1
|
Yadav P, Rajendrasozhan S, Lajimi RH, Patel RR, Heymann D, Prasad NR. Circulating tumor cell markers for early detection and drug resistance assessment through liquid biopsy. Front Oncol 2025; 15:1494723. [PMID: 40260304 PMCID: PMC12009936 DOI: 10.3389/fonc.2025.1494723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Circulating tumor cells (CTCs) are cancerous cells that extravasate from the primary tumor or metastatic foci and travel through the bloodstream to distant organs. CTCs provide crucial insights into cancer metastasis, the evolution of tumor genotypes during treatment, and the development of chemo- and/or radio-resistance during disease progression. The process of Epithelial-to-mesenchymal transition (EMT) plays a key role in CTCs formation, as this process enhances cell's migration properties and is often associated with increased invasiveness thereby leading to chemotherapy resistance. During the EMT process, tumor cells lose epithelial markers like EpCAM and acquire mesenchymal markers such as vimentin driven by transcription factors like Snail and Twist. CTCs are typically identified using specific cell surface markers, which vary depending on the cancer type. Common markers include EpCAM, used for epithelial cancers; CD44 and CD24, which are associated with cancer stem cells; and cytokeratins, such as CK8 and CK18. Other markers like HER2/neu and vimentin can also be used to target CTCs in specific cancer types and stages. Commonly, immune-based isolation techniques are being implemented for the isolation and enrichment of CTCs. This review emphasizes the clinical relevance of CTCs, particularly in understanding drug resistance mechanisms, and underscores the importance of EMT-derived CTCs in multidrug resistance (MDR). Moreover, the review also discusses CTCs-specific surface markers that are crucial for their isolation and enrichment. Ultimately, the EMT-specific markers found in CTCs could provide significant information to halt the disease progression and enable personalized therapies.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Saravanan Rajendrasozhan
- Department of Chemistry, College of Science, University of Ha’il, Ha’il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il, Saudi Arabia
| | - Ramzi Hadj Lajimi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il, Saudi Arabia
| | - Raja Ramadevi Patel
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il, Saudi Arabia
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medecine Laboratory, Saint-Herblain, France
- Medical School, University of Sheffield, Sheffield, United Kingdom
| | - N. Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| |
Collapse
|
2
|
Joshi R, Ahmadi H, Gardner K, Bright RK, Wang W, Li W. Advances in microfluidic platforms for tumor cell phenotyping: from bench to bedside. LAB ON A CHIP 2025; 25:856-883. [PMID: 39774602 PMCID: PMC11859771 DOI: 10.1039/d4lc00403e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Heterogeneities among tumor cells significantly contribute towards cancer progression and therapeutic inefficiency. Hence, understanding the nature of cancer through liquid biopsies and isolation of circulating tumor cells (CTCs) has gained considerable interest over the years. Microfluidics has emerged as one of the most popular platforms for performing liquid biopsy applications. Various label-free and labeling techniques using microfluidic platforms have been developed, the majority of which focus on CTC isolation from normal blood cells. However, sorting and profiling of various cell phenotypes present amongst those CTCs is equally important for prognostics and development of personalized therapies. In this review, firstly, we discuss the biophysical and biochemical heterogeneities associated with tumor cells and CTCs which contribute to cancer progression. Moreover, we discuss the recently developed microfluidic platforms for sorting and profiling of tumor cells and CTCs. These techniques are broadly classified into biophysical and biochemical phenotyping methods. Biophysical methods are further classified into mechanical and electrical phenotyping. While biochemical techniques have been categorized into surface antigen expressions, metabolism, and chemotaxis-based phenotyping methods. We also shed light on clinical studies performed with these platforms over the years and conclude with an outlook for the future development in this field.
Collapse
Affiliation(s)
- Rutwik Joshi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Hesaneh Ahmadi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Karl Gardner
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | - Robert K Bright
- Department of Immunology & Molecular Microbiology, School of Medicine & Cancer Center, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wei Li
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
3
|
Cao Y, Xia J, Li L, Zeng Y, Zhao J, Li G. Electrochemical Biosensors for Cancer Diagnosis: Multitarget Analysis to Present Molecular Characteristics of Tumor Heterogeneity. JACS AU 2024; 4:4655-4672. [PMID: 39735934 PMCID: PMC11672140 DOI: 10.1021/jacsau.4c00989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/31/2024]
Abstract
Electrochemical biosensors are gaining attention as powerful tools in cancer diagnosis, particularly in liquid biopsy, due to their high efficiency, rapid response, exceptional sensitivity, and specificity. However, the complexity of intra- and intertumor heterogeneity, with variations in genetic and protein expression profiles and epigenetic modifications, makes electrochemical biosensors susceptible to false-positive or false-negative diagnostic outcomes. To address this challenge, there is growing interest in simultaneously analyzing multiple biomarkers to reveal molecular characteristics of tumor heterogeneity for precise cancer diagnosis. In this Perspective, we highlight recent advancements in utilizing electrochemical biosensors for cancer diagnosis, with a specific emphasis on the multitarget analysis of cancer biomarkers including tumor-associated nucleic acids, tumor protein markers, extracellular vesicles, and tumor cells. These biosensors hold significant promise for improving precision in early cancer diagnosis and monitoring, as well as potentially offering new insights into personalized cancer management.
Collapse
Affiliation(s)
- Ya Cao
- Center
for Molecular Recognition and Biosensing, Shanghai Engineering Research
Center of Organ Repair, Joint International Research Laboratory of
Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jianan Xia
- Center
for Molecular Recognition and Biosensing, Shanghai Engineering Research
Center of Organ Repair, Joint International Research Laboratory of
Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lijuan Li
- Center
for Molecular Recognition and Biosensing, Shanghai Engineering Research
Center of Organ Repair, Joint International Research Laboratory of
Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yujing Zeng
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- Center
for Molecular Recognition and Biosensing, Shanghai Engineering Research
Center of Organ Repair, Joint International Research Laboratory of
Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Genxi Li
- Center
for Molecular Recognition and Biosensing, Shanghai Engineering Research
Center of Organ Repair, Joint International Research Laboratory of
Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
School of Life Sciences, Shanghai University, Shanghai 200444, China
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Song J, Ye X, Peng Q, Ying X, Xiao H. Circulating Tumor cells and multiple indicators combined to identify the risk of poorer prognosis in patients with resected non-small cell lung cancer. BMC Cancer 2024; 24:1491. [PMID: 39627742 PMCID: PMC11616275 DOI: 10.1186/s12885-024-13245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Surgical resection is an important treatment option for patients with non-small cell lung cancer (NSCLC). However, recurrence and survival rates remain a cause of concern. To further improve prognosis, more studies have focused on liquid biopsy, which has significant value as a prognostic factor for defining the risk stratification of postoperative NSCLC patients. This study aimed to identify circulating tumor cells (CTCs) as biomarkers that indicate a poor prognosis, combined with multiple indicators to determine prognostic risks in advance and develop individualized treatment strategies. METHODS Between November 2015 and August 2018, 65 radical resected patients with NSCLC were analyzed. Preoperative CTCs were collected, and follow-up lasted until August 2023. Overall survival (OS) and disease-free survival (DFS) were the primary outcomes. RESULTS With an 11 CTC unit threshold, the high preoperative CTC level group had worse OS and DFS than the low-level group, suggesting that preoperative CTC levels have prognostic value. Time-dependent receiver operating characteristic (ROC) curves also showed satisfactory predictive efficiency of CTCs. Univariate analysis revealed that preoperative CTC levels were significantly associated with increasing risks for OS and DFS. Moreover, we combined CTCs and multiple indicators to provide a reference for a group at high risk of adverse outcomes. CONCLUSIONS CTCs serve as feasible biomarkers for predicting postoperative prognosis in NSCLC patients. The combination of hematological, radiological, and pathological features could be valuable tools to guide postoperative management and treatment decisions in these patients. A multimodal prognostic approach is important for the clinical evaluation of lung cancer.
Collapse
Affiliation(s)
- Jinghan Song
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiong Ye
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qianqian Peng
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinnan Ying
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xiao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Mishra S, Kumari S, Husain N. Liquid biopsy in gallbladder carcinoma: Current evidence and future prospective. THE JOURNAL OF LIQUID BIOPSY 2024; 6:100280. [PMID: 40027313 PMCID: PMC11863890 DOI: 10.1016/j.jlb.2024.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 03/05/2025]
Abstract
Although there have been significant advances in the early detection and treatment of gallbladder cancer (GBC), it is still considered a leading cause of morbidity and mortality. Molecular profiling of tumors is generally performed using samples obtained during surgery or biopsy. However, tissue genotyping has its limitations as it only provides a single snapshot and is susceptible to spatial selection bias due to the tumor heterogeneity. Over the past decade, there has been a remarkable transition from invasive diagnostic methods to non-invasive alternatives, including liquid biopsy, for cancer diagnosis and monitoring. Liquid biopsies have ushered in a new era in clinical oncology, enabling convenient tumor sampling, continuous monitoring through repeated analysis, development of personalized treatment regimens, and assessment of therapy resistance. While peripheral blood is the primary medium for these biopsies, other biological fluids, including urine, saliva, and bile, also serve as valuable sources of information. Currently, the focus of blood-based biopsy analyses is on four main sources of biomarkers for cancer detection and stratification: circulating tumor DNA (ctDNA) or circulating free DNA (cfDNA), circulating tumor cells (CTCs), and extracellular vesicle (EVs). There are over 300 clinical trials either ongoing or actively recruiting participants to investigate the diagnostic and prognostic applications of ctDNA/cfDNA in the context of cancer. This review outlines the current standard of care for individuals with GBC, anticipates future treatment developments, and evaluates the potential applications of liquid biopsies in various clinical contexts. The review addresses ctDNA/cfDNA, CTC, and circulating microRNA and highlights their prospective roles in management of GBC.
Collapse
Affiliation(s)
- Sridhar Mishra
- Department of Pathology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226010, India
- Department of Plastic and Reconstructive Surgery, King George Medical University, Lucknow, Uttar 1pradesh, 226003, India
| | - Swati Kumari
- Department of Pathology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226010, India
- Department of Pathology, King George Medical University, Lucknow, Uttar 1pradesh, 226003, India
| | - Nuzhat Husain
- Department of Pathology, Dr Ram Manohar Lohia Institute of Medical Sciences, Lucknow, Uttar Pradesh, 226010, India
| |
Collapse
|
6
|
Xu H, Zuo Y, Gao S, Liu Y, Liu T, He S, Wang M, Hu L, Li C, Yu Y. Circulating Tumor Cell Phenotype Detection and Epithelial-Mesenchymal Transition Tracking Based on Dual Biomarker Co-Recognition in an Integrated PDMS Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310360. [PMID: 38698606 DOI: 10.1002/smll.202310360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/13/2024] [Indexed: 05/05/2024]
Abstract
Circulating tumor cells (CTCs) are widely considered as a reliable and promising class of markers in the field of liquid biopsy. As CTCs undergo epithelial-mesenchymal transition (EMT), phenotype detection of heterogeneous CTCs based on EMT markers is of great significance. In this report, an integrated analytical strategy that can simultaneously capture and differentially detect epithelial- and mesenchymal-expressed CTCs in bloods of non-small cell lung cancer (NSCLS) patients is proposed. First, a commercial biomimetic polycarbonate (PCTE) microfiltration membrane is employed as the capture interface for heterogenous CTCs. Meanwhile, differential detection of the captured CTCs is realized by preparing two distinct CdTe quantum dots (QDs) with red and green emissions, attached with EpCAM and Vimentin aptamers, respectively. For combined analysis, a polydimethylsiloxane (PDMS) chip with simple structure is designed, which integrates the membrane capture and QDs-based phenotype detection of CTCs. This chip not only implements the analysis of the number of CTCs down to 2 cells mL-1, but enables EMT process tracking according to the specific signals of the two QDs. Finally, this method is successfully applied to inspect the correlations of numbers or proportions of heterogenous CTCs in 94 NSCLS patients with disease stage and whether there is distant metastasis.
