1
|
Li Y, Xu H, Chen B, Ding Y, Zhu Y, Wang Y, Chen X, Su H. Local connections enhancement as a neuroprotective strategy against depression recurrence: Insights from structural brain network analysis. J Psychiatr Res 2025; 185:74-83. [PMID: 40163972 DOI: 10.1016/j.jpsychires.2025.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Depression recurrence significantly impacts patients' well-being and presents a major clinical challenge. Identifying the risk of recurrence during remission could enable early intervention and prevent disease progression. METHODS This study included 115 patients in remission from their first depressive episode and 47 healthy controls (HCs). Participants underwent diffusion tensor imaging (DTI), neuropsychological assessments, and follow-up evaluations every three months over a two-year period. Structural brain networks were constructed using deterministic fiber tracking and graph theory analysis. RESULTS Non-recurrence patients exhibited significantly higher baseline local connections compared to the recurrence group (t = 8.148; P < 0.001), which emerged as a robust negative predictor of recurrence (AUC = 0.853 [95 % CI: 0.774-0.912]; OR = 0.594 [95 % CI: 0.489-0.722]; P < 0.001). Rich-club connections were inversely correlated with depression severity (r = -0.510; P < 0.001) and duration (r = -0.221; P = 0.018). Additionally, increases in local connections during remission correlated positively with subsequent rich-club connections (r = 0.540; P < 0.05). CONCLUSION Elevated local connections during remission after the first depressive episode significantly reduce the risk of recurrence. This suggests a compensatory neuroprotective mechanism, where enhanced local connections stabilize rich-club connections, thereby maintaining the integrity of the whole-brain network. These findings highlight local connections as a critical factor in preventing depression recurrence and as a potential target for early clinical intervention.
Collapse
Affiliation(s)
- Yang Li
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hu Xu
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bo Chen
- Department of Neurosurgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yi Ding
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yunqian Zhu
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yang Wang
- Department of Radiology, Gaoyou People's Hospital, Yangzhou, Jiangsu, China
| | - Xingbing Chen
- Department of Radiology, Gaoyou People's Hospital, Yangzhou, Jiangsu, China.
| | - Hui Su
- Department of Radiology, Gaoyou People's Hospital, Yangzhou, Jiangsu, China.
| |
Collapse
|
2
|
Liu W, Zuo C, Chen L, Lan H, Luo C, Li X, Kemp GJ, Lui S, Suo X, Gong Q. The whole-brain structural and functional connectome in Alzheimer's disease spectrum: A multimodal Bayesian meta-analysis of graph theoretical characteristics. Neurosci Biobehav Rev 2025; 174:106174. [PMID: 40280288 DOI: 10.1016/j.neubiorev.2025.106174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/19/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Alzheimer's disease (AD) spectrum is increasingly recognized as a progressive network-disconnection syndrome. Neuroimaging studies using graph theoretical analysis (GTA) have reported alterations in the topological properties of whole-brain structural and functional connectomes in both preclinical AD and AD patients, though findings remain inconsistent. This study aimed to identify robust changes in multimodal GTA metrics across the AD spectrum through a comprehensive literature search and Bayesian random-effects meta-analyses. The analysis included 53 studies (37 functional and 17 structural), involving 1649 AD patients, 1455 preclinical AD patients, and 1771 healthy controls (HC). Results revealed lower structural network integration (evidenced by higher characteristic path length and/or normalized characteristic path length) and segregation (evidenced by lower clustering coefficient and local efficiency) in AD and preclinical AD patients compared to HC. Functional network segregation was also lower in AD patients, while preclinical AD showed preserved functional topology despite structural changes. Moderator analyses identified potential methodological moderators, including neuroimaging technique, node and edge definitions, and network type, although further validation is needed. These findings support the progressive disconnection hypothesis in the AD spectrum and suggest that structural network alterations may precede functional network changes. Furthermore, the results help clarify inconsistencies in previous studies and highlight the utility of graph-based metrics as biomarkers for staging AD progression.
Collapse
Affiliation(s)
- Wenxiong Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China; Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chao Zuo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Li Chen
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Huan Lan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Chunyan Luo
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Xueling Suo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China; Xiamen Key Lab of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian 361022, China.
| |
Collapse
|
3
|
Nester CO, De Vito AN, Prieto S, Kunicki ZJ, Strenger J, Harrington KD, Roque N, Sliwinski MJ, Rabin LA, Thompson LI. Association of Subjective Cognitive Concerns With Performance on Mobile App-Based Cognitive Assessment in Cognitively Normal Older Adults: Observational Study. JMIR Aging 2025; 8:e64033. [PMID: 39903213 PMCID: PMC11812482 DOI: 10.2196/64033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024] Open
Abstract
Background Subjective cognitive concerns (SCCs) may be among the earliest clinical symptoms of dementia. There is growing interest in applying a mobile app-based cognitive assessment to remotely screen for cognitive status in preclinical dementia, but the relationship between SCC and relevant mobile assessment metrics is uncertain. Objective This study aimed to characterize the relationship between SCC and adherence, satisfaction, and performance on mobile app assessments in cognitively unimpaired older adults. Methods Participants (N=122; Meanage=68.85 [SD 4.93] years; Meaneducation=16.85 [SD 2.39] years; female: n=82, 66.7%; White:n=106, 86.2%) completed 8 assessment days using Mobile Monitoring of Cognitive Change (M2C2), an app-based testing platform, with brief daily sessions within morning, afternoon, and evening time windows (24 total testing sessions). M2C2 includes digital working memory, processing speed, and episodic memory tasks. Participants provided feedback about their satisfaction and motivation related to M2C2 upon study completion. SCC was assessed using the Cognitive Function Instrument. Regression analyses evaluated the association between SCC and adherence, satisfaction, and performance on M2C2, controlling for age, sex, depression, and loneliness. Linear-mixed effects models evaluated whether SCC predicted M2C2 subtest performance over the 8-day testing period, controlling for covariates. Results SCC was not associated with app satisfaction or protocol motivation, but it was significantly associated with lower rates of protocol adherence (ß=-.20, P=.37, 95% CI -.65 to -.02). Higher SCC endorsement significantly predicted worse overall episodic memory performance (ß=-.20, P=.02, 95% CI -.02 to -.01), but not working memory or processing speed. There was a main effect of SCC on working memory performance at day 1 (estimate=-1.05, SE=0.47, P=.03) and a significant interaction between SCC and working memory over the 8-day period (estimate=0.05, SE=0.02, P=.03), such that SCC was associated with initially worse, then progressively better working memory performance. Conclusions SCCs are associated with worse overall memory performance on mobile app assessments, patterns of cognitive inefficiency (variable working memory), and mildly diminished adherence across an 8-day assessment period. Findings suggest that mobile app assessments may be sensitive to subtle cognitive changes, with important implications for early detection and treatment for individuals at risk for dementia.
Collapse
Affiliation(s)
- Caroline O Nester
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, United States, 1 (401) 863-3330
| | - Alyssa N De Vito
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, United States, 1 (401) 863-3330
| | - Sarah Prieto
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, United States, 1 (401) 863-3330
| | - Zachary J Kunicki
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, United States, 1 (401) 863-3330
| | - Jennifer Strenger
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, United States, 1 (401) 863-3330
- Memory and Aging Program, Butler Hospital, Providence, RI, United States
| | - Karra D Harrington
- Center for Healthy Aging, Penn State University, University Park, PA, United States
| | - Nelson Roque
- Department of Psychology, University of Central Florida, Orlando, FL, United States
| | - Martin J Sliwinski
- Center for Healthy Aging, Penn State University, University Park, PA, United States
| | - Laura A Rabin
- Department of Psychology, Brooklyn College CUNY, Brooklyn, NY, United States
| | - Louisa I Thompson
- Department of Psychiatry and Human Behavior, The Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, United States, 1 (401) 863-3330
| |
Collapse
|
4
|
Li Y, Sun E, Dai R, Chen J, Huang H, Shan X, Li Y. Abnormalities in rich-club connections are associated with an exacerbation of genetic susceptibility to schizophrenia. BMC Psychiatry 2024; 24:951. [PMID: 39731072 DOI: 10.1186/s12888-024-06411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/16/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Schizophrenia (SZ) is a highly heritable and heterogeneous disorder that is often associated with widespread structural brain abnormalities. However, the causes of interindividual differences in genetic susceptibility remain largely unknown. This study attempted to address this important issue by utilizing a prospective study in which unaffected first-degree relatives of SZ (FH+) were recruited. METHODS A total of 198 participants (143 FH + and 55 healthy control participants) were recruited and completed diffusion tensor imaging scans, graph theory analysis and semiannual standardized clinical evaluations within the first three years. RESULTS FH + participants who developed SZ (SZ/FH+) had similar but pronounced structural network changes at baseline compared to FH + participants who did not (HC/FH+). Additionally, among network properties, rich-club connections showed a good correlation with the severity of SZ, which was the most significant and stable effect. Logistic regression analyses showed that rich-club connections at baseline had high predictive accuracy for the subsequent occurrence of SZ. CONCLUSIONS Among healthy people with a familial history of SZ, those who exhibit decreased rich-club connections are susceptible to developing this disease. Our findings may aid in the development of timely interventions to prevent SZ and possibly assist researchers and clinicians in evaluating the efficacy of interventions.
Collapse
Affiliation(s)
- Yang Li
- The Affiliated People's Hospital of Jiangsu University, Zhenjiang First People's Hospital, No.8, Dianli Road, Zhenjiang, 212002, Jiangsu, China
| | - Eryi Sun
- The Affiliated People's Hospital of Jiangsu University, Zhenjiang First People's Hospital, No.8, Dianli Road, Zhenjiang, 212002, Jiangsu, China
| | - Rao Dai
- The Affiliated People's Hospital of Jiangsu University, Zhenjiang First People's Hospital, No.8, Dianli Road, Zhenjiang, 212002, Jiangsu, China
| | - Jian Chen
- Zhenjiang City Health Commission, Zhenjiang, Jiangsu, China
| | - Haixia Huang
- Zhenjiang City Health Commission, Zhenjiang, Jiangsu, China
| | - Xiuhong Shan
- The Affiliated People's Hospital of Jiangsu University, Zhenjiang First People's Hospital, No.8, Dianli Road, Zhenjiang, 212002, Jiangsu, China.
| | - Yuefeng Li
- The Affiliated People's Hospital of Jiangsu University, Zhenjiang First People's Hospital, No.8, Dianli Road, Zhenjiang, 212002, Jiangsu, China.
| |
Collapse
|
5
|
Song J, Yang H, Yan H, Lu Q, Guo L, Zheng H, Zhang T, Lin B, Zhao Z, He C, Shen Y. Structural disruption in subjective cognitive decline and mild cognitive impairment. Brain Imaging Behav 2024; 18:1536-1548. [PMID: 39370448 DOI: 10.1007/s11682-024-00933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
Subjective cognitive decline (SCD) marks the initial stage in Alzheimer's disease continuum. Nonetheless, current research findings regarding brain structural changes in the SCD are inconsistent. In this study, 37 SCD patients, 28 mild cognitive impairment (MCI) patients, and 42 healthy controls (HC) were recruited to investigate structural alterations. Morphological and microstructural differences among the three groups were analyzed based on T1- and diffusion-weighted images, correlating them with neuropsychological assessments. Additionally, classification analysis was performed by using support vector machines (SVM) categorize participants into three groups based on MRI features. Both SCD and MCI showed decreased volume in left inferior parietal lobe (IPL) compared to HC, while SCD showed altered morphologies in the right inferior temporal gyrus (ITG), right insula and right amygdala, and microstructures in fiber tracts of the right ITG, lateral occipital cortex (LOC) and insula relative to MCI. Moreover, the volume in the left IPL, right LOC, right amygdala and diffusivity value in fiber tracts of right LOC were significantly correlated with cognitive functions across all subjects. The classification models achieved an accuracy of > 0.7 (AUC = 0.8) in distinguishing the three groups. Our findings suggest that SCD and MCI share similar atrophy in the IPL but show more differences in morphological and microstructural features of cortical-subcortical areas.
Collapse
Affiliation(s)
- Jie Song
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China
| | - Han Yang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China
| | - Hailang Yan
- Department of Radiology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China
| | - Qian Lu
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China
| | - Lei Guo
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Tianjiao Zhang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China
- Department of Rehabilitation Science, Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Bin Lin
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Zhiyong Zhao
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China.
| | - Chuan He
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, 215228, China.
