1
|
Ma YY, Gao W, Wang H, Xu H, Pan D, Wang JK, Xu P, Wang HL, Pang K. Integrated ceRNAs regulating relationship and bioinformatics analysis to study the molecular mechanisms of the inhibition of puerarin on bladder cancer cell. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:400-420. [PMID: 39133645 DOI: 10.1080/10286020.2024.2390508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 02/21/2025]
Abstract
Based on previous experiments, we demonstrated puerarin inhibited the proliferation of BC T24 cells. To further explore the molecular mechanisms, whole transcriptome sequencing combined with bioinformatics analysis was performed. The results showed puerarin significantly inhibited T24 proliferation and pathway enrichment analysis of differentially expressed RNAs were mainly enriched in Cell cycle, PI3K/AKT, Ras family chromatin remodeling. lncRNAs and circRNAs may regulate miRNAs, thereby regulating the expression of ITGA1, PAK2 and UTRN. The predicted upstream transcription factor ERG and puerarin were well docked, which may be one of the underlying mechanisms by which puerarin inhibiting BC cells.
Collapse
Affiliation(s)
- Yu-Yang Ma
- Department of Urology, Xuzhou Central Hospital, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xuzhou Clinical School of Xuzhou Medical Univisity, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou 221009, China
| | - Wen Gao
- Department of Cardiology, The fourth People's Hospital of Jinan, Jinan 250031, China
| | - Hao Wang
- Department of Urology, Xuzhou Central Hospital, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xuzhou Clinical School of Xuzhou Medical Univisity, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou 221009, China
| | - Hao Xu
- Department of Urology, Xuzhou Central Hospital, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xuzhou Clinical School of Xuzhou Medical Univisity, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou 221009, China
| | - Deng Pan
- Department of Urology, Xuzhou Central Hospital, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xuzhou Clinical School of Xuzhou Medical Univisity, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou 221009, China
| | - Jing-Kai Wang
- Department of Urology, Xuzhou Central Hospital, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xuzhou Clinical School of Xuzhou Medical Univisity, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou 221009, China
| | - Peng Xu
- Department of Urology, Xuzhou Central Hospital, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xuzhou Clinical School of Xuzhou Medical Univisity, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou 221009, China
| | - Hai-Luo Wang
- Department of Urology, Xuzhou Central Hospital, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xuzhou Clinical School of Xuzhou Medical Univisity, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou 221009, China
| | - Kun Pang
- Department of Urology, Xuzhou Central Hospital, The Affiliated Xuzhou Center Hospital of Nanjing University of Chinese Medicine, Xuzhou Clinical School of Xuzhou Medical Univisity, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou 221009, China
- Department of Urology, Peixian People's Hospital, Xuzhou 221600, China
| |
Collapse
|
2
|
Stern NB, Shrestha B, Porter T. A Facile Approach to Producing Liposomal J-Aggregates of Indocyanine Green with Diagnostic and Therapeutic Potential. ADVANCED THERAPEUTICS 2024; 7:2400042. [PMID: 39132131 PMCID: PMC11308451 DOI: 10.1002/adtp.202400042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Indexed: 08/13/2024]
Abstract
Liposomal J-Aggregates of Indocyanine Green (L-JA) can serve as a biocompatible and biodegradable nanoparticle for photoacoustic imaging and photothermal therapy. When compared to monomeric IcG, L-JA are characterized by longer circulation, improved photostability, elevated absorption at longer wavelengths, and increased photoacoustic signal generation. However, the documented methods for production of L-JA vary widely. We developed an approach to efficiently form IcG J-aggregates (IcG-JA) directly in liposomes at elevated temperatures. Aggregating within fully formed liposomes ensures particle uniformity and allows for control of J-aggregate size. L-JA have unique properties compared to IcG. L-JA provide significant contrast enhancement in photoacoustic images for up to 24 hours after injection, while IcG and unencapsulated IcG-JA are cleared within an hour. L-JA allow for more accurate photoacoustic-based sO2 estimation and particle tracking compared to IcG. Furthermore, photothermal heating of L-JA with an 852nm laser is demonstrated to be more effective at lower laser powers than conventional 808nm lasers for the first time. The presented technique offers an avenue for formulating a multi-faceted contrast agent for photoacoustic imaging and photothermal therapy that offers significant advantages over other conventional agents.
Collapse
|
3
|
Sandbhor P, Palkar P, Bhat S, John G, Goda JS. Nanomedicine as a multimodal therapeutic paradigm against cancer: on the way forward in advancing precision therapy. NANOSCALE 2024. [PMID: 38470224 DOI: 10.1039/d3nr06131k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recent years have witnessed dramatic improvements in nanotechnology-based cancer therapeutics, and it continues to evolve from the use of conventional therapies (chemotherapy, surgery, and radiotherapy) to increasingly multi-complex approaches incorporating thermal energy-based tumor ablation (e.g. magnetic hyperthermia and photothermal therapy), dynamic therapy (e.g. photodynamic therapy), gene therapy, sonodynamic therapy (e.g. ultrasound), immunotherapy, and more recently real-time treatment efficacy monitoring (e.g. theranostic MRI-sensitive nanoparticles). Unlike monotherapy, these multimodal therapies (bimodal, i.e., a combination of two therapies, and trimodal, i.e., a combination of more than two therapies) incorporating nanoplatforms have tremendous potential to improve the tumor tissue penetration and retention of therapeutic agents through selective active/passive targeting effects. These combinatorial therapies can correspondingly alleviate drug response against hypoxic/acidic and immunosuppressive tumor microenvironments and promote/induce tumor cell death through various multi-mechanisms such as apoptosis, autophagy, and reactive oxygen-based cytotoxicity, e.g., ferroptosis, etc. These multi-faced approaches such as targeting the tumor vasculature, neoangiogenic vessels, drug-resistant cancer stem cells (CSCs), preventing intra/extravasation to reduce metastatic growth, and modulation of antitumor immune responses work complementary to each other, enhancing treatment efficacy. In this review, we discuss recent advances in different nanotechnology-mediated synergistic/additive combination therapies, emphasizing their underlying mechanisms for improving cancer prognosis and survival outcomes. Additionally, significant challenges such as CSCs, hypoxia, immunosuppression, and distant/local metastasis associated with therapy resistance and tumor recurrences are reviewed. Furthermore, to improve the clinical precision of these multimodal nanoplatforms in cancer treatment, their successful bench-to-clinic translation with controlled and localized drug-release kinetics, maximizing the therapeutic window while addressing safety and regulatory concerns are discussed. As we advance further, exploiting these strategies in clinically more relevant models such as patient-derived xenografts and 3D organoids will pave the way for the application of precision therapy.