Collapse
Affiliation(s)
- Hao Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yingchun Zuo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Shuai Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yuping Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Tingting Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Shiyu He
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Mengjiao Wang
- Department of Pharmacy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Lili Hu
- Department of Pharmacy, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, China
| |
Collapse
|
7
|
Marima R, Basera A, Miya T, Damane BP, Kandhavelu J, Mirza S, Penny C, Dlamini Z. Exosomal long non-coding RNAs in cancer: Interplay, modulation, and therapeutic avenues. Noncoding RNA Res 2024; 9:887-900. [PMID: 38616862 PMCID: PMC11015109 DOI: 10.1016/j.ncrna.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
In the intricate field of cancer biology, researchers are increasingly intrigued by the emerging role of exosomal long non-coding RNAs (lncRNAs) due to their multifaceted interactions, complex modulation mechanisms, and potential therapeutic applications. These exosomal lncRNAs, carried within extracellular vesicles, play a vital partin tumorigenesis and disease progression by facilitating communication networks between tumor cells and their local microenvironment, making them an ideal candidates for use in a liquid biopsy approach. However, exosomal lncRNAs remain an understudied area, especially in cancer biology. Therefore this review aims to comprehensively explore the dynamic interplay between exosomal lncRNAs and various cellular components, including interactions with tumor-stroma, immune modulation, and drug resistance mechanisms. Understanding the regulatory functions of exosomal lncRNAs in these processes can potentially unveil novel diagnostic markers and therapeutic targets for cancer. Additionally, the emergence of RNA-based therapeutics presents exciting opportunities for targeting exosomal lncRNAs, offering innovative strategies to combat cancer progression and improve treatment outcomes. Thus, this review provides insights into the current understanding of exosomal lncRNAs in cancer biology, highlighting their crucial roles, regulatory mechanisms, and the evolving landscape of therapeutic interventions. Furthermore, we have also discussed the advantage of exosomes as therapeutic carriers of lncRNAs for the development of personalized targeted therapy for cancer patients.
Collapse
Affiliation(s)
- Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Afra Basera
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
- Department of Medical Oncology, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | - Thabiso Miya
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Pretoria, 0028, South Africa
| | - Jeyalakshmi Kandhavelu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Sheefa Mirza
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, 2193, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChi Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, South Africa
| |
Collapse
|
8
|
Mao Z, Hu M, Shen Q. Capturing and releasing of hepatocellular carcinoma EpCAM+ and EpCAM- circulating tumor cells based on photosensitive intelligent nanoreactor. Front Bioeng Biotechnol 2024; 12:1443843. [PMID: 39280341 PMCID: PMC11392901 DOI: 10.3389/fbioe.2024.1443843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Epithelial cell adhesion molecule negative circulating tumor cells (EpCAM- CTCs) and EpCAM positive CTCs (EpCAM + CTCs) have different biological characteristics. Therefore, the isolation of EpCAM + CTCs and EpCAM- CTCs is a new strategy to study the heterogeneity of tumor cells. The azobenzene group (Azo) and cyclodextrin (CD) composite system forms a photosensitive molecular switch based on the effect of external light stimulation. We used the technology of specifically capturing CTCs using anti-EpCAM and aptamers functionalized nanochips. Both anti-EpCAM and aptamers can be connected to Azo through the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) modification process. Therefore, we assume that a photosensitive intelligent nanoreactor (PSINR) modified with anti-EpCAM can be used to capture EpCAM + CTCs; Utilizing the characteristics of aptamer and ligand binding, a PSINR modified with aptamer is used to capture EpCAM- CTCs; Then, two PSINRs were separated and stimulated with light to release EpCAM + CTCs and EpCAM- CTCs, respectively. Based on the isolation the EpCAM + CTCs and EpCAM- CTCs, we expected to reveal the key biological mechanisms of tumor recurrence, metastasis and drug resistance, and make the individualized treatment of liver cancer more targeted, safe and effective, and provide a new basis for the final realization of accurate and individualized treatment of tumors.
Collapse
Affiliation(s)
- Zhifang Mao
- Department of Oncology, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Meng Hu
- Department of Oncology, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Qinglin Shen
- Department of Oncology, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Institute of Clinical Medicine, Jiangxi Provincial People's Hospital, the First Affiliated Hospital of Nanchang Medical College, Nanchang, China
- Jiangxi Province Key Laboratory of Immunity and Inflammation, Nanchang, China
| |
Collapse
|
9
|
Gromek P, Senkowska Z, Płuciennik E, Pasieka Z, Zhao LY, Gielecińska A, Kciuk M, Kłosiński K, Kałuzińska-Kołat Ż, Kołat D. Revisiting the standards of cancer detection and therapy alongside their comparison to modern methods. World J Methodol 2024; 14:92982. [PMID: 38983668 PMCID: PMC11229876 DOI: 10.5662/wjm.v14.i2.92982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/28/2024] [Indexed: 06/13/2024] Open
Abstract
In accordance with the World Health Organization data, cancer remains at the forefront of fatal diseases. An upward trend in cancer incidence and mortality has been observed globally, emphasizing that efforts in developing detection and treatment methods should continue. The diagnostic path typically begins with learning the medical history of a patient; this is followed by basic blood tests and imaging tests to indicate where cancer may be located to schedule a needle biopsy. Prompt initiation of diagnosis is crucial since delayed cancer detection entails higher costs of treatment and hospitalization. Thus, there is a need for novel cancer detection methods such as liquid biopsy, elastography, synthetic biosensors, fluorescence imaging, and reflectance confocal microscopy. Conventional therapeutic methods, although still common in clinical practice, pose many limitations and are unsatisfactory. Nowadays, there is a dynamic advancement of clinical research and the development of more precise and effective methods such as oncolytic virotherapy, exosome-based therapy, nanotechnology, dendritic cells, chimeric antigen receptors, immune checkpoint inhibitors, natural product-based therapy, tumor-treating fields, and photodynamic therapy. The present paper compares available data on conventional and modern methods of cancer detection and therapy to facilitate an understanding of this rapidly advancing field and its future directions. As evidenced, modern methods are not without drawbacks; there is still a need to develop new detection strategies and therapeutic approaches to improve sensitivity, specificity, safety, and efficacy. Nevertheless, an appropriate route has been taken, as confirmed by the approval of some modern methods by the Food and Drug Administration.
Collapse
Affiliation(s)
- Piotr Gromek
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zuzanna Senkowska
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Lodz 90-237, Lodzkie, Poland
| | - Karol Kłosiński
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz 90-752, Lodzkie, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz 90-136, Lodzkie, Poland
| |
Collapse
|
10
|
Pipatwatcharadate C, Iyer PR, Pissuwan D. Recent Update Roles of Magnetic Nanoparticles in Circulating Tumor Cell (CTC)/Non-CTC Separation. Pharmaceutics 2023; 15:2482. [PMID: 37896242 PMCID: PMC10610106 DOI: 10.3390/pharmaceutics15102482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Metastasis of cancer is a major cause of death worldwide. Circulating tumor cells (CTCs) are important in the metastatic process of cancer. CTCs are able to circulate in the bloodstream. Therefore, they can be used as biomarkers of metastasis. However, CTCs are rare when compared to a large number of blood cells in the blood. Many CTC detection methods have been developed to increase CTC detection efficiency. Magnetic nanoparticles (MNPs) have attracted immense attention owing to their potential medical applications. They are particularly appealing as a tool for cell separation. Because of their unique properties, MNPs are of considerable interest for the enrichment of CTCs through CTC or non-CTC separation. Herein, we review recent developments in the application of MNPs to separate CTCs or non-CTCs in samples containing CTCs. This review provides information on new approaches that can be used to detect CTCs in blood samples. The combination of MNPs with other particles for magnetic-based cell separation for CTC detection is discussed. Furthermore, different approaches for synthesizing MNPs are included in this review.
Collapse
Affiliation(s)
- Chawapon Pipatwatcharadate
- Nanobiotechnology and Nanobiomaterials Research (N-BMR) Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.P.); (P.R.I.)
| | - Poornima Ramesh Iyer
- Nanobiotechnology and Nanobiomaterials Research (N-BMR) Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.P.); (P.R.I.)
- Materials Science and Engineering Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Dakrong Pissuwan
- Nanobiotechnology and Nanobiomaterials Research (N-BMR) Laboratory, School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.P.); (P.R.I.)
- Materials Science and Engineering Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Center of Excellence on Medical Biotechnology (CEMB), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
11
|
Panez-Toro I, Muñoz-García J, Vargas-Franco JW, Renodon-Cornière A, Heymann MF, Lézot F, Heymann D. Advances in Osteosarcoma. Curr Osteoporos Rep 2023:10.1007/s11914-023-00803-9. [PMID: 37329384 PMCID: PMC10393907 DOI: 10.1007/s11914-023-00803-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
PURPOSE OF REVIEW This article gives a brief overview of the most recent developments in osteosarcoma treatment, including targeting of signaling pathways, immune checkpoint inhibitors, drug delivery strategies as single or combined approaches, and the identification of new therapeutic targets to face this highly heterogeneous disease. RECENT FINDINGS Osteosarcoma is one of the most common primary malignant bone tumors in children and young adults, with a high risk of bone and lung metastases and a 5-year survival rate around 70% in the absence of metastases and 30% if metastases are detected at the time of diagnosis. Despite the novel advances in neoadjuvant chemotherapy, the effective treatment for osteosarcoma has not improved in the last 4 decades. The emergence of immunotherapy has transformed the paradigm of treatment, focusing therapeutic strategies on the potential of immune checkpoint inhibitors. However, the most recent clinical trials show a slight improvement over the conventional polychemotherapy scheme. The tumor microenvironment plays a crucial role in the pathogenesis of osteosarcoma by controlling the tumor growth, the metastatic process and the drug resistance and paved the way of new therapeutic options that must be validated by accurate pre-clinical studies and clinical trials.
Collapse
Affiliation(s)
- Isidora Panez-Toro
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Javier Muñoz-García
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France.
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France.
| | - Jorge W Vargas-Franco
- University of Antioquia, Department of Basic Studies, Faculty of Odontology, Medellin, Colombia
| | - Axelle Renodon-Cornière
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Marie-Françoise Heymann
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Frédéric Lézot
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), 75012, Paris, France
| | - Dominique Heymann
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France.
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France.
- University of Sheffield, Medical School, Department of Oncology and Metabolism, S10 2RX, Sheffield, UK.
| |
Collapse
|
12
|
Chico MA, Mesas C, Doello K, Quiñonero F, Perazzoli G, Ortiz R, Prados J, Melguizo C. Cancer Stem Cells in Sarcomas: In Vitro Isolation and Role as Prognostic Markers: A Systematic Review. Cancers (Basel) 2023; 15:cancers15092449. [PMID: 37173919 PMCID: PMC10177331 DOI: 10.3390/cancers15092449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
Sarcomas are a diverse group of neoplasms with an incidence rate of 15% of childhood cancers. They exhibit a high tendency to develop early metastases and are often resistant to available treatments, resulting in poor prognosis and survival. In this context, cancer stem cells (CSCs) have been implicated in recurrence, metastasis, and drug resistance, making the search for diagnostic and prognostic biomarkers of the disease crucial. The objective of this systematic review was to analyze the expression of CSC biomarkers both after isolation from in vitro cell lines and from the complete cell population of patient tumor samples. A total of 228 publications from January 2011 to June 2021 was retrieved from different databases, of which 35 articles were included for analysis. The studies demonstrated significant heterogeneity in both the markers detected and the CSC isolation techniques used. ALDH was identified as a common marker in various types of sarcomas. In conclusion, the identification of CSC markers in sarcomas may facilitate the development of personalized medicine and improve treatment outcomes.