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Gulou District, Nanjing, 210029, China.
| |
Collapse
|
6
|
Chen M, Su Q, Zhao Z, Li T, Yao Z, Zheng W, Han L, Hu B. Rich Club Reorganization in Nurses Before and After the Onset of Occupational Burnout: A Longitudinal MRI Study. J Magn Reson Imaging 2024; 60:1918-1931. [PMID: 38353493 DOI: 10.1002/jmri.29288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Studies on potential disruptions in rich club structure in nursing staff with occupational burnout are lacking. Moreover, existing studies on nurses with burnout are limited by their cross-sectional design. PURPOSE To investigate rich club reorganization in nursing staff before and after the onset of burnout and the underlying impact of anatomical distance on such reconfiguration. STUDY TYPE Prospective, longitudinal. POPULATION Thirty-nine hospital nurses ( 23.67 ± 1.03 years old at baseline, 24.67 ± 1.03 years old at a follow-up within 1.5 years, 38 female). FIELD STRENGTH/SEQUENCE Magnetization-prepared rapid gradient-echo and gradient-echo echo-planar imaging sequences at 3.0 T. ASSESSMENT The Maslach Burnout Inventory and Symptom Check-List 90 testing were acquired at each MRI scan. Rich club structure was assessed at baseline and follow-up to determine whether longitudinal changes were related to burnout and to changes in connectivities with different anatomical distances (short-, mid-, and long range). STATISTICAL TESTS Chi-square, paired-samples t, two-sample t, Mann-Whitney U tests, network-based statistic, Spearman correlation analysis, and partial least squares regression analysis. Significance level: Bonferroni-corrected P < 0.05 . RESULTS In nurses who developed burnout: 1) Strengths of rich club, feeder, local, short-, mid-, and long-range connectivities were significantly decreased at follow-up compared with baseline. 2) At follow-up, strengths of above connectivities and that between A5m.R and dlPu.L were significantly correlated with emotional exhaustion (r ranges from -0.57 to -0.73) and anxiety scores (r = -0.56), respectively. 3) Longitudinal change (follow-up minus baseline) in connectivity strength between A5m.R and dlPu.L reflected change in emotional exhaustion score (r = 0.87). Longitudinal changes in strength of connectivities mainly involving parietal lobe were significantly decreased in nurses who developed burnout compared with those who did not. DATA CONCLUSION In nurses after the onset of burnout, rich club reorganization corresponded to significant reductions in strength of connectivities with different anatomical distances. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Miao Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Qian Su
- Department of Nursing, Gansu Provincial Hospital, Lanzhou, China
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Tongtong Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Lin Han
- Department of Nursing, Gansu Provincial Hospital, Lanzhou, China
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
- School of Nursing, Lanzhou University, Lanzhou, China
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University and Institute of Semiconductors, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
7
|
Jin S, Wang J, He Y. The brain network hub degeneration in Alzheimer's disease. BIOPHYSICS REPORTS 2024; 10:213-229. [PMID: 39281195 PMCID: PMC11399886 DOI: 10.52601/bpr.2024.230025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/26/2024] [Indexed: 09/18/2024] Open
Abstract
Alzheimer's disease (AD) has been conceptualized as a syndrome of brain network dysfunction. Recent imaging connectomics studies have provided unprecedented opportunities to map structural and functional brain networks in AD. By reviewing molecular, imaging, and computational modeling studies, we have shown that highly connected brain hubs are primarily distributed in the medial and lateral prefrontal, parietal, and temporal regions in healthy individuals and that the hubs are selectively and severely affected in AD as manifested by increased amyloid-beta deposition and regional atrophy, hypo-metabolism, and connectivity dysfunction. Furthermore, AD-related hub degeneration depends on the imaging modality with the most notable degeneration in the medial temporal hubs for morphological covariance networks, the prefrontal hubs for structural white matter networks, and in the medial parietal hubs for functional networks. Finally, the AD-related hub degeneration shows metabolic, molecular, and genetic correlates. Collectively, we conclude that the brain-network-hub-degeneration framework is promising to elucidate the biological mechanisms of network dysfunction in AD, which provides valuable information on potential diagnostic biomarkers and promising therapeutic targets for the disease.
Collapse
Affiliation(s)
- Suhui Jin
- Institute for Brain Research and Rehabilitation, Guangzhou 510631, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, Guangzhou 510631, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Guangzhou 510631, China
- Center for Studies of Psychological Application, South China Normal University, Guangzhou 510631, China
| | - Yong He
- IDG/McGovern Institute for Brain Research, Beijing 100875, China
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing 100875, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
Long H, Chen Z, Xu X, Zhou Q, Fang Z, Lv M, Yang XH, Xiao J, Sun H, Fan M. Elucidating genetic and molecular basis of altered higher-order brain structure-function coupling in major depressive disorder. Neuroimage 2024; 297:120722. [PMID: 38971483 DOI: 10.1016/j.neuroimage.2024.120722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024] Open
Abstract
Previous studies have shown that major depressive disorder (MDD) patients exhibit structural and functional impairments, but few studies have investigated changes in higher-order coupling between structure and function. Here, we systematically investigated the effect of MDD on higher-order coupling between structural connectivity (SC) and functional connectivity (FC). Each brain region was mapped into embedding vector by the node2vec algorithm. We used support vector machine (SVM) with the brain region embedding vector to distinguish MDD patients from health controls (HCs) and identify the most discriminative brain regions. Our study revealed that MDD patients had decreased higher-order coupling in connections between the most discriminative brain regions and local connections in rich-club organization and increased higher-order coupling in connections between the ventral attentional network and limbic network compared with HCs. Interestingly, transcriptome-neuroimaging association analysis demonstrated the correlations between regional rSC-FC coupling variations between MDD patients and HCs and α/β-hydrolase domain-containing 6 (ABHD6), β 1,3-N-acetylglucosaminyltransferase-9(β3GNT9), transmembrane protein 45B (TMEM45B), the correlation between regional dSC-FC coupling variations and retinoic acid early transcript 1E antisense RNA 1(RAET1E-AS1), and the correlations between regional iSC-FC coupling variations and ABHD6, β3GNT9, katanin-like 2 protein (KATNAL2). In addition, correlation analysis with neurotransmitter receptor/transporter maps found that the rSC-FC and iSC-FC coupling variations were both correlated with neuroendocrine transporter (NET) expression, and the dSC-FC coupling variations were correlated with metabotropic glutamate receptor 5 (mGluR5). Further mediation analysis explored the relationship between genes, neurotransmitter receptor/transporter and MDD related higher-order coupling variations. These findings indicate that specific genetic and molecular factors underpin the observed disparities in higher-order SC-FC coupling between MDD patients and HCs. Our study confirmed that higher-order coupling between SC and FC plays an important role in diagnosing MDD. The identification of new biological evidence for MDD etiology holds promise for the development of innovative antidepressant therapies.
Collapse
Affiliation(s)
- Haixia Long
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zihao Chen
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xinli Xu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Qianwei Zhou
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zhaolin Fang
- Network Information Center, Zhejiang University of Technology, Hangzhou 310023, China
| | - Mingqi Lv
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Xu-Hua Yang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jie Xiao
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hui Sun
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China.
| | - Ming Fan
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China.
| |
Collapse
|
9
|
Markett S, Boeken OJ, Wudarczyk OA. Multimodal imaging investigation of structural rich club alterations in Alzheimer's disease and mild cognitive impairment: Amyloid deposition, structural atrophy, and functional activation differences. Eur J Neurosci 2024; 60:4169-4181. [PMID: 38779858 DOI: 10.1111/ejn.16384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is characterized by significant cerebral dysfunction, including increased amyloid deposition, gray matter atrophy, and changes in brain function. The involvement of highly connected network hubs, known as the "rich club," in the pathology of the disease remains inconclusive despite previous research efforts. In this study, we aimed to systematically assess the link between the rich club and AD using a multimodal neuroimaging approach. We employed network analyses of diffusion magnetic resonance imaging (MRI), longitudinal assessments of gray matter atrophy, amyloid deposition measurements using positron emission tomography (PET) imaging, and meta-analytic data on functional activation differences. Our study focused on evaluating the role of both the structural brain network's core and extended rich club regions in individuals with mild cognitive impairment (MCI) and those diagnosed with AD. Our findings revealed that structural rich club regions exhibited accelerated gray matter atrophy and increased amyloid deposition in both MCI and AD. Importantly, these regions remained unaffected by altered functional activation patterns observed outside the core rich club regions. These results shed light on the connection between two major AD biomarkers and the rich club, providing valuable insights into AD as a potential disconnection syndrome.
Collapse
Affiliation(s)
| | - Ole J Boeken
- Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | | |
Collapse
|
10
|
Wang X, Lin J, Lu H, Xiong Y, Duan C, Zhang D, Huang J, Deng L, Li C, Li R, Zhang D, Bian X, Zhou J, Pan L, Lou X. Alteration of White Matter Connectivity for MR-Guided Focused Ultrasound in the Treatment of Essential Tremor. J Magn Reson Imaging 2024; 59:1358-1370. [PMID: 37491872 DOI: 10.1002/jmri.28896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Magnetic resonance-guided focused ultrasound (MRgFUS) thalamotomy has been implemented as a therapeutic alternative for the treatment of drug-refractory essential tremor (ET). However, its impact on the brain structural network is still unclear. PURPOSE To investigate both global and local alterations of the white matter (WM) connectivity network in ET after MRgFUS thalamotomy. STUDY TYPE Retrospective. SUBJECTS Twenty-seven ET patients (61 ± 11 years, 19 males) with MRgFUS thalamotomy and 28 healthy controls (HC) (61 ± 11 years, 20 males) were recruited for comparison. FIELD STRENGTH/SEQUENCE A 3 T/single shell diffusion tensor imaging by using spin-echo-based echo-planar imaging, three-dimensional T1 weighted imaging by using gradient-echo-based sequence. ASSESSMENT Patients were undergoing MRgFUS thalamotomy and their clinical data were collected from pre-operation to 6-month post-operation. Network topological metrics, including rich-club organization, small-world, and efficiency properties were calculated. Correlation between the topological metrics and tremor scores in ET groups was also calculated to assess the role of neural remodeling in the brain. STATISTICAL TESTS Two-sample independent t-tests, chi-squared test, ANOVA, Bonferroni test, and Spearman's correlation. Statistical significance was set at P < 0.05. RESULTS For ET patients, the strength of rich-club connection and clustering coefficient significantly increased vs. characteristic path length decreased at 6-month post-operation compared with pre-operation. The distribution pattern of rich-club regions was different in ET groups. Specifically, the order of the rich-club regions was changed according to the network degree value after MRgFUS thalamotomy. Moreover, the altered nodal efficiency in the right temporal pole of the superior temporal gyrus (R = 0.434-0.596) and right putamen (R = 0.413-0.436) was positively correlated with different tremor improvement. DATA CONCLUSION These findings might improve understanding of treatment-induced modulation from a network perspective and may work as an objective marker in the assessment of ET tremor control with MRgFUS thalamotomy. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Medicine, Nankai University, Tianjin, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jiaji Lin
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Haoxuan Lu
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Yongqin Xiong
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Caohui Duan
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Dong Zhang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jiayu Huang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Linlin Deng
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Chenxi Li
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Runze Li
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Dekang Zhang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xiangbing Bian
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jiayou Zhou
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Longsheng Pan
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, China
| | - Xin Lou
- School of Medicine, Nankai University, Tianjin, China
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
11
|
Huang Y, Li Y, Yuan Y, Zhang X, Yan W, Li T, Niu Y, Xu M, Yan T, Li X, Li D, Xiang J, Wang B, Yan T. Beta-informativeness-diffusion multilayer graph embedding for brain network analysis. Front Neurosci 2024; 18:1303741. [PMID: 38525375 PMCID: PMC10957763 DOI: 10.3389/fnins.2024.1303741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Brain network analysis provides essential insights into the diagnosis of brain disease. Integrating multiple neuroimaging modalities has been demonstrated to be more effective than using a single modality for brain network analysis. However, a majority of existing brain network analysis methods based on multiple modalities often overlook both complementary information and unique characteristics from various modalities. To tackle this issue, we propose the Beta-Informativeness-Diffusion Multilayer Graph Embedding (BID-MGE) method. The proposed method seamlessly integrates structural connectivity (SC) and functional connectivity (FC) to learn more comprehensive information for diagnosing neuropsychiatric disorders. Specifically, a novel beta distribution mapping function (beta mapping) is utilized to increase vital information and weaken insignificant connections. The refined information helps the diffusion process concentrate on crucial brain regions to capture more discriminative features. To maximize the preservation of the unique characteristics of each modality, we design an optimal scale multilayer brain network, the inter-layer connections of which depend on node informativeness. Then, a multilayer informativeness diffusion is proposed to capture complementary information and unique characteristics from various modalities and generate node representations by incorporating the features of each node with those of their connected nodes. Finally, the node representations are reconfigured using principal component analysis (PCA), and cosine distances are calculated with reference to multiple templates for statistical analysis and classification. We implement the proposed method for brain network analysis of neuropsychiatric disorders. The results indicate that our method effectively identifies crucial brain regions associated with diseases, providing valuable insights into the pathology of the disease, and surpasses other advanced methods in classification performance.
Collapse
Affiliation(s)
- Yin Huang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Ying Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Yuting Yuan
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Xingyu Zhang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Wenjie Yan
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Ting Li
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yan Niu
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Mengzhou Xu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, China
| | - Xiaowen Li
- Computer Information Engineering Institute, Shanxi Technology and Business College, Taiyuan, China
| | - Dandan Li
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Jie Xiang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Bin Wang
- College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan, China
| | - Tianyi Yan
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
12
|
Mecklenbrauck F, Gruber M, Siestrup S, Zahedi A, Grotegerd D, Mauritz M, Trempler I, Dannlowski U, Schubotz RI. The significance of structural rich club hubs for the processing of hierarchical stimuli. Hum Brain Mapp 2024; 45:e26543. [PMID: 38069537 PMCID: PMC10915744 DOI: 10.1002/hbm.26543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 03/07/2024] Open
Abstract
The brain's structural network follows a hierarchy that is described as rich club (RC) organization, with RC hubs forming the well-interconnected top of this hierarchy. In this study, we tested whether RC hubs are involved in the processing of hierarchically higher structures in stimulus sequences. Moreover, we explored the role of previously suggested cortical gradients along anterior-posterior and medial-lateral axes throughout the frontal cortex. To this end, we conducted a functional magnetic resonance imaging (fMRI) experiment and presented participants with blocks of digit sequences that were structured on different hierarchically nested levels. We additionally collected diffusion weighted imaging data of the same subjects to identify RC hubs. This classification then served as the basis for a region of interest analysis of the fMRI data. Moreover, we determined structural network centrality measures in areas that were found as activation clusters in the whole-brain fMRI analysis. Our findings support the previously found anterior and medial shift for processing hierarchically higher structures of stimuli. Additionally, we found that the processing of hierarchically higher structures of the stimulus structure engages RC hubs more than for lower levels. Areas involved in the functional processing of hierarchically higher structures were also more likely to be part of the structural RC and were furthermore more central to the structural network. In summary, our results highlight the potential role of the structural RC organization in shaping the cortical processing hierarchy.