Collapse
Affiliation(s)
- Puja Sandbhor
- Institute for NanoBioTechnology, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Pranoti Palkar
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Sakshi Bhat
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Geofrey John
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| | - Jayant S Goda
- Radiobiology, Department of Radiation Oncology & Homi Bhabha National Institute, Mumbai, 400012, India
| |
Collapse
|
4
|
Lin J, Wang X, Ni D, Chen Y, Chen C, Liu Y. Combinational Gene Therapy toward Cancer with Nanoplatform: Strategies and Principles. ACS MATERIALS AU 2023; 3:584-599. [PMID: 38089659 PMCID: PMC10636764 DOI: 10.1021/acsmaterialsau.3c00035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 12/18/2024]
Abstract
Cancer remains a significant threat to human health. While numerous therapies have been developed to combat the disease, traditional treatments such as chemotherapy and radiotherapy are suboptimal and associated with significant side effects. Gene therapy is an emerging therapeutic approach that offers improved targeting and reduced side effects compared with traditional treatments. Using siRNA and other nucleic acid-based drugs in cancer treatment has generated significant interest among researchers. Nanocarriers, such as liposomes, can effectively deliver these agents to tumor sites. However, gene therapy alone is often insufficient to eradicate tumors, and there is a risk of recurrence. Therefore, combining gene therapy with other therapies using nanocarriers, such as phototherapy and magnetic hyperthermia therapy, can lead to synergistic therapeutic effects through different mechanisms. In this review, we summarize various ways in which gene therapy can be combined with other therapies and highlight the role of nanoplatforms in mediating these combined therapies, which would inspire novel design ideas toward combination therapies. Additionally, bottlenecks and barriers to gene therapy should be addressed in the near future to achieve better clinical efficacy.
Collapse
Affiliation(s)
- Jinhui Lin
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xinlian Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Dongqi Ni
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yandong Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ying Liu
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P.R. China
| |
Collapse
|
5
|
Yan C, Zhang J, Huang M, Xiao J, Li N, Wang T, Ling R. Design, strategies, and therapeutics in nanoparticle-based siRNA delivery systems for breast cancer. J Mater Chem B 2023; 11:8096-8116. [PMID: 37551630 DOI: 10.1039/d3tb00278k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Utilizing small interfering RNA (siRNA) as a treatment for cancer, a disease largely driven by genetic aberrations, shows great promise. However, implementing siRNA therapy in clinical practice is challenging due to its limited bioavailability following systemic administration. An attractive approach to address this issue is the use of a nanoparticle (NP) delivery platform, which protects siRNA and delivers it to the cytoplasm of target cells. We provide an overview of design considerations for using lipid-based NPs, polymer-based NPs, and inorganic NPs to improve the efficacy and safety of siRNA delivery. We focus on the chemical structure modification of carriers and NP formulation optimization, NP surface modifications to target breast cancer cells, and the linking strategy and intracellular release of siRNA. As a practical example, recent advances in the development of siRNA therapeutics for treating breast cancer are discussed, with a focus on inhibiting cancer growth, overcoming drug resistance, inhibiting metastasis, and enhancing immunotherapy.
Collapse
Affiliation(s)
- Changjiao Yan
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Juliang Zhang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Meiling Huang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Jingjing Xiao
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Nanlin Li
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Ting Wang
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Rui Ling
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
6
|
PAK2 is essential for chromosome alignment in metaphase I oocytes. Cell Death Dis 2023; 14:150. [PMID: 36813765 PMCID: PMC9947007 DOI: 10.1038/s41419-023-05585-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/24/2023]
Abstract
As a highly conserved and ubiquitously expressed serine/threonine kinase, p21-activated kinase 2 (PAK2) participates in diverse biologic events. However, its roles in mouse oocyte meiotic maturation remain unclear. The present study revealed that mouse oocytes depleted of Pak2 were unable to completely progress through meiosis and that a majority were arrested at metaphase I. Pak2 depletion thus prompted MI arrest and induced meiotic chromosome alignment defects in mouse oocytes, in part due to a reduction in polo-like kinase (PLK1). We demonstrated that PAK2's interaction with PLK1 protected it from degradation by APC/CCdh1, and that it promoted meiotic progression and bipolar spindle formation. Our data collectively display critical functions for PAK2 in meiotic progression and chromosome alignment in mouse oocytes.
Collapse
|
7
|
Hao B, Wei L, Cheng Y, Ma Z, Wang J. Advanced nanomaterial for prostate cancer theranostics. Front Bioeng Biotechnol 2022; 10:1046234. [PMID: 36394009 PMCID: PMC9663994 DOI: 10.3389/fbioe.2022.1046234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2024] Open
Abstract
Prostate cancer (PC) has the second highest incidence in men, according to global statistical data. The symptoms of PC in the early stage are not obvious, causing late diagnosis in most patients, which is the cause for missing the optimal treatment time. Thus, highly sensitive and precise early diagnosis methods are very important. Additionally, precise therapy regimens for good targeting and innocuous to the body are indispensable to treat cancer. This review first introduced two diagnosis methods, containing prostate-specific biomarkers detection and molecular imaging. Then, it recommended advanced therapy approaches, such as chemotherapy, gene therapy, and therapeutic nanomaterial. Afterward, we summarized the development of nanomaterial in PC, highlighting the importance of integration of diagnosis and therapy as the future direction against cancer.
