1
|
Daugherty A, Milewicz DM, Dichek DA, Ghaghada KB, Humphrey JD, LeMaire SA, Li Y, Mallat Z, Saeys Y, Sawada H, Shen YH, Suzuki T, Zhou (周桢) Z. Recommendations for Design, Execution, and Reporting of Studies on Experimental Thoracic Aortopathy in Preclinical Models. Arterioscler Thromb Vasc Biol 2025; 45:609-631. [PMID: 40079138 PMCID: PMC12018150 DOI: 10.1161/atvbaha.124.320259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
There is a recent dramatic increase in research on thoracic aortic diseases that includes aneurysms, dissections, and rupture. Experimental studies predominantly use mice in which aortopathy is induced by chemical interventions, genetic manipulations, or both. Many parameters should be deliberated in experimental design in concert with multiple considerations when providing dimensional data and characterization of aortic tissues. The purpose of this review is to provide recommendations on guidance in (1) the selection of a mouse model and experimental conditions for the study, (2) parameters for standardizing detection and measurements of aortic diseases, (3) meaningful interpretation of characteristics of diseased aortic tissue, and (4) reporting standards that include rigor and transparency.
Collapse
Affiliation(s)
- Alan Daugherty
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY, USA
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David A. Dichek
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ketan B. Ghaghada
- Department of Radiology, Texas Children’s Hospital, and Department of Radiology, Baylor College of Medicine Houston, TX, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Scott A. LeMaire
- Heart & Vascular Institute, Geisinger Health System, Danville, PA, USA
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ziad Mallat
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; Unversité de Paris, Inserm U970, Paris Cardiovascular Research Centre, Paris, France
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Department of Applied Mathematics, Computer Science and Statistics, Ghent University Ghent, Belgium
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY, USA
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Toru Suzuki
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester, UK and Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zhen Zhou (周桢)
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
2
|
Wang J, He C, Chen Y, Hu X, Xu H, Liu J, Yang Y, Chen L, Li T, Fang L, Yang F, Li J, Luo J. Platelet factors ameliorate thoracic aortic aneurysm and dissection by inhibiting the FGF-FGFR cascade activation in aortic-endothelial cell. iScience 2024; 27:110953. [PMID: 39381736 PMCID: PMC11460509 DOI: 10.1016/j.isci.2024.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/25/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is closely associated with vascular endothelial dysfunction. Platelet factor 4 (PF4) is crucial for maintaining vascular endothelial cell homeostasis. However, whether PF4 can influence the progression of TAAD remains unknown. In the present study, we constructed a liposome-encapsulated PF4 nanomedicine and verified its effect on BAPN-induced TAAD in vivo. We found that liposome PF4 nanoparticles (Lipo-PF4), more effectively than PF4 alone, inhibited the formation of TAAD. In vitro, PF4 improved endothelial cell function under pathological conditions by inhibiting migratory and angiogenic abilities of human aortic endothelial cells (HAECs). Mechanically, PF4 inhibited the development of TAAD and improved HAECs function by combining with heparin sulfate and blocking fibroblast growth factor-fibroblast growth factor receptor (FGF-FGFR) signaling. Taken together, we developed a nano-drug (Lipo-PF4) that effectively ameliorates the progression of TAAD by improving endothelial function. Lipo-PF4 is expected to be a therapeutic option for TAAD in the future.
Collapse
Affiliation(s)
- Jizhong Wang
- School of Medicine, School of Medicine South China University of Technology, Guangzhou 510000, China
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Caiyun He
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yuanwei Chen
- School of Medicine, School of Medicine South China University of Technology, Guangzhou 510000, China
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Xiaolu Hu
- School of Medicine, School of Medicine South China University of Technology, Guangzhou 510000, China
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Heng Xu
- Department of Cardiovascular Medicine, Jieyang People’s Hospital, Jieyang 522000, China
| | - Jie Liu
- School of Medicine, School of Medicine South China University of Technology, Guangzhou 510000, China
| | - Yi Yang
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Lang Chen
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Ting Li
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Lixin Fang
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| | - Fan Yang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Jie Li
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
- Linzhi People’s Hospital, Xizang 860100, China
| | - Jianfang Luo
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510000, China
| |
Collapse
|
3
|
Franklin MK, Sawada H, Ito S, Howatt DA, Amioka N, Liang CL, Zhang N, Graf DB, Moorleghen JJ, Katsumata Y, Lu HS, Daugherty A. β-Aminopropionitrile Induces Distinct Pathologies in the Ascending and Descending Thoracic Aortic Regions of Mice. Arterioscler Thromb Vasc Biol 2024; 44:1555-1569. [PMID: 38779856 PMCID: PMC11209774 DOI: 10.1161/atvbaha.123.320402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND β-aminopropionitrile (BAPN) is a pharmacological inhibitor of LOX (lysyl oxidase) and LOXLs (LOX-like proteins). Administration of BAPN promotes aortopathies, although there is a paucity of data on experimental conditions to generate pathology. The objective of this study was to define experimental parameters and determine whether equivalent or variable aortopathies were generated throughout the aortic tree during BAPN administration in mice. METHODS BAPN was administered in drinking water for a period ranging from 1 to 12 weeks. The impacts of BAPN were first assessed with regard to BAPN dose, and mouse strain, age, and sex. BAPN-induced aortic pathological characterization was conducted using histology and immunostaining. To investigate the mechanistic basis of regional heterogeneity, the ascending and descending thoracic aortas were harvested after 1 week of BAPN administration before the appearance of overt pathology. RESULTS BAPN-induced aortic rupture predominantly occurred or originated in the descending thoracic aorta in young C57BL/6J or N mice. No apparent differences were found between male and female mice. For mice surviving 12 weeks of BAPN administration, profound dilatation was consistently observed in the ascending region, while there were more heterogeneous changes in the descending thoracic region. Pathological features were distinct between the ascending and descending thoracic regions. Aortic pathology in the ascending region was characterized by luminal dilatation and elastic fiber disruption throughout the media. The descending thoracic region frequently had dissections with false lumen formation, collagen deposition, and remodeling of the wall surrounding the false lumen. Cells surrounding the false lumen were predominantly positive for α-SMA (α-smooth muscle actin). One week of BAPN administration compromised contractile properties in both regions equivalently, and RNA sequencing did not show obvious differences between the 2 aortic regions in smooth muscle cell markers, cell proliferation markers, and extracellular components. CONCLUSIONS BAPN-induced pathologies show distinct, heterogeneous features within and between ascending and descending aortic regions in mice.
Collapse
MESH Headings
- Animals
- Aminopropionitrile/toxicity
- Aminopropionitrile/pharmacology
- Aorta, Thoracic/pathology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Female
- Male
- Mice, Inbred C57BL
- Disease Models, Animal
- Aortic Rupture/chemically induced
- Aortic Rupture/pathology
- Aortic Rupture/metabolism
- Aortic Rupture/prevention & control
- Mice
- Vascular Remodeling/drug effects
- Dilatation, Pathologic
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Age Factors
- Time Factors
- Sex Factors
- Cell Proliferation/drug effects
- Protein-Lysine 6-Oxidase/metabolism
Collapse
Affiliation(s)
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Sohei Ito
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Naofumi Amioka
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Ching-Ling Liang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Nancy Zhang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - David B. Graf
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | | | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
4
|
Franklin MK, Sawada H, Ito S, Howatt DA, Amioka N, Liang CL, Zhang N, Graf DB, Moorleghen JJ, Katsumata Y, Lu HS, Daugherty A. β-aminopropionitrile Induces Distinct Pathologies in the Ascending and Descending Thoracic Aortic Regions of Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.22.563474. [PMID: 37886537 PMCID: PMC10602045 DOI: 10.1101/2023.10.22.563474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
BACKGROUND β-aminopropionitrile (BAPN) is a pharmacological inhibitor of lysyl oxidase and lysyl oxidase-like proteins. Administration of BAPN promotes aortopathies, although there is a paucity of data on experimental conditions to generate pathology. The objective of this study was to define experimental parameters and determine whether equivalent or variable aortopathies were generated throughout the aortic tree during BAPN administration in mice. METHODS BAPN was administered in drinking water for a period ranging from 1 to 12 weeks. The impacts of BAPN were first assessed with regard to dose, strain, age, and sex. BAPN-induced aortic pathological characterization was conducted using histology and immunostaining. To investigate the mechanistic basis of regional heterogeneity, ascending and descending thoracic aortas were harvested after one week of BAPN administration before the appearance of overt pathology. RESULTS BAPN-induced aortic rupture predominantly occurred or originated in the descending thoracic aorta in young C57BL/6J or N mice. No apparent differences were found between male and female mice. For mice surviving 12 weeks of BAPN administration, profound dilatation was consistently observed in the ascending region, while there were more heterogeneous changes in the descending thoracic region. Pathological features were distinct between the ascending and descending thoracic regions. Aortic pathology in the ascending region was characterized by luminal dilatation and elastic fiber disruption throughout the media. The descending thoracic region frequently had dissections with false lumen formation, collagen deposition, and remodeling of the wall surrounding the false lumen. Cells surrounding the false lumen were predominantly positive for α-smooth muscle actin. One week of BAPN administration compromised contractile properties in both regions equivalently, and RNA sequencing did not show obvious differences between the two aortic regions in smooth muscle cell markers, cell proliferation markers, and extracellular components. CONCLUSIONS BAPN-induced pathologies show distinct, heterogeneous features within and between ascending and descending aortic regions in mice.