Collapse
Affiliation(s)
- Falko Mecklenbrauck
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Marius Gruber
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
- Department for Psychiatry, Psychosomatic Medicine and PsychotherapyUniversity Hospital Frankfurt, Goethe UniversityFrankfurtGermany
| | - Sophie Siestrup
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Anoushiravan Zahedi
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Dominik Grotegerd
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Marco Mauritz
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
- Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
| | - Ima Trempler
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Udo Dannlowski
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Ricarda I. Schubotz
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| |
Collapse
|
13
|
Zhou Y, Jing J, Zhang Z, Pan Y, Cai X, Zhu W, Li Z, Liu C, Liu H, Meng X, Cheng J, Wang Y, Li H, Wang S, Niu H, Wen W, Sachdev PS, Wei T, Liu T, Wang Y. Disrupted pattern of rich-club organization in structural brain network from prediabetes to diabetes: A population-based study. Hum Brain Mapp 2024; 45:e26598. [PMID: 38339955 PMCID: PMC10839741 DOI: 10.1002/hbm.26598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 02/12/2024] Open
Abstract
The network nature of the brain is gradually becoming a consensus in the neuroscience field. A set of highly connected regions in the brain network called "rich-club" are crucial high efficiency communication hubs in the brain. The abnormal rich-club organization can reflect underlying abnormal brain function and metabolism, which receives increasing attention. Diabetes is one of the risk factors for neurological diseases, and most individuals with prediabetes will develop overt diabetes within their lifetime. However, the gradual impact of hyperglycemia on brain structures, including rich-club organization, remains unclear. We hypothesized that the brain follows a special disrupted pattern of rich-club organization in prediabetes and diabetes. We used cross-sectional baseline data from the population-based PolyvasculaR Evaluation for Cognitive Impairment and vaScular Events (PRECISE) study, which included 2218 participants with a mean age of 61.3 ± 6.6 years and 54.1% females comprising 1205 prediabetes, 504 diabetes, and 509 normal control subjects. The rich-club organization and network properties of the structural networks derived from diffusion tensor imaging data were investigated using a graph theory approach. Linear mixed models were used to assess associations between rich-club organization disruptions and the subjects' glucose status. Based on the graphical analysis methods, we observed the disrupted pattern of rich-club organization was from peripheral regions mainly located in frontal areas to rich-club regions mainly located in subcortical areas from prediabetes to diabetes. The rich-club organization disruptions were associated with elevated glucose levels. These findings provided more details of the process by which hyperglycemia affects the brain, contributing to a better understanding of the potential neurological consequences. Furthermore, the disrupted pattern observed in rich-club organization may serve as a potential neuroimaging marker for early detection and monitoring of neurological disorders in individuals with prediabetes or diabetes.
Collapse
Affiliation(s)
- Yijun Zhou
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Jing Jing
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhe Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Xueli Cai
- Department of Neurology, Lishui HospitalZhejiang University School of MedicineLishuiZhejiangChina
| | - Wanlin Zhu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Chang Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Hao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Xia Meng
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jian Cheng
- School of Computer Science and Engineering, Beihang UniversityBeijingChina
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Hao Li
- China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Suying Wang
- Cerebrovascular Research Lab, Lishui Hospital, Zhejiang University School of MedicineLishuiZhejiangChina
| | - Haijun Niu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Wei Wen
- Division of Psychiatry and Mental Health, Faculty of Medicine and Health, Centre for Healthy Brain Ageing (CHeBA)UNSWSydneyNew South WalesAustralia
- Neuropsychiatric Institute, Prince of Wales HospitalSydneyNew South WalesAustralia
| | - Perminder S. Sachdev
- Division of Psychiatry and Mental Health, Faculty of Medicine and Health, Centre for Healthy Brain Ageing (CHeBA)UNSWSydneyNew South WalesAustralia
- Neuropsychiatric Institute, Prince of Wales HospitalSydneyNew South WalesAustralia
| | - Tiemin Wei
- Department of Cardiology, Lishui HospitalZhejiang University School of MedicineZhejiangChina
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical EngineeringBeihang UniversityBeijingChina
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijingChina
- Research Unit of Artificial Intelligence in Cerebrovascular DiseaseChinese Academy of Medical Sciences, 2019RU018BeijingChina
| |
Collapse
|
14
|
Chang Y, Wang X, Liao J, Chen S, Liu X, Liu S, Ming D. Temporal hyper-connectivity and frontal hypo-connectivity within gamma band in schizophrenia: A resting state EEG study. Schizophr Res 2024; 264:220-230. [PMID: 38183959 DOI: 10.1016/j.schres.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 11/12/2023] [Accepted: 12/16/2023] [Indexed: 01/08/2024]
Abstract
OBJECTIVE The brain network serves as the physiological foundation for information processing of the brain. Many studies have reported abnormalities of gamma oscillations in Schizophrenia. The aim of this study was to investigate the gamma-band connectivity in Schizophrenia patients. METHODS We recorded the resting state electroencephalogram (EEG) for 15 schizophrenia patients with refractory auditory hallucinations and 14 healthy controls, with eyes open and closed. The brain network was constructed based on weighted phase lag index for gamma band. Whole scalp metrics (clustering coefficient, global efficiency and local efficiency) and local region metrics (degree and betweenness centrality) in the frontal and temporal lobes were computed. Correlation analyses between network metrics and symptom scales were examined to find associations with symptom severity. RESULTS Schizophrenia patients had larger global efficiency and local efficiency (p < 0.05) with eyes closed, probably representing greater brain activity and information exchange. For degree and betweenness centrality, schizophrenia patients showed an increase (p < 0.05) in the temporal lobe but a decrease (p < 0.05) in the frontal lobe with eyes closed and open, potentially account for the patients' symptoms such as hallucinations and thought disorders. Local efficiency and frontal lobe degree were positively and negatively correlated with the scales, respectively (both p < 0.05). CONCLUSIONS Altered connectivity of the resting state brain network has been revealed and may be associated with the core symptoms of schizophrenia. Our study provides promising evidence for the investigation of the pathological basis of Schizophrenia and could aid in objective diagnosis.
Collapse
Affiliation(s)
- Yuan Chang
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China
| | - Xiaojuan Wang
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China
| | - Jingmeng Liao
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China
| | - Sitong Chen
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China
| | - Xiaoya Liu
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China
| | - Shuang Liu
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China.
| | - Dong Ming
- Tianjin University, Academy of Medical Engineering and Translational Medicine, Tianjin, China
| |
Collapse
|
15
|
Li YL, Wu JJ, Li WK, Gao X, Wei D, Xue X, Hua XY, Zheng MX, Xu JG. Effects of individual metabolic brain network changes co-affected by T2DM and aging on the probabilities of T2DM: protective and risk factors. Cereb Cortex 2024; 34:bhad439. [PMID: 37991271 DOI: 10.1093/cercor/bhad439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023] Open
Abstract
Neuroimaging markers for risk and protective factors related to type 2 diabetes mellitus are critical for clinical prevention and intervention. In this work, the individual metabolic brain networks were constructed with Jensen-Shannon divergence for 4 groups (elderly type 2 diabetes mellitus and healthy controls, and middle-aged type 2 diabetes mellitus and healthy controls). Regional network properties were used to identify hub regions. Rich-club, feeder, and local connections were subsequently obtained, intergroup differences in connections and correlations between them and age (or fasting plasma glucose) were analyzed. Multinomial logistic regression was performed to explore effects of network changes on the probability of type 2 diabetes mellitus. The elderly had increased rich-club and feeder connections, and decreased local connection than the middle-aged among type 2 diabetes mellitus; type 2 diabetes mellitus had decreased rich-club and feeder connections than healthy controls. Protective factors including glucose metabolism in triangle part of inferior frontal gyrus, metabolic connectivity between triangle of the inferior frontal gyrus and anterior cingulate cortex, degree centrality of putamen, and risk factors including metabolic connectivities between triangle of the inferior frontal gyrus and Heschl's gyri were identified for the probability of type 2 diabetes mellitus. Metabolic interactions among critical brain regions increased in type 2 diabetes mellitus with aging. Individual metabolic network changes co-affected by type 2 diabetes mellitus and aging were identified as protective and risk factors for the likelihood of type 2 diabetes mellitus, providing guiding evidence for clinical interventions.
Collapse
Affiliation(s)
- Yu-Lin Li
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Wei-Kai Li
- School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xin Gao
- Shanghai Universal Medical Imaging Diagnostic Center, Shanghai 200233, China
| | - Dong Wei
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin Xue
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Mou-Xiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jian-Guang Xu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
16
|
Zhang M, Chen H, Huang W, Guo T, Ma G, Han Y, Shu N. Relationship between topological efficiency of white matter structural connectome and plasma biomarkers across the Alzheimer's disease continuum. Hum Brain Mapp 2024; 45:e26566. [PMID: 38224535 PMCID: PMC10785192 DOI: 10.1002/hbm.26566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/11/2023] [Accepted: 11/30/2023] [Indexed: 01/17/2024] Open
Abstract
Both plasma biomarkers and brain network topology have shown great potential in the early diagnosis of Alzheimer's disease (AD). However, the specific associations between plasma AD biomarkers, structural network topology, and cognition across the AD continuum have yet to be fully elucidated. This retrospective study evaluated participants from the Sino Longitudinal Study of Cognitive Decline cohort between September 2009 and October 2022 with available blood samples or 3.0-T MRI brain scans. Plasma biomarker levels were measured using the Single Molecule Array platform, including β-amyloid (Aβ), phosphorylated tau181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL). The topological structure of brain white matter was assessed using network efficiency. Trend analyses were carried out to evaluate the alterations of the plasma markers and network efficiency with AD progression. Correlation and mediation analyses were conducted to further explore the relationships among plasma markers, network efficiency, and cognitive performance across the AD continuum. Among the plasma markers, GFAP emerged as the most sensitive marker (linear trend: t = 11.164, p = 3.59 × 10-24 ; quadratic trend: t = 7.708, p = 2.25 × 10-13 ; adjusted R2 = 0.475), followed by NfL (linear trend: t = 6.542, p = 2.9 × 10-10 ; quadratic trend: t = 3.896, p = 1.22 × 10-4 ; adjusted R2 = 0.330), p-tau181 (linear trend: t = 8.452, p = 1.61 × 10-15 ; quadratic trend: t = 6.316, p = 1.05 × 10-9 ; adjusted R2 = 0.346) and Aβ42/Aβ40 (linear trend: t = -3.257, p = 1.27 × 10-3 ; quadratic trend: t = -1.662, p = 9.76 × 10-2 ; adjusted R2 = 0.101). Local efficiency decreased in brain regions across the frontal and temporal cortex and striatum. The principal component of local efficiency within these regions was correlated with GFAP (Pearson's R = -0.61, p = 6.3 × 10-7 ), NfL (R = -0.57, p = 6.4 × 10-6 ), and p-tau181 (R = -0.48, p = 2.0 × 10-4 ). Moreover, network efficiency mediated the relationship between general cognition and GFAP (ab = -0.224, 95% confidence interval [CI] = [-0.417 to -0.029], p = .0196 for MMSE; ab = -0.198, 95% CI = [-0.42 to -0.003], p = .0438 for MOCA) or NfL (ab = -0.224, 95% CI = [-0.417 to -0.029], p = .0196 for MMSE; ab = -0.198, 95% CI = [-0.42 to -0.003], p = .0438 for MOCA). Our findings suggest that network efficiency mediates the association between plasma biomarkers, specifically GFAP and NfL, and cognitive performance in the context of AD progression, thus highlighting the potential utility of network-plasma approaches for early detection, monitoring, and intervention strategies in the management of AD.
Collapse
Affiliation(s)
- Mingkai Zhang
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
| | - Haojie Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- BABRI CentreBeijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and ConnectomicsBeijing Normal UniversityBeijingChina
| | - Weijie Huang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- BABRI CentreBeijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and ConnectomicsBeijing Normal UniversityBeijingChina
| | - Tengfei Guo
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
| | - Guolin Ma
- Department of RadiologyChina‐Japan Friendship HospitalBeijingChina
| | - Ying Han
- Department of NeurologyXuanwu Hospital, Capital Medical UniversityBeijingChina
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
- School of Biomedical EngineeringHainan UniversityHaikouChina
- National Clinical Research Center for Geriatric DiseasesBeijingChina
- Center of Alzheimer's DiseaseBeijing Institute for Brain DisordersBeijingChina
| | - Ni Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
- BABRI CentreBeijing Normal UniversityBeijingChina
- Beijing Key Laboratory of Brain Imaging and ConnectomicsBeijing Normal UniversityBeijingChina
| |
Collapse
|
17
|
Kim SJ, Bae YJ, Park YH, Jang H, Kim JP, Seo SW, Seong JK, Kim GH. Sex differences in the structural rich-club connectivity in patients with Alzheimer's disease. Front Aging Neurosci 2023; 15:1209027. [PMID: 37771522 PMCID: PMC10525353 DOI: 10.3389/fnagi.2023.1209027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/24/2023] [Indexed: 09/30/2023] Open
Abstract
Background and objectives Alzheimer's disease (AD) is more prevalent in women than in men; however, there is a discrepancy in research on sex differences in AD. The human brain is a large-scale network with hub regions forming a central core, the rich-club, which is vital to cognitive functions. However, it is unknown whether alterations in the rich-clubs in AD differ between men and women. We aimed to investigate sex differences in the rich-club organization in the brains of patients with AD. Methods In total, 260 cognitively unimpaired individuals with negative amyloid positron emission tomography (PET) scans, 281 with prodromal AD (mild cognitive impairment due to AD) and 285 with AD dementia who confirmed with positive amyloid PET scans participated in the study. We obtained high-resolution T1-weighted and diffusion tensor images and performed network analysis. Results We observed sex differences in the rich-club and feeder connections in patients with AD, suggesting lower structural connectivity strength in women than in men. We observed a significant group-by-sex interaction in the feeder connections, particularly in the thalamus. In addition, the connectivity strength of the thalamus in the feeder connections was significantly correlated with general cognitive function in only men with prodromal AD and women with AD dementia. Conclusion Our findings provide important evidence for sex-specific alterations in the structural brain network related to AD.
