1
|
Bloemberg J, van Wees S, Kortman VG, Sakes A. Design of a wasp-inspired biopsy needle capable of self-propulsion and friction-based tissue transport. Front Bioeng Biotechnol 2025; 12:1497221. [PMID: 39834634 PMCID: PMC11743259 DOI: 10.3389/fbioe.2024.1497221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025] Open
Abstract
Percutaneous pancreatic core biopsy is conclusive but challenging due to large-diameter needles, while smaller-diameter needles used in aspiration methods suffer from buckling and clogging. Inspired by the ovipositor of parasitic wasps, which resists buckling through self-propulsion and prevents clogging via friction-based transport, research has led to the integration of these functionalities into multi-segment needle designs or tissue transport system designs. This study aimed to combine these wasp-inspired functionalities into a single biopsy needle by changing the interconnection of the needle segments. The resulting biopsy needle features six parallel needle segments interconnected by a ring passing through slots along the length of the needle segments, enabling a wasp-inspired reciprocating motion. Actuation employs a cam and follower mechanism for controlled translation of the segments. The needle prototype, constructed from nitinol rods and stainless steel rings, measures 3 mm in outer diameter and 1 mm in inner diameter. Testing in gelatin phantoms demonstrated efficient gelatin core transport (up to 69.9% ± 9.1% transport efficiency) and self-propulsion (0.842 ± 0.042 slip ratio). Future iterations should aim to reduce the outer diameter while maintaining tissue yield. The design offers a promising new avenue for wasp-inspired medical tools, potentially enhancing early pancreatic cancer detection, thus reducing healthcare costs and patient complications.
Collapse
Affiliation(s)
- Jette Bloemberg
- Department of BioMechanical Engineering, Bio-Inspired Technology Group, Faculty of Mechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Suzanne van Wees
- Department of BioMechanical Engineering, Bio-Inspired Technology Group, Faculty of Mechanical Engineering, Delft University of Technology, Delft, Netherlands
- Department of Biomedical Engineering, Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
| | - Vera G. Kortman
- Department of BioMechanical Engineering, Bio-Inspired Technology Group, Faculty of Mechanical Engineering, Delft University of Technology, Delft, Netherlands
| | - Aimée Sakes
- Department of BioMechanical Engineering, Bio-Inspired Technology Group, Faculty of Mechanical Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
2
|
Liu Y, Hossain MM, Li XJ, Konofagou EE. Amplitude-Modulation Frequency Optimization for Enhancing Harmonic Motion Imaging Performance of Breast Tumors in the Clinic. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:169-179. [PMID: 39428259 PMCID: PMC11758706 DOI: 10.1016/j.ultrasmedbio.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
OBJECTIVE Elastography images tissue mechanical responses and infers the underlying properties to aid diagnosis and treatment response monitoring. The estimation of absolute or relative tumor properties may vary with dimensions even when the mechanical properties remain constant. Harmonic motion imaging (HMI) uses amplitude-modulated (AM) focused ultrasound to interrogate the targeted tissue's viscoelastic properties. In this study, effects of AM frequencies on HMI were investigated in terms of inclusion relative stiffness and size estimation. METHODS AM frequencies from 200 to 600 Hz in steps of 100 Hz were considered using a 5.3-kPa phantom with cylindrical inclusions (Young's modulus: 22, 31, 44, 56 kPa, and diameter: 4.8, 8.1, 13.6, 19.8 mm) to optimize the performance of HMI in characterizing tumors with the same mechanical properties and of different dimensions. RESULTS Consistent displacement ratios (DRs) (17.5% variation) of the inclusion to background were obtained with 200-Hz AM for breast-tumor-mimicking inclusions albeit a suboptimal inclusion size estimation obtained. 400-Hz was otherwise used for small and low-contrast inclusions (4.8 mm, 22 or 31 kPa). A linear relationship (R2 = 0.9043) was found between the inverse DR at these frequencies and the Young's modulus ratio. 400 Hz obtained the most accurate inclusion size estimation with an overall estimation error on the lateral dimension of 0.5 mm. In vivo imaging of breast cancer patients (n = 5) was performed at 200 or 400 Hz. CONCLUSION The results presented herein indicate that the HMI AM frequency could be optimized adaptively in cases of different applications, i.e., at 200 or 400 Hz, depending on whether aimed for consistent DR measurement for tumor response assessment or tumor margin delineation for surgical planning. HMI may thus be capable of predicting the pathologic endpoint of tumors in response to neoadjuvant chemotherapy (NACT) as early as 3 weeks into treatment.
Collapse
Affiliation(s)
- Yangpei Liu
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Md Murad Hossain
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Xiaoyue Judy Li
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Ferrara B, Bourgoin-Voillard S, Habert D, Vallée B, Nicolas-Boluda A, Simanic I, Seve M, Vingert B, Gazeau F, Castellano F, Cohen J, Courty J, Cascone I. Matrix stiffness regulates the protein profile of extracellular vesicles of pancreatic cancer cell lines. Proteomics 2024; 24:e2400058. [PMID: 39279557 DOI: 10.1002/pmic.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/18/2024]
Abstract
The fibrotic stroma characterizing pancreatic ductal adenocarcinoma (PDAC) derives from a progressive tissue rigidification, which induces epithelial mesenchymal transition and metastatic dissemination. The aim of this study was to investigate the influence of matrix stiffness on PDAC progression by analyzing the proteome of PDAC-derived extracellular vesicles (EVs). PDAC cell lines (mPDAC and KPC) were grown on synthetic supports with a stiffness close to non-tumor (NT) or tumor tissue (T), and the protein expression levels in cell-derived EVs were analyzed by a quantitative MSE label-free mass spectrometry approach. Our analysis figured out 15 differentially expressed proteins (DEPs) in mPDAC-EVs and 20 DEPs in KPC-EVs in response to matrix rigidification. Up-regulated proteins participate to the processes of metabolism, matrix remodeling, and immune response, altogether hallmarks of PDAC progression. A multimodal network analysis revealed that the majority of DEPs are strongly related to pancreatic cancer. Interestingly, among DEPs, 11 related genes (ACTB/ANXA7/C3/IGSF8/LAMC1/LGALS3/PCD6IP/SFN/TPM3/VARS/YWHAZ) for mPDAC-EVs and 9 (ACTB/ALDH2/GAPDH/HNRNPA2B/ITGA2/NEXN/PKM/RPN1/S100A6) for KPC-EVs were significantly overexpressed in tumor tissues according to gene expression profiling interaction analysis (GEPIA). Concerning the potential clinical relevance of these data, the cluster of ACTB, ITGA2, GAPDH and PKM genes displayed an adverse effect (p < 0.05) on the overall survival of PDAC patients.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sandrine Bourgoin-Voillard
- Université Grenoble Alpes, CNRS UMR 5525, Grenoble INP, TIMC, EPSP, Grenoble, France
- Université Grenoble Alpes, CNRS UMR 5525, Grenoble INP, CHU Grenoble Alpes, TIMC, EPSP, Grenoble, France
- Université Grenoble Alpes, LBFA et BEeSy, Inserm, U1055, CHU Grenoble Alpes, PROMETHEE Proteomic Platform, Grenoble, France
| | - Damien Habert
- Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
| | - Benoit Vallée
- Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
| | - Alba Nicolas-Boluda
- Matière et Systèmes Complexes MSC, CNRS, Université Paris Cité, Paris, France
| | - Isidora Simanic
- Modèles de cellules souches malignes et therapeutiques, INSERM UMR-S 935, Université Paris-Saclay, Villejuif, France
| | - Michel Seve
- Université Grenoble Alpes, CNRS UMR 5525, Grenoble INP, TIMC, EPSP, Grenoble, France
- Université Grenoble Alpes, CNRS UMR 5525, Grenoble INP, CHU Grenoble Alpes, TIMC, EPSP, Grenoble, France
- Université Grenoble Alpes, LBFA et BEeSy, Inserm, U1055, CHU Grenoble Alpes, PROMETHEE Proteomic Platform, Grenoble, France
| | - Benoit Vingert
- Etablissement Français du Sang, Créteil, France