Collapse
Affiliation(s)
- Maria Angeles Chico
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Cristina Mesas
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Kevin Doello
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Medical Oncology Service, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Francisco Quiñonero
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Medical Oncology Service, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Department of Medicine, Faculty of Health Sciences, University of Almería, 04120 Granada, Spain
| | - Raul Ortiz
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Medical Oncology Service, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| | - Consolacion Melguizo
- Instituto Biosanitario de Granada (ibs. GRANADA), 18014 Granada, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18071 Granada, Spain
- Medical Oncology Service, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain
| |
Collapse
|
13
|
Bai M, Tian X, Wang Z, Zhang L, Zhang F, Yang Y, Liu L. Versatile Dynamic Bioactive Lubricant-Infused Surface for Effective Isolation of Circulating Tumor Cells. Anal Chem 2023; 95:5307-5315. [PMID: 36930830 DOI: 10.1021/acs.analchem.2c05357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
The rarity of circulating tumor cells (CTCs) and the complexity of blood components present major challenges for the efficient isolation of CTCs in blood. The coexisting matters could interfere with the detection of CTCs by adhering to the binding sites on the material surface, leading to the reduced accuracy of biomarker capture in blood. Herein, we developed dynamic bioactive lubricant-infused slippery surfaces by grafting the 1H,1H,2H,2H-heptadecafluorodecyl acrylate polymer and 3-acrylamidophenylboronic acid polymer brushes on quartz plates by UV light-initiated and then grafted cancer cell-binding peptides via reversible catechol-boronate chemistry between phenylboronic acid groups and 3,4-dihydroxy-l-phenylalanine groups of peptides for high-efficient capture of CTCs and nondestructive release of the desired cells in sugar response. Patterned dynamic bioactive lubricant-infused surfaces (PDBLISs) further exhibited the improved capture efficiency of CTCs and more effective antifouling properties for nonspecific cells and blood components. Moreover, the PDBLIS can efficiently capture rare cancer cells from the mimic of cancer patient's blood samples. We anticipate that the strategy we proposed would be used in further clinical diagnosis of complicated biofluids related to a variety of tumors and exhibit good prospects and potential in future liquid biopsies.
Collapse
Affiliation(s)
- Mengqi Bai
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaohua Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zengkai Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Liwei Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feiyi Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuhe Yang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
14
|
Zuo Y, Lu W, Xia Y, Meng J, Zhou Y, Xiao Y, Zhu L, Liu D, Yang S, Sun Y, Li C, Yu Y. Glucometer Readout for Portable Detection of Heterogeneous Circulating Tumor Cells in Lung Cancer Captured on a Dual Aptamer Functionalized Wrinkled Cellulose Hydrogel Interface. ACS Sens 2023; 8:187-196. [PMID: 36562728 DOI: 10.1021/acssensors.2c02029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The rarity of circulating tumor cells (CTCs) poses a great challenge to their clinical application as reliable "liquid biopsy" markers for cancer diagnosis. Meanwhile, the epithelial-mesenchymal transition (EMT) led to a reduced efficiency in capturing cells with lost or downregulated epithelial cell adhesion molecule (EpCAM) expressions. In this study, we proposed an integrated, highly efficient strategy for heterogeneous CTC capture and portable detection from the blood of non-small-cell lung cancer (NSCLC) patients. First, the cellulose wrinkled hydrogel with excellent biocompatibility and high specific area was employed as the biointerface to capture heterogeneous CTCs with an improved capture efficiency in virtue of dual targeting against epithelial and mesenchymal ones. Meanwhile, the strategy of glucometer readout was introduced for the quantification of captured CTCs on the same hydrogel interface by a detection probe, Au-G-MSN-Apt, which was fabricated via entrapping glucose into the amino group functionalized mesoporous silica nanoparticle (MSN) framework sealed by l-cysteine modified gold nanoparticles (AuNPs) and then linked with dual aptamers of EpCAM and Vimentin. The number of captured CTCs on the hydrogel could be reflected according to the portable glucose meter (PGM) readings. Moreover, it was found that the captured cells maintained a higher viability on the hydrogel and could be in situ recultured without releasing from the substrate. Finally, this integrated strategy was successfully applied to inspect the correlations between the number of heterogeneous CTCs in the blood of NSCLC patients with disease stage and whether there was distant metastasis.
Collapse
Affiliation(s)
- Yifan Zuo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, P. R. China
| | - Wenwen Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, P. R. China
| | - Yi Xia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, P. R. China
| | - Jiali Meng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, P. R. China
| | - Yi Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, P. R. China
| | - Yang Xiao
- School of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, Jiangsu, P. R. China
| | - Liang Zhu
- Department of Pharmacy, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, 6 Beijing West Road, Huaian 223300, Jiangsu, P. R. China
| | - Duanjiao Liu
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Road, Xuzhou 221004, P. R. China
| | - Shenhao Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, P. R. China
| | - Yuqing Sun
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Road, Xuzhou 221004, P. R. China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, P. R. China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, P. R. China
| |
Collapse
|
15
|
CTC-5: A novel digital pathology approach to characterise circulating tumour cell biodiversity. Heliyon 2023; 9:e13044. [PMID: 36747925 PMCID: PMC9898658 DOI: 10.1016/j.heliyon.2023.e13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/17/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Metastatic progression and tumor evolution complicates the clinical management of cancer patients. Circulating tumor cell (CTC) characterization is a growing discipline that aims to elucidate tumor metastasis and evolution processes. CTCs offer the clinical potential to monitor cancer patients for therapy response, disease relapse, and screen 'at risk' groups for the onset of malignancy. However, such clinical utility is currently limited to breast, prostate, and colorectal cancer patients. Further understanding of the basic CTC biology of other malignancies is required to progress them towards clinical utility. Unfortunately, such basic clinical research is often limited by restrictive characterization methods and high-cost barrier to entry for CTC isolation and imaging infrastructure. As experimental clinical results on applications of CTC are accumulating, it is becoming clear that a two-tier system of CTC isolation and characterization is required. The first tier is to facilitate basic research into CTC characterization. This basic research then informs a second tier specialised in clinical prognostic and diagnostic testing. This study presented in this manuscript describes the development and application of a low-cost, CTC isolation and characterization pipeline; CTC-5. This approach uses an established 'isolation by size' approach (ScreenCell Cyto) and combines histochemical morphology stains and multiparametric immunofluorescence on the same isolated CTCs. This enables capture and characterization of CTCs independent of biomarker-based pre-selection and accommodates both single CTCs and clusters of CTCs. Additionally, the developed open-source software is provided to facilitate the synchronization of microscopy data from multiple sources (https://github.com/CTC5/). This enables high parameter histochemical and immunofluorescent analysis of CTCs with existing microscopy infrastructure without investment in CTC specific imaging hardware. Our approach confirmed by the number of successful tests represents a potential major advance towards highly accessible low-cost technology aiming at the basic research tier of CTC isolation and characterization. The biomarker independent approach facilitates closing the gap between malignancies with poorly, and well-defined CTC phenotypes. As is currently the case for some of the most commonly occurring breast, prostate and colorectal cancers, such advances will ultimately benefit the patient, as early detection of relapse or onset of malignancy strongly correlates with their prognosis.
Collapse
|
16
|
Pang S, Xu S, Wang L, Wu H, Chu Y, Ma X, Li Y, Zou B, Wang S, Zhou G. Molecular profiles of single circulating tumor cells from early breast cancer patients with different lymph node statuses. Thorac Cancer 2022; 14:156-167. [PMID: 36408679 PMCID: PMC9834698 DOI: 10.1111/1759-7714.14728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Characterization of early breast cancer circulating tumor cells (CTCs) may provide valuable information on tumor metastasis. METHODS We used immunomagnetic nanospheres to capture CTCs from the peripheral blood of eight early breast cancer patients and then performed single-cell RNA sequencing using our proposed bead-dd-seq method. RESULTS CTCs displayed obvious tumor cell characteristics, such as the activation of oxidative stress, proliferation, and promotion of metastasis. CTCs were clustered into two subtypes significantly correlated with the lymph node metastasis status of patients. CTCs in subtype 1 showed a strong metastatic ability because these CTCs have the phenotype of partial epithelial-mesenchymal transition and enriched transcripts, indicating breast cancer responsiveness and proliferation. Furthermore, DNA damage repair pathways were significantly upregulated in subtype 1. We performed in vitro and in vivo investigations, and found that cellular oxidative stress and further DNA damage existed in CTCs. The activated DNA damage repair pathway in CTCs favors resistance to cisplatin. A checkpoint kinase 1 inhibitor sensitized CTCs to cisplatin in mouse models of breast cancer metastasis. CONCLUSION The present study dissects the molecular characteristics of CTCs from early-stage breast cancer, providing novel insight into the understanding of CTC behavior in breast cancer metastasis.
Collapse
Affiliation(s)
- Shuyun Pang
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjingChina
| | - Shu Xu
- School of Basic Medical Science and Clinical PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Lulu Wang
- Department of General Surgery, Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Haiping Wu
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjingChina,School of Pharmaceutical ScienceSouthern Medical UniversityGuangzhouChina
| | - Yanan Chu
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjingChina
| | - Xueping Ma
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjingChina
| | - Yujiao Li
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjingChina
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, School of PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Shaohua Wang
- Department of General Surgery, Jinling HospitalMedical School of Nanjing UniversityNanjingChina
| | - Guohua Zhou
- Department of Clinical Pharmacy, Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjingChina,School of Pharmaceutical ScienceSouthern Medical UniversityGuangzhouChina,School of PharmacyNanjing Medical UniversityNanjingChina
| |
Collapse
|
17
|
Sirikaew N, Pruksakorn D, Chaiyawat P, Chutipongtanate S. Mass Spectrometric-Based Proteomics for Biomarker Discovery in Osteosarcoma: Current Status and Future Direction. Int J Mol Sci 2022; 23:ijms23179741. [PMID: 36077137 PMCID: PMC9456544 DOI: 10.3390/ijms23179741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Due to a lack of novel therapies and biomarkers, the clinical outcomes of osteosarcoma patients have not significantly improved for decades. The advancement of mass spectrometry (MS), peptide quantification, and downstream pathway analysis enables the investigation of protein profiles across a wide range of input materials, from cell culture to long-term archived clinical specimens. This can provide insight into osteosarcoma biology and identify candidate biomarkers for diagnosis, prognosis, and stratification of chemotherapy response. In this review, we provide an overview of proteomics studies of osteosarcoma, indicate potential biomarkers that might be promising therapeutic targets, and discuss the challenges and opportunities of mass spectrometric-based proteomics in future osteosarcoma research.
Collapse
Affiliation(s)
- Nutnicha Sirikaew
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parunya Chaiyawat
- Musculoskeletal Science and Translational Research (MSTR) Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (P.C.); (S.C.)
| | - Somchai Chutipongtanate
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Correspondence: (P.C.); (S.C.)
| |
Collapse
|
18
|
Słomka A, Wang B, Mocan T, Horhat A, Willms AG, Schmidt-Wolf IGH, Strassburg CP, Gonzalez-Carmona MA, Lukacs-Kornek V, Kornek MT. Extracellular Vesicles and Circulating Tumour Cells - complementary liquid biopsies or standalone concepts? Theranostics 2022; 12:5836-5855. [PMID: 35966579 PMCID: PMC9373826 DOI: 10.7150/thno.73400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/06/2022] [Indexed: 12/11/2022] Open
Abstract
Liquid biopsies do promise a lot, but are they keeping it? In the past decade, additional novel biomarkers qualified to be called like that, of which, some took necessary hurdles resulting in FDA approval and clinical use. Some others are since a while around, well known and were once regarded to be a game changer in cancer diagnosis or cancer screening. But, during their clinical use limitations were observed from statistical significance and questions raised regarding their robustness, that eventually led to be dropped from associated clinical guidelines for certain applications including cancer diagnosis. The purpose of this review isn't to give a broad overview of all current liquid biopsy as biomarkers, weight them and promise a brighter future in cancer prevention, but rather to take a deeper look on two of those who do qualify to be called liquid biopsies now or then. These two are probably of greatest interest conceptually and methodically, and likely have the highest chances to be in clinical use soon, with a portfolio extension over their original conceptual usage. We aim to dig deeper beyond cancer diagnosis or cancer screening. Actually, we aim to review in depth extracellular vesicles (EVs) and compare with circulating tumour cells (CTCs). The latter methodology is partially FDA approved and in clinical use. We will lay out similarities as taking advantage of surface antigens on EVs and CTCs in case of characterization and quantification. But drawing readers' attention to downstream application based on capture/isolation methodology and simply on their overall nature, here apparently being living material eventually recoverable as CTCs are vs. dead material with transient effects on recipient cell as in case of EVs. All this we try to bring in perspective, compare and conclude towards which future direction we are aiming for, or should aim for. Do we announce a winner between CTCs vs EVs? No, but we provide good reasons to intensify research on them.