Collapse
Affiliation(s)
- Soo-Jong Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Youn Jung Bae
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea
| | - Yu Hyun Park
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Jun Pyo Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Alzheimer’s Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
- Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Joon-Kyung Seong
- School of Biomedical Engineering, Korea University, Seoul, Republic of Korea
- Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea
| | - Geon Ha Kim
- Department of Neurology, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
18
|
Pei H, Ma S, Yan W, Liu Z, Wang Y, Yang Z, Li Q, Yao D, Jiang S, Luo C, Yu L. Functional and structural networks decoupling in generalized tonic-clonic seizures and its reorganization by drugs. Epilepsia Open 2023; 8:1038-1048. [PMID: 37394869 PMCID: PMC10472403 DOI: 10.1002/epi4.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
OBJECTIVE To investigate potential functional and structural large-scale network disturbances in untreated patients with generalized tonic-clonic seizures (GTCS) and the effects of antiseizure drugs. METHODS In this study, 41 patients with GTCS, comprising 21 untreated patients and 20 patients who received antiseizure medications (ASMs), and 29 healthy controls were recruited to construct large-scale brain networks based on resting-state functional magnetic resonance imaging and diffusion tensor imaging. Structural and functional connectivity and network-level weighted correlation probability (NWCP) were further investigated to identify network features that corresponded to response to ASMs. RESULTS Untreated patients showed more extensive enhancement of functional and structural connections than controls. Specifically, we observed abnormally enhanced connections between the default mode network (DMN) and the frontal-parietal network. In addition, treated patients showed similar functional connection strength to that of the control group. However, all patients exhibited similar structural network alterations. Moreover, the NWCP value was lower for connections within the DMN and between the DMN and other networks in the untreated patients; receiving ASMs could reverse this pattern. SIGNIFICANCE Our study identified alterations in structural and functional connectivity in patients with GTCS. The influence of ASMs may be more noticeable within the functional network; moreover, abnormalities in both the functional and structural coupling state may be improved by ASM treatment. Therefore, the coupling state of structural and functional connectivity may be used as an indicator of the efficacy of ASMs.
Collapse
Affiliation(s)
- Haonan Pei
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
| | - Shuai Ma
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
- Neurology DepartmentSichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of ChinaChengduChina
| | - Wei Yan
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
| | - Zetao Liu
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
| | - Yuehan Wang
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
| | - Zhihuan Yang
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
| | - Qifu Li
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouChina
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
- Department of NeurologyThe First Affiliated Hospital of Hainan Medical UniversityHaikouChina
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science InstituteMOE Key Lab for NeuroinformationSchool of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
- Research Unit of NeuroInformation (2019RU035)Chinese Academy of Medical SciencesChengduChina
- High‐Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan ProvinceUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Liang Yu
- Neurology DepartmentSichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, The Affiliated Hospital of University of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
19
|
Gao SL, Yue J, Li XL, Li A, Cao DN, Han SW, Wei ZY, Yang G, Zhang Q. Multimodal magnetic resonance imaging on brain network in amnestic mild cognitive impairment: A mini-review. Medicine (Baltimore) 2023; 102:e34994. [PMID: 37653770 PMCID: PMC10470781 DOI: 10.1097/md.0000000000034994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Amnestic mild cognitive impairment (aMCI) is a stage between normal aging and Alzheimer disease (AD) where individuals experience a noticeable decline in memory that is greater than what is expected with normal aging, but dose not meet the clinical criteria for AD. This stage is considered a transitional phase that puts individuals at a high risk for developing AD. It is crucial to intervene during this stage to reduce the changes of AD development. Recently, advanced multimodal magnetic resonance imaging techniques have been used to study the brain structure and functional networks in individuals with aMCI. Through the use of structural magnetic resonance imaging, diffusion tensor imaging, and functional magnetic resonance imaging, abnormalities in certain brain regions have been observed in individuals with aMCI. Specifically, the default mode network, salience network, and executive control network have been found to show abnormalities in both structure and function. This review aims to provide a comprehensive understanding of the brain structure and functional networks associated with aMCI. By analyzing the existing literature on multimodal magnetic resonance imaging and aMCI, this study seeks to uncover potential biomarkers and gain insight into the underlying pathogenesis of aMCI. This knowledge can then guide the development of future treatments and interventions to delay or prevent the progression of aMCI to AD.
Collapse
Affiliation(s)
- Sheng-Lan Gao
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinhuan Yue
- Shenzhen Frontiers in Chinese Medicine Research Co., Ltd., Shenzhen, China
| | - Xiao-Ling Li
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ang Li
- Sanofi-Aventis China Investment Co., Ltd, Beijing, China
| | - Dan-Na Cao
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Sheng-Wang Han
- Third Ward of Rehabilitation Department, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ze-Yi Wei
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH
| | - Qinhong Zhang
- Shenzhen Frontiers in Chinese Medicine Research Co., Ltd., Shenzhen, China
| |
Collapse
|
20
|
Ding H, Wang Z, Tang Y, Wang T, Qi M, Dou W, Qian L, Gao Y, Zhong Q, Yang X, Tian H, Zhang L, Zhu Y. Topological properties of individual gray matter morphological networks in identifying the preclinical stages of Alzheimer's disease: a preliminary study. Quant Imaging Med Surg 2023; 13:5258-5270. [PMID: 37581056 PMCID: PMC10423385 DOI: 10.21037/qims-22-1373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/08/2023] [Indexed: 08/16/2023]
Abstract
Background Subjective cognitive decline (SCD) and mild cognitive impairment (MCI) are preclinical stages of Alzheimer's disease (AD). Individual biomarkers are essential for evaluating altered neurological outcomes at both SCD and MCI stages for early diagnosis and intervention of AD. In this study, we aimed to investigate the relationships between topological properties of the individual brain morphological network and clinical cognitive performances among healthy controls (HCs) and patients with SCD or MCI. Methods The topological measurements of individual morphological networks were analyzed using graph theory, and inter-group differences of standard graph topology were correlated and regressed to scores of clinical cognitive functions. Results Compared with HCs, the topology of the individual morphological networks in SCD and MCI patients was significantly altered. At the global level, altered topology was characterized by lower global efficiency, shorter characteristics path length, and normalized characteristics path length [all P<0.05, false discovery rate (FDR) corrected]. In addition, at the regional level, SCD and MCI patients exhibited abnormal degree centrality in the caudate nucleus and nodal efficiency in the caudate nucleus, right insula, lenticular nucleus, and putamen (all P<0.05, FDR corrected). Conclusions The topological features of individual gray matter morphological networks may serve as biomarkers to improve disease prognosis and intervention in the early stages of AD, namely SCD and MCI. Moreover, these findings may further elucidate the relationships between brain morphological alterations and cognitive dysfunctions in SCD and MCI.
Collapse
Affiliation(s)
- Hongyuan Ding
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhihao Wang
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, China
| | - Yin Tang
- Department of Medical Imaging, Jingjiang People’s Hospital, Jingjiang, China
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ming Qi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - Yaxin Gao
- Department of Rehabilitation, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Gusu School, Nanjing Medical University, Suzhou, China
| | - Qian Zhong
- Department of Rehabilitation, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Xi Yang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Huifang Tian
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Ling Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Chen Q, Chen F, Long C, Zhu Y, Jiang Y, Zhu Z, Lu J, Zhang X, Nedelska Z, Hort J, Zhang B. Spatial navigation is associated with subcortical alterations and progression risk in subjective cognitive decline. Alzheimers Res Ther 2023; 15:86. [PMID: 37098612 PMCID: PMC10127414 DOI: 10.1186/s13195-023-01233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/18/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Subjective cognitive decline (SCD) may serve as a symptomatic indicator for preclinical Alzheimer's disease; however, SCD is a heterogeneous entity regarding clinical progression. We aimed to investigate whether spatial navigation could reveal subcortical structural alterations and the risk of progression to objective cognitive impairment in SCD individuals. METHODS One hundred and eighty participants were enrolled: those with SCD (n = 80), normal controls (NCs, n = 77), and mild cognitive impairment (MCI, n = 23). SCD participants were further divided into the SCD-good (G-SCD, n = 40) group and the SCD-bad (B-SCD, n = 40) group according to their spatial navigation performance. Volumes of subcortical structures were calculated and compared among the four groups, including basal forebrain, thalamus, caudate, putamen, pallidum, hippocampus, amygdala, and accumbens. Topological properties of the subcortical structural covariance network were also calculated. With an interval of 1.5 years ± 12 months of follow-up, the progression rate to MCI was compared between the G-SCD and B-SCD groups. RESULTS Volumes of the basal forebrain, the right hippocampus, and their respective subfields differed significantly among the four groups (p < 0.05, false discovery rate corrected). The B-SCD group showed lower volumes in the basal forebrain than the G-SCD group, especially in the Ch4p and Ch4a-i subfields. Furthermore, the structural covariance network of the basal forebrain and right hippocampal subfields showed that the B-SCD group had a larger Lambda than the G-SCD group, which suggested weakened network integration in the B-SCD group. At follow-up, the B-SCD group had a significantly higher conversion rate to MCI than the G-SCD group. CONCLUSION Compared to SCD participants with good spatial navigation performance, SCD participants with bad performance showed lower volumes in the basal forebrain, a reorganized structural covariance network of subcortical nuclei, and an increased risk of progression to MCI. Our findings indicated that spatial navigation may have great potential to identify SCD subjects at higher risk of clinical progression, which may contribute to making more precise clinical decisions for SCD individuals who seek medical help.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Futao Chen
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Cong Long
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yajing Zhu
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yaoxian Jiang
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengyang Zhu
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jiaming Lu
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xin Zhang
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zuzana Nedelska
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia
| | - Jakub Hort
- Memory Clinic, Department of Neurology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czechia
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China.
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China.
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China.
- Institute of Brain Science, Nanjing University, Nanjing, China.
| |
Collapse
|
22
|
Yang Z, Chen Y, Hou X, Xu Y, Bai F. Topologically convergent and divergent large scale complex networks among Alzheimer's disease spectrum patients: A systematic review. Heliyon 2023; 9:e15389. [PMID: 37101638 PMCID: PMC10123263 DOI: 10.1016/j.heliyon.2023.e15389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/16/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Alzheimer's disease (AD) is associated with disruption at the level of a large-scale complex network. To explore the underlying mechanisms in the progression of AD, graph theory was used to quantitatively analyze the topological properties of structural and functional connections. Although an increasing number of studies have shown altered global and nodal network properties, little is known about the topologically convergent and divergent patterns between structural and functional networks among AD-spectrum patients. In this review, we summarized the topological patterns of the large-scale complex networks using multimodal neuroimaging graph theory analysis in AD spectrum patients. Convergent deficits in the connectivity characteristics were primarily in the default mode network (DMN) itself both in the structural and functional networks, while a divergent changes in the neighboring regions of the DMN were also observed between the patient groups. Together, the application of graph theory to large-scale complex brain networks provides quantitative insights into topological principles of brain network organization, which may lead to increasing attention in identifying the underlying neuroimaging pathological changes and predicting the progression of AD.
Collapse
Affiliation(s)
- Zhiyuan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Ya Chen
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Xinle Hou
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Department of Neurology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- Geriatric Medicine Center, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
- Correspondence to: 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
23
|
Wu H, Song Y, Yang X, Chen S, Ge H, Yan Z, Qi W, Yuan Q, Liang X, Lin X, Chen J. Functional and structural alterations of dorsal attention network in preclinical and early-stage Alzheimer's disease. CNS Neurosci Ther 2023; 29:1512-1524. [PMID: 36942514 PMCID: PMC10173716 DOI: 10.1111/cns.14092] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 03/23/2023] Open
Abstract
OBJECTIVES Subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI) are known as the preclinical and early stage of Alzheimer's disease (AD). The dorsal attention network (DAN) is mainly responsible for the "top-down" attention process. However, previous studies mainly focused on single functional modality and limited structure. This study aimed to investigate the multimodal alterations of DAN in SCD and aMCI to assess their diagnostic value in preclinical and early-stage AD. METHODS Resting-state functional magnetic resonance imaging (MRI) was carried out to measure the fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and functional connectivity (FC). Structural MRI was used to calculate the gray matter volume (GMV) and cortical thickness. Moreover, receiver-operating characteristic (ROC) analysis was used to distinguish these alterations in SCD and aMCI. RESULTS The SCD and aMCI groups showed both decreased ReHo in the right middle temporal gyrus (MTG) and decreased GMV compared to healthy controls (HCs). Especially in the SCD group, there were increased fALFF and increased ReHo in the left inferior occipital gyrus (IOG), decreased fALFF and increased FC in the left inferior parietal lobule (IPL), and reduced cortical thickness in the right inferior temporal gyrus (ITG). Furthermore, functional and structural alterations in the SCD and aMCI groups were closely related to episodic memory (EM), executive function (EF), and information processing speed (IPS). The combination of multiple indicators of DAN had a high accuracy in differentiating clinical stages. CONCLUSIONS Our current study demonstrated functional and structural alterations of DAN in SCD and aMCI, especially in the MTG, IPL, and SPL. Furthermore, cognitive performance was closely related to these significant alterations. Our study further suggested that the combined multiple indicators of DAN could be acted as the latent neuroimaging markers of preclinical and early-stage AD for their high diagnostic value.
Collapse
Affiliation(s)
- Huimin Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Song
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyi Yang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Honglin Ge
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Zheng Yan
- Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qianqian Yuan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xuhong Liang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Department of Radiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Chen Y, Wang Y, Song Z, Fan Y, Gao T, Tang X. Abnormal white matter changes in Alzheimer's disease based on diffusion tensor imaging: A systematic review. Ageing Res Rev 2023; 87:101911. [PMID: 36931328 DOI: 10.1016/j.arr.2023.101911] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Alzheimer's disease (AD) is a degenerative neurological disease in elderly individuals. Subjective cognitive decline (SCD), mild cognitive impairment (MCI) and further development to dementia (d-AD) are considered to be major stages of the progressive pathological development of AD. Diffusion tensor imaging (DTI), one of the most important modalities of MRI, can describe the microstructure of white matter through its tensor model. It is widely used in understanding the central nervous system mechanism and finding appropriate potential biomarkers for the early stages of AD. Based on the multilevel analysis methods of DTI (voxelwise, fiberwise and networkwise), we summarized that AD patients mainly showed extensive microstructural damage, structural disconnection and topological abnormalities in the corpus callosum, fornix, and medial temporal lobe, including the hippocampus and cingulum. The diffusion features and structural connectomics of specific regions can provide information for the early assisted recognition of AD. The classification accuracy of SCD and normal controls can reach 92.68% at present. And due to the further changes of brain structure and function, the classification accuracy of MCI, d-AD and normal controls can reach more than 97%. Finally, we summarized the limitations of current DTI-based AD research and propose possible future research directions.