- Inserm, U955, Equipe 2, Créteil, France
| | - Florence Gazeau
- Matière et Systèmes Complexes MSC, CNRS, Université Paris Cité, Paris, France
| | - Flavia Castellano
- Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
| | - José Cohen
- Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
- AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'investigation clinique Biotherapie, Créteil, France
| | - José Courty
- Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
- AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'investigation clinique Biotherapie, Créteil, France
| | - Ilaria Cascone
- Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, Université Paris-Est, Créteil, France
- AP-HP, Groupe hospitalo-universitaire Chenevier Mondor, Centre d'investigation clinique Biotherapie, Créteil, France
| |
Collapse
|
4
|
Gregori A, Bergonzini C, Capula M, de Mercado RR, Danen EHJ, Giovannetti E, Schmidt T. Altered Mechanobiology of PDAC Cells with Acquired Chemoresistance to Gemcitabine and Paclitaxel. Cancers (Basel) 2024; 16:3863. [PMID: 39594817 PMCID: PMC11593083 DOI: 10.3390/cancers16223863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Pancreatic ductal adenocarcinoma acquired resistance to chemotherapy poses a major limitation to patient survival. Despite understanding some biological mechanisms of chemoresistance, much about those mechanisms remains to be uncovered. Mechanobiology, which studies the physical properties of cells, holds promise as a potential target for addressing the challenges of chemoresistance in PDAC. Therefore, we, here in an initial step, assessed the altered mechanobiology of PDAC cells with acquired chemoresistance to gemcitabine and paclitaxel. Methods: Five PDAC cell lines and six stably resistant subclones were assessed for force generation on elastic micropillar arrays. Those measurements of mechanical phenotype were complemented by single-cell motility and invasion in 3D collagen-based matrix assays. Further, the nuclear translocation of Yes-associated protein (YAP), as a measure of active mechanical status, was compared, and biomarkers of the epithelial-to-mesenchymal transition (EMT) were evaluated using RT-qPCR. Results: The PDAC cells with acquired chemoresistance exert higher traction forces than their parental/wild-type (WT) cells. In 2D, single-cell motility was altered for all the chemoresistant cells, with a cell-type specific pattern. In 3D, the spheroids of the chemoresistant PDAC cells were able to invade the matrix and remodel collagen more than their WT clones. However, YAP nuclear translocation and EMT were not significantly altered in relation to changes in other physical parameters. Conclusions: This is the first study to investigate and report on the altered mechanobiological features of PDAC cells that have acquired chemoresistance. A better understanding of mechanical features could help in identifying future targets to overcome chemoresistance in PDAC.
Collapse
Affiliation(s)
- Alessandro Gregori
- Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.G.); (E.G.)
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands;
| | - Cecilia Bergonzini
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands (E.H.J.D.)
| | - Mjriam Capula
- Fondazione Pisana per La Scienza, 56017 San Giuliano Terme, Italy
| | - Rick Rodrigues de Mercado
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands;
| | - Erik H. J. Danen
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands (E.H.J.D.)
| | - Elisa Giovannetti
- Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands; (A.G.); (E.G.)
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
- Fondazione Pisana per La Scienza, 56017 San Giuliano Terme, Italy
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands;
| |
Collapse
|
5
|
Tarchi SM, Salvatore M, Lichtenstein P, Sekar T, Capaccione K, Luk L, Shaish H, Makkar J, Desperito E, Leb J, Navot B, Goldstein J, Laifer S, Beylergil V, Ma H, Jambawalikar S, Aberle D, D'Souza B, Bentley-Hibbert S, Marin MP. Radiology of fibrosis part II: abdominal organs. J Transl Med 2024; 22:610. [PMID: 38956593 PMCID: PMC11218138 DOI: 10.1186/s12967-024-05346-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/25/2024] [Indexed: 07/04/2024] Open
Abstract
Fibrosis is the aberrant process of connective tissue deposition from abnormal tissue repair in response to sustained tissue injury caused by hypoxia, infection, or physical damage. It can affect almost all organs in the body causing dysfunction and ultimate organ failure. Tissue fibrosis also plays a vital role in carcinogenesis and cancer progression. The early and accurate diagnosis of organ fibrosis along with adequate surveillance are helpful to implement early disease-modifying interventions, important to reduce mortality and improve quality of life. While extensive research has already been carried out on the topic, a thorough understanding of how this relationship reveals itself using modern imaging techniques has yet to be established. This work outlines the ways in which fibrosis shows up in abdominal organs and has listed the most relevant imaging technologies employed for its detection. New imaging technologies and developments are discussed along with their promising applications in the early detection of organ fibrosis.
Collapse
Affiliation(s)
- Sofia Maria Tarchi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA.
| | - Mary Salvatore
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Philip Lichtenstein
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Thillai Sekar
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kathleen Capaccione
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lyndon Luk
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hiram Shaish
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jasnit Makkar
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Elise Desperito
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jay Leb
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Benjamin Navot
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jonathan Goldstein
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sherelle Laifer
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Volkan Beylergil
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hong Ma
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sachin Jambawalikar
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Dwight Aberle
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Belinda D'Souza
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Monica Pernia Marin
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
6
|
Liu Y, Okesola BO, Osuna de la Peña D, Li W, Lin M, Trabulo S, Tatari M, Lawlor RT, Scarpa A, Wang W, Knight M, Loessner D, Heeschen C, Mata A, Pearce OMT. A Self-Assembled 3D Model Demonstrates How Stiffness Educates Tumor Cell Phenotypes and Therapy Resistance in Pancreatic Cancer. Adv Healthc Mater 2024; 13:e2301941. [PMID: 38471128 PMCID: PMC11468796 DOI: 10.1002/adhm.202301941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/16/2024] [Indexed: 03/14/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense and stiff extracellular matrix (ECM) associated with tumor progression and therapy resistance. To further the understanding of how stiffening of the tumor microenvironment (TME) contributes to aggressiveness, a three-dimensional (3D) self-assembling hydrogel disease model is developed based on peptide amphiphiles (PAs, PA-E3Y) designed to tailor stiffness. The model displays nanofibrous architectures reminiscent of native TME and enables the study of the invasive behavior of PDAC cells. Enhanced tuneability of stiffness is demonstrated by interacting thermally annealed aqueous solutions of PA-E3Y (PA-E3Yh) with divalent cations to create hydrogels with mechanical properties and ultrastructure similar to native tumor ECM. It is shown that stiffening of PA-E3Yh hydrogels to levels found in PDAC induces ECM deposition, promotes epithelial-to-mesenchymal transition (EMT), enriches CD133+/CXCR4+ cancer stem cells (CSCs), and subsequently enhances drug resistance. The findings reveal how a stiff 3D environment renders PDAC cells more aggressive and therefore more faithfully recapitulates in vivo tumors.
