1
|
Sager RA, Backe SJ, Heritz J, Woodford MR, Bourboulia D, Mollapour M. Flow cytometry FRET reveals post-translational modifications drive Protein Phosphatase-5 conformational changes in mammalian cells. Cell Stress Chaperones 2024; 29:709-717. [PMID: 39395782 PMCID: PMC11532808 DOI: 10.1016/j.cstres.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
The serine/threonine Protein Phosphatase-5 (PP5) plays an essential role in regulating hormone and stress-induced signaling networks as well as extrinsic apoptotic pathways in cells. Unlike other Protein Phosphatases, PP5 possesses both regulatory and catalytic domains, and its function is further modulated through post-translational modifications (PTMs). PP5 contains a tetratricopeptide repeat (TPR) domain, which usually inhibits its phosphatase activity by blocking the active site (closed conformation). Certain activators bind to the PP5-TPR domain, alleviating this inhibition and allowing the catalytic domain to adopt an active (open) conformation. While this mechanism has been proposed based on structural and biophysical studies, PP5 conformational changes and activity have yet to be observed in cells. Here, we designed and developed a flow cytometry-based fluorescence resonance energy transfer (FC-FRET) method, enabling real-time observation of PP5 autoinhibition and activation within live mammalian cells. By quantifying FRET efficiency using sensitized emission, we established a standardized and adaptable data acquisition workflow. Our findings revealed that, in a cellular context, PP5 exists in multiple conformational states, none of which alone fully predicts its activity. Additionally, we have demonstrated that PTMs such as phosphorylation and SUMOylation impact PP5 conformational changes, representing a significant advancement in our understanding of its regulatory mechanisms.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA
| | - Jennifer Heritz
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, NY 13210, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, NY 13210, USA.
| |
Collapse
|
2
|
Du R, Li L, Ji J, Fan Y. Receptor-Ligand Binding: Effect of Mechanical Factors. Int J Mol Sci 2023; 24:ijms24109062. [PMID: 37240408 DOI: 10.3390/ijms24109062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Gaining insight into the in situ receptor-ligand binding is pivotal for revealing the molecular mechanisms underlying the physiological and pathological processes and will contribute to drug discovery and biomedical application. An important issue involved is how the receptor-ligand binding responds to mechanical stimuli. This review aims to provide an overview of the current understanding of the effect of several representative mechanical factors, such as tension, shear stress, stretch, compression, and substrate stiffness on receptor-ligand binding, wherein the biomedical implications are focused. In addition, we highlight the importance of synergistic development of experimental and computational methods for fully understanding the in situ receptor-ligand binding, and further studies should focus on the coupling effects of these mechanical factors.
Collapse
Affiliation(s)
- Ruotian Du
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Lim J, Petersen M, Bunz M, Simon C, Schindler M. Flow cytometry based-FRET: basics, novel developments and future perspectives. Cell Mol Life Sci 2022; 79:217. [PMID: 35352201 PMCID: PMC8964568 DOI: 10.1007/s00018-022-04232-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 12/29/2022]
Abstract
Förster resonance energy transfer (FRET) is a widespread technology used to analyze and quantify protein interactions in multiple settings. While FRET is traditionally measured by microscopy, flow cytometry based-FRET is becoming popular within the last decade and more commonly used. Flow cytometry based-FRET offers the possibility to assess FRET in a short time-frame in a high number of cells thereby allowing stringent and statistically robust quantification of FRET in multiple samples. Furthermore, established, simple and easy to implement gating strategies facilitate the adaptation of flow cytometry based-FRET measurements to most common flow cytometers. We here summarize the basics of flow cytometry based-FRET, highlight recent novel developments in this field and emphasize on exciting future perspectives.
Collapse
Affiliation(s)
- JiaWen Lim
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Moritz Petersen
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Maximilian Bunz
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Claudia Simon
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
4
|
Kaur A, Kaur P, Ahuja S. Förster resonance energy transfer (FRET) and applications thereof. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5532-5550. [PMID: 33210685 DOI: 10.1039/d0ay01961e] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
FRET is a nonradiative process of energy transfer that is based on the dipole-dipole interactions between molecules that are fluorescent. Transfer of energy takes place rapidly from a donor molecule to an acceptor molecule in juxtaposition such as 0 to 10 nm without photonic radiation. FRET has occupied a center stage in biotechnology and biological studies. It is used to gain information on conformation changes in single molecules. The pharmaceutical industry has also developed large fluorescence detection systems with very small sample sizes, at the level of single molecules, using fluorescence correlation spectroscopy.
Collapse
Affiliation(s)
- Amrita Kaur
- Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala, 147001, India
| | - Pardeep Kaur
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab 140407, India.
| | - Sahil Ahuja
- Computer Science and Engineering Department, Thapar Institute of Engineering and Technology, Patiala, 147001, India
| |
Collapse
|
5
|
Redox Regulation of PPAR γ in Polarized Macrophages. PPAR Res 2020; 2020:8253831. [PMID: 32695149 PMCID: PMC7350077 DOI: 10.1155/2020/8253831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
The peroxisome proliferator-activated receptor (PPARγ) is a central mediator of cellular lipid metabolism and immune cell responses during inflammation. This is facilitated by its role as a transcription factor as well as a DNA-independent protein interaction partner. We addressed how the cellular redox milieu in the cytosol and the nucleus of lipopolysaccharide (LPS)/interferon-γ- (IFNγ-) and interleukin-4- (IL4-) polarized macrophages (MΦ) initiates posttranslational modifications of PPARγ, that in turn alter its protein function. Using the redox-sensitive GFP2 (roGFP2), we validated oxidizing and reducing conditions following classical and alternative activation of MΦ, while the redox status of PPARγ was determined via mass spectrometry. Cysteine residues located in the zinc finger regions (amino acid fragments AA 90-115, AA 116-130, and AA 160-167) of PPARγ were highly oxidized, accompanied by phosphorylation of serine 82 in response to LPS/IFNγ, whereas IL4-stimulation provoked minor serine 82 phosphorylation and less cysteine oxidation, favoring a reductive milieu. Mutating these cysteines to alanine to mimic a redox modification decreased PPARγ-dependent reporter gene transactivation supporting a functional shift of PPARγ associated with the MΦ phenotype. These data suggest distinct mechanisms for regulating PPARγ function based on the redox state of MΦ.
Collapse
|