Collapse
Affiliation(s)
- Yu Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yifei Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zeyu Song
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Tianxin Gao
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China; School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
25
|
Sun L, Li C, Wang S, Si Q, Lin M, Wang N, Sun J, Li H, Liang Y, Wei J, Zhang X, Zhang J. Left frontal eye field encodes sound locations during passive listening. Cereb Cortex 2023; 33:3067-3079. [PMID: 35858212 DOI: 10.1093/cercor/bhac261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/12/2022] Open
Abstract
Previous studies reported that auditory cortices (AC) were mostly activated by sounds coming from the contralateral hemifield. As a result, sound locations could be encoded by integrating opposite activations from both sides of AC ("opponent hemifield coding"). However, human auditory "where" pathway also includes a series of parietal and prefrontal regions. It was unknown how sound locations were represented in those high-level regions during passive listening. Here, we investigated the neural representation of sound locations in high-level regions by voxel-level tuning analysis, regions-of-interest-level (ROI-level) laterality analysis, and ROI-level multivariate pattern analysis. Functional magnetic resonance imaging data were collected while participants listened passively to sounds from various horizontal locations. We found that opponent hemifield coding of sound locations not only existed in AC, but also spanned over intraparietal sulcus, superior parietal lobule, and frontal eye field (FEF). Furthermore, multivariate pattern representation of sound locations in both hemifields could be observed in left AC, right AC, and left FEF. Overall, our results demonstrate that left FEF, a high-level region along the auditory "where" pathway, encodes sound locations during passive listening in two ways: a univariate opponent hemifield activation representation and a multivariate full-field activation pattern representation.
Collapse
Affiliation(s)
- Liwei Sun
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Songjian Wang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Qian Si
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Meng Lin
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Ningyu Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Jun Sun
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Jing Wei
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing 100069, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - Juan Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
26
|
Li D, Mao M, Zhang X, Hou D, Zhang S, Hao J, Cui X, Niu Y, Xiang J, Wang B. Gender effects on the controllability of hemispheric white matter networks. Cereb Cortex 2023; 33:1643-1658. [PMID: 35483707 DOI: 10.1093/cercor/bhac162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Male and female adults exhibited significant group differences in brain white matter (WM) asymmetry and WM network controllability. However, gender differences in controllability of hemispheric WM networks between males and females remain to be determined. Based on 1 principal atlas and 1 replication atlas, this work characterized the average controllability (AC) and modal controllability (MC) of hemispheric WM network based on 1 principal dataset and 2 replication datasets. All results showed that males had higher AC of left hemispheric networks than females. And significant hemispheric asymmetry was revealed in regional AC and MC. Furthermore, significant gender differences in the AC asymmetry were mainly found in regions lie in the frontoparietal network, and the MC asymmetry was found in regions involving auditory and emotion process. Finally, we found significant associations between regional controllability and cognitive features. Taken together, this work could provide a novel perspective for understanding gender differences in hemispheric WM asymmetry and cognitive function between males and females.
Collapse
Affiliation(s)
- Dandan Li
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Min Mao
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Xi Zhang
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Dianni Hou
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Shanshan Zhang
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Jiangping Hao
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Xiaohong Cui
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Yan Niu
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Jie Xiang
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Bin Wang
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| |
Collapse
|
27
|
Peng L, Chen Z, Gao X. Altered rich-club organization of brain functional network in autism spectrum disorder. Biofactors 2023. [PMID: 36785880 DOI: 10.1002/biof.1933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 02/15/2023]
Abstract
Despite numerous research showing the association between brain network abnormalities and autism spectrum disorder (ASD), contrasting findings have been reported from broad functional underconnectivity to broad overconnectivity. Thus, the significance of rich-hub organizations in the brain functional connectome of individuals with ASD remains largely unknown. High-quality data subset of ASD (n = 45) and healthy controls (HC; n = 47) children (7-15 years old) were retrieved from the ABIDE data set, and rich-club organization and network-based statistic (NBS) were assessed from resting-state functional magnetic resonance imaging (rs-fMRI). The rich-club organization functional network (normalized rich-club coefficients >1) was observed in all subjects under a range of thresholds. Compared with HC, ASD patients had higher degree of feeder connections and lower degree of local connections (degree of feeder connections: ASD = 259.20 ± 32.97, HC = 244.98 ± 30.09, p = 0.041; degree of local connections: ASD = 664.02 ± 39.19, HC = 679.89 ± 34.05, p = 0.033) but had similar in rich-club connections. Further, nonparametric NBS analysis showed the presence of abnormal connectivity in the functional network of ASD individuals. Our findings indicated that local connection might be more vulnerable, and feeder connection may compensate for its disruption in ASD, enhancing our understanding on the mechanism of functional connectome dysfunction in ASD.
Collapse
Affiliation(s)
- Liling Peng
- Department of PET/MR, Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, People's Republic of China
| | - Zhuang Chen
- Department of Cardiology, The Fifth People's Hospital of Jinan, Jinan, Shandong, People's Republic of China
| | - Xin Gao
- Department of PET/MR, Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, People's Republic of China
| |
Collapse
|
28
|
Yan T, Yan Z, Liu L, Zhang X, Chen G, Xu F, Li Y, Zhang L, Peng M, Wang L, Li D, Zhao D. Survival prediction for patients with glioblastoma multiforme using a Cox proportional hazards denoising autoencoder network. Front Comput Neurosci 2023; 16:916511. [PMID: 36704230 PMCID: PMC9871481 DOI: 10.3389/fncom.2022.916511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Objectives This study aimed to establish and validate a prognostic model based on magnetic resonance imaging and clinical features to predict the survival time of patients with glioblastoma multiforme (GBM). Methods In this study, a convolutional denoising autoencoder (DAE) network combined with the loss function of the Cox proportional hazard regression model was used to extract features for survival prediction. In addition, the Kaplan-Meier curve, the Schoenfeld residual analysis, the time-dependent receiver operating characteristic curve, the nomogram, and the calibration curve were performed to assess the survival prediction ability. Results The concordance index (C-index) of the survival prediction model, which combines the DAE and the Cox proportional hazard regression model, reached 0.78 in the training set, 0.75 in the validation set, and 0.74 in the test set. Patients were divided into high- and low-risk groups based on the median prognostic index (PI). Kaplan-Meier curve was used for survival analysis (p = < 2e-16 in the training set, p = 3e-04 in the validation set, and p = 0.007 in the test set), which showed that the survival probability of different groups was significantly different, and the PI of the network played an influential role in the prediction of survival probability. In the residual verification of the PI, the fitting curve of the scatter plot was roughly parallel to the x-axis, and the p-value of the test was 0.11, proving that the PI and survival time were independent of each other and the survival prediction ability of the PI was less affected than survival time. The areas under the curve of the training set were 0.843, 0.871, 0.903, and 0.941; those of the validation set were 0.687, 0.895, 1.000, and 0.967; and those of the test set were 0.757, 0.852, 0.683, and 0.898. Conclusion The survival prediction model, which combines the DAE and the Cox proportional hazard regression model, can effectively predict the prognosis of patients with GBM.
Collapse
Affiliation(s)
- Ting Yan
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhenpeng Yan
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lili Liu
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoyu Zhang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Guohui Chen
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Feng Xu
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Ying Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Lijuan Zhang
- Shanxi Provincial People's Hospital, Taiyuan, China
| | - Meilan Peng
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lu Wang
- Key Laboratory of Cellular Physiology of the Ministry of Education, Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dandan Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China,*Correspondence: Dandan Li ✉
| | - Dong Zhao
- Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China,Dong Zhao ✉
| |
Collapse
|
29
|
Shi Z, Jiang B, Liu T, Wang L, Pei G, Suo D, Zhang J, Funahashi S, Wu J, Yan T. Individual-level functional connectomes predict the motor symptoms of Parkinson's disease. Cereb Cortex 2023; 33:6282-6290. [PMID: 36627247 DOI: 10.1093/cercor/bhac503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 01/12/2023] Open
Abstract
Abnormalities in functional connectivity networks are associated with sensorimotor networks in Parkinson's disease (PD) based on group-level mapping studies, but these results are controversial. Using individual-level cortical segmentation to construct individual brain atlases can supplement the individual information covered by group-level cortical segmentation. Functional connectivity analyses at the individual level are helpful for obtaining clinically useful markers and predicting treatment response. Based on the functional connectivity of individualized regions of interest, a support vector regression model was trained to estimate the severity of motor symptoms for each subject, and a correlation analysis between the estimated scores and clinical symptom scores was performed. Forty-six PD patients aged 50-75 years were included from the Parkinson's Progression Markers Initiative database, and 63 PD patients were included from the Beijing Rehabilitation Hospital database. Only patients below Hoehn and Yahr stage III were included. The analysis showed that the severity of motor symptoms could be estimated by the individualized functional connectivity between the visual network and sensorimotor network in early-stage disease. The results reveal individual-level connectivity biomarkers related to motor symptoms and emphasize the importance of individual differences in the prediction of the treatment response of PD.
Collapse
Affiliation(s)
- Zhongyan Shi
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bo Jiang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Tiantian Liu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Guangying Pei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Zhang
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Jinglong Wu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
30
|
Guo B, Zhang M, Hao W, Wang Y, Zhang T, Liu C. Neuroinflammation mechanisms of neuromodulation therapies for anxiety and depression. Transl Psychiatry 2023; 13:5. [PMID: 36624089 PMCID: PMC9829236 DOI: 10.1038/s41398-022-02297-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Mood disorders are associated with elevated inflammation, and the reduction of symptoms after multiple treatments is often accompanied by pro-inflammation restoration. A variety of neuromodulation techniques that regulate regional brain activities have been used to treat refractory mood disorders. However, their efficacy varies from person to person and lack reliable indicator. This review summarizes clinical and animal studies on inflammation in neural circuits related to anxiety and depression and the evidence that neuromodulation therapies regulate neuroinflammation in the treatment of neurological diseases. Neuromodulation therapies, including transcranial magnetic stimulation (TMS), transcranial electrical stimulation (TES), electroconvulsive therapy (ECT), photobiomodulation (PBM), transcranial ultrasound stimulation (TUS), deep brain stimulation (DBS), and vagus nerve stimulation (VNS), all have been reported to attenuate neuroinflammation and reduce the release of pro-inflammatory factors, which may be one of the reasons for mood improvement. This review provides a better understanding of the effective mechanism of neuromodulation therapies and indicates that inflammatory biomarkers may serve as a reference for the assessment of pathological conditions and treatment options in anxiety and depression.
Collapse
Affiliation(s)
- Bingqi Guo
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China
| | - Mengyao Zhang
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China
| | - Wensi Hao
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China
| | - Yuping Wang
- grid.413259.80000 0004 0632 3337Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XBeijing Key Laboratory of Neuromodulation, Beijing, 100053 China ,grid.24696.3f0000 0004 0369 153XInstitute of sleep and consciousness disorders, Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069 China
| | - Tingting Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. .,Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China.
| | - Chunyan Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China. .,Beijing Key Laboratory of Neuromodulation, Beijing, 100053, China.
| |
Collapse
|
31
|
Wang M, Xu B, Hou X, Shi Q, Zhao H, Gui Q, Wu G, Dong X, Xu Q, Shen M, Cheng Q, Feng H. Altered brain networks and connections in chronic heart failure patients complicated with cognitive impairment. Front Aging Neurosci 2023; 15:1153496. [PMID: 37122379 PMCID: PMC10140296 DOI: 10.3389/fnagi.2023.1153496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Objective Accumulating evidence shows that cognitive impairment (CI) in chronic heart failure (CHF) patients is related to brain network dysfunction. This study investigated brain network structure and rich-club organization in chronic heart failure patients with cognitive impairment based on graph analysis of diffusion tensor imaging data. Methods The brain structure networks of 30 CHF patients without CI and 30 CHF patients with CI were constructed. Using graph theory analysis and rich-club analysis, changes in global and local characteristics of the subjects' brain network and rich-club organization were quantitatively calculated, and the correlation with cognitive function was analyzed. Results Compared to the CHF patients in the group without CI group, the CHF patients in the group with CI group had lower global efficiency, local efficiency, clustering coefficient, the small-world attribute, and increased shortest path length. The CHF patients with CI group showed lower nodal degree centrality in the fusiform gyrus on the right (FFG.R) and nodal efficiency in the orbital superior frontal gyrus on the left (ORB sup. L), the orbital inferior frontal gyrus on the left (ORB inf. L), and the posterior cingulate gyrus on the right (PCG.R) compared with CHF patients without CI group. The CHF patients with CI group showed a smaller fiber number of edges in specific regions. In CHF patients with CI, global efficiency, local efficiency and the connected edge of the orbital superior frontal gyrus on the right (ORB sup. R) to the orbital middle frontal gyrus on the right (ORB mid. R) were positively correlated with Visuospatial/Executive function. The connected edge of the orbital superior frontal gyrus on the right to the orbital inferior frontal gyrus on the right (ORB inf. R) is positively correlated to attention/calculation. Compared with the CHF patients without CI group, the connection strength of feeder connection and local connection in CHF patients with CI group was significantly reduced, although the strength of rich-club connection in CHF patients complicated with CI group was decreased compared with the control, there was no statistical difference. In addition, the rich-club connection strength was related to the orientation (direction force) of the Montreal cognitive assessment (MoCA) scale, and the feeder and local connection strength was related to Visuospatial/Executive function of MoCA scale in the CHF patients with CI. Conclusion Chronic heart failure patients with CI exhibited lower global and local brain network properties, reduced white matter fiber connectivity, as well as a decreased strength in local and feeder connections in key brain regions. The disrupted brain network characteristics and connectivity was associated with cognitive impairment in CHF patients. Our findings suggest that impaired brain network properties and decreased connectivity, a feature of progressive disruption of brain networks, predict the development of cognitive impairment in patients with chronic heart failure.