Collapse
Affiliation(s)
- Artur Słomka
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-067 Bydgoszcz, Poland
| | - Bingduo Wang
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany.,Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Tudor Mocan
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Adelina Horhat
- Octavian Fodor Institute for Gastroenterology and Hepatology, Iuliu Haţieganu, University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Arnulf G Willms
- Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany.,Department of General, Visceral and Vascular Surgery, German Armed Forces Hospital Hamburg, 22049 Hamburg, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Christian P Strassburg
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Maria A Gonzalez-Carmona
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Veronika Lukacs-Kornek
- Institute of Molecular Medicine & Experimental Immunology, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| | - Miroslaw T Kornek
- Department of Internal Medicine I, University Hospital Bonn of the Rheinische Friedrich-Wilhelms-University, 53127 Bonn, Germany
| |
Collapse
|
19
|
Liu Z, Kong Y, Dang Q, Weng S, Zheng Y, Ren Y, Lv J, Li N, Han Y, Han X. Liquid Biopsy in Pre-Metastatic Niche: From Molecular Mechanism to Clinical Application. Front Immunol 2022; 13:958360. [PMID: 35911705 PMCID: PMC9334814 DOI: 10.3389/fimmu.2022.958360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Metastatic dissemination represents a hallmark of cancer that is responsible for the high mortality rate. Recently, emerging evidence demonstrates a time-series event—pre-metastatic niche (PMN) has a profound impact on cancer metastasis. Exosomes, cell-free DNA (cfDNA), circulating tumor cells (CTC), and tumor microenvironment components, as critical components in PMN establishment, could be monitored by liquid biopsy. Intensive studies based on the molecular profile of liquid biopsy have made it a viable alternative to tissue biopsy. Meanwhile, the complex molecular mechanism and intercellular interaction are great challenges for applying liquid biopsy in clinical practice. This article reviews the cellular and molecular components involved in the establishment of the PMN and the promotion of metastasis, as well as the mechanisms of their interactions. Better knowledge of the characteristics of the PMN may facilitate the application of liquid biopsy for clinical diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Ying Kong
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Youyang Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinxiang Lv
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yilin Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
- *Correspondence: Xinwei Han,
| |
Collapse
|
20
|
Felici C, Mannavola F, Stucci LS, Duda L, Cafforio P, Porta C, Tucci M. Circulating tumor cells from melanoma patients show phenotypic plasticity and metastatic potential in xenograft NOD.CB17 mice. BMC Cancer 2022; 22:754. [PMID: 35820816 PMCID: PMC9275157 DOI: 10.1186/s12885-022-09829-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/23/2022] [Indexed: 12/03/2022] Open
Abstract
Background Innovative therapies have improved the overall survival in melanoma, although a high number of patients still experience disease progression or recurrence. Ex-vivo culture of circulating tumour cells (CTCs) represents a valuable laboratory resource for in-depth characterization of rare cell populations responsible for disease progression. Methods CTCs from patients with metastatic melanoma were in-vitro established. Their stemness was demonstrated by both phenotypic and genotypic assays, as well as by functional studies. Xenograft experiments in NOD.CB17 mice injected with CTCs from a single patient were completed. Data were analysed by Student’s test and results expressed as mean ± SEM. Results CTCs share the mutational profile with primary cells, an intermediate epithelial-mesenchymal transition (EMT) phenotype and high expression of the immunosuppressive factors. A subclonal CTC population exhibited stem cell properties as high aldehyde dehydrogenase 1 activity, melanosphere-forming ability, and expression of major stemness transcription factors. Xenograft experiments confirmed the CTC ability to generate melanoma in-vivo and revealed enhanced metastatic propensity. Conclusions CTCs play a relevant role in melanoma and may actively contribute to drive the disease progression and metastasis. Thus, they are a unique potential tool for pharmacogenomic studies to guide treatment strategies in advanced disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09829-1.
Collapse
Affiliation(s)
- Claudia Felici
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy.,Centre for Omics Sciences, IRCCS San Raffaele Hospital, Milan, Italy
| | - Francesco Mannavola
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, Bari, Italy
| | - Luigia Stefania Stucci
- Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, Bari, Italy
| | - Loren Duda
- Department of Clinical and Experimental Medicine, Pathology Unit, University of Foggia, Foggia, Italy
| | - Paola Cafforio
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy
| | - Camillo Porta
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy.,Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, Bari, Italy
| | - Marco Tucci
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy. .,Medical Oncology Unit, Azienda Ospedaliero Universitaria Policlinico di Bari, Bari, Italy. .,Department of Biomedical Sciences and Clinical Oncology, University of Bari 'Aldo Moro', Bari, Italy.
| |
Collapse
|
21
|
Ren X, He X, Xu C, Han D, Cheng S. Functional Tumor Targeting Nano-Systems for Reprogramming Circulating Tumor Cells with In Situ Evaluation on Therapeutic Efficiency at the Single-Cell Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105806. [PMID: 35595716 PMCID: PMC9313495 DOI: 10.1002/advs.202105806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/20/2022] [Indexed: 05/03/2023]
Abstract
Tumor heterogeneity is primarily responsible for treatment resistance and cancer relapses. Being critically important to address this issue, the timely evaluation of the appropriateness of therapeutic actions at the single-cell level is still facing challenges. By using multi-functionalized nano-systems with the delivery vector composed of histone for plasmids loading, hyaluronic acid for tumor targeting, and a fusion peptide for C-X-C motif chemokine receptor 4 (CXCR4) targeting as well as nuclear localization, the reprogramming of circulating tumor cells (CTCs) with in situ detection on biomarkers at the single-cell level is realized. By efficient co-delivery of the genome editing plasmid for CXCR4 knockout and molecular beacons for detection of upregulated mRNA biomarkers into CTCs in unprocessed whole blood, the therapeutic outcomes of genome editing at the single-cell level can be in situ evaluated. The single-cell analysis shows that CXCR4 in CTCs of cancer patients is efficiently downregulated, resulting in upregulated anticancer biomarkers such as p53 and p21. The study provides a facile strategy for in-depth profiling of cancer cell responses to therapeutic actions at single-cell resolution to evaluate the outcomes of treatments timely and conveniently.
Collapse
Affiliation(s)
- Xiao‐He Ren
- Key Laboratory of Biomedical Polymers of Ministry of EducationDepartment of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Xiao‐Yan He
- School of Life SciencesAnhui Medical UniversityHefei230032P. R. China
| | - Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of EducationDepartment of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Di Han
- Key Laboratory of Biomedical Polymers of Ministry of EducationDepartment of ChemistryWuhan UniversityWuhan430072P. R. China
| | - Si‐Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of EducationDepartment of ChemistryWuhan UniversityWuhan430072P. R. China
| |
Collapse
|
22
|
Chien HW, Wu JC, Chang YC, Tsai WB. Polycarboxybetaine-Based Hydrogels for the Capture and Release of Circulating Tumor Cells. Gels 2022; 8:gels8070391. [PMID: 35877476 PMCID: PMC9317810 DOI: 10.3390/gels8070391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023] Open
Abstract
Circulating tumor cells (CTCs) are indicators for the detection, diagnosis, and monitoring of cancers and offer biological information for the development of personalized medicine. Techniques for the specific capture and non-destructive release of CTCs from millions of blood cells remain highly desirable. Here, we present a CTC capture-and-release system using a disulfide-containing poly(carboxybetaine methacrylate) (pCB) hydrogel. The non-fouling characteristic of pCB prevents unwanted, nonspecific cell binding, while the carboxyl functionality of pCB is used for the conjugation of anti-epithelial cell adhesion molecule (anti-EpCAM) antibodies for the capture of CTCs. The results demonstrated that the anti-EpCAM-conjugated pCB hydrogel captured HCT116 cells from blood, and the capture ratio reached 45%. Furthermore, the captured HCT116 cells were released within 30 min from the dissolution of the pCB hydrogel by adding cysteine, which breaks the disulfide bonds of the crosslinkers. The cells released were viable and able to grow. Our system has potential in the development of a device for CTC diagnosis.
Collapse
Affiliation(s)
- Hsiu-Wen Chien
- Department of Chemical and Material Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan;
| | - Jen-Chia Wu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Correspondence: or (Y.-C.C.); (W.-B.T.); Tel./Fax: +886-2-27871277 (Y.-C.C.); +886-2-33663996 (W.-B.T.)
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
- Correspondence: or (Y.-C.C.); (W.-B.T.); Tel./Fax: +886-2-27871277 (Y.-C.C.); +886-2-33663996 (W.-B.T.)
| |
Collapse
|
23
|
Li J, Xia Y, Zhou F, He R, Chen B, Guo S. Electric field-assisted MnO 2 nanomaterials for rapid capture and in situ delivery of circulating tumour cells. NANOSCALE 2022; 14:6959-6969. [PMID: 35467678 DOI: 10.1039/d2nr01371a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The heterogeneity of cancer has become a major obstacle to treatment, and the development of an efficient, fast, and accurate drug delivery system is even more urgent. In this work, we designed a device that integrated multiple functions of cell capture, in situ manipulation, and non-destructive release on a single device. With an applied electric field, an intelligent device based on MnO2 nanomaterials was used to realize efficient and rapid capture of cancer cells in both patients' blood and artificial blood samples. This device could capture cancer cells with high efficiency (up to about 93%) and strong specificity in blood samples, the capture time was nearly 50 min faster than that of natural sedimentation, and reduce the effects on cells caused by long-time in vitro culture. In addition, Mn3+ on the surface of the MnO2 substrate was reduced to Mn2+ by an electrochemical method, partial dissolution occurred, and then the captured cells were non-destructively released with rapid speed (about 8 s) and high efficiency (about 94 ± 2%). For in situ regulation, upon applying a pulse electric field, the captured cells were perforated nondestructively, and extracellular molecules could be delivered to the captured cells with well-performed dose and temporal controls. As a proof-of-concept application, we proved that the device could capture circulating tumor cells in peripheral blood faster and achieve in situ drug delivery. Finally, it can also quickly release circulating tumour cells for subsequent analysis, highlighting its accuracy, due to which it is widely used in medical treatment, basic tumor research and drug development.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
| | - Yu Xia
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Rongxiang He
- Institute for Interdisciplinary Research & Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, College of Photoelectric Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Shishang Guo
- Key Laboratory of Artificial Micro/Nano-Structures, Ministry of Education School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Hubei Yangtze Memory Laboratories, Wuhan 430205, China
| |
Collapse
|
24
|
Abouleila Y, Ali A, Masuda K, Mashaghi A, Shimizu Y. Capillary microsampling-based single-cell metabolomics by mass spectrometry and its applications in medicine and drug discovery. Cancer Biomark 2022; 33:437-447. [DOI: 10.3233/cbm-210184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Characterization of cellular metabolic states is a technical challenge in biomedicine. Cellular heterogeneity caused by inherent diversity in expression of metabolic enzymes or due to sensitivity of metabolic reactions to perturbations, necessitates single cell analysis of metabolism. Heterogeneity is typically seen in cancer and thus, single-cell metabolomics is expectedly useful in studying cancer progression, metastasis, and variations in cancer drug response. However, low sample volumes and analyte concentrations limit detection of critically important metabolites. Capillary microsampling-based mass spectrometry approaches are emerging as a promising solution for achieving single-cell omics. Herein, we focus on the recent advances in capillary microsampling-based mass spectrometry techniques for single-cell metabolomics. We discuss recent technical developments and applications to cancer medicine and drug discovery.