Collapse
Affiliation(s)
- Bin Hao
- Department of Urology, Central Hospital, China Railway 17th Bureau Group Co., Ltd., Shanxi, China
| | - Li Wei
- Internal Medicine, Rongjun Hospital of Shanxi Province, Shanxi, China
| | - Yusheng Cheng
- Department of Urology, Central Hospital, China Railway 17th Bureau Group Co., Ltd., Shanxi, China
| | - Zhifang Ma
- Department of Urology, First Hospital of Shanxi Medical University, Shanxi, China
| | - Jingyu Wang
- College of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Sivagnanam S, Das K, Basak M, Mahata T, Stewart A, Maity B, Das P. Self-assembled dipeptide based fluorescent nanoparticles as a platform for developing cellular imaging probes and targeted drug delivery chaperones. NANOSCALE ADVANCES 2022; 4:1694-1706. [PMID: 36134376 PMCID: PMC9417502 DOI: 10.1039/d1na00885d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/13/2022] [Indexed: 06/16/2023]
Abstract
Self-assembled peptide-based nanostructures, comprised of naturally occurring amino acids, display excellent biocompatibility, biodegradability, flexible responsiveness, and synthetic feasibility and can be customized for various biomedical applications. However, the lack of inherent optical properties of peptide-based nanoparticles is a limitation on their use as imaging probes or drug delivery vehicles. To overcome this impediment, we generated Boc protected tyrosine-tryptophan dipeptide-based nanoparticles (DPNPs) with structure rigidification by Zn(ii), which shifted the peptide's intrinsic fluorescent properties from the ultraviolet to the visible range. These DPNPs are photostable, biocompatible and have visible fluorescence signals that allow for real-time monitoring of their entry into cells. We further show that two DPNPs (PS1-Zn and PS2-Zn) can encapsulate the chemotherapeutic drug doxorubicin (Dox) and facilitate intracellular drug delivery resulting in cancer cell killing actions comparable to the unencapsulated drug. Finally, we chemically modified our DPNPs with an aptamer directed toward the epithelial cell surface marker EPCAM, which improved Dox delivery to the lung cancer epithelial cell line A549. In contrast, the aptamer conjugated DPNPs failed to deliver Dox into the cardiomyocyte cell line AC16. Theoretically, this strategy could be employed in vivo to specifically deliver Dox to cancer cells while sparing the myocardium, a major source of dose-limiting adverse events in the clinic. Our work represents an important proof-of-concept exercise demonstrating that ultra-short peptide-based fluorescent nanostructures have great promise for the development of new imaging probes and targeted drug delivery vehicles.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology SRM Nagar, Potheri, Kattankulathur Tamil Nadu 603203 India
| | - Kiran Das
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Madhuri Basak
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Tarun Mahata
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Jupiter FL 33458 USA
| | - Biswanath Maity
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) Campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology SRM Nagar, Potheri, Kattankulathur Tamil Nadu 603203 India
| |
Collapse
|
9
|
Yang F, Li S, Jiao M, Wu D, Wang L, Cui Z, Zeng L. Advances of Light/Ultrasound/Magnetic-Responsive Nanoprobes for Visualized Theranostics of Urinary Tumors. ACS APPLIED BIO MATERIALS 2022; 5:438-450. [PMID: 35043619 DOI: 10.1021/acsabm.1c01284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Light/ultrasound/magnetic-responsive nanomaterials exhibit excellent performance in imaging and therapy and play an important role in precision theranostics of tumors. In contrast to deep organs, urinary organs (such as bladder and prostate) can easily be studied via intervention mode, which has greatly brought promising applications of stimuli-responsive nanoprobes in visualized theranostics of urinary tumors. Therefore, it has been very critical to develop stimuli-responsive nanoprobes with high safety, stability, and reliability against urinary tumors. In this review, recent advances in light/ultrasound/magnetic-responsive nanoprobes in visualized theranostics of urinary tumors are summarized, including magnetic resonance/fluorescence/ultrasound/photoacoustic imaging and multimodal imaging, photothermal/photodynamic/sonodynamic therapy and combination therapy, and single-modal/multimodal-imaging-guided visualized theranostics. Finally, the future perspectives of light/ultrasound/magnetic-responsive nanoprobes against urinary tumors are also prospected.
Collapse
Affiliation(s)
- Fan Yang
- Affiliated Hospital of Hebei University, Baoding 071000, P. R. China
| | - Shaowen Li
- Affiliated Hospital of Hebei University, Baoding 071000, P. R. China
| | - Meng Jiao
- Affiliated Hospital of Hebei University, Baoding 071000, P. R. China
| | - Di Wu
- Institute of Life Science and Green Development, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Luna Wang
- Institute of Life Science and Green Development, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Zhenyu Cui
- Affiliated Hospital of Hebei University, Baoding 071000, P. R. China
| | - Leyong Zeng
- Institute of Life Science and Green Development, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
10
|
Yoon J, Shin M, Lee JY, Lee SN, Choi JH, Choi JW. RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy. J Control Release 2022; 342:228-240. [PMID: 35016917 DOI: 10.1016/j.jconrel.2022.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/15/2023]
Abstract
RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not yet been used to treat cancer because of their instability and the difficulty of microRNA (miRNA) delivery. Plasmonic nanoparticle-based RNAi nanotherapeutics have been developed for accurate and sensitive diagnosis and a strong therapeutic effect on cancers by leveraging their ease-of-use and specific properties such as photothermal conversion. In this review, recent strategies and advances in plasmonic nanoparticle-based miRNA delivery are briefly presented to facilitate the detection and treatment of several cancers. The challenges and potential opportunities afforded by the RNAi-based theragnosis field are discussed. We expect that the RNAi-integrated plasmonic nanotherapeutics discussed in this review can provide insights for the early diagnosis and effective treatment of cancer.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,123 Bevier Road, Piscataway, NJ 08854, USA
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Jin-Ha Choi
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea.
| |
Collapse
|
11
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
12
|
Shao X, He J, Zhao X, Zheng Y, Zheng N. Preparation of
zinc‐coordinated‐DPA
functionalized polyesters for gene condensation. J Appl Polym Sci 2021. [DOI: 10.1002/app.50843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xuefei Shao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian China
| | - Junnan He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian China
| | - Xuemei Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian China
| | - Yubin Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian China
| | - Nan Zheng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian China
| |
Collapse
|
13
|
Liao J, Tian T, Shi S, Xie X, Peng S, Zhu Y, Xiao J, Lin Y. Broadening the biocompatibility of gold nanorods from rat to Macaca fascicularis: advancing clinical potential. J Nanobiotechnology 2021; 19:195. [PMID: 34193184 PMCID: PMC8243831 DOI: 10.1186/s12951-021-00941-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The biomedical field has used gold nanorods (GNRs) for decades; however, clinical trials and translation is limited except gold nanoshells. The preparation of gold nanoshells is more complex than that of polyethylene glycol-modified GNRs (PEG-GNRs), and it is difficult to ensure uniform thickness. It is important to encourage and broaden the use of the star member (PEG-GNRs) of gold nanoparticles family for clinical translation. Existing studies on PEG-GNRs are limited with no relevant systematic progression in non-human primates. Herein, we assessed the systematic biocompatibility of PEG-GNRs in rats and clinically relevant Macaca fascicularis. RESULTS In this small animal study, we administrated multiple doses of PEG-GNRs to rats and observed good biocompatibility. In the non-human primate study, PEG-GNRs had a longer blood half-life and produced a negligible immune response. Histological analysis revealed no significant abnormality. CONCLUSIONS PEG-GNRs were well-tolerated with good biocompatibility in both small animals and large non-human primates. The information gained from the comprehensive systemic toxicity assessment of PEG-GNRs in M. fascicularis will be helpful for translation to clinical trials.
Collapse
Affiliation(s)
- Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Taorang Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xueping Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shuanglin Peng
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ying Zhu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
- Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jingang Xiao
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- College of Biomedical Engineering, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Xue Y, Gao Y, Meng F, Luo L. Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0510. [PMID: 33861527 PMCID: PMC8185860 DOI: 10.20892/j.issn.2095-3941.2020.0510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Theranostics that integrates therapy and diagnosis in one system to achieve accurate cancer diagnosis and treatment has attracted tremendous interest, and has been recognized as a potential breakthrough in overcoming the challenges of conventional oncotherapy. Nanoparticles are ideal candidates as carriers for theranostic agents, which is attributed to their extraordinary physicochemical properties, including nanoscale sizes, functional properties, prolonged blood circulation, active or passive tumor targeting, specific cellular uptake, and in some cases, excellent optical properties that ideally meet the needs of phototherapy and imaging at the same time. Overall, with the development of nanotechnology, theranostics has become a reality, and is now in the transition stage of "bench to bedside." In this review, we summarize recent progress on nanotechnology-based theranostics, i.e., nanotheranostics, that has greatly assisted traditional therapies, and has provided therapeutic strategies emerging in recent decades, as well as "cocktail" theranostics mixing various treatment modalities.
