department of Pharmacy, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Wei-Dong Fei
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Ying-Ying Xu
- Department of Pharmacy, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Hong Xu
- Department of Gastroenterology and Hepatology, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Gao-Yi Yang
- Department of Ultrasoud, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Jia-Wei Cao
- Department of Pharmacy, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Jian-Jun Ni
- Department of Pharmacy, Zhejiang Chinese Medicine and Western Medicine Integrated Hospital, Hangzhou, 310003, Zhejiang, People's Republic of China
| | - Zeng Wang
- Department of Pharmacy, Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, People's Republic of China.
| |
Collapse
|
45
|
Dróżdż M, Makuch S, Cieniuch G, Woźniak M, Ziółkowski P. Obligate and facultative anaerobic bacteria in targeted cancer therapy: Current strategies and clinical applications. Life Sci 2020; 261:118296. [PMID: 32822716 DOI: 10.1016/j.lfs.2020.118296] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
Abstract
Traditional methods for cancer therapy, including radiotherapy, chemotherapy, and immunotherapy are characterized by inherent limitations. Bacteria-mediated tumor therapy is becoming a promising approach in cancer treatment due to the ability of obligate or facultative anaerobic microorganisms to penetrate and proliferate in hypoxic regions of tumors. It is widely known that anaerobic bacteria cause the regression of tumors and inhibition of metastasis through a variety of mechanisms, including toxin production, anaerobic lifestyle and synergy with anti-cancer drugs. These features have the potential to be used as a supplement to conventional cancer treatment. To the best of our knowledge, no reports have been published regarding the most common tumor-targeting bacterial agents with special consideration of obligate anaerobes (such as Clostridium sp., Bifidobacterium sp.) and facultative anaerobes (including Salmonella sp., Listeria monocytogenes, Lactobacillus sp., Escherichia coli, Corynebacterium diphtheriae and Pseudomonas sp). In this review, we summarize the latest literature on the role of these bacteria in cancer treatment.
Collapse
Affiliation(s)
- Mateusz Dróżdż
- Department of Microbiology, Institute of Genetics and Microbiology, Wroclaw, Poland
| | - Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland.
| | - Gabriela Cieniuch
- Department of Microbiology, Institute of Genetics and Microbiology, Wroclaw, Poland
| | - Marta Woźniak
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Ziółkowski
- Department of Pathology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
46
|
Rius-Rocabert S, Llinares Pinel F, Pozuelo MJ, García A, Nistal-Villan E. Oncolytic bacteria: past, present and future. FEMS Microbiol Lett 2020; 366:5521890. [PMID: 31226708 DOI: 10.1093/femsle/fnz136] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
More than a century ago, independent groups raised the possibility of using bacteria to selectively infect tumours. Such treatment induces an immune reaction that can cause tumour rejection and protect the patient against further recurrences. One of the first holistic approximations to use bacteria in cancer treatment was performed by William Coley, considered the father of immune-therapy, at the end of XIX century. Since then, many groups have used different bacteria to test their antitumour activity in animal models and patients. The basis for this reactivity implies that innate immune responses activated upon bacteria recognition, also react against the tumour. Different publications have addressed several aspects of oncolytic bacteria. In the present review, we will focus on revisiting the historical aspects using bacteria as oncolytic agents and how they led to the current clinical trials. In addition, we address the molecules present in oncolytic bacteria that induce specific toxic effects against the tumors as well as the activation of host immune responses in order to trigger antitumour immunity. Finally, we discuss future perspectives that could be considered in the different fields implicated in the implementation of this kind of therapy in order to improve the current use of bacteria as oncolytic agents.