Collapse
Affiliation(s)
- Yasmine Abouleila
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Research Center, Misr International University, Cairo, Egypt
| | - Ahmed Ali
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Research Center, Misr International University, Cairo, Egypt
| | - Keiko Masuda
- RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Alireza Mashaghi
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
25
|
Deciphering Tumour Heterogeneity: From Tissue to Liquid Biopsy. Cancers (Basel) 2022; 14:cancers14061384. [PMID: 35326534 PMCID: PMC8946040 DOI: 10.3390/cancers14061384] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Most malignant tumours are highly heterogeneous at molecular and phenotypic levels. Tumour variability poses challenges for the management of patients, as it arises between patients and even evolves in space and time within a single patient. Currently, treatment-decision making usually relies on the molecular characteristics of a limited tumour tissue sample at the time of diagnosis or disease progression but does not take into account the complexity of the bulk tumours and their constant evolution over time. In this review, we explore the extent of tumour heterogeneity and report the mechanisms that promote and sustain this diversity in cancers. We summarise the clinical strikes of tumour diversity in the management of patients with cancer. Finally, we discuss the current material and technological approaches that are relevant to adequately appreciate tumour heterogeneity. Abstract Human solid malignancies harbour a heterogeneous set of cells with distinct genotypes and phenotypes. This heterogeneity is installed at multiple levels. A biological diversity is commonly observed between tumours from different patients (inter-tumour heterogeneity) and cannot be fully captured by the current consensus molecular classifications for specific cancers. To extend the complexity in cancer, there are substantial differences from cell to cell within an individual tumour (intra-tumour heterogeneity, ITH) and the features of cancer cells evolve in space and time. Currently, treatment-decision making usually relies on the molecular characteristics of a limited tumour tissue sample at the time of diagnosis or disease progression but does not take into account the complexity of the bulk tumours and their constant evolution over time. In this review, we explore the extent of tumour heterogeneity with an emphasis on ITH and report the mechanisms that promote and sustain this diversity in cancers. We summarise the clinical strikes of ITH in the management of patients with cancer. Finally, we discuss the current material and technological approaches that are relevant to adequately appreciate ITH.
Collapse
|
26
|
Zhou H, Liu Z, Wang Y, Wen X, Amador EH, Yuan L, Ran X, Xiong L, Ran Y, Chen W, Wen Y. Colorectal liver metastasis: molecular mechanism and interventional therapy. Signal Transduct Target Ther 2022; 7:70. [PMID: 35246503 PMCID: PMC8897452 DOI: 10.1038/s41392-022-00922-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/09/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring malignancy tumors with a high morbidity additionally, CRC patients may develop liver metastasis, which is the major cause of death. Despite significant advances in diagnostic and therapeutic techniques, the survival rate of colorectal liver metastasis (CRLM) patients remains very low. CRLM, as a complex cascade reaction process involving multiple factors and procedures, has complex and diverse molecular mechanisms. In this review, we summarize the mechanisms/pathophysiology, diagnosis, treatment of CRLM. We also focus on an overview of the recent advances in understanding the molecular basis of CRLM with a special emphasis on tumor microenvironment and promise of newer targeted therapies for CRLM, further improving the prognosis of CRLM patients.
Collapse
Affiliation(s)
- Hui Zhou
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Zhongtao Liu
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Yongxiang Wang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xiaoyong Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Eric H Amador
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA
| | - Liqin Yuan
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| | - Yuping Ran
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Wei Chen
- Department of Physics, The University of Texas, Arlington, TX, 76019, USA.
- Medical Technology Research Centre, Chelmsford Campus, Anglia Ruskin University, Chelmsford, CM1 1SQ, UK.
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan Province, China.
| |
Collapse
|
27
|
Strategies for Isolating and Propagating Circulating Tumor Cells in Men with Metastatic Prostate Cancer. Diagnostics (Basel) 2022; 12:diagnostics12020497. [PMID: 35204587 PMCID: PMC8870963 DOI: 10.3390/diagnostics12020497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022] Open
Abstract
Selecting a well-suited method for isolating/characterizing circulating tumor cells (CTCs) is challenging. Evaluating sensitive and specific markers for prostate cancer (PCa)-specific CTC identification and analysis is crucial. We used the CellCollector EpCAM-functionalized system (CC-EpCAM) and evaluated and developed a PCa-functionalized version (CC-PCa); we then compared CTC isolation techniques that exploit the physical and biological properties of CTCs. We established two cohorts of metastatic PCa patients (mPCa; 15 in cohort 1 and 10 in cohort 2). CTC cultivation experiments were conducted with two capturing methods (Ficoll and ScreenCell). The most sensitive detection rates and highest CTC counts were reached with the CC-PCa and ScreenCell system. Patients with ≥5 CTCs isolated with CC-EpCAM had an overall survival (OS) of 0.93 years, and patients with ≥5 CTCs isolated with CC-PCa had an OS of 1.5 years in cohort 1. Nevertheless, we observed the highest sensitivity and specificity for 24-month survival by the Ficoll with CD45 depletion and ScreenCell system with May-Grunwald Giemsa (MGG) staining. The EpCAM molecule is an essential factor related to OS for CTC isolation based on biological properties in mPCa patients. The best-suited CTC capture system is not limited to one characteristic of cells but adapted to downstream analysis.
Collapse
|
28
|
Nishida K, Sekida S, Anada T, Tanaka M. Modulation of Biological Responses of Tumor Cells Adhered to Poly(2-methoxyethyl acrylate) with Increasing Cell Viability under Serum-Free Conditions. ACS Biomater Sci Eng 2022; 8:672-681. [PMID: 35037460 DOI: 10.1021/acsbiomaterials.1c01469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells in body fluids are important biomarkers in cancer diagnosis. The culture of tumor cells isolated from body fluids can provide intrinsic information about tumors and can be used to screen for the best anticancer drugs. However, the culture of primary tumor cells has been hindered by their low viability and difficulties in recapitulating the phenotype of primary tumors in in vitro culture. The culture of tumor cells under serum-free conditions is one of the methodologies to maintain the phenotype and genotype of primary tumors. Poly(2-methoxyethyl acrylate) (PMEA)-coated substrates have been investigated to prolong the proliferation of tumor cells under serum-free conditions. In this study, we investigated the detailed behavior and the mechanism of the increase in tumor cell viability after adherence to PMEA substrates. The blebbing formation of tumor cells on PMEA was attributed not to apoptosis but to the low adhesion strength of cells on PMEA. Moreover, blebbing tumor cells showed amoeboid movement and formed clusters with other cells via N-cadherin, leading to an increase in tumor cell viability. Furthermore, the behaviors of tumor cells adhered to PMEA under serum-free conditions were involved in the activation of the PI3K and Rho-associated protein kinase pathways. Thus, we propose that PMEA would be suitable for the development of devices to cultivate primary tumor cells under serum-free conditions for the label-free diagnosis of cancer.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shogo Sekida
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
29
|
Bai Y, Li C, Xia L, Gan F, Zeng Z, Zhang C, Deng Y, Xu Y, Liu C, Deng S, Liu L. Identifies Immune Feature Genes for Prediction of Chemotherapy Benefit in Cancer. J Cancer 2022; 13:496-507. [PMID: 35069897 PMCID: PMC8771530 DOI: 10.7150/jca.65646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Chemotherapy is still the most fundamental treatment for advanced cancers so far. Previous studies have indicated that immune cell infiltration (ICI) index could serve as a biomarker to predict chemotherapy benefit in breast cancer and colorectal cancer. However, due to different responses of tumor infiltrating immune cells (TIICs) to chemotherapy, the prediction efficiency of ICI index is not fully confirmed by now. In our study, we first extended this conclusion in 7 cancers that high ICI index could certainly indicate chemotherapy benefit (P<0.05). But we also found the fraction of different TIICs and the interaction of TIICs were varies greatly from cancer to cancer. Therefore, we executed correlation and causal network analysis to identify chemotherapy associated immune feature genes, and fortunately identified six co-owned immune feature genes (CD48, GPR65, C3AR1, CD2, CD3E and ARHGAP9) in 10 cancers (BLCA, BRCA, COAD, LUAD, LUSC, OV, PAAD, SKCM, STAD and UCEC). Base on this, we developed a chemotherapy benefit prediction model within six co-owned immune feature genes through random forest classifying (AUC =0.83) in cancers mentioned above, and validated its efficiency in external datasets. In short, our work offers a novel model with a shrinking panel which has the potential to guide optimal chemotherapy in cancer.
Collapse
Affiliation(s)
- Yuquan Bai
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University. Chengdu, 610041
| | - Chuan Li
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University. Chengdu, 610041
| | - Liang Xia
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University. Chengdu, 610041
| | - Fanyi Gan
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University. Chengdu, 610041
| | - Zhen Zeng
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University. Chengdu, 610041
| | - Chuanfen Zhang
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University. Chengdu, 610041
| | - Yulan Deng
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University. Chengdu, 610041
| | - Yuyang Xu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University. Chengdu, 610041
| | - Chengwu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University. Chengdu, 610041
| | - Senyi Deng
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University. Chengdu, 610041
| | - Lunxu Liu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University. Chengdu, 610041
| |
Collapse
|
30
|
Zhang Z, Wuethrich A, Wang J, Korbie D, Lin LL, Trau M. Dynamic Monitoring of EMT in CTCs as an Indicator of Cancer Metastasis. Anal Chem 2021; 93:16787-16795. [PMID: 34889595 DOI: 10.1021/acs.analchem.1c03167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epithelial to mesenchymal transition (EMT) results in the genesis of circulating tumor cells (CTCs) from tumor sites and promotes the metastatic capability of CTCs in circulation. In this study, we develop a multiplex surface-enhanced Raman scattering nanotechnology for comprehensive characterization of EMT-associated phenotypes in CTCs, to monitor cancer metastasis. We observe the downregulation of the CTC marker (EpCAM) and the epithelial marker (E-cadherin), as well as the upregulation of a mesenchymal marker (N-cadherin) and a stem cell marker (ABCB5) during the transforming growth factor-β-induced EMT process in breast cancer cell line models. Additionally, we also find changes in the heterogeneity levels of these selected markers in cells. With this method, we successfully detect the presence of disease in samples from breast cancer patients and characterize EMT-associated phenotypes in their CTCs. Overall, this approach and findings provide a new means for monitoring the EMT process in cancer, insights into the detailed mechanistic progress of the diseases, and have potential for detecting the early occurrence of cancer metastasis.
Collapse
Affiliation(s)
- Zhen Zhang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Darren Korbie
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lynlee L Lin
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.,Dermatology Research Centre, University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD 4102, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
31
|
Kang SY, Lee EJ, Byun JW, Han D, Choi Y, Hwang DW, Lee DS. Extracellular Vesicles Induce an Aggressive Phenotype in Luminal Breast Cancer Cells Via PKM2 Phosphorylation. Front Oncol 2021; 11:785450. [PMID: 34966685 PMCID: PMC8710663 DOI: 10.3389/fonc.2021.785450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/24/2021] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Aerobic glycolysis is a hallmark of glucose metabolism in cancer. Previous studies have suggested that cancer cell-derived extracellular vesicles (EVs) can modulate glucose metabolism in adjacent cells and promote disease progression. We hypothesized that EVs originating from cancer cells can modulate glucose metabolism in recipient cancer cells to induce cell proliferation and an aggressive cancer phenotype. METHODS Two breast cancer cell lines with different levels of glycolytic activity, MDA-MB-231 cells of the claudin-low subtype and MCF7 cells of the luminal type, were selected and cocultured as the originating and recipient cells, respectively, using an indirect coculture system, such as a Transwell system or a microfluidic system. The [18F]fluorodeoxyglucose (FDG) uptake by the recipient MCF7 cells was assessed before and after coculture with MDA-MB-231 cells. Proteomic and transcriptomic analyses were performed to investigate the changes in gene expression patterns in the recipient MCF7 cells and MDA-MB-231 cell-derived EVs. RESULTS FDG uptake by the recipient MCF7 cells significantly increased after coculture with MDA-MB-231 cells. In addition, phosphorylation of PKM2 at tyrosine-105 and serine-37, which is necessary for tumorigenesis and aerobic glycolysis, was highly activated in cocultured MCF7 cells. Proteomic profiling revealed the proliferation and dedifferentiation of MCF7 cells following coculture with MDA-MB-231 cells. Transcriptomic analysis demonstrated an increase in glycolysis in cocultured MCF7 cells, and the component analysis of glycolysis-related genes revealed that the second most abundant component after the cytoplasm was extracellular exosomes. In addition, proteomic analysis of EVs showed that the key proteins capable of phosphorylating PKM2 were present as cargo inside MDA-MB-231 cell-derived EVs. CONCLUSIONS The phenomena observed in this study suggest that cancer cells can induce a phenotype transition of other subtypes to an aggressive phenotype to consequently activate glucose metabolism via EVs. Therefore, this study could serve as a cornerstone for further research on interactions between cancer cells.