Collapse
Affiliation(s)
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Sohei Ito
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Deborah A. Howatt
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Naofumi Amioka
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Ching-Ling Liang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - Nancy Zhang
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | - David B. Graf
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
| | | | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY
- Sanders-Brown Center on Aging University of Kentucky, Lexington, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY
- Saha Aortic Center, University of Kentucky, Lexington, KY
- Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
5
|
Huang S, Gao S, Shao Y, Li P, Lu J, Xu K, Zhou Z, Li Y, Du J. Gut microbial metabolite trimethylamine N-oxide induces aortic dissection. J Mol Cell Cardiol 2024; 189:25-37. [PMID: 38395296 DOI: 10.1016/j.yjmcc.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Aortic dissection (AD) is the most catastrophic vascular disease with a high mortality rate. Trimethylamine N-oxide (TMAO), a gut microbial metabolite, has been implicated in the pathogenesis of cardiovascular diseases. However, the role of TMAO in AD and the underlying mechanisms remain unclear. This study aimed to explore the effects of TMAO on AD. Plasma and fecal samples from patients with AD and healthy individuals were collected to analyze TMAO levels and gut microbial species, respectively. The plasma levels of TMAO were significantly higher in 253 AD patients compared with those in 98 healthy subjects (3.47, interquartile range (IQR): 2.33 to 5.18 μM vs. 1.85, IQR: 1.40 to 3.35 μM; p < 0.001). High plasma TMAO levels were positively associated with AD severity. An increase in the relative abundance of TMA-producing genera in patients with AD was revealed using 16S rRNA sequencing. In the angiotensin II or β-aminopropionitrile-induced rodent model of AD, mice fed a TMAO-supplemented diet were more likely to develop AD compared to mice fed a normal diet. Conversely, TMAO depletion mitigated AD formation in the BAPN model. RNA sequencing of aortic endothelial cells isolated from mice administered TMAO revealed significant upregulation of genes involved in inflammatory pathways. The in vitro experiments verified that TMAO promotes endothelial dysfunction and activates nuclear factor (NF)-κB signaling. The in vivo BAPN-induced AD model confirmed that TMAO increased aortic inflammation. Our study demonstrates that the gut microbial metabolite TMAO aggravates the development of AD at least in part by inducing endothelial dysfunction and inflammation. This study provides new insights into the etiology of AD and ideas for its management.
Collapse
Affiliation(s)
- Shan Huang
- Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Shijuan Gao
- Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yihui Shao
- Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Ping Li
- Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Jie Lu
- Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Ke Xu
- Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Zeyi Zhou
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing 210008, China
| | - Yulin Li
- Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| | - Jie Du
- Collaborative Innovation Centre for Cardiovascular Disorders, the Key Laboratory of Remodeling-Related Cardiovascular Disease, Ministry of Education, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing 100029, China.
| |
Collapse
|
6
|
Lu X, Zhu M, Zhao L, Qi F, Zou H, He P, Zhou H, Shi K, Du J. 68Ga-labeled WVP peptide as a novel PET probe for molecular biological diagnosis of unstable thoracic aortic aneurysm and early dissection: an animal study. Front Cardiovasc Med 2023; 10:1048927. [PMID: 37378402 PMCID: PMC10291320 DOI: 10.3389/fcvm.2023.1048927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE Type IV collagen (Col-IV) is a prospective biomarker for diagnosing and treating of unstable thoracic aortic aneurysm and dissection (TAAD). This study aims to evaluate the feasibility of 68Ga-labeled WVP peptide (68Ga-DOTA-WVP) as a novel Col-IV-targeted probe for TAAD biological diagnosis using PET/CT. METHODS WVP peptide was modified with bifunctional chelator DOTA for 68Ga radiolabeling. Immunohistochemical staining was used to evaluate the expression and location of Col-IV and elastin in aortas treated with 3-aminopropionitrile fumarate (BAPN) at different time points (0, 2, and 4 weeks). The imaging performance of 68Ga-DOTA-WVP was investigated using Micro-PET/CT in a BAPN-induced TAAD mouse model. The relationship between 68Ga-DOTA-WVP uptake in aortic lesions and the serum levels of TAAD-related biomarkers including D-dimer, C-reactive protein (CRP), and serum soluble suppression of tumorigenicity-2 (sST2) was also analyzed. RESULTS 68Ga-DOTA-WVP was readily prepared with high radiochemical purity and stability in vitro. 68Ga-DOTA-WVP Micro-PET/CT could detect Col-IV exposure of unstable aneurysms and early dissection in BAPN-induced TAAD mice, but little 68Ga-DOTA-WVP uptake was shown in the control group at each imaging time point. The differences of Col-IV expression and distribution of 68Ga-DOTA-WVP both in TAAD and control groups further verified the imaging efficiency of 68Ga-DOTA-WVP PET/CT. Additionally, a higher sST2 level was found in the imaging positive (n = 14) than the negative (n = 8) group (9.60 ± 1.14 vs. 8.44 ± 0.52, P = 0.014). CONCLUSION 68Ga-DOTA-WVP could trace the exposure and abnormal deposition of Col-IV in enlarged and early injured aortas, showing a potential for biological diagnosis, whole-body screening, and progression monitoring of TAAD.
Collapse
Affiliation(s)
- Xia Lu
- Department of Nuclear Medicine, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Meilin Zhu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feiran Qi
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Heng Zou
- Department of Clinical Medicine, Cellomics (Shenzhen) Co., Ltd, Shenzhen, China
| | - Peng He
- Department of Medical Research, Xiangpeng Youkang (Beijing) Technology Co., Ltd, Beijing, China
| | - Haizhong Zhou
- Department of Nuclear Medicine, Northern Jiangsu People’s Hospital, Yangzhou, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, University of Bern, Bern, Switzerland
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Jie Du
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Ming Y, Zhou X, Liu G, Abudupataer M, Zhu S, Xiang B, Yin X, Lai H, Sun Y, Wang C, Li J, Zhu K. PM2.5 exposure exacerbates mice thoracic aortic aneurysm and dissection by inducing smooth muscle cell apoptosis via the MAPK pathway. CHEMOSPHERE 2023; 313:137500. [PMID: 36495979 DOI: 10.1016/j.chemosphere.2022.137500] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Air pollution is a major public health concern worldwide. Exposure to fine particulate matter (PM2.5) is closely associated with cardiovascular diseases. However, the effect of PM2.5 exposure on thoracic aortic aneurysm and dissection (TAAD) has not been fully elucidated. Diesel exhaust particulate (DEP) is an important component of PM2.5, which causes health effects and is closely related to the incidence of cardiovascular disease. In the current study, we found that DEP exposure increased the incidence of aortic dissection (AD) in β-aminopropionitrile (BAPN)-induced thoracic aortic aneurysm (TAA). In addition, exposure to PM2.5 increased the diameter of the thoracic aorta in mice models. The number of apoptotic cells increased in the aortic wall of PM2.5-treated mice, as did the protein expression level of BAX/Bcl2 and cleaved caspase3/caspase3. Using a rhythmically stretching aortic mechanical simulation model, fluorescent staining indicated that PM2.5 administration could induce mitochondrial dysfunction and increase reactive oxygen species (ROS) levels in human aortic smooth muscle cells (HASMCs). Furthermore, ERK1/2 mitogen-activated protein kinase (MAPK) signaling pathways participated in the apoptosis of HASMCs after PM2.5 exposure. Therefore, we concluded that PM2.5 exposure could exacerbate the progression of TAAD, which could be induced by the increased apoptosis in HASMCs through the ERK1/2 MAPK signaling pathway.