Collapse
Affiliation(s)
- Ying Xue
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuting Gao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
15
|
Chen F, Si P, de la Zerda A, Jokerst JV, Myung D. Gold nanoparticles to enhance ophthalmic imaging. Biomater Sci 2021; 9:367-390. [PMID: 33057463 PMCID: PMC8063223 DOI: 10.1039/d0bm01063d] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of gold nanoparticles as diagnostic tools is burgeoning, especially in the cancer community with a focus on theranostic applications to both cancer diagnosis and treatment. Gold nanoparticles have also demonstrated great potential for use in diagnostic and therapeutic approaches in ophthalmology. Although many ophthalmic imaging modalities are available, there is still a considerable unmet need, in particular for ophthalmic molecular imaging for the early detection of eye disease before morphological changes are more grossly visible. An understanding of how gold nanoparticles are leveraged in other fields could inform new ways they could be utilized in ophthalmology. In this paper, we review current ophthalmic imaging techniques and then identify optical coherence tomography (OCT) and photoacoustic imaging (PAI) as the most promising technologies amenable to the use of gold nanoparticles for molecular imaging. Within this context, the development of gold nanoparticles as OCT and PAI contrast agents are reviewed, with the most recent developments described in detail.
Collapse
Affiliation(s)
- Fang Chen
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University, CA 94305, USA.
| | | | | | | | | |
Collapse
|
16
|
Nicolson F, Kircher MF. Theranostics: Agents for Diagnosis and Therapy. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00040-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
17
|
Liu W, Chen L, Chen M, Wang W, Li X, Yang H, Yang S, Zhou Z. Self-Amplified Apoptosis Targeting Nanoplatform for Synergistic Magnetic-Thermal/Chemo Therapy In Vivo. Adv Healthc Mater 2020; 9:e2000202. [PMID: 32761734 DOI: 10.1002/adhm.202000202] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/30/2020] [Indexed: 11/12/2022]
Abstract
The low efficiency homing of nanomaterials in tumors remains a major challenge in nanomedicine. Inspired by the apoptosis targeting properties of phosphatidylserine (PS), a self-amplified apoptosis targeting nanoplatform (MNPs-ZnDPA/β-Lap) is fabricated combining Zn0.4 Co0.6 Fe2 O4 @Zn0.4 Mn0.6 Fe2 O4 nanoparticles (MNPs) with an excellent magnetic hyperthermia effect, a chemotherapeutic drug of β-lapachone (β-Lap) with the promotion of cell apoptosis, and the good apoptosis targeting moiety of Zn(II)-bis(dipicolylamine) (bis-ZnDPA) for PS. In an apoptotic 4T1 xenograft model, MNPs-ZnDPA/β-Lap can first accumulate in tumors by the EPR effect. The released β-Lap triggers the apoptosis of cancer cells in the tumor and increases the apoptotic target, which results in amplifying their apoptosis targeting properties. This self-amplified apoptosis targeting efficiency of MNPs-ZnDPA/β-Lap almost inhibits the growth of tumors with the synergistic magnetic-thermal/chemo therapy, which can offer a significant promise for targeting cancer theranostics.
Collapse
Affiliation(s)
- Wei Liu
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Li Chen
- Institute of Diagnostic and Interventional Radiology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Ming Chen
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Wu Wang
- Institute of Diagnostic and Interventional Radiology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Xiaoling Li
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Hong Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| | - Zhiguo Zhou
- The Key Laboratory of Resource Chemistry of Ministry of Education Shanghai Key Laboratory of Rare Earth Functional Materials Shanghai Normal University Shanghai 200234 China
| |
Collapse
|
18
|
Siddique S, Chow JCL. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1700. [PMID: 32872399 PMCID: PMC7559738 DOI: 10.3390/nano10091700] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Nanomaterials, such as nanoparticles, nanorods, nanosphere, nanoshells, and nanostars, are very commonly used in biomedical imaging and cancer therapy. They make excellent drug carriers, imaging contrast agents, photothermal agents, photoacoustic agents, and radiation dose enhancers, among other applications. Recent advances in nanotechnology have led to the use of nanomaterials in many areas of functional imaging, cancer therapy, and synergistic combinational platforms. This review will systematically explore various applications of nanomaterials in biomedical imaging and cancer therapy. The medical imaging modalities include magnetic resonance imaging, computed tomography, positron emission tomography, single photon emission computerized tomography, optical imaging, ultrasound, and photoacoustic imaging. Various cancer therapeutic methods will also be included, including photothermal therapy, photodynamic therapy, chemotherapy, and immunotherapy. This review also covers theranostics, which use the same agent in diagnosis and therapy. This includes recent advances in multimodality imaging, image-guided therapy, and combination therapy. We found that the continuous advances of synthesis and design of novel nanomaterials will enhance the future development of medical imaging and cancer therapy. However, more resources should be available to examine side effects and cell toxicity when using nanomaterials in humans.
Collapse
Affiliation(s)
- Sarkar Siddique
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
19
|
Ashrafizadeh M, Hushmandi K, Rahmani Moghadam E, Zarrin V, Hosseinzadeh Kashani S, Bokaie S, Najafi M, Tavakol S, Mohammadinejad R, Nabavi N, Hsieh CL, Zarepour A, Zare EN, Zarrabi A, Makvandi P. Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer. Bioengineering (Basel) 2020; 7:E91. [PMID: 32784981 PMCID: PMC7552721 DOI: 10.3390/bioengineering7030091] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) accounts for a high number of deaths in males with no available curative treatments. Patients with PCa are commonly diagnosed in advanced stages due to the lack of symptoms in the early stages. Recently, the research focus was directed toward gene editing in cancer therapy. Small interfering RNA (siRNA) intervention is considered as a powerful tool for gene silencing (knockdown), enabling the suppression of oncogene factors in cancer. This strategy is applied to the treatment of various cancers including PCa. The siRNA can inhibit proliferation and invasion of PCa cells and is able to promote the anti-tumor activity of chemotherapeutic agents. However, the off-target effects of siRNA therapy remarkably reduce its efficacy in PCa therapy. To date, various carriers were designed to improve the delivery of siRNA and, among them, nanoparticles are of importance. Nanoparticles enable the targeted delivery of siRNAs and enhance their potential in the downregulation of target genes of interest. Additionally, nanoparticles can provide a platform for the co-delivery of siRNAs and anti-tumor drugs, resulting in decreased growth and migration of PCa cells. The efficacy, specificity, and delivery of siRNAs are comprehensively discussed in this review to direct further studies toward using siRNAs and their nanoscale-delivery systems in PCa therapy and perhaps other cancer types.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | | | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran; (K.H.); (S.B.)