Collapse
Affiliation(s)
- Seo Young Kang
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Eun Ji Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung Woo Byun
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
| | - Dohyun Han
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, South Korea
- Proteomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Yoori Choi
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Do Won Hwang
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
- THERABEST, Co. Inc., Seoul, South Korea
| | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
32
|
Kojima M, Harada T, Fukazawa T, Kurihara S, Saeki I, Takahashi S, Hiyama E. Single-cell DNA and RNA sequencing of circulating tumor cells. Sci Rep 2021; 11:22864. [PMID: 34819539 PMCID: PMC8613180 DOI: 10.1038/s41598-021-02165-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/03/2021] [Indexed: 01/02/2023] Open
Abstract
Single-cell sequencing of circulating tumor cells can precisely represent tumor heterogeneity and provide useful information for cancer treatment and research. After spiking TGW neuroblastoma cells into blood derived from healthy volunteer, the cells were isolated by fluorescence-activated cell sorting. DNA and mRNA were amplified by four different whole-genome amplifications (WGA) and three whole-transcriptome amplifications (WTA) methods, followed by single-cell DNA and RNA sequencing. Multiple displacement amplification (MDA)-based WGA methods showed higher amplification efficiency than other methods with a comparable depth of coverage as the bulk sample. The uniformity of coverage greatly differed among samples (12.5–89.2%), with some samples evaluated by the MDA-based WGA method using phi29 DNA polymerase and random primers showing a high (> 80%) uniformity of coverage. The MDA-based WTA method less effectively amplified mRNA and showed non-specific gene expression patterns. The PCR-based WTA using template switching with locked nucleic acid technology accurately amplified mRNA from a single cell. Taken together, our results present a more reliable and adaptable approach for CTC profiling at the single-cell level. Such molecular information on CTCs derived from clinical patients will promote cancer treatment and research.
Collapse
Affiliation(s)
- Masato Kojima
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, Hiroshima, Japan
| | - Takanori Harada
- Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, Hiroshima, Japan
| | - Takahiro Fukazawa
- Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, Hiroshima, Japan
| | - Sho Kurihara
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Isamu Saeki
- Department of Pediatric Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Shinya Takahashi
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Eiso Hiyama
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan. .,Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
33
|
Mondelo‐Macía P, García‐González J, León‐Mateos L, Anido U, Aguín S, Abdulkader I, Sánchez‐Ares M, Abalo A, Rodríguez‐Casanova A, Díaz‐Lagares Á, Lago‐Lestón RM, Muinelo‐Romay L, López‐López R, Díaz‐Peña R. Clinical potential of circulating free DNA and circulating tumour cells in patients with metastatic non-small-cell lung cancer treated with pembrolizumab. Mol Oncol 2021; 15:2923-2940. [PMID: 34465006 PMCID: PMC8564635 DOI: 10.1002/1878-0261.13094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Immune checkpoint inhibitors, such as pembrolizumab, are revolutionizing therapeutic strategies for different cancer types, including non-small-cell lung cancer (NSCLC). However, only a subset of patients benefits from this therapy, and new biomarkers are needed to select better candidates. In this study, we explored the value of liquid biopsy analyses, including circulating free DNA (cfDNA) and circulating tumour cells (CTCs), as a prognostic or predictive tool to guide pembrolizumab therapy. For this purpose, a total of 109 blood samples were collected from 50 patients with advanced NSCLC prior to treatment onset and at 6 and 12 weeks after the initiation of pembrolizumab. Plasma cfDNA was measured using hTERT quantitative PCR assay. The CTC levels at baseline were also analysed using two enrichment technologies (CellSearch® and Parsortix systems) to evaluate the efficacy of both approaches at detecting the presence of programmed cell death ligand 1 on CTCs. Notably, patients with high baseline hTERT cfDNA levels had significantly shorter progression-free survival (PFS) and overall survival (OS) than those with low baseline levels. Moreover, patients with unfavourable changes in the hTERT cfDNA levels from baseline to 12 weeks showed a higher risk of disease progression. Additionally, patients in whom CTCs were detected using the CellSearch® system had significantly shorter PFS and OS than patients who had no CTCs. Finally, multivariate regression analyses confirmed the value of the combination of CTCs and cfDNA levels as an early independent predictor of disease progression, identifying a subgroup of patients who were negative for CTCs, who presented low levels of cfDNA and who particularly benefited from the treatment.
Collapse
Affiliation(s)
- Patricia Mondelo‐Macía
- Liquid Biopsy Analysis UnitTranslational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
- Universidade de Santiago de Compostela (USC)Santiago de CompostelaSpain
| | - Jorge García‐González
- Department of Medical OncologyComplexo Hospitalario Universitario de Santiago de Compostela (SERGAS)Santiago de CompostelaSpain
- Translational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSantiago de CompostelaSpain
| | - Luis León‐Mateos
- Department of Medical OncologyComplexo Hospitalario Universitario de Santiago de Compostela (SERGAS)Santiago de CompostelaSpain
- Translational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSantiago de CompostelaSpain
| | - Urbano Anido
- Department of Medical OncologyComplexo Hospitalario Universitario de Santiago de Compostela (SERGAS)Santiago de CompostelaSpain
- Translational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
| | - Santiago Aguín
- Department of Medical OncologyComplexo Hospitalario Universitario de Santiago de Compostela (SERGAS)Santiago de CompostelaSpain
- Translational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
| | - Ihab Abdulkader
- Department of PathologyComplexo Hospital Universitario de Santiago de Compostela (SERGAS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - María Sánchez‐Ares
- Department of PathologyComplexo Hospital Universitario de Santiago de Compostela (SERGAS)Universidade de Santiago de CompostelaSantiago de CompostelaSpain
| | - Alicia Abalo
- Liquid Biopsy Analysis UnitTranslational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
| | - Aitor Rodríguez‐Casanova
- Cancer EpigenomicsTranslational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
- Roche‐CHUS Joint UnitTranslational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
| | - Ángel Díaz‐Lagares
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSantiago de CompostelaSpain
- Cancer EpigenomicsTranslational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
| | - Ramón Manuel Lago‐Lestón
- Liquid Biopsy Analysis UnitTranslational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
| | - Laura Muinelo‐Romay
- Liquid Biopsy Analysis UnitTranslational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSantiago de CompostelaSpain
| | - Rafael López‐López
- Department of Medical OncologyComplexo Hospitalario Universitario de Santiago de Compostela (SERGAS)Santiago de CompostelaSpain
- Translational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSantiago de CompostelaSpain
| | - Roberto Díaz‐Peña
- Liquid Biopsy Analysis UnitTranslational Medical Oncology (Oncomet)Health Research Institute of Santiago (IDIS)Santiago de CompostelaSpain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)MadridSantiago de CompostelaSpain
| |
Collapse
|
34
|
Patel DA, Blay J. Seeding metastases: The role and clinical utility of circulating tumour cells. Tumour Biol 2021; 43:285-306. [PMID: 34690152 DOI: 10.3233/tub-210001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Peripheral human blood is a readily-accessible source of patient material in which circulating tumour cells (CTCs) can be found. Their isolation and characterization holds the potential to provide prognostic value for various solid cancers. Enumeration of CTCs from blood is becoming a common practice in informing prognosis and may guide therapy decisions. It is further recognized that enumeration alone does not capture perspective on the heterogeneity of tumours and varying functional abilities of the CTCs to interact with the secondary microenvironment. Characterizing the isolated CTCs further, in particular assessing their functional abilities, can track molecular changes in the disease progress. As a step towards identifying a suite of functional features of CTCs that could aid in clinical decisions, developing a CTC isolation technique based on extracellular matrix (ECM) interactions may provide a more solid foundation for isolating the cells of interest. Techniques based on size, charge, density, and single biomarkers are not sufficient as they underutilize other characteristics of cancer cells. The ability of cancer cells to interact with ECM proteins presents an opportunity to utilize their full character in capturing, and also allows assessment of the features that reveal how cells might behave at secondary sites during metastasis. This article will review some common techniques and recent advances in CTC capture technologies. It will further explore the heterogeneity of the CTC population, challenges they experience in their metastatic journey, and the advantages of utilizing an ECM-based platform for CTC capture. Lastly, we will discuss how tailored ECM approaches may present an optimal platform to capture an influential heterogeneous population of CTCs.
Collapse
Affiliation(s)
- Deep A Patel
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| | - Jonathan Blay
- School of Pharmacy, University of Waterloo, Waterloo, ON, Canada.,Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
35
|
Liu Y, Wang X, Zhou Y, Yang G, Hou J, Zhou S. Engineered multifunctional metal-phenolic nanocoatings for label-free capture and "self-release" of heterogeneous circulating tumor cells. NANOSCALE 2021; 13:16923-16931. [PMID: 34522934 DOI: 10.1039/d1nr04112f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Immunomagnetic beads have been widely explored as an important analytical tool for the rapid and sensitive detection of circulating tumor cells (CTCs). However, their clinical application is seriously hindered by the tedious preparation procedures and heterogeneous nature of CTCs. To this end, a designed multifunctional platform named Fe3O4@TA/CuII superparamagnetic nanoparticles (SPMNPs) is expected to have the following features: (i) the formation of a tannic acid-copper (II) ion (TA/CuII) coating which could be accomplished by a one-step method is very simple; (ii) the TA/CuII coating shows high affinity for heterogeneous CTCs and good resistance to nonspecific adhesion of blood cells; (iii) "self-release" of the captured cells could be achieved as the TA/CuII coating gradually degrades in the cell culture environment without any additional interventions. Therefore, the resulting Fe3O4@TA/CuII SPMNPs could capture various CTCs (MCF-7, HepG2 and HeLa cells) with different expression levels of the epithelial cell adhesion molecule (EpCAM). And the capture efficiency and cell purity can reach 88% and 87%, respectively. In addition, 68% of the captured cells are self-released after 6 h of incubation and most of the released cells show high cell proliferation activity. In particular, Fe3O4@TA/CuII SPMNPs can successfully detect 1-13 CTCs from 1 mL of blood of 14 patients with 6 types of cancers. Hence, we expect that the as-prepared Fe3O4@TA/CuII SPMNPs with simple, efficient, and universal yet cost-efficient characteristics could act as a promising analytical tool for clinical CTC detection.
Collapse
Affiliation(s)
- Yiling Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Xiaoshan Wang
- Cancer Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuwei Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Guang Yang
- College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianwen Hou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
36
|
Cai D, Li N, Jin L, Qi X, Hua D, Wang T. High CTC-TRPC5 Expression Significantly Associated With Poor Prognosis in Radical Resected Colorectal Cancer Patients. Front Mol Biosci 2021; 8:727864. [PMID: 34422911 PMCID: PMC8371238 DOI: 10.3389/fmolb.2021.727864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/20/2021] [Indexed: 01/14/2023] Open
Abstract
Recurrence is the main reason of treatment failure of redical resected colorectal cancer (CRC). Although some factors including staging and differentiation have been proven to useful for recurrence evaluation, prognosis of certain patients does not conform to this evaluation approach. Circulating tumor cells (CTC) have been found to have prognostic value in CRC, and previous studies on CTC have primarily focused on their numbers. CTC are functionally heterogeneous cell populations, and different CTC subgroups may have different functions and clinical values. In our previous study, we discovered that elevated expression of the transient receptor potential channel TRPC5 was associated with a significantly poor prognosis in CRC. In this study, we collected peripheral blood from CTC-positive CRC patients, identified the TRPC5 protein expression on CTC (CTC-TRPC5), and analyzed the relationship between CTC-TRPC5 expression levels and the prognosis. The results showed that CTC-TRPC5 level is significantly related to the T stage and differentiation of tumors. High level of CTC-TRPC5 is more common in a high T stage as well as poorly differentiated tumors and is significantly associated with shorter disease free survival (DFS). The median DFS of CRC patients with high and low CTC-TRPC5 level was 17.1 and 22.0 months, respectively (p < 0.05). This study revealed a clinically significant CTC subgroup of CRC, providing a new indicator for clinical evaluation of CRC prognosis.