Collapse
Affiliation(s)
- Ying Liu
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Babatunde O. Okesola
- School of Life SciencesFaculty of Medicine and Health SciencesUniversity of NottinghamNottinghamNG7 2RDUK
| | - David Osuna de la Peña
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Weiqi Li
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Meng‐Lay Lin
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Sara Trabulo
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Marianthi Tatari
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
| | - Rita T. Lawlor
- Department of Diagnostics and Public HealthSection of PathologyUniversity of VeronaVerona37134Italy
- ARC‐NetApplied Research on Cancer CentreUniversity of VeronaVerona37134Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public HealthSection of PathologyUniversity of VeronaVerona37134Italy
- ARC‐NetApplied Research on Cancer CentreUniversity of VeronaVerona37134Italy
| | - Wen Wang
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
| | - Martin Knight
- Centre for BioengineeringSchool of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Centre for Predictive in vitro ModelsQueen Mary University of LondonLondonE1 4NSUK
| | - Daniela Loessner
- Barts Cancer InstituteQueen Mary University of LondonLondonEC1M 6BQUK
- Department of Chemical and Biological EngineeringFaculty of EngineeringMonash UniversityMelbourneVIC3800Australia
- Department of Materials Science and EngineeringFaculty of EngineeringMonash UniversityMelbourneVIC3800Australia
- Department of Anatomy and Developmental BiologyFaculty of MedicineNursing and Health SciencesMonash UniversityMelbourneVIC3800Australia
| | - Christopher Heeschen
- Pancreatic Cancer HeterogeneityCandiolo Cancer Institute – FPO – IRCCSCandiolo (TO)10060Italy
| | - Alvaro Mata
- School of PharmacyUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Biodiscovery InstituteUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Department of Chemical and Environmental EngineeringUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | | |
Collapse
|
7
|
Golo M, Newman PLH, Kempe D, Biro M. Mechanoimmunology in the solid tumor microenvironment. Biochem Soc Trans 2024; 52:1489-1502. [PMID: 38856041 DOI: 10.1042/bst20231427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The tumor microenvironment (TME) is a complex and dynamic ecosystem that adjoins the cancer cells within solid tumors and comprises distinct components such as extracellular matrix, stromal and immune cells, blood vessels, and an abundance of signaling molecules. In recent years, the mechanical properties of the TME have emerged as critical determinants of tumor progression and therapeutic response. Aberrant mechanical cues, including altered tissue architecture and stiffness, contribute to tumor progression, metastasis, and resistance to treatment. Moreover, burgeoning immunotherapies hold great promise for harnessing the immune system to target and eliminate solid malignancies; however, their success is hindered by the hostile mechanical landscape of the TME, which can impede immune cell infiltration, function, and persistence. Consequently, understanding TME mechanoimmunology - the interplay between mechanical forces and immune cell behavior - is essential for developing effective solid cancer therapies. Here, we review the role of TME mechanics in tumor immunology, focusing on recent therapeutic interventions aimed at modulating the mechanical properties of the TME to potentiate T cell immunotherapies, and innovative assays tailored to evaluate their clinical efficacy.
Collapse
Affiliation(s)
- Matteo Golo
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter L H Newman
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daryan Kempe
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Maté Biro
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Devarasou S, Kang M, Shin JH. Biophysical perspectives to understanding cancer-associated fibroblasts. APL Bioeng 2024; 8:021507. [PMID: 38855445 PMCID: PMC11161195 DOI: 10.1063/5.0199024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
The understanding of cancer has evolved significantly, with the tumor microenvironment (TME) now recognized as a critical factor influencing the onset and progression of the disease. This broader perspective challenges the traditional view that cancer is primarily caused by mutations, instead emphasizing the dynamic interaction between different cell types and physicochemical factors within the TME. Among these factors, cancer-associated fibroblasts (CAFs) command attention for their profound influence on tumor behavior and patient prognoses. Despite their recognized importance, the biophysical and mechanical interactions of CAFs within the TME remain elusive. This review examines the distinctive physical characteristics of CAFs, their morphological attributes, and mechanical interactions within the TME. We discuss the impact of mechanotransduction on CAF function and highlight how these cells communicate mechanically with neighboring cancer cells, thereby shaping the path of tumor development and progression. By concentrating on the biomechanical regulation of CAFs, this review aims to deepen our understanding of their role in the TME and to illuminate new biomechanical-based therapeutic strategies.
Collapse
Affiliation(s)
- Somayadineshraj Devarasou
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| | - Minwoo Kang
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| | - Jennifer H. Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, Korea
| |
Collapse
|
9
|
Wu D, Gong T, Sun Z, Yao X, Wang D, Chen Q, Guo Q, Li X, Guo Y, Lu Y. Dual-crosslinking gelatin-hyaluronic acid methacrylate based biomimetic PDAC desmoplastic niche enhances tumor-associated macrophages recruitment and M2-like polarization. Int J Biol Macromol 2024; 269:131826. [PMID: 38679256 DOI: 10.1016/j.ijbiomac.2024.131826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
The tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) is characterized by deposition of desmoplastic matrix (including collagen and hyaluronic acid). And the interactions between tumor-associated macrophages (TAMs) and tumor cells play a crucial role in progression of PDAC. Hence, the appropriate model of tumor cell-macrophage interaction within the unique PDAC TME is of significantly important. To this end, a 3D tumor niche based on dual-crosslinking gelatin methacrylate and hyaluronic acid methacrylate hydrogels was constructed to simulate the desmoplastic tumor matrix with matching compressive modulus and composition. The bionic 3D tumor niche creates an immunosuppressive microenvironment characterized by the downregulation of M1 markers and upregulation of M2 markers in TAMs. Mechanistically, RNA-seq analysis revealed that the PI3K-AKT signaling pathway might modulate the phenotypic balance and recruitment of macrophages through regulating SELE and VCAM-1. Furthermore, GO and GSEA revealed the biological process of leukocyte migration and the activation of cytokine-associated signaling were involved. Finally, the 3D tumor-macrophage niches with three different ratios were fabricated which displayed increased M2-like polarization and stemness. The utilization of the 3D tumor niche has the potential to provide a more accurate investigation of the interplay between PDAC tumor cells and macrophages within an in vivo setting.
Collapse
Affiliation(s)
- Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Tiancheng Gong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Zhongxiang Sun
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Xihao Yao
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Dongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Qiyang Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Qingsong Guo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China
| | - Xiaohong Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu province 226001, PR China.
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, PR China.
| |
Collapse
|
10
|
Sneider A, Liu Y, Starich B, Du W, Nair PR, Marar C, Faqih N, Ciotti GE, Kim JH, Krishnan S, Ibrahim S, Igboko M, Locke A, Lewis DM, Hong H, Karl MN, Vij R, Russo GC, Gómez-de-Mariscal E, Habibi M, Muñoz-Barrutia A, Gu L, Eisinger-Mathason TK, Wirtz D. Small Extracellular Vesicles Promote Stiffness-mediated Metastasis. CANCER RESEARCH COMMUNICATIONS 2024; 4:1240-1252. [PMID: 38630893 PMCID: PMC11080964 DOI: 10.1158/2767-9764.crc-23-0431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/13/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Tissue stiffness is a critical prognostic factor in breast cancer and is associated with metastatic progression. Here we show an alternative and complementary hypothesis of tumor progression whereby physiologic matrix stiffness affects the quantity and protein cargo of small extracellular vesicles (EV) produced by cancer cells, which in turn aid cancer cell dissemination. Primary patient breast tissue released by cancer cells on matrices that model human breast tumors (25 kPa; stiff EVs) feature increased adhesion molecule presentation (ITGα2β1, ITGα6β4, ITGα6β1, CD44) compared with EVs from softer normal tissue (0.5 kPa; soft EVs), which facilitates their binding to extracellular matrix proteins including collagen IV, and a 3-fold increase in homing ability to distant organs in mice. In a zebrafish xenograft model, stiff EVs aid cancer cell dissemination. Moreover, normal, resident lung fibroblasts treated with stiff and soft EVs change their gene expression profiles to adopt a cancer-associated fibroblast phenotype. These findings show that EV quantity, cargo, and function depend heavily on the mechanical properties of the extracellular microenvironment. SIGNIFICANCE Here we show that the quantity, cargo, and function of breast cancer-derived EVs vary with mechanical properties of the extracellular microenvironment.