Collapse
Affiliation(s)
- Sergio Rius-Rocabert
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| | - Francisco Llinares Pinel
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| | - Maria Jose Pozuelo
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| | - Antonia García
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Faculty of Pharmacy, San Pablo-CEU University, Boadilla del Monte, E-28668 Madrid, Spain
| | - Estanislao Nistal-Villan
- Microbiology Section, Pharmaceutical and Health Science Department. Faculty of Pharmacy. Instituto de Medicina Molecular Aplicada (IMMA). San Pablo-CEU University. CEU Universities, Campus Montepríncipe. Boadilla del Monte, E-28668 Madrid, Spain
| |
Collapse
|
47
|
Guo Y, Chen Y, Liu X, Min JJ, Tan W, Zheng JH. Targeted cancer immunotherapy with genetically engineered oncolytic Salmonella typhimurium. Cancer Lett 2020; 469:102-110. [DOI: 10.1016/j.canlet.2019.10.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/29/2019] [Accepted: 10/21/2019] [Indexed: 12/31/2022]
|
48
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
49
|
Xu X, Tian L, Zhang Z. Triptolide inhibits angiogenesis in microvascular endothelial cells through regulation of miR-92a. J Physiol Biochem 2019; 75:573-583. [PMID: 31691162 DOI: 10.1007/s13105-019-00707-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is one common chronic inflammatory disease in which angiogenesis is involved. Here we established an in vitro cell model of angiogenesis made by human dermal microvascular endothelial cells (HMEC-1) and work to investigate the role of triptolide (TPL) in this model. To induce angiogenesis, HMEC-1 cells were cultured in Matrigel-conditioned medium. The ratio of tubes to nucleus was detected. To evaluate angiogenesis, Western blot assay was carried out to detect endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor receptor-2 (VEGFR2) and VEGF. Cell counting kit-8 was utilized to estimate the viability of HMEC-1 cells. microRNA (miR)-92a was analyzed by qRT-PCR. The targeting relationship between integrin subunit alpha 5 (ITGA5) and miR-92a was verified through luciferase activity assay. The effects of ITGA5 on signaling transducers (ERK, PI3K, and AKT) in a phosphorylated form were valued using Western blot method. After stimulated by TPL, LY294002 and PD98059, the alteration in phosphorylation of the signaling transducers was evaluated by Western blot assay. The ratio of tubes to nucleus and angiogenesis related factors were increased with the delaying of culture time. TPL decreased the expression of angiogenesis factors. Furthermore, miR-92a was upregulated by TPL and miR-92a silence upregulated angiogenesis factors. In addition, TPL decreased ITGA5 which was proved as a target of miR-92a. ITGA5 overexpression resulted in the abundance of angiogenesis factors while ITGA5 silence led to the opposite results. Meanwhile, ITGA5 overexpression increased phosphorylation of ERK, PI3K and AKT while ITGA5 silence reversed the trend. TPL (as an anti-angiogenesis agent) suppressed angiogenesis by upregulating miR-92a, and miR-92a-mediated down-regulation of ITGA5 blocked the signaling transduction of ERK and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Xiaomeng Xu
- Medical Examination Center of Qilu Hospital of Shandong University, No.107 Culture West Road, Jinan, 250012, Shandong, China.,Department of Health Management, Jining NO.1 People's Hospital, Jining, 272011, Shandong, China
| | - Li Tian
- Department of Critical Care Medicine, Jining NO.1 People's Hospital, Jining, 272011, Shandong, China
| | - Zhimian Zhang
- Medical Examination Center of Qilu Hospital of Shandong University, No.107 Culture West Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
50
|
Pan Z, Tian Y, Cao C, Niu G. The Emerging Role of YAP/TAZ in Tumor Immunity. Mol Cancer Res 2019; 17:1777-1786. [PMID: 31308148 DOI: 10.1158/1541-7786.mcr-19-0375] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/03/2019] [Accepted: 07/10/2019] [Indexed: 11/16/2022]
Abstract
Yes-associated protein (YAP)/WW domain-containing transcription regulator 1 (TAZ) is an important transcriptional regulator and effector of the Hippo signaling pathway that has emerged as a critical determinant of malignancy in many human tumors. YAP/TAZ expression regulates the cross-talk between immune cells and tumor cells in the tumor microenvironment through its influence on T cells, myeloid-derived suppressor cells, and macrophages. However, the mechanisms underlying these effects are poorly understood. An improved understanding of the role of YAP/TAZ in tumor immunity is essential for exploring innovative tumor treatments and making further breakthroughs in antitumor immunotherapy. This review primarily focuses on the role of YAP/TAZ in immune cells, their interactions with tumor cells, and how this impacts on tumorigenesis, progression, and therapy resistance.
Collapse
Affiliation(s)
- Zhaoji Pan
- Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, P.R. China
| | - Yiqing Tian
- Xinyi People's Hospital, Xinyi, Xuzhou, Jiangsu, P.R. China.
| | - Chengsong Cao
- Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, P.R. China
| | - Guoping Niu
- Xuzhou Central Hospital, The Affiliated XuZhou Hospital of Medical College of Southeast University, Xuzhou, Jiangsu, P.R. China
| |
Collapse
|