Collapse
Affiliation(s)
- Dongyan Cai
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Na Li
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Linfang Jin
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiaowei Qi
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Dong Hua
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China.,Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Teng Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
37
|
The Detection of Stem-Like Circulating Tumor Cells Could Increase the Clinical Applicability of Liquid Biopsy in Ovarian Cancer. Life (Basel) 2021; 11:life11080815. [PMID: 34440558 PMCID: PMC8401116 DOI: 10.3390/life11080815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Stem properties allow circulating tumor cells (CTCs) to survive in the bloodstream and initiate cancer progression. We aimed to assess the numbers of stem-like CTCs in patients with ovarian cancer (OC) before treatment and during first-line chemotherapy (CT). Flow cytometry was performed (Cytoflex S (Beckman Coulter, CA, USA)) using antibodies against CD45; epithelial markers EpCAM and cytokeratin (CK) 8,18; mesenchymal vimentin (vim); and stem-like CD44, CD133 and ALDH. This study included 38 stage I-IV OC patients (median age 66 (Q1-Q3 53-70)). The CK+vim- counts were higher (p = 0.012) and the CD133+ALDHhigh counts were lower (p = 0.010) before treatment in the neoadjuvant CT group than in the adjuvant group. The patients with ascites had more CK+vim- cells before treatment (p = 0.009) and less EpCAM-vim+ cells during treatment (p = 0.018) than the patients without ascites. All the CTC counts did not differ significantly in paired samples. Correlations were found between the CK-vim+ and CD133+ALDHhigh (r = 0.505, p = 0.027) and EpCAM-vim+ and ALDHhigh (r = 0.597, p = 0.004) cells before but not during treatment. Multivariate Cox regression analysis showed that progression-free survival was longer with the presence of surgical treatment (HR 0.06 95% CI 0.01-0.48, p = 0.009) and fewer CD133+ALDHveryhigh cells (HR 1.06 95% CI 1.02-1.12, p = 0.010). Thus, CD133+ALDH+ CTCs have the greatest prognostic potential in OC among the phenotypes studied.
Collapse
|
38
|
Liquid Biopsy: A Family of Possible Diagnostic Tools. Diagnostics (Basel) 2021; 11:diagnostics11081391. [PMID: 34441325 PMCID: PMC8394215 DOI: 10.3390/diagnostics11081391] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/26/2023] Open
Abstract
Liquid biopsies could be considered an excellent diagnostic tool, in different physiological or pathological conditions. The possibility of using liquid biopsies for non-invasive clinical purposes is quite an old idea: indeed many years ago it was already being used in the field of non-invasive prenatal tests (NIPT) for autosomal fetal aneuploidy evaluation. In 1997 Lo et al. had identified fetal DNA in maternal plasma and serum, showing that about 10–15% of cfDNA in maternal plasma is derived from the placenta, and biologic fluid represents an important and non-invasive technique to evaluate state diseases and possible therapies. Nowadays, several body fluids, such as blood, urine, saliva and other patient samples, could be used as liquid biopsy for clinical non-invasive evaluation. These fluids contain numerous and various biomarkers and could be used for the evaluation of pathological and non-pathological conditions. In this review we will analyze the different types of liquid biopsy, their potential role in clinical diagnosis and the functional involvement of extracellular vesicles in these fluids as carriers.
Collapse
|
39
|
De Luca G, Dono M. The Opportunities and Challenges of Molecular Tagging Next-Generation Sequencing in Liquid Biopsy. Mol Diagn Ther 2021; 25:537-547. [PMID: 34224097 DOI: 10.1007/s40291-021-00542-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2021] [Indexed: 10/20/2022]
Abstract
Liquid biopsy (LB) is a promising tool that is rapidly evolving as a standard of care in early and advanced stages of cancer settings. Next-generation sequencing (NGS) methods have become essential in molecular diagnostics and clinical laboratories dealing with LB analytes, i.e., cell-free DNA and RNA. The sensitivity and high-throughput capacity of NGS enable us to overcome technical issues that are mainly attributable to low-abundance (below 1% mutated allelic frequency) tumour genetic material circulating within biological fluids. In this context, the introduction of unique molecular identifiers (UMIs), also known as molecular barcodes, applied to various NGS platforms greatly improved the characterization of rare genetic alterations, as they resulted in a drastic reduction in background noise while maintaining high levels of positive predictive value and sensitivity. Different UMI strategies have been developed, such as single (e.g., safe-sequencing system, Safe-SeqS) or double (duplex-sequencing system, Duplex-Seq) strand-based labelling, and, currently, considerable results corroborate their potential implementation in a routine laboratory. Recently, the US Food and Drug Administration approved the clinical use of two comprehensive UMI-based NGS assays (FoundationOne Liquid CDx and Guardant360 CDx) in cfDNA mutational assessment. However, to definitively translate LB into clinical practice, UMI-based NGS protocols should meet certain feasibility requirements in terms of cost-effectiveness, wet laboratory performance and easy access to web-source and bioinformatic tools for downstream molecular data.
Collapse
Affiliation(s)
- Giuseppa De Luca
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy
| | - Mariella Dono
- Molecular Diagnostic Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genova, Italy.
| |
Collapse
|
40
|
Menéndez ST, Gallego B, Murillo D, Rodríguez A, Rodríguez R. Cancer Stem Cells as a Source of Drug Resistance in Bone Sarcomas. J Clin Med 2021; 10:jcm10122621. [PMID: 34198693 PMCID: PMC8232081 DOI: 10.3390/jcm10122621] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
Bone sarcomas are commonly characterized by a high degree of intra-tumor heterogeneity, which in part is due to the presence of subpopulations of tumor cells presenting stem cell properties. Similar to normal stem cells, these cancer stem cells (CSCs) display a drug resistant phenotype and therefore are responsible for relapses and tumor dissemination. Drug resistance in bone sarcomas could be enhanced/modulated during tumor evolution though the acquisition of (epi)-genetic alterations and the adaptation to changing microenvironments, including drug treatments. Here we summarize findings supporting the involvement of pro-stemness signaling in the development of drug resistance in bone sarcomas. This include the activation of well-known pro-stemness pathways (Wnt/β-Cat, NOTCH or JAT/STAT pathways), changes in the metabolic and autophagic activities, the alteration of epigenetic pathways, the upregulation of specific non-coding RNAs and the crosstalk with different microenvironmental factors. This altered signaling is expected to be translated to the clinic in the form of biomarkers of response and new therapies able to overcome drug resistance.
Collapse
Affiliation(s)
- Sofía T. Menéndez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence: (S.T.M.); (R.R.)
| | - Borja Gallego
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
| | - Dzohara Murillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
| | - Aida Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
| | - René Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence: (S.T.M.); (R.R.)
| |
Collapse
|
41
|
Sun K, Chen P, Yan S, Yuan W, Wang Y, Li X, Dou L, Zhao C, Zhang J, Wang Q, Fu Z, Wei L, Xin Z, Tang Z, Yan Y, Peng Y, Ying B, Chen J, Geng J. Ultrasensitive Nanopore Sensing of Mucin 1 and Circulating Tumor Cells in Whole Blood of Breast Cancer Patients by Analyte-Triggered Triplex-DNA Release. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21030-21039. [PMID: 33905228 DOI: 10.1021/acsami.1c03538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The characterization of circulating tumor cells (CTCs) by liquid biopsy has a great potential for precision medicine in oncology. Here, a universal and tandem logic-based strategy is developed by combining multiple nanomaterials and nanopore sensing for the determination of mucin 1 protein (MUC1) and breast cancer CTCs in real samples. The strategy consists of analyte-triggered signal conversion, cascaded amplification via nanomaterials including copper sulfide nanoparticles (CuS NPs), silver nanoparticles (Ag NPs), and biomaterials including DNA hydrogel and DNAzyme, and single-molecule-level detection by nanopore sensing. The amplification of the non-DNA nanomaterial gives this method considerable stability, significantly lowers the limit of detection (LOD), and enhances the anti-interference performance for complicated samples. As a result, the ultrasensitive detection of MUC1 could be achieved in the range of 0.0005-0.5 pg/mL, with an LOD of 0.1 fg/mL. Moreover, we further tested MUC1 as a biomarker for the clinical diagnosis of breast cancer CTCs under double-blind conditions on the basis of this strategy, and MCF-7 cells could be accurately detected in the range from 5 to 2000 cells/mL, with an LOD of 2 cells/mL within 6 h. The detection results of the 19 clinical samples were highly consistent with those of the clinical pathological sections, nuclear magnetic resonance imaging, and color ultrasound. These results demonstrate the validity and reliability of our method and further proved the feasibility of MUC1 as a clinical diagnostic biomarker for CTCs.
Collapse
Affiliation(s)
- Ke Sun
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Piaopiao Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Shixin Yan
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Weidan Yuan
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yu Wang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Xinqiong Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Linqin Dou
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Changjian Zhao
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Jianfu Zhang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Qiang Wang
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhoukai Fu
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Long Wei
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Zhaodan Xin
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Zhuoyun Tang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yichen Yan
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Yiman Peng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| | - Jie Chen
- Department of Breast Surgery, Clinical Research Center for Breast, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, Med+X Center for Manufacturing, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, China
| |
Collapse
|
42
|
Alix-Panabières C, Pantel K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov 2021; 11:858-873. [PMID: 33811121 DOI: 10.1158/2159-8290.cd-20-1311] [Citation(s) in RCA: 528] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/23/2022]
Abstract
Over the past 10 years, circulating tumor cells (CTC) and circulating tumor DNA (ctDNA) have received enormous attention as new biomarkers and subjects of translational research. Although both biomarkers are already used in numerous clinical trials, their clinical utility is still under investigation with promising first results. Clinical applications include early cancer detection, improved cancer staging, early detection of relapse, real-time monitoring of therapeutic efficacy, and detection of therapeutic targets and resistance mechanisms. Here, we propose a conceptual framework of CTC and ctDNA assays and point out current challenges of CTC and ctDNA research, which might structure this dynamic field of translational cancer research. SIGNIFICANCE: The analysis of blood for CTCs or cell-free nucleic acids called "liquid biopsy" has opened new avenues for cancer diagnostics, including early detection of tumors, improved risk assessment and staging, as well as early detection of relapse and monitoring of tumor evolution in the context of cancer therapies.
Collapse
Affiliation(s)
- Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France. .,CREEC/CANECEV, MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
43
|
Hu X, Zang X, Lv Y. Detection of circulating tumor cells: Advances and critical concerns. Oncol Lett 2021; 21:422. [PMID: 33850563 PMCID: PMC8025150 DOI: 10.3892/ol.2021.12683] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the main cause of cancer-related death and the major challenge in cancer treatment. Cancer cells in circulation are termed circulating tumor cells (CTCs). Primary tumor metastasis is likely due to CTCs released into the bloodstream. These CTCs extravasate and form fatal metastases in different organs. Analyses of CTCs are clarifying the biological understanding of metastatic cancers. These data are also helpful to monitor disease progression and to inform the development of personalized cancer treatment-based liquid biopsy. However, CTCs are a rare cell population with 1-10 CTCs per ml and are difficult to isolate from blood. Numerous approaches to detect CTCs have been developed based on the physical and biological properties of the cells. The present review summarizes the progress made in detecting CTCs.
Collapse
Affiliation(s)
- Xiuxiu Hu
- School of Medical Technology, Jiangsu College of Nursing, Huai'an, Jiangsu 22300, P.R. China
| | - Xiaojuan Zang
- Department of Ultrasonography, Huai'an Maternity and Child Health Care Hospital, Huai'an, Jiangsu 223002, P.R. China
| | - Yanguan Lv
- Clinical Medical Laboratory, Huai'an Maternity and Child Health Care Hospital, Huai'an, Jiangsu 223002, P.R. China
| |
Collapse
|
44
|
Tieng FYF, Abu N, Lee LH, Ab Mutalib NS. Microsatellite Instability in Colorectal Cancer Liquid Biopsy-Current Updates on Its Potential in Non-Invasive Detection, Prognosis and as a Predictive Marker. Diagnostics (Basel) 2021; 11:544. [PMID: 33803882 PMCID: PMC8003257 DOI: 10.3390/diagnostics11030544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly-diagnosed cancer in the world and ranked second for cancer-related mortality in humans. Microsatellite instability (MSI) is an indicator for Lynch syndrome (LS), an inherited cancer predisposition, and a prognostic marker which predicts the response to immunotherapy. A recent trend in immunotherapy has transformed cancer treatment to provide medical alternatives that have not existed before. It is believed that MSI-high (MSI-H) CRC patients would benefit from immunotherapy due to their increased immune infiltration and higher neo-antigenic loads. MSI testing such as immunohistochemistry (IHC) and PCR MSI assay has historically been a tissue-based procedure that involves the testing of adequate tissue with a high concentration of cancer cells, in addition to the requirement for paired normal tissues. The invasive nature and specific prerequisite of such tests might hinder its application when surgery is not an option or when the tissues are insufficient. The application of next-generation sequencing, which is highly sensitive, in combination with liquid biopsy, therefore, presents an interesting possibility worth exploring. This review aimed to discuss the current body of evidence supporting the potential of liquid biopsy as a tool for MSI testing in CRC.