Collapse
Affiliation(s)
- Alexandra Sneider
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Ying Liu
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Bartholomew Starich
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Wenxuan Du
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Praful R. Nair
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Carolyn Marar
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Najwa Faqih
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Gabrielle E. Ciotti
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Joo Ho Kim
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Sejal Krishnan
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Salma Ibrahim
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Muna Igboko
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Alexus Locke
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Daniel M. Lewis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Hanna Hong
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Michelle N. Karl
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Raghav Vij
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Gabriella C. Russo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Estibaliz Gómez-de-Mariscal
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, Leganés, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Mehran Habibi
- Johns Hopkins Breast Center, Johns Hopkins Bayview Medical Center, Baltimore, Maryland
| | - Arrate Muñoz-Barrutia
- Bioengineering and Aerospace Engineering Department, Universidad Carlos III de Madrid, Leganés, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luo Gu
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - T.S. Karin Eisinger-Mathason
- Abramson Family Cancer Research Institute, Department of Pathology and Laboratory Medicine, Penn Sarcoma Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences–Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Sneider A, Liu Y, Starich B, Du W, Marar C, Faqih N, Ciotti GE, Kim JH, Krishnan S, Ibrahim S, Igboko M, Locke A, Lewis DM, Hong H, Karl M, Vij R, Russo GC, Nair P, Gómez-de-Mariscal E, Habibi M, Muñoz-Barrutia A, Gu L, Eisinger-Mathason TSK, Wirtz D. Small extracellular vesicles promote stiffness-mediated metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.01.545937. [PMID: 37425743 PMCID: PMC10327142 DOI: 10.1101/2023.07.01.545937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Tissue stiffness is a critical prognostic factor in breast cancer and is associated with metastatic progression. Here we show an alternative and complementary hypothesis of tumor progression whereby physiological matrix stiffness affects the quantity and protein cargo of small EVs produced by cancer cells, which in turn drive their metastasis. Primary patient breast tissue produces significantly more EVs from stiff tumor tissue than soft tumor adjacent tissue. EVs released by cancer cells on matrices that model human breast tumors (25 kPa; stiff EVs) feature increased adhesion molecule presentation (ITGα 2 β 1 , ITGα 6 β 4 , ITGα 6 β 1 , CD44) compared to EVs from softer normal tissue (0.5 kPa; soft EVs), which facilitates their binding to extracellular matrix (ECM) protein collagen IV, and a 3-fold increase in homing ability to distant organs in mice. In a zebrafish xenograft model, stiff EVs aid cancer cell dissemination through enhanced chemotaxis. Moreover, normal, resident lung fibroblasts treated with stiff and soft EVs change their gene expression profiles to adopt a cancer associated fibroblast (CAF) phenotype. These findings show that EV quantity, cargo, and function depend heavily on the mechanical properties of the extracellular microenvironment.
Collapse
|
12
|
Shu J, Deng H, Zhang Y, Wu F, He J. Cancer cell response to extrinsic and intrinsic mechanical cue: opportunities for tumor apoptosis strategies. Regen Biomater 2024; 11:rbae016. [PMID: 38476678 PMCID: PMC10932484 DOI: 10.1093/rb/rbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024] Open
Abstract
Increasing studies have revealed the importance of mechanical cues in tumor progression, invasiveness and drug resistance. During malignant transformation, changes manifest in either the mechanical properties of the tissue or the cellular ability to sense and respond to mechanical signals. The major focus of the review is the subtle correlation between mechanical cues and apoptosis in tumor cells from a mechanobiology perspective. To begin, we focus on the intracellular force, examining the mechanical properties of the cell interior, and outlining the role that the cytoskeleton and intracellular organelle-mediated intracellular forces play in tumor cell apoptosis. This article also elucidates the mechanisms by which extracellular forces guide tumor cell mechanosensing, ultimately triggering the activation of the mechanotransduction pathway and impacting tumor cell apoptosis. Finally, a comprehensive examination of the present status of the design and development of anti-cancer materials targeting mechanotransduction is presented, emphasizing the underlying design principles. Furthermore, the article underscores the need to address several unresolved inquiries to enhance our comprehension of cancer therapeutics that target mechanotransduction.
Collapse
Affiliation(s)
- Jun Shu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Huan Deng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Yu Zhang
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| | - Jing He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
13
|
Coppola A, Grasso D, Fontana F, Piacentino F, Minici R, Laganà D, Ierardi AM, Carrafiello G, D’Angelo F, Carcano G, Venturini M. Innovative Experimental Ultrasound and US-Related Techniques Using the Murine Model in Pancreatic Ductal Adenocarcinoma: A Systematic Review. J Clin Med 2023; 12:7677. [PMID: 38137745 PMCID: PMC10743777 DOI: 10.3390/jcm12247677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer with one of the highest mortality rates in the world. Several studies have been conductedusing preclinical experiments in mice to find new therapeutic strategies. Experimental ultrasound, in expert hands, is a safe, multifaceted, and relatively not-expensive device that helps researchers in several ways. In this systematic review, we propose a summary of the applications of ultrasonography in a preclinical mouse model of PDAC. Eighty-eight studies met our inclusion criteria. The included studies could be divided into seven main topics: ultrasound in pancreatic cancer diagnosis and progression (n: 21); dynamic contrast-enhanced ultrasound (DCE-US) (n: 5); microbubble ultra-sound-mediated drug delivery; focused ultrasound (n: 23); sonodynamic therapy (SDT) (n: 7); harmonic motion elastography (HME) and shear wave elastography (SWE) (n: 6); ultrasound-guided procedures (n: 9). In six cases, the articles fit into two or more sections. In conclusion, ultrasound can be a really useful, eclectic, and ductile tool in different diagnostic areas, not only regarding diagnosis but also in therapy, pharmacological and interventional treatment, and follow-up. All these multiple possibilities of use certainly represent a good starting point for the effective and wide use of murine ultrasonography in the study and comprehensive evaluation of pancreatic cancer.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Dario Grasso
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Roberto Minici
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (R.M.)
| | - Domenico Laganà
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (R.M.)
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Maria Ierardi
- Radiology Unit, IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | - Fabio D’Angelo
- Department of Medicine and Surgery, Insubria University, 21100 Varese, Italy;
- Orthopedic Surgery Unit, ASST Sette Laghi, 21100 Varese, Italy
| | - Giulio Carcano
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
- Emergency and Transplant Surgery Department, ASST Sette Laghi, 21100 Varese, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| |
Collapse
|
14
|
Arango-Restrepo A, Rubi JM. Predicting cancer stages from tissue energy dissipation. Sci Rep 2023; 13:15894. [PMID: 37741864 PMCID: PMC10517974 DOI: 10.1038/s41598-023-42780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
Understanding cancer staging in order to predict its progression is vital to determine its severity and to plan the most appropriate therapies. This task has attracted interest from different fields of science and engineering. We propose a computational model that predicts the evolution of cancer in terms of the intimate structure of the tissue, considering that this is a self-organised structure that undergoes transformations governed by non-equilibrium thermodynamics laws. Based on experimental data on the dependence of tissue configurations on their elasticity and porosity, we relate the cancerous tissue stages with the energy dissipated, showing quantitatively that tissues in more advanced stages dissipate more energy. The knowledge of this energy allows us to know the probability of observing the tissue in its different stages and the probability of transition from one stage to another. We validate our results with experimental data and statistics from the World Health Organisation. Our quantitative approach provides insights into the evolution of cancer through its different stages, important as a starting point for new and integrative research to defeat cancer.