Collapse
Affiliation(s)
- Yang Ming
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiaonan Zhou
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Gang Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Mieradilijiang Abudupataer
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Shichao Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Bitao Xiang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiujie Yin
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Yongxin Sun
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China.
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China.
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China; Shanghai Institute of Cardiovascular Diseases, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
8
|
Ji C, Wang X, Xue B, Li S, Li J, Qiao B, Du J, Yin M, Wang Y. A fluorescent nano vector for early diagnosis and enhanced Interleukin-33 therapy of thoracic aortic dissection. Biomaterials 2023; 293:121958. [PMID: 36566550 DOI: 10.1016/j.biomaterials.2022.121958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Thoracic aortic dissection (TAD) is the most devastating complication of vascular disease. The accuracy of the clinical diagnosis and treatment of TAD at the early stage is still limited. Herein, we report a nano-delivery strategy for early diagnosis and the first case of interleukin-33 (IL-33) based therapy for the effective intervention of TAD. A targeted fluorescent nano vector (FNV) is designed to co-assemble with IL-33, which protects IL-33 and prolongs its half-life. With specific targeting ability to the thoracic aorta, FNV can diagnose TAD at its early stage through fluorescent imaging. FNV@IL-33 nanocomplex presents better therapeutic effects on mice TAD progression compared with that of IL-33 alone by reducing smooth muscle apoptosis. Administration of FNV@IL-33 two weeks before onset, the development of TAD is greatly intervened. Our study provides a novel approach for early diagnosis and effective IL-33 therapy of TAD, which opens attractive opportunities for clinical prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xue Wang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), And Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029, Beijing, China
| | - Bingjie Xue
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), And Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029, Beijing, China
| | - Shuolin Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Jianhao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Bokang Qiao
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), And Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029, Beijing, China
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), And Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029, Beijing, China.
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China.
| | - Yuan Wang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), And Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, 100029, Beijing, China.
| |
Collapse
|
9
|
Liu R, Huang SS, Shi H, Chang S, Ge J. Alpha-lipoic acid protects against aortic aneurysm and dissection by improving vascular smooth muscle cell function. Life Sci 2022; 311:121159. [DOI: 10.1016/j.lfs.2022.121159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
10
|
Zhou X, Liu G, Lai H, Wang C, Li J, Zhu K. Using Molecular Targets to Predict and Treat Aortic Aneurysms. Rev Cardiovasc Med 2022; 23:307. [PMID: 39077712 PMCID: PMC11262374 DOI: 10.31083/j.rcm2309307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 07/31/2024] Open
Abstract
Aortic aneurysms are life-threatening vascular diseases associated with high morbidity, and usually require prophylactic surgical intervention. Current preventative management of aortic aneurysms relies on the diameter and other anatomic parameters of the aorta, but these have been demonstrated to be insufficient predictive factors of disease progression and potential complications. Studies on pathophysiology of aortic aneurysms could fill this need, which already indicated the significance of specific molecules in aortic aneurysms. These molecules provide more accurate prediction, and they also serve as therapeutic targets, some of which are in preclinical stage. In this review, we summarized the inadequacies and achievements of current clinical prediction standards, discussed the molecular targets in prediction and treatment, and especially emphasized the molecules that have shown potentials in early diagnosis, accurate risk assessment and target treatment of aortic aneurysm at early stage.
Collapse
Affiliation(s)
- Xiaonan Zhou
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Gang Liu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Jun Li
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 200032 Shanghai, China
| |
Collapse
|
11
|
Wang Y, Gao P, Li F, Du J. Insights on aortic aneurysm and dissection: Role of the extracellular environment in vascular homeostasis. J Mol Cell Cardiol 2022; 171:90-101. [DOI: 10.1016/j.yjmcc.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/06/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022]
|
12
|
Rastogi V, Stefens SJM, Houwaart J, Verhagen HJM, de Bruin JL, van der Pluijm I, Essers J. Molecular Imaging of Aortic Aneurysm and Its Translational Power for Clinical Risk Assessment. Front Med (Lausanne) 2022; 9:814123. [PMID: 35492343 PMCID: PMC9051391 DOI: 10.3389/fmed.2022.814123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/21/2022] [Indexed: 01/03/2023] Open
Abstract
Aortic aneurysms (AAs) are dilations of the aorta, that are often fatal upon rupture. Diagnostic radiological techniques such as ultrasound (US), magnetic resonance imaging (MRI), and computed tomography (CT) are currently used in clinical practice for early diagnosis as well as clinical follow-up for preemptive surgery of AA and prevention of rupture. However, the contemporary imaging-based risk prediction of aneurysm enlargement or life-threatening aneurysm-rupture remains limited as these are restricted to visual parameters which fail to provide a personalized risk assessment. Therefore, new insights into early diagnostic approaches to detect AA and therefore to prevent aneurysm-rupture are crucial. Multiple new techniques are developed to obtain a more accurate understanding of the biological processes and pathological alterations at a (micro)structural and molecular level of aortic degeneration. Advanced anatomical imaging combined with molecular imaging, such as molecular MRI, or positron emission tomography (PET)/CT provides novel diagnostic approaches for in vivo visualization of targeted biomarkers. This will aid in the understanding of aortic aneurysm disease pathogenesis and insight into the pathways involved, and will thus facilitate early diagnostic analysis of aneurysmal disease. In this study, we reviewed these molecular imaging modalities and their association with aneurysm growth and/or rupture risk and their limitations. Furthermore, we outline recent pre-clinical and clinical developments in molecular imaging of AA and provide future perspectives based on the advancements made within the field. Within the vastness of pre-clinical markers that have been studied in mice, molecular imaging targets such as elastin/collagen, albumin, matrix metalloproteinases and immune cells demonstrate promising results regarding rupture risk assessment within the pre-clinical setting. Subsequently, these markers hold potential as a future diagnosticum of clinical AA assessment. However currently, clinical translation of molecular imaging is still at the onset. Future human trials are required to assess the effectivity of potentially viable molecular markers with various imaging modalities for clinical rupture risk assessment.
Collapse
Affiliation(s)
- Vinamr Rastogi
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Sanne J. M. Stefens
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Judith Houwaart
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hence J. M. Verhagen
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jorg L. de Bruin
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ingrid van der Pluijm
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeroen Essers
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, Netherlands
- *Correspondence: Jeroen Essers
| |
Collapse
|
13
|
Qi F, Liu Y, Zhang K, Zhang Y, Xu K, Zhou M, Zhao H, Zhu S, Chen J, Li P, Du J. Artificial Intelligence Uncovers Natural MMP Inhibitor Crocin as a Potential Treatment of Thoracic Aortic Aneurysm and Dissection. Front Cardiovasc Med 2022; 9:871486. [PMID: 35463768 PMCID: PMC9019136 DOI: 10.3389/fcvm.2022.871486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is a lethal cardiovascular condition without effective pharmaceutical therapy. Identifying novel drugs that target the key pathogenetic components is an urgent need. Bioinformatics analysis of pathological studies indicated “extracellular matrix organization” as the most significant functional pathway related to TAAD, in which matrix metallopeptidase (MMP) 2 and MMP9 ranked above other proteases. MMP1-14 were designated as the prototype molecules for docking against PubChem Compound Database using Surflex-Dock, and nine natural compounds were identified. Using a generic MMP activity assay and an aminopropionitrile (BAPN)-induced TAAD mouse model, we identified crocin as an effective MMP inhibitor, suppressing the occurrence and rupture of TAAD. Biolayer interferometry and AI/bioinformatics analyses indicated that crocin may inhibit MMP2 activity by direct binding. Possible binding sites were investigated. Overall, the integration of artificial intelligence and functional experiments identified crocin as an MMP inhibitor with strong therapeutic potential.