Collapse
|
32
|
Wei PH, Nicolelis MA, Zhao GG. Rethinking the neurosurgical approach to brain disorders from the network neuroscience perspective. Sci Bull (Beijing) 2022; 67:2376-2380. [PMID: 36566053 DOI: 10.1016/j.scib.2022.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Peng-Hu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Lab of Walk Again Project (WAP), Translational Research Center for Brain-inspired Intelligence, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; National Center for Neurological Disorders, Beijing 100053, China
| | - Miguel A Nicolelis
- Department of Neurobiology, Duke University, Durham 27708, USA; International Institute for Neurosciences of Natal - Edmond and Lily Safra, Nata 59280-000, Brazil
| | - Guo-Guang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Lab of Walk Again Project (WAP), Translational Research Center for Brain-inspired Intelligence, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; National Center for Neurological Disorders, Beijing 100053, China; Beijing Municipal Geriatric Medical Research Center, Beijing 100053, China.
| |
Collapse
|
33
|
Yuan Q, Liang X, Xue C, Qi W, Chen S, Song Y, Wu H, Zhang X, Xiao C, Chen J. Altered anterior cingulate cortex subregional connectivity associated with cognitions for distinguishing the spectrum of pre-clinical Alzheimer's disease. Front Aging Neurosci 2022; 14:1035746. [PMID: 36570538 PMCID: PMC9768430 DOI: 10.3389/fnagi.2022.1035746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background Subjective cognitive decline (SCD) and amnestic mild cognitive impairment (aMCI) are considered part of the early progression continuum of Alzheimer's disease (AD). The anterior cingulate cortex (ACC), a hub of information processing and regulation in the brain, plays an essential role in AD pathophysiology. In the present study, we aimed to systematically identify changes in the functional connectivity (FC) of ACC subregions in patients with SCD and aMCI and evaluate the association of these changes with cognition. Materials and methods Functional connectivity (FC) analysis of ACC sub-regions was performed among 66 patients with SCD, 71 patients with aMCI, and 78 healthy controls (HCs). Correlation analyses were performed to examine the relationship between FC of altered ACC subnetworks and cognition. Results Compared to HCs, SCD patients showed increased FC of the bilateral precuneus (PCUN) and caudal ACC, left superior frontal gyrus (SFG) and subgenual ACC, left inferior parietal lobule (IPL) and dorsal ACC, left middle occipital gyrus (MOG) and dorsal ACC, and left middle temporal gyrus (MTG) and subgenual ACC, while aMCI patients showed increased FC of the left inferior frontal gyrus (IFG) and dorsal ACC and left medial frontal gyrus (MFG) and subgenual ACC. Compared to patients with SCD, patients with aMCI showed increased FC of the right MFG and dorsal ACC and left ACC and subgenual ACC, while the left posterior cingulate cortex (PCC) showed decreased FC with the caudal ACC. Moreover, some FC values among the altered ACC subnetworks were significantly correlated with episodic memory and executive function. Conclusion SCD and aMCI, part of the spectrum of pre-clinical AD, share some convergent and divergent altered intrinsic connectivity of ACC subregions. These results may serve as neuroimaging biomarkers of the preclinical phase of AD and provide new insights into the design of preclinical interventions.
Collapse
Affiliation(s)
- Qianqian Yuan
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xuhong Liang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Song
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Huimin Wu
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xulian Zhang
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chaoyong Xiao
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Chaoyong Xiao,
| | - Jiu Chen
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China,Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China,Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China,Jiu Chen,
| |
Collapse
|
34
|
Wang B, Guo M, Pan T, Li Z, Li Y, Xiang J, Cui X, Niu Y, Yang J, Wu J, Liu M, Li D. Altered higher-order coupling between brain structure and function with embedded vector representations of connectomes in schizophrenia. Cereb Cortex 2022; 33:5447-5456. [PMID: 36482789 DOI: 10.1093/cercor/bhac432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 12/13/2022] Open
Abstract
Abstract
It has been shown that the functional dependency of the brain exists in both direct and indirect regional relationships. Therefore, it is necessary to map higher-order coupling in brain structure and function to understand brain dynamic. However, how to quantify connections between not directly regions remains unknown to schizophrenia. The word2vec is a common algorithm through create embeddings of words to solve these problems. We apply the node2vec embedding representation to characterize features on each node, their pairwise relationship can give rise to correspondence relationships between brain regions. Then we adopt pearson correlation to quantify the higher-order coupling between structure and function in normal controls and schizophrenia. In addition, we construct direct and indirect connections to quantify the coupling between their respective functional connections. The results showed that higher-order coupling is significantly higher in schizophrenia. Importantly, the anomalous cause of coupling mainly focus on indirect structural connections. The indirect structural connections play an essential role in functional connectivity–structural connectivity (SC–FC) coupling. The similarity between embedded representations capture more subtle network underlying information, our research provides new perspectives for understanding SC–FC coupling. A strong indication that the structural backbone of the brain has an intimate influence on the resting-state functional.
Collapse
Affiliation(s)
- Bin Wang
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Min Guo
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Tingting Pan
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Zhifeng Li
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Ying Li
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Jie Xiang
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Xiaohong Cui
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Yan Niu
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| | - Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, 3-1-1 Tsushimanaka, kita-ku, Okayama-shi, Okayama, 700-8530, Japan
| | - Jinglong Wu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, 3-1-1 Tsushimanaka, kita-ku, Okayama-shi, Okayama, 700-8530, Japan
| | - Miaomiao Liu
- School of Psychology, Shenzhen University, No. 3688, Nanhai Avenue, Nanshan District, Shenzhen, 518061, China
| | - Dandan Li
- College of Information and Computer, Taiyuan University of Technology, No. 79, Yingze West Street, Taiyuan, Shanxi, 030024, China
| |
Collapse
|
35
|
Chen J, Wang Q, Huang X, Xu Y, Xiang Z, Liu S, Yang J, Chen Y. Potential biomarkers for distinguishing primary from acquired premature ejaculation: A diffusion tensor imaging based network study. Front Neurosci 2022; 16:929567. [PMID: 36340794 PMCID: PMC9626512 DOI: 10.3389/fnins.2022.929567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Premature ejaculation (PE) is classified as primary and acquired and may be facilitated by different pathophysiology. Brain plays an important role in PE, however, differences in the central neuropathological mechanisms among subtypes of PE are unknown. Materials and methods We acquired diffusion tensor imaging (DTI) data from 44 healthy controls (HC) and 47 PE patients (24 primary PE and 23 acquired PE). Then, the whole-brain white matter (WM) structural networks were constructed and between-group differences of nodal segregative parameters were identified by the method of graph theoretical analysis. Moreover, receiver operating characteristic (ROC) curves were performed to determine the suitability of the altered parameters as potential neuroimaging biomarkers for distinguishing primary PE from acquired PE. Results PE patients showed significantly increased clustering coefficient C(i) in the left inferior frontal gyrus (triangular part) (IFGtriang.L) and increased local efficiency Eloc(i) in the left precental gyrus (PreCG.L) and IFGtriang.L when compared with HC. Compared to HC, primary PE patients had increased C(i) and Eloc(i) in IFGtriang.L and the left amygdala (AMYG.L) while acquired PE patients had increased C(i) and Eloc(i) in IFGtriang.L, and decreased C(i) and Eloc(i) in AMYG.L. Compared to acquired PE, primary PE patients had increased C(i) and Eloc(i) in AMYG.L. Moreover, ROC analysis revealed that PreCG.L, IFGtriang.L and AMYG.L might be helpful for distinguishing different subtypes of PE from HC (PE from HC: sensitivity, 61.70–78.72%; specificity, 56.82–77.27%; primary PE from HC: sensitivity, 66.67–87.50%; specificity, 52.27–77.27%; acquired PE from HC: sensitivity, 34.78–86.96%; specificity, 54.55–100%) while AMYG.L might be helpful for distinguishing primary PE from acquired PE (sensitivity, 83.33–91.70%; specificity, 69.57–73.90%). Conclusion These findings improved our understanding of the pathophysiological processes that occurred in patients with ejaculatory dysfunction and suggested that the abnormal segregation of left amygdala might serve as a useful marker to help clinicians distinguish patients with primary PE from those with acquired PE.
Collapse
Affiliation(s)
- Jianhuai Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qing Wang
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinfei Huang
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Xu
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ziliang Xiang
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Shaowei Liu
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Yang
- Department of Urology, Jiangsu Provincial People’s Hospital, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Urology, People’s Hospital of Xinjiang Kizilsu Kirgiz Autonomous Prefecture, Xinjiang, China
- Jie Yang,
| | - Yun Chen
- Department of Andrology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yun Chen,
| |
Collapse
|
36
|
Liu T, Shi Z, Zhang J, Wang K, Li Y, Pei G, Wang L, Wu J, Yan T. Individual functional parcellation revealed compensation of dynamic limbic network organization in healthy ageing. Hum Brain Mapp 2022; 44:744-761. [PMID: 36214186 PMCID: PMC9842897 DOI: 10.1002/hbm.26096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 01/25/2023] Open
Abstract
Using group-level functional parcellations and constant-length sliding window analysis, dynamic functional connectivity studies have revealed network-specific impairment and compensation in healthy ageing. However, functional parcellation and dynamic time windows vary across individuals; individual-level ageing-related brain dynamics are uncertain. Here, we performed individual parcellation and individual-length sliding window clustering to characterize ageing-related dynamic network changes. Healthy participants (n = 637, 18-88 years) from the Cambridge Centre for Ageing and Neuroscience dataset were included. An individual seven-network parcellation, varied from group-level parcellation, was mapped for each participant. For each network, strong and weak cognitive brain states were revealed by individual-length sliding window clustering and canonical correlation analysis. The results showed negative linear correlations between age and change ratios of sizes in the default mode, frontoparietal, and salience networks and a positive linear correlation between age and change ratios of size in the limbic network (LN). With increasing age, the occurrence and dwell time of strong states showed inverted U-shaped patterns or a linear decreasing pattern in most networks but showed a linear increasing pattern in the LN. Overall, this study reveals a compensative increase in emotional networks (i.e., the LN) and a decline in cognitive and primary sensory networks in healthy ageing. These findings may provide insights into network-specific and individual-level targeting during neuromodulation in ageing and ageing-related diseases.
Collapse
Affiliation(s)
- Tiantian Liu
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Zhongyan Shi
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Jian Zhang
- Intelligent Robotics Institute, School of Mechatronical EngineeringBeijing Institute of TechnologyBeijingChina
| | - Kexin Wang
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Yuanhao Li
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Guangying Pei
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Li Wang
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Jinglong Wu
- School of Medical TechnologyBeijing Institute of TechnologyBeijingChina
| | - Tianyi Yan
- School of Life ScienceBeijing Institute of TechnologyBeijingChina
| |
Collapse
|
37
|
Zhang P, Wan X, Ai K, Zheng W, Liu G, Wang J, Huang W, Fan F, Yao Z, Zhang J. Rich-club reorganization and related network disruptions are associated with the symptoms and severity in classic trigeminal neuralgia patients. Neuroimage Clin 2022; 36:103160. [PMID: 36037660 PMCID: PMC9434131 DOI: 10.1016/j.nicl.2022.103160] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/20/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Alterations in white matter microstructure and functional activity have been demonstrated to be involved in the central nervous system mechanism of classic trigeminal neuralgia (CTN). However, the rich-club organization and related topological alterations in the CTN brain networks remain unclear. METHODS We simultaneously collected diffusion-tensor imaging (DTI) and resting state functional magnetic resonance imaging (rs-fMRI) data from 29 patients with CTN (9 males, mean age = 54.59 years) and 34 matched healthy controls (HCs) (12 males, mean age = 54.97 years) to construct structural networks (SNs) and functional networks (FNs). Rich-club organization was determined separately based on each group's SN and different kinds of connections. For both network types, we calculated the basic connectivity properties (network density and strength) and topological properties (global/local/nodal efficiency and small worldness). Moreover, SN-FN coupling was obtained. The relationships between all those properties and clinical measures were evaluated. RESULTS Compared to their FN, the SN of CTN patients was disrupted more severely, including its topological properties (reduced network efficiency and small-worldness), and a decrease in network density and strength was observed. Patients showed reorganization of the rich-club architecture, wherein the nodes with decreased nodal efficiency in the SN were mainly non-hub regions, and the local connections were closely related to altered global efficiency and whole brain coupling. While the cortical-subcortical connections of feeder were found to be strengthened in the SN of patients, the coupling between networks increased in all types of connections. Finally, disease severity (duration, pain intensity, and affective alterations) was negatively correlated with coupling (rich-club, feeder, and whole brain) and network strength (the rich-club of the SN and local connections of the FN). A positive correlation was only found between pain intensity and the coupling of local connections. CONCLUSIONS The SN of patients with CTN may be more vulnerable. Accompanied by the reorganization of the rich-club, the less efficient network communication and the impaired functional dynamics were largely attributable to the dysfunction of non-hub regions. As compensation, the pain transmission pathway of feeder connections involving in pain processing and emotional regulation may strengthen. The local and feeder sub-networks may serve as potential biomarkers for diagnosis or prognosis.