Collapse
Affiliation(s)
- A Arango-Restrepo
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, Barcelona, 08028, Spain.
| | - J M Rubi
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Avinguda Diagonal 647, Barcelona, 08028, Spain
- Institut de Nanociencia i Nanotecnologia, Universitat de Barcelona, Carrer Marti i Franques, Barcelona, 08028, Spain
| |
Collapse
|
15
|
Saharkhiz N, Kamimura HAS, Konofagou EE. The impact of amplitude modulation frequency in harmonic motion imaging on inclusion characterization. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1768-1779. [PMID: 37202245 PMCID: PMC10392769 DOI: 10.1016/j.ultrasmedbio.2023.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE Ultrasound elasticity imaging techniques aim to provide a non-invasive characterization of tissue mechanical properties to detect pathological changes and monitor disease progression. Harmonic motion imaging (HMI) is an ultrasound-based elasticity imaging technique that utilizes an oscillatory acoustic radiation force to induce localized displacements and estimate relative tissue stiffness. Previous studies have applied a low amplitude modulation (AM) frequency of 25 or 50 Hz in HMI to assess the mechanical properties of different tissue types. In this study, we investigate the dependence of AM frequency in HMI and whether the frequency can be adjusted based on the size and mechanical properties of the underlying medium for enhanced image contrast and inclusion detection. METHODS A tissue-mimicking phantom with embedded inclusions at different sizes and stiffnesses was imaged within a range of AM frequencies from 25 to 250 Hz at 25-Hz step size. DISCUSSION The AM frequency at which the maximum contrast and CNR are achieved depends on the size and stiffness of the inclusions. A general trend shows that contrast and CNR peak at higher frequencies for smaller inclusions. In addition, for some inclusions with the same size but different stiffnesses, the optimized AM frequency increases with the stiffness of the inclusion. Nevertheless, there is a shift between the frequencies at which the contrast peaks and those with maximum CNR. Finally, in agreement with the phantom findings, imaging an ex-vivo human specimen with a 2.7-cm breast tumor at a range of AM frequencies showed that the highest contrast and CNR are achieved at the AM frequency of 50 Hz. CONCLUSION These findings indicate that the AM frequency can be optimized in different applications of HMI, especially in the clinic, for improved detection and characterization of tumors with different geometries and mechanical properties.
Collapse
Affiliation(s)
- Niloufar Saharkhiz
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Hermes A S Kamimura
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA; Department of Radiology, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
16
|
Safaei S, Sajed R, Shariftabrizi A, Dorafshan S, Saeednejad Zanjani L, Dehghan Manshadi M, Madjd Z, Ghods R. Tumor matrix stiffness provides fertile soil for cancer stem cells. Cancer Cell Int 2023; 23:143. [PMID: 37468874 PMCID: PMC10357884 DOI: 10.1186/s12935-023-02992-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Matrix stiffness is a mechanical characteristic of the extracellular matrix (ECM) that increases from the tumor core to the tumor periphery in a gradient pattern in a variety of solid tumors and can promote proliferation, invasion, metastasis, drug resistance, and recurrence. Cancer stem cells (CSCs) are a rare subpopulation of tumor cells with self-renewal, asymmetric cell division, and differentiation capabilities. CSCs are thought to be responsible for metastasis, tumor recurrence, chemotherapy resistance, and consequently poor clinical outcomes. Evidence suggests that matrix stiffness can activate receptors and mechanosensor/mechanoregulator proteins such as integrin, FAK, and YAP, modulating the characteristics of tumor cells as well as CSCs through different molecular signaling pathways. A deeper understanding of the effect of matrix stiffness on CSCs characteristics could lead to development of innovative cancer therapies. In this review, we discuss how the stiffness of the ECM is sensed by the cells and how the cells respond to this environmental change as well as the effect of matrix stiffness on CSCs characteristics and also the key malignant processes such as proliferation and EMT. Then, we specifically focus on how increased matrix stiffness affects CSCs in breast, lung, liver, pancreatic, and colorectal cancers. We also discuss how the molecules responsible for increased matrix stiffness and the signaling pathways activated by the enhanced stiffness can be manipulated as a therapeutic strategy for cancer.
Collapse
Affiliation(s)
- Sadegh Safaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Roya Sajed
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Ahmad Shariftabrizi
- Division of Nuclear Medicine, Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Division of Nuclear Medicine, Department of Radiology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shima Dorafshan
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Department of Pathology and Genomic Medicine, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Masoumeh Dehghan Manshadi
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran
| | - Zahra Madjd
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| | - Roya Ghods
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Hemmat Street (Highway), Next to Milad Tower, Tehran, 14496-14530, Iran.
| |
Collapse
|
17
|
Tunable hybrid hydrogels with multicellular spheroids for modeling desmoplastic pancreatic cancer. Bioact Mater 2023; 25:360-373. [PMID: 36879666 PMCID: PMC9984297 DOI: 10.1016/j.bioactmat.2023.02.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
The tumor microenvironment consists of diverse, complex etiological factors. The matrix component of pancreatic ductal adenocarcinoma (PDAC) plays an important role not only in physical properties such as tissue rigidity but also in cancer progression and therapeutic responsiveness. Although significant efforts have been made to model desmoplastic PDAC, existing models could not fully recapitulate the etiology to mimic and understand the progression of PDAC. Here, two major components in desmoplastic pancreatic matrices, hyaluronic acid- and gelatin-based hydrogels, are engineered to provide matrices for tumor spheroids composed of PDAC and cancer-associated fibroblasts (CAF). Shape analysis profiles reveals that incorporating CAF contributes to a more compact tissue formation. Higher expression levels of markers associated with proliferation, epithelial to mesenchymal transition, mechanotransduction, and progression are observed for cancer-CAF spheroids cultured in hyper desmoplastic matrix-mimicking hydrogels, while the trend can be observed when those are cultured in desmoplastic matrix-mimicking hydrogels with the presence of transforming growth factor-β1 (TGF-β1). The proposed multicellular pancreatic tumor model, in combination with proper mechanical properties and TGF-β1 supplement, makes strides in developing advanced pancreatic models for resembling and monitoring the progression of pancreatic tumors, which could be potentially applicable for realizing personalized medicine and drug testing applications.
Collapse
|
18
|
Saharkhiz N, Kamimura HAS, Konofagou EE. An Efficient and Multi-Focal Focused Ultrasound Technique for Harmonic Motion Imaging. IEEE Trans Biomed Eng 2023; 70:1150-1161. [PMID: 36191094 PMCID: PMC10067540 DOI: 10.1109/tbme.2022.3211465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Harmonic motion imaging (HMI) is an ultrasound-based elasticity imaging technique that utilizes oscillatory acoustic radiation force to estimate the mechanical properties of tissues, as well as monitor high-intensity focused ultrasound (HIFU) treatment. Conventionally, in HMI, a focused ultrasound (FUS) transducer generates oscillatory tissue displacements, and an imaging transducer acquires channel data for displacement estimation, with each transducer being driven with a separate system. The fixed position of the FUS focal spot requires mechanical translation of the transducers, which can be a time-consuming and challenging procedure. In this study, we developed and characterized a new HMI system with a multi-element FUS transducer with the capability of electronic focal steering of ±5 mm and ±2 mm from the geometric focus in the axial and lateral directions, respectively. A pulse sequence was developed to drive both the FUS and imaging transducers using a single ultrasound data acquisition (DAQ) system. The setup was validated on a tissue-mimicking phantom with embedded inclusions. Integrating beam steering with the mechanical translation of the transducers resulted in a consistent high contrast-to-noise ratio (CNR) for the inclusions with Young's moduli of 22 and 44 kPa within a 5-kPa background while the data acquisition speed is increased by 4.5-5.2-fold compared to the case when only mechanical movements were applied. The feasibility of simultaneous generation of multiple foci and tracking the induced displacements is demonstrated in phantoms for applications where imaging or treatment of a larger region is needed. Moreover, preliminary feasibility is shown in a human subject with a breast tumor, where the mean HMI displacement within the tumor was about 4 times lower than that within perilesional tissues. The proposed HMI system facilitates data acquisition in terms of flexibility and speed and can be potentially used in the clinic for breast cancer imaging and treatment.