Collapse
Affiliation(s)
- Feiran Qi
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Kunlin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yanzhenzi Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Ke Xu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Mei Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huinan Zhao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Shuolin Zhu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Jianxin Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Jianxin Chen
| | - Ping Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- Ping Li
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
- Jie Du
| |
Collapse
|
14
|
Zhou X, Zhu K, Zhang Y, Ming Y, Shi D, Tan H, Xiang B, Zhu S, Cheng D, Lai H, Wang C, Liu G. CD11b-Based Pre-Targeted SPECT/CT Imaging Allows for the Detection of Inflammation in Aortic Aneurysm. J Inflamm Res 2022; 15:1921-1933. [PMID: 35321320 PMCID: PMC8935951 DOI: 10.2147/jir.s350593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the feasibility of a pre-targeted imaging strategy based on the cycloaddition between 1,2,4,5-terazine (Tz) and trans-cyclooctene (TCO) for evaluating CD11b expression in inflammatory aortic aneurysm (AA) using single photon emission computed tomography/computed tomography (SPECT/CT). Methods C57BL/6J mice were fed β-aminopropionitrile (1 g/kg/day) for 4 weeks to establish AA models. Anti-CD11b-TCO was synthesized and 99mTc-HYNIC-PEG11-Tz was designed for pre-targeted SPECT/CT. The affinity and specificity of the probe for the inflammatory cell line Raw-264.7 were investigated. Then, anti-CD11b-TCO pre-targeted and 99mTc-HYNIC-PEG11-Tz based SPECT/CT were performed to detect in vivo inflammation in AA. Finally, ex vivo aortic breast-specific gamma imaging (BSGI), Western blot assays, and immunohistochemical CD11b staining were performed to confirm the in vivo findings of SPECT/CT. Results In the AA models, 65.22% (15/23) had aortic lesions, including 43.48% (10/23) AA lesions. The anti-CD11b-TCO presented with a high TCO coupling ratio (7.43), and the 99mTc-HYNIC-PEG11-Tz showed high radio-purity (>95%), good in vitro stability and a rapid clearance rate. Additionally, anti-CD11b-TCO and 99mTc-HYNIC-PEG11-Tz presented high click rate (~89%). The in vitro clicked compound, 99mTc-HYNIC-PEG11-Tz/TCO-anti-CD11b, showed high affinity and specificity for Raw-264.7 cells. 99mTc-HYNIC-PEG11-Tz/TCO-anti-CD11b pre-targeting SPECT/CT successfully demonstrated inflammatory AA with a high AA-to-background ratio in AA mice, compared to AA mice that were injected with 99mTc-HYNIC-Tz/TCO-IgG (8.13 versus 3.71, P < 0.001) and control mice injected with 99mTc-HYNIC-Tz/TCO-anti-CD11b (8.13 versus 3.66, P < 0.001). This result was confirmed by ex vivo BSGI performed immediately after SPECT/CT and immunohistochemical CD11b staining. Conclusion SPECT/CT imaging using the anti-CD11b-TCO/Tz-PEG11-HYNIC-99mTc based pre-targeting imaging strategy allows for the detection of inflammation in progressive AA.
Collapse
Affiliation(s)
- Xiaonan Zhou
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Kai Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Yiqiu Zhang
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People’s Republic of China
| | - Yang Ming
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Dai Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People’s Republic of China
| | - Hui Tan
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People’s Republic of China
| | - Bitao Xiang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Shichao Zhu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Dengfeng Cheng
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People’s Republic of China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
| | - Chunsheng Wang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, People’s Republic of China
- Chunsheng Wang, Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People’s Republic of China, Email
| | - Guobing Liu
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, People’s Republic of China
- Institute of Nuclear Medicine, Fudan University, Shanghai, 200032, People’s Republic of China
- Shanghai Institute of Medical Imaging, Shanghai, 200032, People’s Republic of China
- Correspondence: Guobing Liu, Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, No. 180 in Fenglin Road, Shanghai, 200032, People’s Republic of China, Tel +8618317086732, Fax +86-21-62489191, Email
| |
Collapse
|
15
|
Sawada H, Beckner ZA, Ito S, Daugherty A, Lu HS. β-Aminopropionitrile-induced aortic aneurysm and dissection in mice. JVS Vasc Sci 2022; 3:64-72. [PMID: 35141570 PMCID: PMC8814647 DOI: 10.1016/j.jvssci.2021.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
The mechanistic basis for the formation of aortic aneurysms and dissection needs to be elucidated to facilitate the development of effective medications. β-Aminopropionitrile administration in mice has been used frequently to study the pathologic features and mechanisms of aortic aneurysm and dissection. This mouse model mimics several facets of the pathology of human aortic aneurysms and dissection, although many variables exist in the experimental design and protocols that must be resolved to determine its application to the human disease. In the present brief review, we have introduced the development of this mouse model and provided insights into understanding its pathologic features.
Collapse
Affiliation(s)
- Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Ky
- Saha Aortic Center, University of Kentucky, Lexington, Ky
- Department of Physiology, University of Kentucky, Lexington, Ky
| | - Zachary A. Beckner
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Ky
- Saha Aortic Center, University of Kentucky, Lexington, Ky
| | - Sohei Ito
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Ky
- Saha Aortic Center, University of Kentucky, Lexington, Ky
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Ky
- Saha Aortic Center, University of Kentucky, Lexington, Ky
- Department of Physiology, University of Kentucky, Lexington, Ky
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, Ky
- Saha Aortic Center, University of Kentucky, Lexington, Ky
- Department of Physiology, University of Kentucky, Lexington, Ky
| |
Collapse
|
16
|
Zhang J, Zhang Z. Fluoroquinolones increase the risk of aortic aneurysm and dissection: A protocol for meta-analysis. Medicine (Baltimore) 2021; 100:e28081. [PMID: 34941048 PMCID: PMC8702248 DOI: 10.1097/md.0000000000028081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Fluoroquinolones have been associated with collagen degradation, raising safety concerns related to more serious collagen disorders with use of these antibiotics, including aortic aneurysm and dissection. We performed this protocol for meta-analysis to examine the relationship between fluoroquinolone therapy and the risk of developing aortic aneurysm and dissection. METHODS This study will be designed following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols statement guidelines. Studies were identified through systematic searches in November 2021 with no restrictions on date and time, and publication status using the following bibliographic databases: Embase, Medline, PubMed, Web of Science, Science Direct, and the Cochrane Library. The risk of bias of included studies were estimated by taking into consideration the characteristics including random sequence generation, allocation concealment, blinding of patients, blinding of outcome assessment, completeness of outcome data, selective reporting and other bias by Cochrane Collaboration's tool. Data synthesis and analyses were performed using Stata version 10.0 software. RESULTS The results of this systematic review and meta-analysis will be published in a peer-reviewed journal. CONCLUSION Use of fluoroquinolones may be associated with an increased risk of aortic aneurysm and dissection. While these were rare events, physicians should be aware of this possible drug safety risk associated with fluoroquinolone therapy. OPEN SCIENCE FRAMEWORK REGISTRATION NUMBER https://doi.org/10.17605/OSF.IO/ZKE3Y10.17605/OSF.IO/UP3BA.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Vascular Surgery, The First Hospital of China Medical University, Liaoning, China
| | - Zhe Zhang
- Operating Room, The First Hospital of China Medical University, Liaoning, China
| |
Collapse
|
17
|
Liu J, Yang Y, Liu X, Widjaya AS, Jiang B, Jiang Y. Macrophage-biomimetic anti-inflammatory liposomes for homing and treating of aortic dissection. J Control Release 2021; 337:224-235. [PMID: 34298057 DOI: 10.1016/j.jconrel.2021.07.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 01/27/2023]
Abstract
Aortic dissection (AD) is a life-threatening disease featured by the dissection of intimal layer and the formation of a blood-filled false lumen within the aortic wall. Recent studies revealed that the formation and progression of AD lesions is closely related to vascular inflammation and macrophage infiltration. However, the potential efficacy of anti-inflammatory therapy on the prevention and treatment of AD has not been extensively investigated. Herein, we proposed a biomimetic anti-inflammatory liposome (PM/TN-CCLP) co-loaded with curcumin and celecoxib (CC), modified with cell-penetrating TAT-NBD fusion peptide (TN), and further camouflaged by isolated macrophage plasma membrane (PM), as a potential nanotherapy for AD. In vitro results showed that PM/TN-CCLP exhibited low cytotoxicity and elevated cellular uptake by inflammatory macrophages, and prominently inhibited the transendothelial migration, inflammatory responses and ROS generation of macrophages. Moreover, the PM/TN-CCLP treatment significantly prevented the H2O2-induced smooth muscle cell apoptosis. In vivo experiments were performed on the acute and chronic AD mouse models, respectively. The results verified the elevated accumulation of PM-camouflaged liposome at the aorta lesions. Further, the anti-inflammatory liposomes, especially PM/TN-CCLP, could reduce the rupture rate of dissection, prevent the loss of elastic fibers, and reduce MMP-9 expression as well as macrophage infiltration in the aortic lesions. Notably, as compared with free drugs and TN-CCLP, the PM/TN-CCLP treatment displayed the longest survival period along with the minimal aortic injury on both acute and chronic AD mice. Taken together, the present study suggested that the macrophage-biomimetic anti-inflammatory nanotherapy would be a promising strategy for the prevention and therapy of aortic dissection.