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran;
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kermaan 55425147, Iran;
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| | - Chia-Ling Hsieh
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City 110, Taiwan;
| | - Atefeh Zarepour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 8174673441, Iran;
| | | | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 61537-53843, Iran
| |
Collapse
|
20
|
Muripiti V, Gondru R, Patri SV. Review of Zinc(II) Scaffolds: Efficient Role in Gene Delivery. ChemistrySelect 2020. [DOI: 10.1002/slct.202001557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Venkanna Muripiti
- Department of Chemistry National Institute of Technology Warangal Warangal 506004 Telangana India
| | - Ramesh Gondru
- Environmental Monitoring & Exposure Assessment (Air) Laboratory ICMR-National Institute for Research in Environmental Health (NIREH) Bhopal 462030 Madhya Pradesh India
| | - Srilakshmi V. Patri
- Department of Chemistry National Institute of Technology Warangal Warangal 506004 Telangana India
| |
Collapse
|
21
|
Li T, Li Y, Liu T, Hu B, Li J, Liu C, Liu T, Li F. Mitochondrial PAK6 inhibits prostate cancer cell apoptosis via the PAK6-SIRT4-ANT2 complex. Theranostics 2020; 10:2571-2586. [PMID: 32194820 PMCID: PMC7052886 DOI: 10.7150/thno.42874] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/11/2020] [Indexed: 12/18/2022] Open
Abstract
Rationale: P21-activated kinase 6 (PAK6) is a member of the class II PAKs family, which is a conserved family of serine/threonine kinases. Although the effects of PAK6 on many malignancies, especially in prostate cancer, have been studied for a long time, the role of PAK6 in mitochondria remains unknown. Methods: The expression of PAK6, SIRT4 and ANT2 in prostate cancer and adjacent non-tumor tissues was detected by immunohistochemistry. Immunofuorescence and immunoelectron microscopy were used to determine the subcellular localization of PAK6. Immunoprecipitation, immunofuorescence and ubiquitination assays were performed to determine how PAK6 regulates SIRT4, how SIRT4 regulates ANT2, and how PAK6 regulates ANT2. Flow cytometry detection and xenograft models were used to evaluate the impact of ANT2 mutant expression on the prostate cancer cell cycle and apoptosis regulation. Results: The present study revealed that the PAK6-SIRT4-ANT2 complex is involved in mitochondrial apoptosis in prostate cancer cells. It was found that PAK6 is mainly located in the mitochondrial inner membrane, in which PAK6 promotes SIRT4 ubiquitin-mediated proteolysis. Furthermore, SIRT4 deprives the ANT2 acetylation at K105 to promote its ubiquitination degradation. Hence, PAK6 adjusts the acetylation level of ANT2 through the PAK6-SIRT4-ANT2 pathway, in order to regulate the stability of ANT2. Meanwhile, PAK6 directly phosphorylates ANT2 atT107 to inhibit the apoptosis of prostate cancer cells. Therefore, the phosphorylation and deacetylation modifications of ANT2 are mutually regulated, leading to tumor growth in vivo. Consistently, these clinical prostate cancer tissue evaluations reveal that PAK6 is positively correlated with ANT2 expression, but negatively correlated with SIRT4. Conclusion: These present findings suggest the pivotal role of the PAK6-SIRT4-ANT2 complex in the apoptosis of prostate cancer. This complex could be a potential biomarker for the treatment and prognosis of prostate cancer.
Collapse
Affiliation(s)
- Tingting Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, Shenyang 110122, Liaoning, China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, Shenyang 110122, Liaoning, China
| | - Tong Liu
- Medical Research Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Bingtao Hu
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, Shenyang 110122, Liaoning, China
| | - Jiabin Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, Shenyang 110122, Liaoning, China
| | - Chen Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, Shenyang 110122, Liaoning, China
| | - Tao Liu
- Department of Urology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, Shenyang 110122, Liaoning, China
| |
Collapse
|
22
|
Chen J, Wu Z, Ding W, Xiao C, Zhang Y, Gao S, Gao Y, Cai W. SREBP1 siRNA enhance the docetaxel effect based on a bone-cancer dual-targeting biomimetic nanosystem against bone metastatic castration-resistant prostate cancer. Theranostics 2020; 10:1619-1632. [PMID: 32042326 PMCID: PMC6993241 DOI: 10.7150/thno.40489] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022] Open
Abstract
Until recently, there have been limited options for patients with bone metastatic castration-resistant prostate cancer (BmCRPC) following the failure of or development of resistance to docetaxel (DTX), which is one of the frontline treatments. Sterol regulatory element-binding protein 1 (SREBP1) is reported to regulate abnormal lipid metabolism and to promote the progression and metastasis of prostate cancer (PCa). The siRNA interferes SREBP1 may provide an efficient treatment when combined with DTX. Methods: In this study, lipoic acid (LA) and cross-linked peptide-lipoic acid micelles were cross-linked (LC) for DTX and siSREBP1 delivery (LC/D/siR). Then, cell membrane of PCa cells (Pm) and bone marrow mesenchymal stem cells (Bm) were fused for cloaking LC/D/siR (PB@LC/D/siR). Finally, the synthesized PB@LC/D/siR was evaluated in vitro and in vivo. Results: PB@LC/D/siR is internalized in PCa cells by a mechanism of lysosome escape. Tumor targeting and bone homing studies are evaluated using bone metastatic CRPC (BmCRPC) models, both in vitro and in vivo. Moreover, the enhanced anti-proliferation, anti-migration and anti-invasion capacities of DTX- and siSREBP1- loaded PB@LC (PB@LC/D/siR) were observed in vitro. Furthermore, PB@LC/D/siR was able to suppress the growth of the tumor effectively with deep tumor penetration, high safety and good protection of the bone at the tumor site. Additionally, the mRNA levels and protein levels of SREBP1 and SCD1 were able to be significantly downregulated by PB@LC/D/siR. Conclusion: This study presented a bone-cancer dual-targeting biomimetic nanodelivery system for bone metastatic CRPC.