Collapse
|
19
|
Wishart G, Gupta P, Nisbet A, Velliou E, Schettino G. Enhanced effect of X-rays in the presence of a static magnetic field within a 3D pancreatic cancer model. Br J Radiol 2023; 96:20220832. [PMID: 36475863 PMCID: PMC9975369 DOI: 10.1259/bjr.20220832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To evaluate the impact of static magnetic field (SMF) presence on the radiation response of pancreatic cancer cells in polyurethane-based highly macro-porous scaffolds in hypoxic (1% O2) and normoxic (21% O2) conditions, towards understanding MR-guided radiotherapy, shedding light on the potential interaction phenomenon between SMF and radiation in a three-dimensional (3D) microenvironment. METHODS Pancreatic cancer cells (PANC-1, ASPC-1) were seeded into fibronectin-coated highly porous polyethene scaffolds for biomimicry and cultured for 4 weeks in in vitro normoxia (21% O2) followed by a 2-day exposure to either in vitro hypoxia (1% O2) or maintenance in in vitro normoxia (21% O2). The samples were then irradiated with 6 MV photons in the presence or absence of a 1.5 T field. Thereafter, in situ post-radiation monitoring (1 and 7 days post-irradiation treatment) took place via quantification of (i) live dead and (ii) apoptotic profiles. RESULTS We report: (i) pancreatic ductal adenocarcinoma hypoxia-associated radioprotection, in line with our previous findings, (ii) an enhanced effect of radiation in the presence of SMFin in vitro hypoxia (1% O2) for both short- (1 day) and long-term (7 days) post -radiation analysis and (iii) an enhanced effect of radiation in the presence of SMF in in vitro normoxia (21% O2) for long-term (7 days) post-radiation analysis within a 3D pancreatic cancer model. CONCLUSION With limited understanding of the potential interaction phenomenon between SMF and radiation, this 3D system allows combination evaluation for a cancer in which the role of radiotherapy is still evolving. ADVANCES IN KNOWLEDGE This study examined the use of a 3D model to investigate MR-guided radiotherapy in a hypoxic microenvironment, indicating that this could be a useful platform to further understanding of SMF influence on radiation.
Collapse
Affiliation(s)
| | | | - Andrew Nisbet
- Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK
| | | | | |
Collapse
|
20
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
21
|
Gregori A, Bergonzini C, Capula M, Mantini G, Khojasteh-Leylakoohi F, Comandatore A, Khalili-Tanha G, Khooei A, Morelli L, Avan A, Danen EH, Schmidt T, Giovannetti E. Prognostic Significance of Integrin Subunit Alpha 2 (ITGA2) and Role of Mechanical Cues in Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma (PDAC). Cancers (Basel) 2023; 15:628. [PMID: 36765586 PMCID: PMC9913151 DOI: 10.3390/cancers15030628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION PDAC is an extremely aggressive tumor with a poor prognosis and remarkable therapeutic resistance. The dense extracellular matrix (ECM) which characterizes PDAC progression is considered a fundamental determinant of chemoresistance, with major contributions from mechanical factors. This study combined biomechanical and pharmacological approaches to evaluate the role of the cell-adhesion molecule ITGA2, a key regulator of ECM, in PDAC resistance to gemcitabine. METHODS The prognostic value of ITGA2 was analysed in publicly available databases and tissue-microarrays of two cohorts of radically resected and metastatic patients treated with gemcitabine. PANC-1 and its gemcitabine-resistant clone (PANC-1R) were analysed by RNA-sequencing and label-free proteomics. The role of ITGA2 in migration, proliferation, and apoptosis was investigated using hydrogel-coated wells, siRNA-mediated knockdown and overexpression, while collagen-embedded spheroids assessed invasion and ECM remodeling. RESULTS High ITGA2 expression correlated with shorter progression-free and overall survival, supporting its impact on prognosis and the lack of efficacy of gemcitabine treatment. These findings were corroborated by transcriptomic and proteomic analyses showing that ITGA2 was upregulated in the PANC-1R clone. The aggressive behavior of these cells was significantly reduced by ITGA2 silencing both in vitro and in vivo, while PANC-1 cells growing under conditions resembling PDAC stiffness acquired resistance to gemcitabine, associated to increased ITGA2 expression. Collagen-embedded spheroids of PANC-1R showed a significant matrix remodeling and spreading potential via increased expression of CXCR4 and MMP2. Additionally, overexpression of ITGA2 in MiaPaCa-2 cells triggered gemcitabine resistance and increased proliferation, both in vitro and in vivo, associated to upregulation of phospho-AKT. CONCLUSIONS ITGA2 emerged as a new prognostic factor, highlighting the relevance of stroma mechanical properties as potential therapeutic targets to counteract gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
- Alessandro Gregori
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Cecilia Bergonzini
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Mjriam Capula
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, 56017 San Giuliano, Italy
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, 56017 San Giuliano, Italy
| | | | - Annalisa Comandatore
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Alireza Khooei
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Erik H. Danen
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, 56017 San Giuliano, Italy
| |
Collapse
|
22
|
Rojek K, Ćwiklińska M, Kuczak J, Guzowski J. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chem Rev 2022; 122:16839-16909. [PMID: 36108106 PMCID: PMC9706502 DOI: 10.1021/acs.chemrev.1c00798] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.
Collapse
Affiliation(s)
- Katarzyna
O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Ćwiklińska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Kuczak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
23
|
Parasaram V, Civale J, Bamber JC, Robinson SP, Jamin Y, Harris E. Preclinical Three-Dimensional Vibrational Shear Wave Elastography for Mapping of Tumour Biomechanical Properties In Vivo. Cancers (Basel) 2022; 14:4832. [PMID: 36230755 PMCID: PMC9564290 DOI: 10.3390/cancers14194832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Preclinical investigation of the biomechanical properties of tissues and their treatment-induced changes are essential to support drug-discovery, clinical translation of biomarkers of treatment response, and studies of mechanobiology. Here we describe the first use of preclinical 3D elastography to map the shear wave speed (cs), which is related to tissue stiffness, in vivo and demonstrate the ability of our novel 3D vibrational shear wave elastography (3D-VSWE) system to detect tumour response to a therapeutic challenge. We investigate the use of one or two vibrational sources at vibrational frequencies of 700, 1000 and 1200 Hz. The within-subject coefficients of variation of our system were found to be excellent for 700 and 1000 Hz and 5.4 and 6.2%, respectively. The relative change in cs measured with our 3D-VSWE upon treatment with an anti-vascular therapy ZD6126 in two tumour xenografts reflected changes in tumour necrosis. U-87 MG drug vs vehicle: Δcs = −24.7 ± 2.5 % vs 7.5 ± 7.1%, (p = 0.002) and MDA-MB-231 drug vs vehicle: Δcs = −12.3 ± 2.7 % vs 4.5 ± 4.7%, (p = 0.02). Our system enables rapid (<5 min were required for a scan length of 15 mm and three vibrational frequencies) 3D mapping of quantitative tumour viscoelastic properties in vivo, allowing exploration of regional heterogeneity within tumours and speedy recovery of animals from anaesthesia so that longitudinal studies (e.g., during tumour growth or following treatment) may be conducted frequently.
Collapse
Affiliation(s)
| | | | | | | | | | - Emma Harris
- Division of Radiotherapy and Imaging, Centre for Cancer Imaging, Institute of Cancer Research, London SM2 5NG, UK
| |
Collapse
|
24
|
Monteiro MV, Ferreira LP, Rocha M, Gaspar VM, Mano JF. Advances in bioengineering pancreatic tumor-stroma physiomimetic Biomodels. Biomaterials 2022; 287:121653. [PMID: 35803021 DOI: 10.1016/j.biomaterials.2022.121653] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 01/18/2023]
Abstract
Pancreatic cancer exhibits a unique bioarchitecture and desmoplastic cancer-stoma interplay that governs disease progression, multi-resistance, and metastasis. Emulating the biological features and microenvironment heterogeneity of pancreatic cancer stroma in vitro is remarkably complex, yet highly desirable for advancing the discovery of innovative therapeutics. Diverse bioengineering approaches exploiting patient-derived organoids, cancer-on-a-chip platforms, and 3D bioprinted living constructs have been rapidly emerging in an endeavor to seamlessly recapitulate major tumor-stroma biodynamic interactions in a preclinical setting. Gathering on this, herein we showcase and discuss the most recent advances in bio-assembling pancreatic tumor-stroma models that mimic key disease hallmarks and its desmoplastic biosignature. A reverse engineering perspective of pancreatic tumor-stroma key elementary units is also provided and complemented by a detailed description of biodesign guidelines that are to be considered for improving 3D models physiomimetic features. This overview provides valuable examples and starting guidelines for researchers envisioning to engineer and characterize stroma-rich biomimetic tumor models. All in all, leveraging advanced bioengineering tools for capturing stromal heterogeneity and dynamics, opens new avenues toward generating more predictive and patient-personalized organotypic 3D in vitro platforms for screening transformative therapeutics targeting the tumor-stroma interplay.