Collapse
Affiliation(s)
- Francis Yew Fu Tieng
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.)
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor 47500, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (F.Y.F.T.); (N.A.)
- Novel Bacteria and Drug Discovery Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor 47500, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
45
|
Gao Y, Fan WH, Song Z, Lou H, Kang X. Comparison of circulating tumor cell (CTC) detection rates with epithelial cell adhesion molecule (EpCAM) and cell surface vimentin (CSV) antibodies in different solid tumors: a retrospective study. PeerJ 2021; 9:e10777. [PMID: 33717672 PMCID: PMC7934682 DOI: 10.7717/peerj.10777] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/22/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Status of epithelial-mesenchymal transition (EMT) varies from tumors to tumors. Epithelial cell adhesion molecule (EpCAM) and cell surface vimentin (CSV) are the most common used targets for isolating epithelial and mesenchymal CTCs, respectively. This study aimed to identify a suitable CTC capturing antibody for CTC enrichment in each solid tumor by comparing CTC detection rates with EpCAM and CSV antibodies in different solid tumors. Methods Treatment-naive patients with confirmed cancer diagnosis and healthy people who have performed CTC detection between April 2017 and May 2018 were included in this study. CTC detection was performed with CytoSorter® CTC system using either EpCAM or CSV antibody. In total, 853 CTC results from 690 cancer patients and 72 healthy people were collected for analysis. The performance of CTC capturing antibody was determined by the CTC detection rate. Results EpCAM has the highest CTC detection rate of 84.09% in CRC, followed by BCa (78.32%). CTC detection rates with EpCAM antibody are less than 40% in HCC (25%), PDAC (32.5%) and OC (33.33%). CSV has the highest CTC detection rate of 90% in sarcoma, followed by BC (85.71%), UC (84.62%), OC (83.33%) and BCa (81.82%). CTC detection rates with CSV antibody are over 60% in all 14 solid tumors. Except for CRC, CSV has better performances than EpCAM in most solid tumors regarding the CTC detection rates. Conclusion EpCAM can be used as a target to isolate CTCs in CRC, LC, GC, BCa, EC, HNSCC, CC and PCa, especially in CRC, while CSV can be used in most solid tumors for isolating CTCs.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Polytechnic University, Beijing, China
| | | | - Zhengbo Song
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Haizhou Lou
- Department of Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xixong Kang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beijing Polytechnic University, Beijing, China
| |
Collapse
|
46
|
Research Progress for the Clinical Application of Circulating Tumor Cells in Prostate Cancer Diagnosis and Treatment. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6230826. [PMID: 33506020 PMCID: PMC7814947 DOI: 10.1155/2021/6230826] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Prostate cancer is a life-threatening and highly heterogeneous malignancy. In the past decade, circulating tumor cells (CTCs) have been suggested to play a critical role in the occurrence and progression of prostate cancer. In particular, as the “seed” of the cancer metastasis cascade, CTCs determine numerous biological behaviors, such as tumor invasion into adjacent tissues and migration to distant organs. Many studies have shown that CTCs are necessary in the processes of tumor progression, including tumorigenesis, invasion, metastasis, and colonization. Furthermore, CTCs express various biomarkers relevant to prostate cancer and thus can be applied clinically in noninvasive tests. Moreover, CTCs can serve as potential prognostic targets in prostate cancer due to their roles in regulating many processes associated with cancer metastasis. In this review, we discuss the isolation and detection of CTCs as predictive markers of prostate cancer, and we discuss their clinical application in the diagnosis and prognosis of prostate cancer and in monitoring the response to treatment and the prediction of metastasis.
Collapse
|
47
|
Mondelo-Macía P, García-González J, León-Mateos L, Castillo-García A, López-López R, Muinelo-Romay L, Díaz-Peña R. Current Status and Future Perspectives of Liquid Biopsy in Small Cell Lung Cancer. Biomedicines 2021; 9:48. [PMID: 33430290 PMCID: PMC7825645 DOI: 10.3390/biomedicines9010048] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 01/08/2023] Open
Abstract
Approximately 19% of all cancer-related deaths are due to lung cancer, which is the leading cause of mortality worldwide. Small cell lung cancer (SCLC) affects approximately 15% of patients diagnosed with lung cancer. SCLC is characterized by aggressiveness; the majority of SCLC patients present with metastatic disease, and less than 5% of patients are alive at 5 years. The gold standard of SCLC treatment is platinum and etoposide-based chemotherapy; however, its effects are short. In recent years, treatment for SCLC has changed; new drugs have been approved, and new biomarkers are needed for treatment selection. Liquid biopsy is a non-invasive, rapid, repeated and alternative tool to the traditional tumor biopsy that could allow the most personalized medicine into the management of SCLC patients. Circulating tumor cells (CTCs) and cell-free DNA (cfDNA) are the most commonly used liquid biopsy biomarkers. Some studies have reported the prognostic factors of CTCs and cfDNA in SCLC patients, independent of the stage. In this review, we summarize the recent SCLC studies of CTCs, cfDNA and other liquid biopsy biomarkers, and we discuss the future utility of liquid biopsy in the clinical management of SCLC.
Collapse
Affiliation(s)
- Patricia Mondelo-Macía
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (P.M.-M.); (L.M.-R.)
| | - Jorge García-González
- Department of Medical Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (J.G.-G.); (L.L.-M.); (R.L.-L.)
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Luis León-Mateos
- Department of Medical Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (J.G.-G.); (L.L.-M.); (R.L.-L.)
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | | | - Rafael López-López
- Department of Medical Oncology, Complexo Hospitalario Universitario de Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (J.G.-G.); (L.L.-M.); (R.L.-L.)
- Translational Medical Oncology (Oncomet), Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Laura Muinelo-Romay
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (P.M.-M.); (L.M.-R.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Roberto Díaz-Peña
- Liquid Biopsy Analysis Unit, Oncomet, Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain; (P.M.-M.); (L.M.-R.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
48
|
Okabe T, Togo S, Fujimoto Y, Watanabe J, Sumiyoshi I, Orimo A, Takahashi K. Mesenchymal Characteristics and Predictive Biomarkers on Circulating Tumor Cells for Therapeutic Strategy. Cancers (Basel) 2020; 12:E3588. [PMID: 33266262 PMCID: PMC7761066 DOI: 10.3390/cancers12123588] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/22/2022] Open
Abstract
Metastasis-related events are the primary cause of cancer-related deaths, and circulating tumor cells (CTCs) have a pivotal role in metastatic relapse. CTCs include a variety of subtypes with different functional characteristics. Interestingly, the epithelial-mesenchymal transition (EMT) markers expressed in CTCs are strongly associated with poor clinical outcome and related to the acquisition of circulating tumor stem cell (CTSC) features. Recent studies have revealed the existence of CTC clusters, also called circulating tumor microemboli (CTM), which have a high metastatic potential. In this review, we present current opinions regarding the clinical significance of CTCs and CTM with a mesenchymal phenotype as clinical surrogate markers, and we summarize the therapeutic strategy according to phenotype characterization of CTCs in various types of cancers for future precision medicine.
Collapse
Affiliation(s)
- Takahiro Okabe
- Leading Center for the Development and Research of Cancer Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Shinsaku Togo
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yuichi Fujimoto
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Junko Watanabe
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Issei Sumiyoshi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Akira Orimo
- Departments of Pathology and Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan;
| | - Kazuhisa Takahashi
- Division of Respiratory Medicine, Juntendo University Faculty of Medicine & Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; (Y.F.); (J.W.); (I.S.); (K.T.)
- Research Institute for Diseases of Old Ages, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
49
|
Grünewald TGP, Alonso M, Avnet S, Banito A, Burdach S, Cidre‐Aranaz F, Di Pompo G, Distel M, Dorado‐Garcia H, Garcia‐Castro J, González‐González L, Grigoriadis AE, Kasan M, Koelsche C, Krumbholz M, Lecanda F, Lemma S, Longo DL, Madrigal‐Esquivel C, Morales‐Molina Á, Musa J, Ohmura S, Ory B, Pereira‐Silva M, Perut F, Rodriguez R, Seeling C, Al Shaaili N, Shaabani S, Shiavone K, Sinha S, Tomazou EM, Trautmann M, Vela M, Versleijen‐Jonkers YMH, Visgauss J, Zalacain M, Schober SJ, Lissat A, English WR, Baldini N, Heymann D. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med 2020; 12:e11131. [PMID: 33047515 PMCID: PMC7645378 DOI: 10.15252/emmm.201911131] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.
Collapse
Affiliation(s)
- Thomas GP Grünewald
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Division of Translational Pediatric Sarcoma ResearchGerman Cancer Research Center (DKFZ), Hopp Children's Cancer Center (KiTZ), German Cancer Consortium (DKTK)HeidelbergGermany
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Marta Alonso
- Program in Solid Tumors and BiomarkersFoundation for the Applied Medical ResearchUniversity of Navarra PamplonaPamplonaSpain
| | - Sofia Avnet
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Ana Banito
- Pediatric Soft Tissue Sarcoma Research GroupGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Stefan Burdach
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Florencia Cidre‐Aranaz
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | - Gemma Di Pompo
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | | | | | | | | | | | - Merve Kasan
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | | | - Fernando Lecanda
- Division of OncologyAdhesion and Metastasis LaboratoryCenter for Applied Medical ResearchUniversity of NavarraPamplonaSpain
| | - Silvia Lemma
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Dario L Longo
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | | | | | - Julian Musa
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Shunya Ohmura
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | - Miguel Pereira‐Silva
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Francesca Perut
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Rene Rodriguez
- Instituto de Investigación Sanitaria del Principado de AsturiasOviedoSpain
- CIBER en oncología (CIBERONC)MadridSpain
| | | | - Nada Al Shaaili
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Shabnam Shaabani
- Department of Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Kristina Shiavone
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Snehadri Sinha
- Department of Oral and Maxillofacial DiseasesUniversity of HelsinkiHelsinkiFinland
| | | | - Marcel Trautmann
- Division of Translational PathologyGerhard‐Domagk‐Institute of PathologyMünster University HospitalMünsterGermany
| | - Maria Vela
- Hospital La Paz Institute for Health Research (IdiPAZ)MadridSpain
| | | | | | - Marta Zalacain
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | - Sebastian J Schober
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Andrej Lissat
- University Children′s Hospital Zurich – Eleonoren FoundationKanton ZürichZürichSwitzerland
| | - William R English
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Nicola Baldini
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Dominique Heymann
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
- Université de NantesInstitut de Cancérologie de l'OuestTumor Heterogeneity and Precision MedicineSaint‐HerblainFrance
| |
Collapse
|
50
|
Electrochemical Detection and Point-of-Care Testing for Circulating Tumor Cells: Current Techniques and Future Potentials. SENSORS 2020; 20:s20216073. [PMID: 33114569 PMCID: PMC7663783 DOI: 10.3390/s20216073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 12/13/2022]
Abstract
Circulating tumor cells (CTCs) are tumor cells that escaped from the primary tumor or the metastasis into the blood and they play a major role in the initiation of metastasis and tumor recurrence. Thus, it is widely accepted that CTC is the main target of liquid biopsy. In the past few decades, the separation of CTC based on the electrochemical method has attracted widespread attention due to its convenience, rapidness, low cost, high sensitivity, and no need for complex instruments and equipment. At present, CTC detection is not widely used in the clinic due to various reasons. Point-of-care CTC detection provides us with a possibility, which is sensitive, fast, cheap, and easy to operate. More importantly, the testing instrument is small and portable, and the testing does not require specialized laboratories and specialized clinical examiners. In this review, we summarized the latest developments in the electrochemical-based CTC detection and point-of-care CTC detection, and discussed the challenges and possible trends.
Collapse
|