Collapse
Affiliation(s)
- Pengfei Zhang
- Second Clinical School, Lanzhou University, Lanzhou 730000, China,Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Xinyue Wan
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kai Ai
- Philips, Healthcare, Xi’an 710000, China
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China
| | - Guangyao Liu
- Second Clinical School, Lanzhou University, Lanzhou 730000, China,Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Jun Wang
- Second Clinical School, Lanzhou University, Lanzhou 730000, China,Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Wenjing Huang
- Second Clinical School, Lanzhou University, Lanzhou 730000, China,Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Fengxian Fan
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China,Corresponding authors at: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China (Z. Yao). Department of Magnetic Resonance, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China (J. Zhang).
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou 730000, China,Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou 730030, China,Corresponding authors at: Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, China (Z. Yao). Department of Magnetic Resonance, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China (J. Zhang).
| |
Collapse
|
38
|
Liu F, Duan M, Fu H, Zhao G, Han Y, Lan F, Ahmed Z, Cao G, Li Z, Ma D, Wang T. Orthopedic Surgery Causes Gut Microbiome Dysbiosis and Intestinal Barrier Dysfunction in Prodromal Alzheimer Disease Patients: A Prospective Observational Cohort Study. Ann Surg 2022; 276:270-280. [PMID: 35766370 PMCID: PMC9259038 DOI: 10.1097/sla.0000000000005489] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To investigate gut microbiota and intestinal barrier function changes after orthopedic surgery in elderly patients with either normal cognition (NC) or a prodromal Alzheimer disease phenotype (pAD) comprising either subjective cognitive decline (SCD) or amnestic mild cognitive impairment (aMCI). BACKGROUND Homeostatic disturbances induced by surgical trauma and/or stress can potentially alter the gut microbiota and intestinal barrier function in elderly patients before and after orthopedic surgery. METHODS In this prospective cohort study, 135 patients were subject to preoperative neuropsychological assessment and then classified into: NC (n=40), SCD (n=58), or aMCI (n=37). Their gut microbiota, bacterial endotoxin (lipopolysaccharide), tight junction (TJ) protein, and inflammatory cytokines in blood were measured before surgery and on postsurgical day 1, 3, and 7 (or before discharge). RESULTS The short-chain fatty acid (SCFA)-producing bacteria were lower while the gram-negative bacteria, lipopolysaccharide and TJ were higher preoperatively in both the SCD and aMCI (pAD) groups compared with the NC group. After surgery, a decrease in SCFA-producing bacteria, and an increase in both gram-negative bacteria and plasma claudin were significant in the pAD groups relative to the NC group. SCFA-producing bacteria were negatively correlated with TJ and cytokines in pAD patients on postsurgical day 7. Furthermore, surgery-induced perioperative metabolic stress and inflammatory responses were associated with gut microbiota alterations. CONCLUSIONS Surgery exacerbates both preexisting microbiota dysbiosis and intestinal barrier dysfunction in pAD patients, all of which may be associated with systemic inflammation and, in turn, may lead to further cognitive deterioration.
Collapse
Affiliation(s)
- Fangyan Liu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center of Geriatric Diseases, Beijing, China
| | - Mei Duan
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center of Geriatric Diseases, Beijing, China
| | - Huiqun Fu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center of Geriatric Diseases, Beijing, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital of Capital Medical University, Beijing, China
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Fei Lan
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center of Geriatric Diseases, Beijing, China
| | - Zara Ahmed
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Guanglei Cao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zheng Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Tianlong Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center of Geriatric Diseases, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
- Institute of Sleep and Consciousness Disorders, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Li F, Liu Y, Lu L, Shang S, Chen H, Haidari NA, Wang P, Yin X, Chen YC. Rich-club reorganization of functional brain networks in acute mild traumatic brain injury with cognitive impairment. Quant Imaging Med Surg 2022; 12:3932-3946. [PMID: 35782237 PMCID: PMC9246720 DOI: 10.21037/qims-21-915] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/30/2022] [Indexed: 06/12/2024]
Abstract
BACKGROUND Mild traumatic brain injury (mTBI) is typically characterized by temporally limited cognitive impairment and regarded as a brain connectome disorder. Recent findings have suggested that a higher level of organization named the "rich-club" may play a central role in enabling the integration of information and efficient communication across different systems of the brain. However, the alterations in rich-club organization and hub topology in mTBI and its relationship with cognitive impairment after mTBI have been scarcely elucidated. METHODS Resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from 88 patients with mTBI and 85 matched healthy controls (HCs). Large-scale functional brain networks were established for each participant. Rich-club organizations and network properties were assessed and analyzed between groups. Finally, we analyzed the correlations between the cognitive performance and changes in rich-club organization and network properties. RESULTS Both mTBI and HCs groups showed significant rich-club organization. Meanwhile, the rich-club organization was aberrant, with enhanced functional connectivity (FC) among rich-club nodes and peripheral regions in acute mTBI. In addition, significant differences in partial global and local network topological property measures were found between mTBI patients and HCs (P<0.01). In patients with mTBI, changes in rich-club organization and network properties were found to be related to early cognitive impairment after mTBI (P<0.05). CONCLUSIONS Our findings suggest that such patterns of disruption and reorganization will provide the basic functional architecture for cognitive function, which may subsequently be used as an earlier biomarker for cognitive impairment after mTBI.
Collapse
Affiliation(s)
| | | | - Liyan Lu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Song’an Shang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Nasir Ahmad Haidari
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | | |
Collapse
|
40
|
Aili X, Wang W, Zhang A, Jiao Z, Li X, Rao B, Li R, Li H. Rich-Club Analysis of Structural Brain Network Alterations in HIV Positive Patients With Fully Suppressed Plasma Viral Loads. Front Neurol 2022; 13:825177. [PMID: 35812120 PMCID: PMC9263507 DOI: 10.3389/fneur.2022.825177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveEven with successful combination antiretroviral therapy (cART), patients with human immunodeficiency virus positive (HIV+) continue to present structural alterations and neuropsychological impairments. The purpose of this study is to investigate structural brain connectivity alterations and identify the hub regions in HIV+ patients with fully suppressed plasma viral loads.MethodsIn this study, we compared the brain structural connectivity in 48 patients with HIV+ treated with a combination of antiretroviral therapy and 48 healthy controls, using diffusion tensor imaging. Further comparisons were made in 24 patients with asymptomatic neurocognitive impairment (ANI) and 24 individuals with non-HIV-associated neurocognitive disorders forming a subset of HIV+ patients. The graph theory model was used to establish the topological metrics. Rich-club analysis was used to identify hub nodes across groups and abnormal rich-club connections. Correlations of connectivity metrics with cognitive performance and clinical variables were investigated as well.ResultsAt the regional level, HIV+ patients demonstrated lower degree centrality (DC), betweenness centrality (BC), and nodal efficiency (NE) at the occipital lobe and the limbic cortex; and increased BC and nodal cluster coefficient (NCC) in the occipital lobe, the frontal lobe, the insula, and the thalamus. The ANI group demonstrated a significant reduction in the DC, NCC, and NE in widespread brain regions encompassing the occipital lobe, the frontal lobe, the temporal pole, and the limbic system. These results did not survive the Bonferroni correction. HIV+ patients and the ANI group had similar hub nodes that were mainly located in the occipital lobe and subcortical regions. The abnormal connections were mainly located in the occipital lobe in the HIV+ group and in the parietal lobe in the ANI group. The BC in the calcarine fissure was positively correlated with complex motor skills. The disease course was negatively correlated with NE in the middle occipital gyrus.ConclusionThe results suggest that the occipital lobe and the subcortical regions may be important in structural connectivity alterations and cognitive impairment. Rich-club analysis may contribute to our understanding of the neuropathology of HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Xire Aili
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Aidong Zhang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zengxin Jiao
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xing Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Bo Rao
| | - Ruili Li
- Department of Radiology and Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
- Ruili Li
| | - Hongjun Li
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Hongjun Li
| |
Collapse
|
41
|
Du D, Gao Y, Zheng T, Yang L, Wang Z, Shi Q, Wu S, Liang X, Yao X, Lu J, Liu L. The Value of First-Order Features Based on the Apparent Diffusion Coefficient Map in Evaluating the Therapeutic Effect of Low-Intensity Pulsed Ultrasound for Acute Traumatic Brain Injury With a Rat Model. Front Comput Neurosci 2022; 16:923247. [PMID: 35814344 PMCID: PMC9259978 DOI: 10.3389/fncom.2022.923247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose In order to evaluate the neuroprotective effect of low-intensity pulsed ultrasound (LIPUS) for acute traumatic brain injury (TBI), we studied the potential of apparent diffusion coefficient (ADC) values and ADC-derived first-order features regarding this problem. Methods Forty-five male Sprague Dawley rats (sham group: 15, TBI group: 15, LIPUS treated: 15) were enrolled and underwent magnetic resonance imaging. Scanning layers were acquired using a multi-shot readout segmentation of long variable echo trains (RESOLVE) to decrease distortion. The ultrasound transducer was applied to the designated region in the injured cortical areas using a conical collimator and was filled with an ultrasound coupling gel. Regions of interest were manually delineated in the center of the damaged cortex on the diffusion weighted images (b = 800 s/mm2) layer by layer for the TBI and LIPUS treated groups using the open-source software ITK-SNAP. Before analysis and modeling, the features were normalized using a z-score method, and a logistic regression model with a backward filtering method was employed to perform the modeling. The entire process was completed using the R language. Results During the observation time, the ADC values ipsilateral to the trauma in the TBI and LIPUS groups increased rapidly up to 24 h. After statistical analysis, the 10th percentile, 90th percentile, mean, skewness, and uniformity demonstrated a significant difference among three groups. The receiver operating characteristic curve (ROC) analysis shows that the combined LR model exhibited the highest area under the curve value (AUC: 0.96). Conclusion The combined LR model of first-order features based on the ADC map can acquire a higher diagnostic performance than each feature only in evaluating the neuroprotective effect of LIPUS for TBI. Models based on first-order features may have potential value in predicting the therapeutic effect of LIPUS in clinical practice in the future.
Collapse
Affiliation(s)
- Dan Du
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China
- NMPA Key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
- Peking University Shenzhen Graduate School, Shenzhen, China
| | - Tao Zheng
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Linsha Yang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Zhanqiu Wang
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Qinglei Shi
- MR Scientific Marketing, Siemens Healthineers Ltd., Beijing, China
| | - Shuo Wu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Xin Liang
- Graduate School of Chengde Medical University, Chengde, China
| | - Xinyu Yao
- Graduate School of Chengde Medical University, Chengde, China
| | - Jiabin Lu
- Beijing Key Laboratory of Magnetic Resonance Imaging Device and Technique, Beijing, China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
- *Correspondence: Lanxiang Liu,
| |
Collapse
|
42
|
Li Q, Wu Y, Song Y, Zhao D, Sun M, Zhang Z, Wu J. A P300-Detection Method Based on Logistic Regression and a Convolutional Neural Network. Front Comput Neurosci 2022; 16:909553. [PMID: 35782086 PMCID: PMC9243506 DOI: 10.3389/fncom.2022.909553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background Electroencephalogram (EEG)-based brain-computer interface (BCI) systems are widely utilized in various fields, including health care, intelligent assistance, identity recognition, emotion recognition, and fatigue detection. P300, the main event-related potential, is the primary component detected by EEG-based BCI systems. Existing algorithms for P300 classification in EEG data usually perform well when tested in a single participant, although they exhibit significant decreases in accuracy when tested in new participants. We attempted to address this lack of generalizability associated with existing classification methods using a novel convolutional neural network (CNN) model developed using logistic regression (LR). Materials and Methods We proposed an LR-CNN model comprising two parts: a combined LR-based memory model and a CNN-based generalization model. The LR-based memory model can learn the individual features of participants and addresses the decrease in accuracy caused by individual differences when applied to new participants. The CNN-based generalization model can learn the common features among participants, thereby reducing overall classification bias and improving overall classification accuracy. Results We compared our method with existing, commonly used classification methods through three different sets of experiments. The experimental results indicated that our method could learn individual differences among participants. Compared with other commonly used classification methods, our method yielded a marked improvement (>90%) in classification among new participants. Conclusion The accuracy of the proposed model in the face of new participants is better than that of existing, commonly used classification methods. Such improvements in cross-subject test accuracy will aid in the development of BCI systems.
Collapse
Affiliation(s)
- Qi Li
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, China
- *Correspondence: Qi Li,
| | - Yan Wu
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Yu Song
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Di Zhao
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Meiqi Sun
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Zhilin Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Zhilin Zhang,
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
43
|
Niu Y, Sun J, Wang B, Yang Y, Wen X, Xiang J. Trajectories of brain entropy across lifetime estimated by resting state functional magnetic resonance imaging. Hum Brain Mapp 2022; 43:4359-4369. [PMID: 35615859 PMCID: PMC9435012 DOI: 10.1002/hbm.25959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/25/2022] Open
Abstract
The human brain is a complex system of interconnected brain regions that form functional networks with differing roles in cognition and behavior. However, the trajectories of these functional networks across development are unclear and designing a metric to track the complex trajectory of these characteristics throughout the lifespan is challenging. Here, permutation entropy (PE) was used to examine age‐related variations in functional magnetic resonance imaging (fMRI) in healthy subjects aged 6–85 from global, network, and nodal perspectives. The global PE followed an inverted U‐shaped trajectory that peaked at approximately age 40. The trajectory of the motor and somatosensory functional network was more consistent with a linear model and increased with age; other functional networks showed inverted U‐shaped trajectories that peaked between 25 and 52 years of age. All nodes showed inverted U‐shaped trajectories. Using cluster analysis, the peak ages of nodes were grouped into three clusters (at 24, 38, and 51 years). Overall, we characterized four aging trajectories: networks with a linear increase, early peak age, intermediate peak age, and older peak age. These findings suggest possible complexity in trajectories at critical age points regarding changes in related functional brain networks.