Collapse
Affiliation(s)
- Jiyuan Chen
- Department of Clinical Pharmacy and Drug Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhenjie Wu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Weihong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Chengwu Xiao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yu Zhang
- Department of Clinical Pharmacy and Drug Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shen Gao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yuan Gao
- Department of Clinical Pharmacy and Drug Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Weimin Cai
- Department of Clinical Pharmacy and Drug Administration, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
23
|
Ahmad MZ, Ahmad J, Warsi MH, Abdel-Wahab BA, Akhter S. Metallic nanoparticulate delivery systems. NANOENGINEERED BIOMATERIALS FOR ADVANCED DRUG DELIVERY 2020:279-328. [DOI: 10.1016/b978-0-08-102985-5.00013-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Yin J, Zhang Y, Ma D, Yang R, Xu F, Wu H, He C, Liu L, Dong J, Shao Y. Nanoassembly and Multiscale Computation of Multifunctional Optical-Magnetic Nanoprobes for Tumor-Targeted Theranostics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41069-41081. [PMID: 31599161 DOI: 10.1021/acsami.9b14668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gold nanorods, mesoporous silica, gadolinia, folic acid, and polyethylene glycol (PEG) derivatives have been investigated due to their own advantages in cancer theranostics. However, it remains a great challenge to assemble these components into a stable unity with the diverse and enhanced functionality for more potential applications. Herein, as inspired by the first-principles calculation, a highly stable and safe all-in-one nanoprobe is fabricated via a novel nanoassembly strategy. Multiscale calculations were performed to address the atomistic bonding of a nanoprobe, heat necrosis of a tumor adjacent to the vasculature, and thermal diffusion in a photothermal circumstance, respectively. The nanoprobe gains an 8-fold increase in magnetic resonance imaging (MRI) relaxivity compared to the clinical gadolinium diethylenetriaminepentaacetate, achieving a significant MRI signal in vivo. Conjugated with folate-PEG, the nanoprobe can be effectively absorbed by tumoral cells, obtaining a vivid two-photon cell imaging. A specific multisite scheme for photothermal therapy of a solid tumor is proposed to improve low photothermal efficacy caused by thermal diffusion in a large tumor, leading to the successful cure of the mice with xenograft tumor sized 10-12 mm. In vitro and in vivo toxicity, long-term excretion data, and the recovery of the treated mice demonstrate that the theranostic nanoprobe possesses good biocompatibility and metabolism efficacy.
Collapse
Affiliation(s)
| | - Yu Zhang
- Department of Pathology and ⊥Center of Medical Imaging and Image-guided Therapy , Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Guangzhou 510060 , China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Saw PE, Yao H, Lin C, Tao W, Farokhzad OC, Xu X. Stimuli-Responsive Polymer-Prodrug Hybrid Nanoplatform for Multistage siRNA Delivery and Combination Cancer Therapy. NANO LETTERS 2019; 19:5967-5974. [PMID: 31381852 DOI: 10.1021/acs.nanolett.9b01660] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoparticles (NPs) formulated with cationic lipids and/or polymers have shown substantial potential for systemic delivery of RNA therapeutics such as small interfering RNA (siRNA) for the treatment of cancer and other diseases. While both cationic lipids and polymers have demonstrated the promise to facilitate siRNA encapsulation and endosomal escape, they could also hamper cytosolic siRNA release due to charge interaction and induce potential toxicities. Herein, a unique polymer-prodrug hybrid NP platform was developed for multistage siRNA delivery and combination cancer therapy. This NP system is composed of (i) a hydrophilic polyethylene glycol (PEG) shell, (ii) a hydrophobic NP core made with a tumor microenvironment (TME) pH-responsive polymer, and (iii) charge-mediated complexes of siRNA and amphiphilic cationic mitoxantrone (MTO)-based prodrug that are encapsulated in the NP core. After intravenous administration, the long-circulating NPs accumulate in tumor tissues and then rapidly release the siRNA-prodrug complexes via TME pH-mediated NP disassociation for subsequent tissue penetration and cytosolic transport. With the overexpressed esterase in tumor cells to hydrolyze the amphiphilic structure of the prodrug and thereby induce destabilization of the siRNA-prodrug complexes, the therapeutic siRNA and anticancer drug MTO can be efficiently released in the cytoplasm, ultimately leading to the combinational inhibition of tumor growth via concurrent RNAi-mediated gene silencing and MTO-mediated chemotherapy.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital , Sun Yat-Sen University , Guangzhou 510120 , P. R. China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital , Sun Yat-Sen University , Guangzhou 510120 , P. R. China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital , Sun Yat-Sen University , Guangzhou 510120 , P. R. China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital , Sun Yat-Sen University , Guangzhou 510120 , P. R. China
| | - Chunhao Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital , Sun Yat-Sen University , Guangzhou 510120 , P. R. China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital , Sun Yat-Sen University , Guangzhou 510120 , P. R. China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital , Sun Yat-Sen University , Guangzhou 510120 , P. R. China
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital , Sun Yat-Sen University , Guangzhou 510120 , P. R. China
| |
Collapse
|
26
|
Aghamiri S, Jafarpour A, Malekshahi ZV, Mahmoudi Gomari M, Negahdari B. Targeting siRNA in colorectal cancer therapy: Nanotechnology comes into view. J Cell Physiol 2019; 234:14818-14827. [PMID: 30919964 DOI: 10.1002/jcp.28281] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is known as one of the most important causes of death and mortality worldwide. Although several efforts have been made for finding new therapies, no achievements have been made in this area. Multidrug resistance (MDR) mechanisms are one of the key factors that could lead to the failure of chemotherapy. Moreover, it has been shown that various chemotherapy drugs are associated with several side effects. Hence, it seems that finding new drugs or new therapeutic platforms is required. Among different therapeutic approaches, utilization of nanoparticles (NPs) for targeting a variety of molecules such as siRNAs are associated with good results for the treatment of CRC. Targeting siRNA-mediated NPs could turn off the effects of oncogenes and MDR-related genes. In the current study, we summarized various siRNAs targeted by NPs which could be used for the treatment of CRC. Moreover, we highlighted other routes such as liposome for targeting siRNAs in CRC therapy.
Collapse
Affiliation(s)
- Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Jafarpour
- Virology Division, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Gao G, Jiang YW, Sun W, Guo Y, Jia HR, Yu XW, Pan GY, Wu FG. Molecular Targeting-Mediated Mild-Temperature Photothermal Therapy with a Smart Albumin-Based Nanodrug. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900501. [PMID: 31282114 DOI: 10.1002/smll.201900501] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/08/2019] [Indexed: 06/09/2023]
Abstract
Photothermal therapy (PTT) usually requires hyperthermia >50 °C for effective tumor ablation, which inevitably induces heating damage to the surrounding normal tissues/organs. Moreover, low tumor retention and high liver accumulation are the two main obstacles that significantly limit the efficacy and safety of many nanomedicines. To solve these problems, a smart albumin-based tumor microenvironment-responsive nanoagent is designed via the self-assembly of human serum albumin (HSA), dc-IR825 (a cyanine dye and a photothermal agent), and gambogic acid (GA, a heat shock protein 90 (HSP90) inhibitor and an anticancer agent) to realize molecular targeting-mediated mild-temperature PTT. The formed HSA/dc-IR825/GA nanoparticles (NPs) can escape from mitochondria to the cytosol through mitochondrial disruption under near-infrared (NIR) laser irradiation. Moreover, the GA molecules block the hyperthermia-induced overexpression of HSP90, achieving the reduced thermoresistance of tumor cells and effective PTT at a mild temperature (<45 °C). Furthermore, HSA/dc-IR825/GA NPs show pH-responsive charge reversal, effective tumor accumulation, and negligible liver deposition, ultimately facilitating synergistic mild-temperature PTT and chemotherapy. Taken together, the NIR-activated NPs allow the release of molecular drugs more precisely, ablate tumors more effectively, and inhibit cancer metastasis more persistently, which will advance the development of novel mild-temperature PTT-based combination strategies.