Collapse
Affiliation(s)
- Jingxuan Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yueying Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiao Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Andy Samuel Widjaya
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Baohong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yanyan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
18
|
Qiu L, Yi S, Yu T, Hao Y. Sirt3 Protects Against Thoracic Aortic Dissection Formation by Reducing Reactive Oxygen Species, Vascular Inflammation, and Apoptosis of Smooth Muscle Cells. Front Cardiovasc Med 2021; 8:675647. [PMID: 34095262 PMCID: PMC8176563 DOI: 10.3389/fcvm.2021.675647] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
Sirtuin3 (Sirt3) is a histone deacetylase involved in the regulation of many cellular processes. Sirt3 deficiency is known to increase oxidative stress. Reactive oxygen species (ROS) promote degradation of the extracellular matrix and vascular smooth muscle cell (VSMC) apoptosis. Reducing oxidative stress by Sirt3 overexpression could have therapeutic potential for limiting thoracic aortic dissection (TAD) development. We hypothesized that Sirt3 deficiency could increase the risk for TAD by decreasing ROS elimination and that Sirt3 overexpression (Sirt3OE) could provide an alternative option for TAD treatment. Mice with TAD had significantly lower Sirt3 expression than normal subjects. Sirt3 KO mice exhibit significantly increased TAD incidence rate and increased aortic diameters. Moreover, Sirt3 overexpression reduced Ang II-induced ROS production, NF-kB activation, and apoptosis in human aortic smooth muscle cells (HASMCs). Sirt3 overexpression attenuated aneurysm formation and decreased aortic expansion. In conclusion, our data showed that Sirt3 deficiency increases susceptibility to TAD formation by attenuating anti-ROS effects and increasing VSMC apoptosis and vascular inflammation.
Collapse
Affiliation(s)
- Lin Qiu
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Shaolei Yi
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Tingting Yu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Hao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
19
|
Ghaghada KB, Ren P, Devkota L, Starosolski Z, Zhang C, Vela D, Stupin IV, Tanifum EA, Annapragada AV, Shen YH, LeMaire SA. Early Detection of Aortic Degeneration in a Mouse Model of Sporadic Aortic Aneurysm and Dissection Using Nanoparticle Contrast-Enhanced Computed Tomography. Arterioscler Thromb Vasc Biol 2021; 41:1534-1548. [PMID: 33535789 PMCID: PMC7990703 DOI: 10.1161/atvbaha.120.315210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ketan B Ghaghada
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston (K.B.G., L.D., Z.S., I.V.S., E.A.T., A.V.A.)
- Department of Radiology (K.B.G., Z.S., E.A.T., A.V.A.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (K.B.G., A.V.A., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX
| | - Pingping Ren
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (P.R., C.Z., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX
| | - Laxman Devkota
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston (K.B.G., L.D., Z.S., I.V.S., E.A.T., A.V.A.)
- Department of Pediatrics, Section of Hematology-Oncology (L.D.), Baylor College of Medicine, Houston, TX
| | - Zbigniew Starosolski
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston (K.B.G., L.D., Z.S., I.V.S., E.A.T., A.V.A.)
- Department of Radiology (K.B.G., Z.S., E.A.T., A.V.A.), Baylor College of Medicine, Houston, TX
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (P.R., C.Z., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX
| | - Deborah Vela
- Department of Cardiovascular Pathology Research (D.V.), Texas Heart Institute, Houston
| | - Igor V Stupin
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston (K.B.G., L.D., Z.S., I.V.S., E.A.T., A.V.A.)
| | - Eric A Tanifum
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston (K.B.G., L.D., Z.S., I.V.S., E.A.T., A.V.A.)
- Department of Radiology (K.B.G., Z.S., E.A.T., A.V.A.), Baylor College of Medicine, Houston, TX
| | - Ananth V Annapragada
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, Houston (K.B.G., L.D., Z.S., I.V.S., E.A.T., A.V.A.)
- Department of Radiology (K.B.G., Z.S., E.A.T., A.V.A.), Baylor College of Medicine, Houston, TX
- Cardiovascular Research Institute (K.B.G., A.V.A., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX
| | - Ying H Shen
- Cardiovascular Research Institute (K.B.G., A.V.A., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (P.R., C.Z., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery (Y.H.S., S.A.L.), Texas Heart Institute, Houston
| | - Scott A LeMaire
- Cardiovascular Research Institute (K.B.G., A.V.A., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery (P.R., C.Z., Y.H.S., S.A.L.), Baylor College of Medicine, Houston, TX
- Department of Cardiovascular Surgery (Y.H.S., S.A.L.), Texas Heart Institute, Houston
| |
Collapse
|
20
|
Jiang X, Shao M, Liu X, Liu X, Zhang X, Wang Y, Yin K, Wang S, Hu Y, Jose PA, Zhou Z, Xu F, Yang Z. Reversible Treatment of Pressure Overload-Induced Left Ventricular Hypertrophy through Drd5 Nucleic Acid Delivery Mediated by Functional Polyaminoglycoside. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003706. [PMID: 33717857 PMCID: PMC7927605 DOI: 10.1002/advs.202003706] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/23/2020] [Indexed: 05/12/2023]
Abstract
Left ventricular hypertrophy and fibrosis are major risk factors for heart failure, which require timely and effective treatment. Genetic therapy has been shown to ameliorate hypertrophic cardiac damage. In this study, it is found that in mice, the dopamine D5 receptor (D5R) expression in the left ventricle (LV) progressively decreases with worsening of transverse aortic constriction-induced left ventricular hypertrophy. Then, a reversible treatment of left ventricular hypertrophy with Drd5 nucleic acids delivered by tobramycin-based hyperbranched polyaminoglycoside (SS-HPT) is studied. The heart-specific increase in D5R expression by SS-HPT/Drd5 plasmid in the early stage of left ventricular hypertrophy attenuates cardiac hypertrophy and fibrosis by preventing oxidative and endoplasmic reticulum (ER) stress and ameliorating autophagic dysregulation. By contrast, SS-HPT/Drd5 siRNA promotes the progression of left ventricular hypertrophy and accelerates the deterioration of myocardial function into heart failure. The reduction in cardiac D5R expression and dysregulated autophagy are observed in patients with hypertrophic cardiomyopathy and heart failure. The data show a cardiac-specific beneficial effect of SS-HPT/Drd5 plasmid on myocardial remodeling and dysfunction, which may provide an effective therapy of patients with left ventricular hypertrophy and heart failure.