Collapse
Affiliation(s)
- Maria V Monteiro
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Luís P Ferreira
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marta Rocha
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
25
|
Xiao W, Pahlavanneshan M, Eun CY, Zhang X, DeKalb C, Mahgoub B, Knaneh-Monem H, Shah S, Sohrabi A, Seidlits SK, Hill R. Matrix stiffness mediates pancreatic cancer chemoresistance through induction of exosome hypersecretion in a cancer associated fibroblasts-tumor organoid biomimetic model. Matrix Biol Plus 2022; 14:100111. [PMID: 35619988 PMCID: PMC9126837 DOI: 10.1016/j.mbplus.2022.100111] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer organoid-stromal fibroblasts co-culture displayed significant chemoresistance in 3D culture system. Cancer associated fibroblasts in the physiologically relevant matrix system tended to be more phenotypically activated. Increased extracellular matrix stiffness induces hypersecretion of chemoresistance-promoting exosomes in a cancer associated fibroblasts-tumor organoid biomimetic model system.
In pancreatic ductal adenocarcinoma (PDAC), the abundant stromal cells which comprise the tumor microenvironment constitute more than 90% of the primary tumor bulk. Moreover, this desmoplastic environment has been found to be three times stiffer than normal pancreas tissue. Despite the importance of studying the desmoplastic environment of PDAC, there is still a lack of models designed to adequately recapitulate this complex stiff microenvironment, a critical hallmark of the disease that has been shown to induce chemoresistance. Here, we present a bio-mimetic, 3-dimensional co-culture system that integrates tumor organoids and host-matching stromal cancer associated-fibroblasts (CAFs) that recapitulates the complex, fibrotic matrix of PDAC using advanced biomaterials. With this model, we show that matrix-activated CAFs are able to “re-engineer” the fibrotic environment into a significantly stiffer environment through lysyl-oxidase dependent crosslinking. Moreover, we show that culture of CAFs in this model leads to an increase of exosomes; extracellular vesicles known to promote chemoresistance. Finally, using previously identified exosome inhibitors, climbazole and imipramine, we demonstrate how abrogation of exosome hypersecretion can reduce matrix stiffness-induced chemoresistance. These data highlight the importance of the development of new models that recapitulate not only the cellular composition found in PDAC tumors, but also the biophysical stresses, like stiffness, that the cells are exposed to in order to identify therapies that can overcome this critical feature which can contribute to the chemoresistance observed in patients. We believe that the 3D bio-mimetic model we have developed will be a valuable tool for the development, testing, and optimization of “mechano-medicines” designed to target the biophysical forces that lead to tumor growth and chemoresistance.
Collapse
Affiliation(s)
- Weikun Xiao
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Mahsa Pahlavanneshan
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007, United States
| | - Chae-Young Eun
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Xinyu Zhang
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Charlene DeKalb
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Bayan Mahgoub
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Hanaa Knaneh-Monem
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
| | - Sana Shah
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
- Health Promotion and Disease Prevention Studies, University of Southern California, Los Angeles, CA 90033, United States
| | - Alireza Sohrabi
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Stephanie K. Seidlits
- Department of Bioengineering, University of California, Los Angeles, CA 90095, United States
| | - Reginald Hill
- Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States
- Corresponding author at: Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA 90064, United States.
| |
Collapse
|
26
|
Hooshangnejad H, Han-Oh S, Shin EJ, Narang A, Rao AD, Lee J, McNutt T, Hu C, Wong J, Ding K. Demonstrating the benefits of corrective intraoperative feedback in improving the quality of duodenal hydrogel spacer placement. Med Phys 2022; 49:4794-4803. [PMID: 35394064 PMCID: PMC9540875 DOI: 10.1002/mp.15665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 12/21/2022] Open
Abstract
Purpose Pancreatic cancer is the fourth leading cause of cancer‐related death with a 10% 5‐year overall survival rate (OS). Radiation therapy (RT) in addition to dose escalation improves the outcome by significantly increasing the OS at 2 and 3 years but is hindered by the toxicity of the duodenum. Our group showed that the insertion of hydrogel spacer reduces duodenal toxicity, but the complex anatomy and the demanding procedure make the benefits highly uncertain. Here, we investigated the feasibility of augmenting the workflow with intraoperative feedback to reduce the adverse effects of the uncertainties. Materials and Methods We simulated three scenarios of the virtual spacer for four cadavers with two types of gross tumor volume (GTV) (small and large); first, the ideal injection; second, the nonideal injection that incorporates common spacer placement uncertainties; and third, the corrective injection that uses the simulation result from nonideal injection and is designed to compensate for the effect of uncertainties. We considered two common uncertainties: (1) “Narrowing” is defined as the injection of smaller spacer volume than planned. (2) “Missing part” is defined as failure to inject spacer in the ascending section of the duodenum. A total of 32 stereotactic body radiation therapy (SBRT) plans (33 Gy in 5 fractions) were designed, for four cadavers, two GTV sizes, and two types of uncertainties. The preinjection scenario for each case was compared with three scenarios of virtual spacer placement from the dosimetric and geometric points of view. Results We found that the overlapping PTV space with the duodenum is an informative quantity for determining the effective location of the spacer. The ideal spacer distribution reduced the duodenal V33Gy for small and large GTV to less than 0.3 and 0.1cc, from an average of 3.3cc, and 1.2cc for the preinjection scenario. However, spacer placement uncertainties reduced the efficacy of the spacer in sparing the duodenum (duodenal V33Gy: 1.3 and 0.4cc). The separation between duodenum and GTV decreased by an average of 5.3 and 4.6 mm. The corrective feedback can effectively bring back the expected benefits from the ideal location of the spacer (averaged V33Gy of 0.4 and 0.1cc). Conclusions An informative feedback metric was introduced and used to mitigate the effect of spacer placement uncertainties and maximize the benefits of the EUS‐guided procedure.
Collapse
Affiliation(s)
- Hamed Hooshangnejad
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Carnegie Center for Surgical Innovation, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sarah Han-Oh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Eun Ji Shin
- Department of Gastroenterology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Amol Narang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Avani Dholakia Rao
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Junghoon Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Carnegie Center for Surgical Innovation, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Todd McNutt
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Chen Hu
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Carnegie Center for Surgical Innovation, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
27
|
Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J Hematol Oncol 2022; 15:34. [PMID: 35331296 PMCID: PMC8943941 DOI: 10.1186/s13045-022-01252-0] [Citation(s) in RCA: 230] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer microenvironment is critical for tumorigenesis and cancer progression. The extracellular matrix (ECM) interacts with tumor and stromal cells to promote cancer cells proliferation, migration, invasion, angiogenesis and immune evasion. Both ECM itself and ECM stiffening-induced mechanical stimuli may activate cell membrane receptors and mechanosensors such as integrin, Piezo1 and TRPV4, thereby modulating the malignant phenotype of tumor and stromal cells. A better understanding of how ECM stiffness regulates tumor progression will contribute to the development of new therapeutics. The rapidly expanding evidence in this research area suggests that the regulators and effectors of ECM stiffness represent potential therapeutic targets for cancer. This review summarizes recent work on the regulation of ECM stiffness in cancer, the effects of ECM stiffness on tumor progression, cancer immunity and drug resistance. We also discuss the potential targets that may be druggable to intervene ECM stiffness and tumor progression. Based on these advances, future efforts can be made to develop more effective and safe drugs to interrupt ECM stiffness-induced oncogenic signaling, cancer progression and drug resistance.