Collapse
Affiliation(s)
- Ge Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yao-Wen Jiang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Wei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Hao-Ran Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xin-Wang Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Guang-Yu Pan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
28
|
Gargiulo S, Albanese S, Mancini M. State-of-the-Art Preclinical Photoacoustic Imaging in Oncology: Recent Advances in Cancer Theranostics. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5080267. [PMID: 31182936 PMCID: PMC6515147 DOI: 10.1155/2019/5080267] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
The optical imaging plays an increasing role in preclinical studies, particularly in cancer biology. The combined ultrasound and optical imaging, named photoacoustic imaging (PAI), is an emerging hybrid technique for real-time molecular imaging in preclinical research and recently expanding into clinical setting. PAI can be performed using endogenous contrast, particularly from oxygenated and deoxygenated hemoglobin and melanin, or exogenous contrast agents, sometimes targeted for specific biomarkers, providing comprehensive morphofunctional and molecular information on tumor microenvironment. Overall, PAI has revealed notable opportunities to improve knowledge on tumor pathophysiology and on the biological mechanisms underlying therapy. The aim of this review is to introduce the principles of PAI and to provide a brief overview of current PAI applications in preclinical research, highlighting also on recent advances in clinical translation for cancer diagnosis, staging, and therapy.
Collapse
Affiliation(s)
- Sara Gargiulo
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| | - Sandra Albanese
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| | - Marcello Mancini
- Institute of Biostructure and Bioimaging of National Council of Research, Naples 80145, Italy
| |
Collapse
|
29
|
Sarkis M, Ghanem E, Rahme K. Jumping on the Bandwagon: A Review on the Versatile Applications of Gold Nanostructures in Prostate Cancer. Int J Mol Sci 2019; 20:E970. [PMID: 30813391 PMCID: PMC6412201 DOI: 10.3390/ijms20040970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/21/2019] [Indexed: 01/09/2023] Open
Abstract
Prostate cancer (PCa) has remarkably emerged as a prominent disease in the face of the male population. Conventional treatments like prostatectomy or radiation can be curative only if PCa is diagnosed at an early stage. In the field of targeted therapy, a bevy of novel therapeutic approaches have left a landmark in PCa treatment and have proven to extend survival via distinct modes of actions. Nanotherapy has started to take root and has become the hype of the century by virtue of its abundant advantages. Scientists have invested a great deal of interest in the development of nanostructures such as gold nanoparticles (AuNPs), which hold particularly great hope for PCa theranostics. In this article, we present an overview of the studies published after 1998 that involve the use of different functionalized AuNPs to treat and diagnose PCa. Special reference is given to various in vitro and in vivo methods employed to shuttle AuNPs to PCa cells. Major studies show an enhancement of either detection or treatment of PCa when compared to their non-targeted counterparts, especially when AuNPs are tagged with specific ligands, such as antibodies, tea natural extracts, folate, anisamide, receptor inhibitors, and chitosan. Future approaches of treatment are dependent on those worthy multifunctional molecules, and are dictated by their ability to achieve a more versatile cancer therapeutic approach.
Collapse
Affiliation(s)
- Monira Sarkis
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, ZoukMosbeh P.O.Box:72, Lebanon.
| | - Esther Ghanem
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, ZoukMosbeh P.O.Box:72, Lebanon.
| | - Kamil Rahme
- Department of Sciences, Faculty of Natural and Applied Sciences, Notre Dame University-Louaize, ZoukMosbeh P.O.Box:72, Lebanon.
| |
Collapse
|
30
|
Artiga Á, Serrano-Sevilla I, De Matteis L, Mitchell SG, de la Fuente JM. Current status and future perspectives of gold nanoparticle vectors for siRNA delivery. J Mater Chem B 2019; 7:876-896. [PMID: 32255093 DOI: 10.1039/c8tb02484g] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Discovering the vast therapeutic potential of siRNA opened up new clinical research areas focussing on a number of diseases and applications; however significant problems with siRNA stability and delivery have hindered its clinical applicability. As a result, interest in the development of practical siRNA delivery systems has grown in recent years. Of the numerous siRNA delivery strategies currently on offer, gold nanoparticles (AuNPs) stand out thanks to their biocompatibility and capacity to protect siRNA against degradation; not to mention the versatility offered by their tuneable shape, size and optical properties. Herein this review provides a complete summary of the methodologies for functionalizing AuNPs with siRNA, paying singular attention to the AuNP shape, size and surface coating, since these key factors heavily influence cellular interaction, internalization and, ultimately, the efficacy of the hybrid particle. The most noteworthy hybridization strategies have been highlighted along with the most innovative and outstanding in vivo studies with a view to increasing clinical interest in the use of AuNPs as siRNA nanocarriers.
Collapse
Affiliation(s)
- Álvaro Artiga
- Instituto de Ciencia de Materiales de Aragón (ICMA), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Zaragoza and CIBER-BBN, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain.
| | | | | | | | | |
Collapse
|
31
|
Mohebbi S, Tohidi Moghadam T, Nikkhah M, Behmanesh M. RGD-HK Peptide-Functionalized Gold Nanorods Emerge as Targeted Biocompatible Nanocarriers for Biomedical Applications. NANOSCALE RESEARCH LETTERS 2019; 14:13. [PMID: 30623264 PMCID: PMC6325059 DOI: 10.1186/s11671-018-2828-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 12/06/2018] [Indexed: 05/13/2023]
Abstract
Gold nanorods (GNRs) have been nominated as a promising candidate for a variety of biological applications; however, the cationic surfactant layer that surrounds a nanostructure places limits on its biological applicability. Herein, CTAB-GNRs were functionalized via a ligand exchange method using a (C(HK)4-mini PEG-RGD)-peptide to target the overexpressed αvβ3 integrin in cancerous cells, increase the biocompatibility, and gain the ability of gene/drug delivery, simultaneously. To confirm an acceptable functionalization, UV-Visible, FTIR, and Raman spectroscopy, zeta potential, and transmission electron microscopy of nanostructures were done. MTT assay was applied to study the cytotoxicity of nanostructures on two cell lines, HeLa and MDA-MB-231, as positive and negative αvβ3 integrin receptors, respectively. The cytotoxic effect of peptide-functionalized GNRs (peptide-f-GNRs) was less than that of CTAB-coated GNRs (CTAB-GNRs) for both cell lines. Uptake of peptide-f-GNRs and CTAB-GNRs was evaluated in two cell lines, using dark-field imaging and atomic absorption spectroscopy. Peptide-f-GNRs showed a proper cell uptake on the HeLa rather than MDA-MB-231 cell line according to the RGD (Arg-Gly-Asp) sequence in the peptide. The ability of peptide-f-GNRs to conjugate to antisense oligonucleotides (ASO) was also confirmed using zeta potential, which was due to the repeated HK (His-Lys) sequence inside the peptide. The result of these tests highlights the functionalization method as a convenient and cost-effective strategy for promising applications of targeted GNRs in the biological gene/drug delivery systems, and the repeated histidine-lysine pattern could be a useful carrier for negatively charged drug/gene delivery, too.