Collapse
Affiliation(s)
- Xiaoliang Jiang
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases5 Pan Jia Yuan Nan Li, Chaoyang DistrictBeijing100021P. R. China
| | - Meiyu Shao
- Key Lab of Biomedical Materials of Natural MacromoleculesMinistry of EducationBeijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Xue Liu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases5 Pan Jia Yuan Nan Li, Chaoyang DistrictBeijing100021P. R. China
| | - Xing Liu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases5 Pan Jia Yuan Nan Li, Chaoyang DistrictBeijing100021P. R. China
| | - Xu Zhang
- Department of Hepato‐Biliary‐Pancreatic SurgeryHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Yuming Wang
- Department of Hepato‐Biliary‐Pancreatic SurgeryHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Kunlun Yin
- State Key Laboratory of Cardiovascular DiseaseBeijing Key Laboratory for Molecular Diagnostics of Cardiovascular DiseasesDiagnostic Laboratory ServiceFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037P. R. China
| | - Shuiyun Wang
- Department of Cardiovascular SurgeryState Key Laboratory of Cardiovascular DiseaseFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037P. R. China
| | - Yang Hu
- Key Lab of Biomedical Materials of Natural MacromoleculesMinistry of EducationBeijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Pedro A Jose
- Department of Pharmacology and PhysiologyThe George Washington University School of Medicine & Health SciencesWashingtonDC20052USA
- Department of MedicineDivision of Kidney Diseases & HypertensionThe George Washington University School of Medicine & Health SciencesWashingtonDC20052USA
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular DiseaseBeijing Key Laboratory for Molecular Diagnostics of Cardiovascular DiseasesDiagnostic Laboratory ServiceFuwai HospitalNational Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100037P. R. China
| | - Fu‐Jian Xu
- Key Lab of Biomedical Materials of Natural MacromoleculesMinistry of EducationBeijing Laboratory of Biomedical MaterialsBeijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Zhiwei Yang
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS & PUMC), and Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases5 Pan Jia Yuan Nan Li, Chaoyang DistrictBeijing100021P. R. China
| |
Collapse
|
21
|
Vaidya A, Ayat N, Buford M, Wang H, Shankardass A, Zhao Y, Gilmore H, Wang Z, Lu ZR. Noninvasive assessment and therapeutic monitoring of drug-resistant colorectal cancer by MR molecular imaging of extradomain-B fibronectin. Theranostics 2020; 10:11127-11143. [PMID: 33042274 PMCID: PMC7532678 DOI: 10.7150/thno.47448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022] Open
Abstract
Antineoplastic resistance represents a multifaceted challenge for cancer therapy and diagnostics. Extensive molecular heterogeneity, even within neoplasms of the same type, can elicit distinct outcomes of administering therapeutic pressures, frequently leading to the development of drug-resistant populations. Improved success of oncotherapies merits the exploration of precise molecular imaging technologies that can detect not only anatomical but also molecular changes in tumors and their microenvironment, early on in the treatment regimen. To this end, we developed magnetic resonance molecular imaging (MRMI) strategies to target the extracellular matrix oncoprotein, extradomain-B fibronectin (EDB-FN), for non-invasive assessment and therapeutic monitoring of drug-resistant colorectal cancer (CRC). Methods: Two drug-resistant CRC lines generated from parent DLD-1 and RKO cells by long-term treatment with 5'-FU and 5'-FU plus CB-839 respectively, were characterized for functional and gene expression changes using 3D culture, transwell invasion, qRT-PCR, and western blot assays. Contrast-enhanced MRMI of EDB-FN was performed in athymic nu/nu mice bearing subcutaneous tumor xenografts with 40 µmol/kg dose of macrocyclic ZD2-targeted contrast agent MT218 [ZD2-N3-Gd (HP-DO3A)] on a 3T MRS 3000 scanner. Immunohistochemistry was conducted on patient specimens and xenografts using anti-EDB-FN antibody G4. Results: Analyses of TCGA and GTEx databases revealed poor prognosis of colon cancer patients with higher levels of EDB-FN. Similarly, immunohistochemical staining of patient specimens showed increased EDB-FN expression in primary colon adenocarcinoma and hepatic metastases, but none in normal adjacent tissues. Drug-resistant DLD1-DR and RKO-DR cells were also found to demonstrate enhanced invasive potential and significantly elevated EDB-FN expression over their parent counterparts. MRMI of EDB-FN with 40 µmol/kg dose of MT218 (60% lower than the clinical dose) resulted in robust signal enhancement in the drug-resistant CRC xenografts with 84-120% increase in their contrast-to-noise ratios (CNRs) over the non-resistant counterparts. The feasibility of non-invasive therapeutic monitoring using MRMI of EDB-FN was also evaluated in drug-resistant DLD1-DR tumors treated with a pan-AKT inhibitor MK2206-HCl. The treated drug-resistant tumors failed to respond to therapy, which was accurately detected by MRMI with MT218, demonstrating higher signal enhancement and increased CNRs in the 4-week follow-up scans over the pre-treatment scans. Conclusions: EDB-FN is a promising molecular marker for assessing drug resistance. MRMI of EDB-FN with MT218 at a significantly reduced dose can facilitate effective non-invasive assessment and treatment response monitoring of drug-resistant CRC, highlighting its translational potential for active surveillance and management of CRC and other malignancies.
Collapse
Affiliation(s)
- Amita Vaidya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nadia Ayat
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Megan Buford
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Helen Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Aman Shankardass
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yiqing Zhao
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Hannah Gilmore
- Department of Pathology, University Hospitals of Cleveland, Cleveland, OH 44106, USA
| | - Zhenghe Wang
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
22
|
Zheng HQ, Rong JB, Ye FM, Xu YC, Lu HS, Wang JA. Induction of thoracic aortic dissection: a mini-review of β-aminopropionitrile-related mouse models. J Zhejiang Univ Sci B 2020; 21:603-610. [PMID: 32748576 PMCID: PMC7445087 DOI: 10.1631/jzus.b2000022] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Thoracic aortic dissection (TAD) is one of the most lethal aortic diseases due to its acute onset, rapid progress, and high rate of aortic rupture. The pathogenesis of TAD is not completely understood. In this mini-review, we introduce three emerging experimental mouse TAD models using β-aminopropionitrile (BAPN) alone, BAPN for a prolonged duration (four weeks) and then with added infusion of angiotensin II (AngII), or co-administration of BAPN and AngII chronically. We aim to provide insights into appropriate application of these three mouse models, thereby enhancing the understanding of the molecular mechanisms of TAD.
Collapse
Affiliation(s)
- Hai-qiong Zheng
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Jia-bing Rong
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Fei-ming Ye
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Yin-chuan Xu
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Jian-an Wang
- Department of Cardiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou 310009, China
| |
Collapse
|
23
|
Lv XF, Zhang YJ, Liu X, Zheng HQ, Liu CZ, Zeng XL, Li XY, Lin XC, Lin CX, Ma MM, Zhang FR, Shang JY, Zhou JG, Liang SJ, Guan YY. TMEM16A ameliorates vascular remodeling by suppressing autophagy via inhibiting Bcl-2-p62 complex formation. Am J Cancer Res 2020; 10:3980-3993. [PMID: 32226533 PMCID: PMC7086348 DOI: 10.7150/thno.41028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
Rationale: Transmembrane member 16A (TMEM16A) is a component of calcium-activated chloride channels that regulate vascular smooth muscle cell (SMC) proliferation and remodeling. Autophagy, a highly conserved cellular catabolic process in eukaryotes, exerts important physiological functions in vascular SMCs. In the current study, we investigated the relationship between TMEM16A and autophagy during vascular remodeling. Methods: We generated a transgenic mouse that overexpresses TMEM16A specifically in vascular SMCs to verify the role of TMEM16A in vascular remodeling. Techniques employed included immunofluorescence, electron microscopy, co-immunoprecipitation, and Western blotting. Results: Autophagy was activated in aortas from angiotensin II (AngII)-induced hypertensive mice with decreased TMEM16A expression. The numbers of light chain 3B (LC3B)-positive puncta in aortas correlated with the medial cross-sectional aorta areas and TMEM16A expression during hypertension. SMC-specific TMEM16A overexpression markedly inhibited AngII-induced autophagy in mouse aortas. Moreover, in mouse aortic SMCs (MASMCs), AngII-induced autophagosome formation and autophagic flux were blocked by TMEM16A upregulation and were promoted by TMEM16A knockdown. The effect of TMEM16A on autophagy was independent of the mTOR pathway, but was associated with reduced kinase activity of the vacuolar protein sorting 34 (VPS34) enzyme. Overexpression of VPS34 attenuated the effect of TMEM16A overexpression on MASMC proliferation, while the effect of TMEM16A downregulation was abrogated by a VPS34 inhibitor. Further, co-immunoprecipitation assays revealed that TMEM16A interacts with p62. TMEM16A overexpression inhibited AngII-induced p62-Bcl-2 binding and enhanced Bcl-2-Beclin-1 interactions, leading to suppression of Beclin-1/VPS34 complex formation. However, TMEM16A downregulation showed the opposite effects. Conclusion: TMEM16A regulates the four-way interaction between p62, Bcl-2, Beclin-1, and VPS34, and coordinately prevents vascular autophagy and remodeling.