Collapse
Affiliation(s)
- Yan Niu
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jie Sun
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Bin Wang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yanli Yang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Xin Wen
- College of Software, Taiyuan University of Technology, Taiyuan, China
| | - Jie Xiang
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
44
|
Liu Q, Shi Z, Wang K, Liu T, Funahashi S, Wu J, Zhang J. Treatment Enhances Betweenness Centrality of Fronto-Parietal Network in Parkinson's Patients. Front Comput Neurosci 2022; 16:891384. [PMID: 35720771 PMCID: PMC9204483 DOI: 10.3389/fncom.2022.891384] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022] Open
Abstract
Previous studies have demonstrated a close relationship between early Parkinson's disease and functional network abnormalities. However, the pattern of brain changes in the early stages of Parkinson's disease has not been confirmed, which has important implications for the study of clinical indicators of Parkinson's disease. Therefore, we investigated the functional connectivity before and after treatment in patients with early Parkinson's disease, and further investigated the relationship between some topological properties and clinicopathological indicators. We included resting state-fMRI (rs-fMRI) data from 27 patients with early Parkinson's disease aged 50-75 years from the Parkinson's Disease Progression Markers Initiative (PPMI). The results showed that the functional connectivity of 6 networks, cerebellum network (CBN), cingulo_opercular network (CON), default network (DMN), fronto-parietal network (FPN), occipital network (OCC), and sensorimotor network (SMN), was significantly changed. Compared to before treatment, the main functional connections were concentrated in the CBN after treatment. In addition, the coefficients of these nodes have also changed. For betweenness centrality (BC), the FPN showed a significant improvement in treatment (p < 0.001). In conclusion, the alteration of functional networks in early Parkinson's patients is critical for clarifying the mechanisms of early diagnosis of the disease.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory for Brain Science and Neurotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - ZhongYan Shi
- Laboratory for Brain Science and Neurotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Kexin Wang
- Laboratory for Brain Science and Neurotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Tiantian Liu
- Laboratory for Brain Science and Neurotechnology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Shintaro Funahashi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
45
|
Fu Z, Zhao M, He Y, Wang X, Li X, Kang G, Han Y, Li S. Aberrant topological organization and age-related differences in the human connectome in subjective cognitive decline by using regional morphology from magnetic resonance imaging. Brain Struct Funct 2022; 227:2015-2033. [PMID: 35579698 DOI: 10.1007/s00429-022-02488-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
Subjective cognitive decline (SCD) is characterized by self-experienced deficits in cognitive capacity with normal performance in objective cognitive tests. Previous structural covariance studies showed specific insights into understanding the structural alterations of the brain in neurodegenerative diseases. Moreover, in subjects with neurodegenerative diseases, accelerated brain degeneration with aging was shown. However, the age-related variations in coordinated topological patterns of morphological networks in individuals with SCD remain poorly understood. In this study, 77 individual morphological networks were constructed, including 42 normal controls (NCs) and 35 SCD individuals, from structural magnetic resonance imaging (sMRI). A stepwise linear regression model and partial correlation analysis were constructed to evaluate the differences in age-related alterations of the network properties in individuals with SCD compared with NCs. Compared with NC, the properties of integration and segregation in individuals with SCD were lower, and the aberrant metrics were negatively correlated with age in SCD. The rich-club connections persevered, but the paralimbic system connections were disrupted in individuals with SCD compared with NCs. In addition, age-related differences in nodal global efficiency are distributed mainly in prefrontal cortex regions. In conclusion, the age-related disruption of topological organizations in individuals with SCD may indicate that the degeneration of brain efficiency with aging was accelerated in individuals with SCD.
Collapse
Affiliation(s)
- Zhenrong Fu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science & Medical Engineering, Beihang University, Beijing, China
| | - Mingyan Zhao
- Department of Neurology, Tangshan Gongren Hospital, Tangshan, Hebei, China
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
| | - Yirong He
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science & Medical Engineering, Beihang University, Beijing, China
| | - Xuetong Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science & Medical Engineering, Beihang University, Beijing, China
| | - Xin Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao, China
- Measurement Technology and Instrumentation Key Lab of Hebei Province, Qinhuangdao, China
| | - Guixia Kang
- School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, China
| | - Ying Han
- Department of Neurology, XuanWu Hospital of Capital Medical University, Beijing, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
- Biomedical Engineering Institute, Hainan University, Haikou, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Shuyu Li
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science & Medical Engineering, Beihang University, Beijing, China.
| |
Collapse
|
46
|
Xue X, Wu JJ, Huo BB, Xing XX, Ma J, Li YL, Wei D, Duan YJ, Shan CL, Zheng MX, Hua XY, Xu JG. Age-Related Changes in Topological Properties of Individual Brain Metabolic Networks in Rats. Front Aging Neurosci 2022; 14:895934. [PMID: 35645769 PMCID: PMC9136077 DOI: 10.3389/fnagi.2022.895934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Normal aging causes profound changes of structural degeneration and glucose hypometabolism in the human brain, even in the absence of disease. In recent years, with the extensive exploration of the topological characteristics of the human brain, related studies in rats have begun to investigate. However, age-related alterations of topological properties in individual brain metabolic network of rats remain unknown. In this study, a total of 48 healthy female Sprague-Dawley (SD) rats were used, including 24 young rats and 24 aged rats. We used Jensen-Shannon Divergence Similarity Estimation (JSSE) method for constructing individual metabolic networks to explore age-related topological properties and rich-club organization changes. Compared with the young rats, the aged rats showed significantly decreased clustering coefficient (Cp) and local efficiency (E loc ) across the whole-brain metabolic network. In terms of changes in local network measures, degree (D) and nodal efficiency (E nod ) of left posterior dorsal hippocampus, and E nod of left olfactory tubercle were higher in the aged rats than in the young rats. About the rich-club analysis, the existence of rich-club organization in individual brain metabolic networks of rats was demonstrated. In addition, our findings further confirmed that rich-club connections were susceptible to aging. Relative to the young rats, the overall strength of rich-club connections was significantly reduced in the aged rats, while the overall strength of feeder and local connections was significantly increased. These findings demonstrated the age-related reorganization principle of the brain structure and improved our understanding of brain alternations during aging.
Collapse
Affiliation(s)
- Xin Xue
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Lin Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dong Wei
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Jie Duan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
47
|
Wang B, Zhang S, Yu X, Niu Y, Niu J, Li D, Zhang S, Xiang J, Yan T, Yang J, Wu J, Liu M. Alterations in white matter network dynamics in patients with schizophrenia and bipolar disorder. Hum Brain Mapp 2022; 43:3909-3922. [PMID: 35567336 PMCID: PMC9374889 DOI: 10.1002/hbm.25892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 11/12/2022] Open
Abstract
Emerging evidence suggests white matter network abnormalities in patients with schizophrenia (SZ) and bipolar disorder (BD), but the alterations in dynamics of the white matter network in patients with SZ and BD are largely unknown. The white matter network of patients with SZ (n = 45) and BD (n = 47) and that of healthy controls (HC, n = 105) were constructed. We used dynamics network control theory to quantify the dynamics metrics of the network, including controllability and synchronizability, to measure the ability to transfer between different states. Experiments show that the patients with SZ and BD showed decreasing modal controllability and synchronizability and increasing average controllability. The correlations between the average controllability and synchronizability of patients were broken, especially for those with SZ. The patients also showed alterations in brain regions with supercontroller roles and their distribution in the cognitive system. Finally, we were able to accurately discriminate and predict patients with SZ and BD. Our findings provide novel dynamic metrics evidence that patients with SZ and BD are characterized by a selective disruption of brain network controllability, potentially leading to reduced brain state transfer capacity, and offer new guidance for the clinical diagnosis of mental illness.
Collapse
Affiliation(s)
- Bin Wang
- Department of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Shanshan Zhang
- Department of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Xuexue Yu
- Department of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yan Niu
- Department of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jinliang Niu
- Department of Medical Imaging, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Dandan Li
- Department of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Shan Zhang
- Department of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Jie Xiang
- Department of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Ting Yan
- Teranslational Medicine Research Center, Shanxi Medical University, Taiyuan, China
| | - Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama, Japan
| | - Jinglong Wu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama, Japan
| | - Miaomiao Liu
- School of Psychology, Shenzhen University, Shenzhen, China
| |
Collapse
|
48
|
Wang J, Wang K, Liu T, Wang L, Suo D, Xie Y, Funahashi S, Wu J, Pei G. Abnormal Dynamic Functional Networks in Subjective Cognitive Decline and Alzheimer's Disease. Front Comput Neurosci 2022; 16:885126. [PMID: 35586480 PMCID: PMC9108158 DOI: 10.3389/fncom.2022.885126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Subjective cognitive decline (SCD) is considered to be the preclinical stage of Alzheimer's disease (AD) and has the potential for the early diagnosis and intervention of AD. It was implicated that CSF-tau, which increases very early in the disease process in AD, has a high sensitivity and specificity to differentiate AD from normal aging, and the highly connected brain regions behaved more tau burden in patients with AD. Thus, a highly connected state measured by dynamic functional connectivity may serve as the early changes of AD. In this study, forty-five normal controls (NC), thirty-six individuals with SCD, and thirty-five patients with AD were enrolled to obtain the resting-state functional magnetic resonance imaging scanning. Sliding windows, Pearson correlation, and clustering analysis were combined to investigate the different levels of information transformation states. Three states, namely, the low state, the middle state, and the high state, were characterized based on the strength of functional connectivity between each pair of brain regions. For the global dynamic functional connectivity analysis, statistically significant differences were found among groups in the three states, and the functional connectivity in the middle state was positively correlated with cognitive scales. Furthermore, the whole brain was parcellated into four networks, namely, default mode network (DMN), cognitive control network (CCN), sensorimotor network (SMN), and occipital-cerebellum network (OCN). For the local network analysis, statistically significant differences in CCN for low state and SMN for middle state and high state were found in normal controls and patients with AD. Meanwhile, the differences were also found in normal controls and individuals with SCD. In addition, the functional connectivity in SMN for high state was positively correlated with cognitive scales. Converging results showed the changes in dynamic functional states in individuals with SCD and patients with AD. In addition, the changes were mainly in the high strength of the functional connectivity state.
Collapse
Affiliation(s)
- Jue Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kexin Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Tiantian Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Li Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Dingjie Suo
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yunyan Xie
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shintaro Funahashi
- Kokoro Research Center, Kyoto University, Kyoto, Japan
- Laboratory of Cognitive Brain Science, Department of Cognitive and Behavioral Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shenzhen, China
- *Correspondence: Jinglong Wu
| | - Guangying Pei
- School of Life Science, Beijing Institute of Technology, Beijing, China
- Guangying Pei
| |
Collapse
|
49
|
Age-related heterogeneity revealed by disruption of white matter structural networks in patients with first-episode untreated major depressive disorder: WM Network In OA-MDD. J Affect Disord 2022; 303:286-296. [PMID: 35176347 DOI: 10.1016/j.jad.2022.02.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/22/2021] [Accepted: 02/13/2022] [Indexed: 12/27/2022]
Abstract
The clinical treatment and prognosis of major depressive disorder (MDD) are limited by the high degree of disease heterogeneity. It is unclear whether there is a potential network mechanism for age-related heterogeneity. We aimed to uncover the heterogeneity of the white matter (WM) network at different ages of onset and its correlation with different symptom characteristics. 85 first-episode MDD patients and 84 corresponding healthy controls (HCs) were recruited and underwent diffusion tensor imaging scans. Structural network characteristics were analyzed using graph theory methods. We observed an accelerated age-related decline of the WM network in MDD patients compared with HCs. Distinct symptom-related networks were identified in three MDD groups with different onset-age. For early-onset MDD (18-29 years; EOD), higher guilt and loss of interest were correlated with the insula, and inferior parietal lobe which in default mode network and salience network. For mid-term-onset MDD (30-44 years; MOD), higher somatic symptoms were correlated with thalamus which in cortico-striatal-thalamic-cortical circuit. For later-onset MDD (45-60 years; LOD), poor sleep symptoms were correlated with the caudate in the basal ganglia, which suggests the cingulate operculum network in the control of sleep. These results supported a circuit-based heterogeneity associated with the age of onset in MDD. Understanding this circuit-based heterogeneity might help to develop a new target for clinical treatment strategies.
Collapse
|
50
|
Ke M, Li H, Liu G. The Local Topological Reconfiguration in the Brain Network After Targeted Hub Dysfunction Attacks in Patients With Juvenile Myoclonic Epilepsy. Front Neurosci 2022; 16:864040. [PMID: 35495041 PMCID: PMC9047017 DOI: 10.3389/fnins.2022.864040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
The central brain regions of brain networks have been extensively studied in terms of their roles in various diseases. This study provides a direct measure of the brain's responses to targeted attacks on central regions, revealing the critical role these regions play in patients with juvenile myoclonic epilepsy (JME). The resting-state data of 37 patients with JME and 37 healthy subjects were collected, and brain functional networks were constructed for the two groups of data according to their Pearson correlation coefficients. The left middle cingulate gyrus was defined as the central brain region by the eigenvector centrality algorithm and was attacked by the CLM sequential failure model. The rich-club connection differences between the patients with JME and healthy controls before and after the attacks were compared according to graph theory indices and the number of rich-club connections. We found that the numbers of rich connections in the brain networks of the healthy control group and the group of patients with JME were significantly reduced [p < 0.05, false discovery rate (FDR) correction] before the CLM sequential failure attacks, and no significant differences were observed between the feeder connections and local connections. In the healthy control group, significant rich connection differences were obtained (p < 0.01, FDR correction), and no statistically significant differences were observed regarding the feeder connections and local connections in the brain network before and after CLM failure attacks on the central brain region. No significant differences were obtained between the rich connections, feeder connections, and local connections in patients with JME before and after CLM successive failure attacks on the central brain area. The rich connections, feeder connections, and local connections were not significantly different in the brain networks of the healthy control group and the group of patients with JME after CLM successive failure attacks on the central brain region. We concluded that the damage to the left middle cingulate gyrus is closely linked to various brain disorders, suggesting that this region is of great importance for understanding the pathophysiological basis of myoclonic seizures in patients with JME.
Collapse
Affiliation(s)
- Ming Ke
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, China
| | - Huimin Li
- School of Computer and Communication, Lanzhou University of Technology, Lanzhou, China
| | - Guangyao Liu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|