Collapse
Affiliation(s)
- Sohameh Mohebbi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Tahereh Tohidi Moghadam
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| | - Mehrdad Behmanesh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
- Department of Genetics and Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran
| |
Collapse
|
32
|
Zheng M, Yang Z, Chen S, Wu H, Liu Y, Wright A, Lu JW, Xia X, Lee A, Zhang J, Yin H, Wang Y, Ruan W, Liang XJ. Bioreducible Zinc(II)–Dipicolylamine Functionalized Hyaluronic Acid Mediates Safe siRNA Delivery and Effective Glioblastoma RNAi Therapy. ACS APPLIED BIO MATERIALS 2018; 2:362-369. [DOI: 10.1021/acsabm.8b00622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Meng Zheng
- Henan and Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zhipeng Yang
- Henan and Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shizhu Chen
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
- College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, China
- The National Institutes of Pharmaceutical R&D Co., Ltd., China Resources Pharmaceutical Group Limited, Beijing, 102206, China
| | - Haigang Wu
- Henan and Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yang Liu
- Henan and Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Amanda Wright
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Xue Xia
- Henan and Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Albert Lee
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jinchao Zhang
- College of Chemistry and Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, Hebei 071002, China
| | - Huijun Yin
- The National Institutes of Pharmaceutical R&D Co., Ltd., China Resources Pharmaceutical Group Limited, Beijing, 102206, China
- Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Yingze Wang
- College of Biological Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Weimin Ruan
- Henan and Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
33
|
Wang J, Thomas M, Lin P, Cheng JX, Matei DE, Wei A. siRNA Delivery Using Dithiocarbamate-Anchored Oligonucleotides on Gold Nanorods. Bioconjug Chem 2018; 30:443-453. [PMID: 30395447 DOI: 10.1021/acs.bioconjchem.8b00723] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We present a robust method for loading small interfering RNA (siRNA) duplexes onto the surfaces of gold nanorods (GNRs) at high density, using near-infrared laser irradiation to trigger their intracellular release with subsequent knockdown activity. Citrate-stabilized GNRs were first coated with oleylsulfobetaine, a zwitterionic amphiphile with low cytotoxicity, which produced stable dispersions at high ionic strength. Amine-modified siRNA duplexes were converted into dithiocarbamate (DTC) ligands and adsorbed onto GNR surfaces in a single incubation step at 0.5 M NaCl, simplifying the charge screening process. The DTC anchors were effective at minimizing premature siRNA desorption and release, a common but often overlooked problem in the use of gold nanoparticles as oligonucleotide carriers. The activity of GNR-siRNA complexes was evaluated systematically against an eGFP-producing ovarian cancer cell line (SKOV-3) using folate receptor-mediated uptake. Efficient knockdown was achieved by using a femtosecond-pulsed laser source to release DTC-anchored siRNA, with essentially no contributions from spontaneous (dark) RNA desorption. GNRs coated with thiol-anchored siRNA duplexes were less effective and also permitted low levels of knockdown activity without photothermal activation. Optimized siRNA delivery conditions were applied toward the targeted knockdown of transglutaminase 2, whose expression is associated with the progression of recurrent ovarian cancer, with a reduction in activity of >80% achieved after a single pulsed laser treatment.
Collapse
Affiliation(s)
- Jianxin Wang
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| | - Mini Thomas
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States
| | - Peng Lin
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States.,Department of Biomedical Engineering , Purdue University , 206 South Martin Jischke Drive , West Lafayette , Indiana 47907 , United States
| | - Ji-Xin Cheng
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States.,Department of Biomedical Engineering , Purdue University , 206 South Martin Jischke Drive , West Lafayette , Indiana 47907 , United States
| | - Daniela E Matei
- Department of Obstetrics and Gynecology , Northwestern University Feinberg School of Medicine , 250 East Superior Street , Chicago , Illinois 60611 , United States.,Robert H. Lurie Comprehensive Cancer Center , Chicago , Illinois 60611 , United States
| | - Alexander Wei
- Department of Chemistry , Purdue University , 560 Oval Drive , West Lafayette , Indiana 47907 , United States.,Department of Materials Science and Engineering , Purdue University , 701 West Stadium Avenue , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
34
|
Spyratou E, Makropoulou M, Efstathopoulos EP, Georgakilas AG, Sihver L. Recent Advances in Cancer Therapy Based on Dual Mode Gold Nanoparticles. Cancers (Basel) 2017; 9:cancers9120173. [PMID: 29257070 PMCID: PMC5742821 DOI: 10.3390/cancers9120173] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/09/2017] [Accepted: 12/15/2017] [Indexed: 11/21/2022] Open
Abstract
Many tumor-targeted strategies have been used worldwide to limit the side effects and improve the effectiveness of therapies, such as chemotherapy, radiotherapy (RT), etc. Biophotonic therapy modalities comprise very promising alternative techniques for cancer treatment with minimal invasiveness and side-effects. These modalities use light e.g., laser irradiation in an extracorporeal or intravenous mode to activate photosensitizer agents with selectivity in the target tissue. Photothermal therapy (PTT) is a minimally invasive technique for cancer treatment which uses laser-activated photoabsorbers to convert photon energy into heat sufficient to induce cells destruction via apoptosis, necroptosis and/or necrosis. During the last decade, PTT has attracted an increased interest since the therapy can be combined with customized functionalized nanoparticles (NPs). Recent advances in nanotechnology have given rise to generation of various types of NPs, like gold NPs (AuNPs), designed to act both as radiosensitizers and photothermal sensitizing agents due to their unique optical and electrical properties i.e., functioning in dual mode. Functionalized AuNPS can be employed in combination with non-ionizing and ionizing radiation to significantly improve the efficacy of cancer treatment while at the same time sparing normal tissues. Here, we first provide an overview of the use of NPs for cancer therapy. Then we review many recent advances on the use of gold NPs in PTT, RT and PTT/RT based on different types of AuNPs, irradiation conditions and protocols. We refer to the interaction mechanisms of AuNPs with cancer cells via the effects of non-ionizing and ionizing radiations and we provide recent existing experimental data as a baseline for the design of optimized protocols in PTT, RT and PTT/RT combined treatment.
Collapse
Affiliation(s)
- Ellas Spyratou
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece.
| | - Mersini Makropoulou
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece.
| | - Efstathios P Efstathopoulos
- 2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece.
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 15780 Athens, Greece.
| | - Lembit Sihver
- Atominstitut, Technische Universität Wien, Stadionallee 2, 1020 Vienna, Austria.
| |
Collapse
|