Collapse
|
24
|
Wang X, Zhang H, Cao L, He Y, Ma A, Guo W. The Role of Macrophages in Aortic Dissection. Front Physiol 2020; 11:54. [PMID: 32116765 PMCID: PMC7013038 DOI: 10.3389/fphys.2020.00054] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Aortic dissection (AD) is a fatal disease that accounts for a large proportion of aortic-related deaths and has an incidence of about 3–4 per 100,000 individuals every year. Recent studies have found that inflammation plays an important role in the development of AD, and that macrophages are the hub of inflammation in the aortic wall. Aortic samples from AD patients reveal a large amount of macrophage infiltration. The sites of macrophage infiltration and activity vary throughout the different stages of AD, with involvement even in the tissue repair phase of AD. Angiotensin II has been shown to be an important factor in the stimulation of macrophage activity. Stimulated macrophages can secrete metalloproteinases, inflammatory factors and other substances to cause matrix destruction, smooth muscle cell apoptosis, neovascularization and more, all of which destroy the aortic wall structure. At the same time, there are a number of factors that regulate macrophages to reduce the formation of AD and induce the repair of torn aortic tissues. The aim of this review is to take a close look at the roles of macrophages throughout the course of AD disease.
Collapse
Affiliation(s)
- Xinhao Wang
- Department of Vascular and Endovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongpeng Zhang
- Department of Vascular and Endovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Long Cao
- Department of Vascular and Endovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China.,Department of General Surgery, PLA No. 983 Hospital, Tianjin, China
| | - Yuan He
- Department of Vascular and Endovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Airong Ma
- Department of Obstetrics, Zibo Central Hospital, Zibo, China
| | - Wei Guo
- Department of Vascular and Endovascular Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Pan L, Lin Z, Tang X, Tian J, Zheng Q, Jing J, Xie L, Chen H, Lu Q, Wang H, Li Q, Han Y, Ji Y. S-Nitrosylation of Plastin-3 Exacerbates Thoracic Aortic Dissection Formation via Endothelial Barrier Dysfunction. Arterioscler Thromb Vasc Biol 2019; 40:175-188. [PMID: 31694393 DOI: 10.1161/atvbaha.119.313440] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Thoracic aortic dissection (TAD) is a fatal disease that leads to aortic rupture and sudden death. However, little is known about the effect and molecular mechanism of S-nitrosylation (SNO) modifications in TAD formation. Approach and Results: SNO levels were higher in aortic tissues from TAD patients than in those from healthy controls, and PLS3 (plastin-3) SNO was identified by liquid chromatography-tandem mass spectrometry analysis. Furthermore, tail vein administration of endothelial-specific adeno-associated viruses of mutant PLS3-C566A (denitrosylated form) suppressed the development of TAD in mice, but the wild-type PLS3 (S-nitrosylated form) virus did not. Mechanistically, Ang II (angiotensin II)-induced PLS3 SNO enhanced the association of PLS3 with both plectin and cofilin via an iNOS (inducible nitric oxide synthase)-dependent pathway in endothelial cells. The formation of PLS3/plectin/cofilin complex promoted cell migration and tube formation but weakened adherens junction formation in Ang II-treated endothelial cells. Interestingly, denitrosylated form of PLS3 partially mitigated Ang II-induced PLS3/plectin/cofilin complex formation and cell junction disruption. Additionally, the inhibition of iNOS attenuated PLS3 SNO and the association of PLS3 with plectin and cofilin, thereby modulating endothelial barrier function. CONCLUSIONS Our data indicate that protein SNO modification in endothelial cells modulates the progression of aortic aneurysm and dissection. The iNOS-mediated SNO of PLS3 at the Cys566 site promoted its interaction with cofilin and plectin, thus contributing to endothelial barrier disruption and pathological angiogenesis in TAD.
Collapse
Affiliation(s)
- Lihong Pan
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Zhe Lin
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Xin Tang
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Jiaxin Tian
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Qiao Zheng
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Jin Jing
- Department of Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, China (J.J., Q.L.)
| | - Liping Xie
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Hongshan Chen
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| | - Qiulun Lu
- Department of Cardiovascular Center, The Second Affiliated Hospital of Nanjing Medical University, China (J.J., Q.L.)
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA (H.W.)
| | - Qingguo Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, China (Q.L.)
| | - Yi Han
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, China (Y.H.)
| | - Yong Ji
- From the Key Laboratory of Cardiovascular and Cerebrovascular Medicine, State Key Laboratory of Reproductive Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (L.P., Z.L., X.T., J.T., Q.Z., L.X., H.C., Y.J.)
| |
Collapse
|
26
|
Zhang Z, Jiang Y, Zhou Z, Huang J, Chen S, Zhou W, Yang Q, Bai H, Zhang H, Ben J, Zhu X, Li X, Chen Q. Scavenger receptor A1 attenuates aortic dissection via promoting efferocytosis in macrophages. Biochem Pharmacol 2019; 168:392-403. [PMID: 31381873 DOI: 10.1016/j.bcp.2019.07.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023]
Abstract
Macrophage class A1 scavenger receptor (SR-A1) is a pattern recognition receptor with an anti-inflammatory feature in cardiovascular diseases. However, its role in acute aortic dissection (AD) is not known yet. Using an aortic dissection model in SR-A1-deficient mice and their wild type littermates, we found that SR-A1 deficiency aggravated beta-aminopropionitrile monofumarate induced thoracic aortic dilation, false lumen formation, extracellular matrix degradation, vascular inflammation and accumulation of apoptotic cells. These pathological changes were associated with an impaired macrophage efferocytosis mediated by tyrosine-protein kinase receptor Tyro3 in vitro and in vivo. SR-A1 could directly interact with Tyro3 and was required for Tyro3 phosphorylation to activate its downstream PI3K/Akt signaling pathway. Importantly, co-culture of SR-A1-/- macrophages with apoptotic Jurkat cells resulted in less devoured apoptotic cells accompanied by swelling mitochondria and damaged ATP generation, following poor IL-10 and robust TNF-α production. Deficiency of SR-A1 did not influence phagolysosome formation during the efferocytosis. Lentiviral overexpression of Tyro3 in SR-A1-/- macrophages induced restorative phagocytosis in vitro. Administration of Tyro3 agonist protein S could restore SR-A1-/- macrophages phagocytosis in vitro and in vivo. These findings suggest that SR-A1-Tyro3 axis in macrophages mitigate AD damage by promoting efferocytosis and inhibiting inflammation.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yunlong Jiang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Zhongqiu Zhou
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Jianan Huang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Shichao Chen
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Wenying Zhou
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Qing Yang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Hui Bai
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Hanwen Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Jingjing Ben
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Xudong Zhu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 211166, People's Republic of China.
| | - Qi Chen
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing 211166, People's Republic of China.
| |
Collapse
|
27
|
ZHANG Z, WANG H, ZHANG Y, SU J, LI J. [Effect of bilateral superior cervical sympathetic ganglion occlusion on pathological process of aortic dissection and its mechanism]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:526-532. [PMID: 31901027 PMCID: PMC10412949 DOI: 10.3785/j.issn.1008-9292.2019.10.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To investigate the effect of bilateral superior cervical sympathetic ganglion occlusion (SCG) on aortic dissection and its possible mechanism. METHODS Forty-five SD rats were randomly divided into three groups with 15 in each:blank control group, sham operation group and SCG group. β-aminopropione (666 mg·kg-1·d-1) was given by subcutaneous injection for 4 weeks to establish the aortic dissection model. Rats in SCG group were given SCG before the injection of β-aminopropione. Blood pressure and heart rate of the rats were monitored using noninvasive tail artery blood pressure measuring instrument; sympathetic activity was monitored using drug block method; the structure of aortic wall was observed using HE staining; collagen fibers in aortic wall was observed using Sirius red staining; protein expression of Apelin was detected by immunohistochemistry; and the protein expression of matrix metalloproteinase (MMP)-2, 9 was detected by Western blotting. RESULTS During the experiment, the body mass of the sham operation group and SCG group was smaller than that of the blank control group (all P<0.05), and the body mass of the SCG group was larger than that of the sham operation group (all P<0.05). The heart rate and sympathetic activity of the sham operation group were higher than those of the blank control group (all P<0.05), while the SCG group were lower (all P<0.05). Compared with the blank control group, the aortic wall in the sham operation group was thickening, while that in the SCG group was improved. A large number of collagen-1 in the aortic wall of the blank control group was stained brown by Sirius red, which was lighter in SCG group, and the staining in the sham operation group was the lightest. Compared with the blank control group, the expression of Apelin, MMP-2 and MMP-9 protein in the sham operation group increased (all P<0.05), while those in the SCG group decreased (all P<0.05). CONCLUSIONS SCG can effectively reduce the incidence and mortality of aortic dissection in rats, which may be related to the inhibition of sympathetic activity and the decrease of collagen-1, Apelin, MMP-2 and MMP-9 expression.
Collapse
Affiliation(s)
| | - Hu WANG
- 王虎(1981-),男,硕士,主治医师,主要从事胸心外科研究;E-mail:
;
https://orcid.org/0000-0002-2110-9043
| | | | | | | |
Collapse
|
28
|
Xu C, Zhang Y, Xu K, Nie JJ, Yu B, Li S, Cheng G, Li Y, Du J, Xu FJ. Multifunctional cationic nanosystems for nucleic acid therapy of thoracic aortic dissection. Nat Commun 2019; 10:3184. [PMID: 31320641 PMCID: PMC6639375 DOI: 10.1038/s41467-019-11068-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/17/2019] [Indexed: 02/03/2023] Open
Abstract
Thoracic aortic dissection (TAD) is an aggressive vascular disease that requires early diagnosis and effective treatment. However, due to the particular vascular structure and narrowness of lesion location, there are no effective drug delivery systems for the therapy of TAD. Here, we report a multifunctional delivery nanosystem (TP-Gd/miRNA-ColIV) composed of gadolinium-chelated tannic acid (TA), low-toxic cationic PGEA (ethanolamine-aminated poly(glycidyl methacrylate)) and type IV collagen targeted peptide (ColIV) for targeted nucleic acid therapy, early diagnosis and noninvasive monitoring of TAD. Such targeted therapy with miR-145 exhibits impressive performances in stabilizing the vascular structures and preventing the deterioration of TAD. After the treatment with TP-Gd/miR-145-ColIV, nearly no dissection occurs in the thoracic aortic arches of the mice with TAD model. Moreover, TP-Gd/miRNA-ColIV also demonstrates good magnetic resonance imaging (MRI) ability and can be used to noninvasively monitor the development conditions of TAD.
Collapse
Affiliation(s)
- Chen Xu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanzhenzi Zhang
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Ke Xu
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China
| | - Jing-Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Shanxi Medical University, Shanxi, 030001, China
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Yulin Li
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China.
| | - Jie Du
- Key Laboratory of Remodeling-Related Cardiovascular Diseases (Ministry of Education), and Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, 100029, China.
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
29
|
Meng LB, Chen K, Zhang YM, Gong T. Common Injuries and Repair Mechanisms in the Endothelial Lining. Chin Med J (Engl) 2018; 131:2338-2345. [PMID: 30246720 PMCID: PMC6166454 DOI: 10.4103/0366-6999.241805] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective: Endothelial cells (ECs) are important metabolic and endocrinal organs which play a significant role in regulating vascular function. Vascular ECs, located between the blood and vascular tissues, can not only complete the metabolism of blood and interstitial fluid but also synthesize and secrete a variety of biologically active substances to maintain vascular tension and keep a normal flow of blood and long-term patency. Therefore, this article presents a systematic review of common injuries and healing mechanisms for the vascular endothelium. Data Sources: An extensive search in the PubMed database was undertaken, focusing on research published after 2003 with keywords including endothelium, vascular, wounds and injuries, and wound healing. Study Selection: Several types of articles, including original studies and literature reviews, were identified and reviewed to summarize common injury and repair processes of the endothelial lining. Results: Endothelial injury is closely related to the development of multiple cardiovascular and cerebrovascular diseases. However, the mechanism of vascular endothelial injury is not fully understood. Numerous studies have shown that the mechanisms of EC injury mainly involve inflammatory reactions, physical stimulation, chemical poisons, concurrency of related diseases, and molecular changes. Endothelial progenitor cells play an important role during the process of endothelial repair after such injuries. What's more, a variety of restorative cells, changes in cytokines and molecules, chemical drugs, certain RNAs, regulation of blood pressure, and physical fitness training protect the endothelial lining by reducing the inducing factors, inhibiting inflammation and oxidative stress reactions, and delaying endothelial caducity. Conclusions: ECs are always in the process of being damaged. Several therapeutic targets and drugs were seeked to protect the endothelium and promote repair.
Collapse
Affiliation(s)
- Ling-Bing Meng
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Kun Chen
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Yuan-Meng Zhang
- Department of Internal Medicine, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Tao Gong
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| |
Collapse
|
30
|
Chen Y, Fan H, Xu C, Hu W, Yu B. Efficient Cholera Toxin B Subunit-Based Nanoparticles with MRI Capability for Drug Delivery to the Brain Following Intranasal Administration. Macromol Biosci 2018; 19:e1800340. [PMID: 30536989 DOI: 10.1002/mabi.201800340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/26/2018] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative brain disorder that exhibits clear pathologic changes in the hippocampus. Traditional drug delivery systems are ineffective due to the existence of the blood-brain barrier (BBB). In this study, an efficient, stable, and easily constructed nanosystem (CB-Gd-Cy5.5) based on the cholera toxin B subunit (CB) is designed to improve the efficiency of drug delivery to the brain, especially the hippocampus. Through intranasal administration, CB-Gd-Cy5.5 is easily delivered to the brain without intervention by the BBB. The CB in CB-Gd-Cy5.5 is used for specifically combining with the monosialoganglioside GM1, which is widely found in the hippocampus. This nanosystem exhibits impressive performance in accumulating in the hippocampus. In addition, the good magnetic resonance imaging (MRI) capability of CB-Gd-Cy5.5 can satisfy the monitoring of AD in the different stages.
Collapse
Affiliation(s)
- Yiming Chen
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huimin Fan
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100043, China
| | - Chen Xu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenli Hu
- Department of Neurology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100043, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
31
|
Interleukin-3 stimulates matrix metalloproteinase 12 production from macrophages promoting thoracic aortic aneurysm/dissection. Clin Sci (Lond) 2018. [PMID: 29523595 DOI: 10.1042/cs20171529] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thoracic aortic aneurysm and dissection (TAAD) is due to degeneration of the aorta and causes a high mortality rate, while molecular mechanisms for the development of TAAD are still not completely understood. In the present study, 3-aminopropionitrile (BAPN) treatment was used to induce TAAD mouse model. Through transcriptome analysis, we found the expression levels of genes associated with interleukin-3 (IL-3) signaling pathway were up-regulated during TAAD development in mouse, which were validated by real-time PCR. IL-3 positive cells were increased in TAAD mouse aortas, especially for smooth muscle cells (SMCs). IL-3 deficiency reduced BAPN-induced TAAD formation. We then examined the matrix metalloproteinases (MMPs) expression during TAAD formation in both wild-type and IL-3 deficient mice, showing that MMP12 were significantly down-regulated in IL-3 deficient aortas. Mechanistically, we found recombinant IL-3 could increase MMP12 production and activity from macrophages in vitro Silencing of IL-3 receptor β, which was mainly expressed in macrophages but not SMCs, diminished the activation of c-Jun N terminal kinase (JNK)/extracellular-regulated protein kinases 1/2 (ERK1/2)/AP-1 signals, and decreased MMP12 expression in IL-3 stimulated macrophages. Moreover, both circulating and aortic inflammation were decreased in IL-3 deficient aortas. Taken together, our results demonstrated that IL-3 stimulated the production of MMP12 from macrophages by a JNK- and ERK1/2-dependent AP-1 pathway, contributing to TAAD formation. Thus, the IL-3/IL-3Rβ/MMP12 signals activation may be an important pathological mechanism for progression of TAAD.
Collapse
|