Collapse
|
28
|
Arango-Restrepo A, Rubi JM, Kjelstrup S, Angelsen BAJ, Davies CDL. Enhancing carrier flux for efficient drug delivery in cancer tissues. Biophys J 2021; 120:5255-5266. [PMID: 34757075 DOI: 10.1016/j.bpj.2021.10.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/27/2021] [Accepted: 10/26/2021] [Indexed: 01/24/2023] Open
Abstract
Ultrasound focused toward tumors in the presence of circulating microbubbles improves the delivery of drug-loaded nanoparticles and therapeutic outcomes; however, the efficacy varies among the different properties and conditions of the tumors. Therefore, there is a need to optimize the ultrasound parameters and determine the properties of the tumor tissue important for the successful delivery of nanoparticles. Here, we propose a mesoscopic model considering the presence of entropic forces to explain the ultrasound-enhanced transport of nanoparticles across the capillary wall and through the interstitium of tumors. The nanoparticles move through channels of variable shape whose irregularities can be assimilated to barriers of entropic nature that the nanoparticles must overcome to reach their targets. The model assumes that focused ultrasound and circulating microbubbles cause the capillary wall to oscillate, thereby changing the width of transcapillary and interstitial channels. Our analysis provides values for the penetration distances of nanoparticles into the interstitium that are in agreement with experimental results. We found that the penetration increased significantly with increasing acoustic intensity as well as tissue elasticity, which means softer and more deformable tissue (Young modulus lower than 50 kPa), whereas porosity of the tissue and pulse repetition frequency of the ultrasound had less impact on the penetration length. We also considered that nanoparticles can be absorbed into cells and to extracellular matrix constituents, finding that the penetration length is increased when there is a low absorbance coefficient of the nanoparticles compared with their diffusion coefficient (close to 0.2). The model can be used to predict which tumor types, in terms of elasticity, will successfully deliver nanoparticles into the interstitium. It can also be used to predict the penetration distance into the interstitium of nanoparticles with various sizes and the ultrasound intensity needed for the efficient distribution of the nanoparticles.
Collapse
Affiliation(s)
- Andrés Arango-Restrepo
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia, Universitat de Barcelona, Barcelona, Spain.
| | - J Miguel Rubi
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain; Institut de Nanociencia i Nanotecnologia, Universitat de Barcelona, Barcelona, Spain; PoreLab, Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Signe Kjelstrup
- PoreLab, Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bjørn Atle J Angelsen
- PoreLab, Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
29
|
Wishart G, Gupta P, Nisbet A, Schettino G, Velliou E. On the Evaluation of a Novel Hypoxic 3D Pancreatic Cancer Model as a Tool for Radiotherapy Treatment Screening. Cancers (Basel) 2021; 13:6080. [PMID: 34885188 PMCID: PMC8657010 DOI: 10.3390/cancers13236080] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue engineering is evolving to mimic intricate ecosystems of tumour microenvironments (TME) to more readily map realistic in vivo niches of cancerous tissues. Such advanced cancer tissue models enable more accurate preclinical assessment of treatment strategies. Pancreatic cancer is a dangerous disease with high treatment resistance that is directly associated with a highly complex TME. More specifically, the pancreatic cancer TME includes (i) complex structure and complex extracellular matrix (ECM) protein composition; (ii) diverse cell populations (e.g., stellate cells), cancer associated fibroblasts, endothelial cells, which interact with the cancer cells and promote resistance to treatment and metastasis; (iii) accumulation of high amounts of (ECM), which leads to the creation of a fibrotic/desmoplastic reaction around the tumour; and (iv) heterogeneous environmental gradients such as hypoxia, which result from vessel collapse and stiffness increase in the fibrotic/desmoplastic area of the TME. These unique hallmarks are not effectively recapitulated in traditional preclinical research despite radiotherapeutic resistance being largely connected to them. Herein, we investigate, for the first time, the impact of in vitro hypoxia (5% O2) on the radiotherapy treatment response of pancreatic cancer cells (PANC-1) in a novel polymer (polyurethane) based highly macroporous scaffold that was surface modified with proteins (fibronectin) for ECM mimicry. More specifically, PANC-1 cells were seeded in fibronectin coated macroporous scaffolds and were cultured for four weeks in in vitro normoxia (21% O2), followed by a two day exposure to either in vitro hypoxia (5% O2) or maintenance in in vitro normoxia. Thereafter, in situ post-radiation monitoring (one day, three days, seven days post-irradiation) of the 3D cell cultures took place via quantification of (i) live/dead and apoptotic profiles and (ii) ECM (collagen-I) and HIF-1a secretion by the cancer cells. Our results showed increased post-radiation viability, reduced apoptosis, and increased collagen-I and HIF-1a secretion in in vitro hypoxia compared to normoxic cultures, revealing hypoxia-induced radioprotection. Overall, this study employed a low cost, animal free model enabling (i) the possibility of long-term in vitro hypoxic 3D cell culture for pancreatic cancer, and (ii) in vitro hypoxia associated PDAC radio-protection development. Our novel platform for radiation treatment screening can be used for long-term in vitro post-treatment observations as well as for fractionated radiotherapy treatment.
Collapse
Affiliation(s)
- Gabrielle Wishart
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; (G.W.); (P.G.)
- Department of Physics, University of Surrey, Guildford GU2 7XH, UK;
| | - Priyanka Gupta
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; (G.W.); (P.G.)
- Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London (UCL), London W1W 7TY, UK
| | - Andrew Nisbet
- Department of Medical Physics and Biomedical Engineering, University College London (UCL), London WC1E 6BT, UK;
| | - Giuseppe Schettino
- Department of Physics, University of Surrey, Guildford GU2 7XH, UK;
- National Physical Laboratory, Teddington TW11 0LW, UK
| | - Eirini Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK; (G.W.); (P.G.)
- Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science, University College London (UCL), London W1W 7TY, UK
| |
Collapse
|
30
|
Tayler IM, Stowers RS. Engineering hydrogels for personalized disease modeling and regenerative medicine. Acta Biomater 2021; 132:4-22. [PMID: 33882354 DOI: 10.1016/j.actbio.2021.04.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Technological innovations and advances in scientific understanding have created an environment where data can be collected, analyzed, and interpreted at scale, ushering in the era of personalized medicine. The ability to isolate cells from individual patients offers tremendous promise if those cells can be used to generate functional tissue replacements or used in disease modeling to determine optimal treatment strategies. Here, we review recent progress in the use of hydrogels to create artificial cellular microenvironments for personalized tissue engineering and regenerative medicine applications, as well as to develop personalized disease models. We highlight engineering strategies to control stem cell fate through hydrogel design, and the use of hydrogels in combination with organoids, advanced imaging methods, and novel bioprinting techniques to generate functional tissues. We also discuss the use of hydrogels to study molecular mechanisms underlying diseases and to create personalized in vitro disease models to complement existing pre-clinical models. Continued progress in the development of engineered hydrogels, in combination with other emerging technologies, will be essential to realize the immense potential of personalized medicine. STATEMENT OF SIGNIFICANCE: In this review, we cover recent advances in hydrogel engineering strategies with applications in personalized medicine. Specifically, we focus on material systems to expand or control differentiation of patient-derived stem cells, and hydrogels to reprogram somatic cells to pluripotent states. We then review applications of hydrogels in developing personalized engineered tissues. We also highlight the use of hydrogel systems as personalized disease models, focusing on specific examples in fibrosis and cancer, and more broadly on drug screening strategies using patient-derived cells and hydrogels. We believe this review will be a valuable contribution to the Special Issue and the readership of Acta Biomaterialia will appreciate the comprehensive overview of the utility of hydrogels in the developing field of personalized medicine.
Collapse
|
31
|
Ferrara B, Pignatelli C, Cossutta M, Citro A, Courty J, Piemonti L. The Extracellular Matrix in Pancreatic Cancer: Description of a Complex Network and Promising Therapeutic Options. Cancers (Basel) 2021; 13:cancers13174442. [PMID: 34503252 PMCID: PMC8430646 DOI: 10.3390/cancers13174442] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
The stroma is a relevant player in driving and supporting the progression of pancreatic ductal adenocarcinoma (PDAC), and a large body of evidence highlights its role in hindering the efficacy of current therapies. In fact, the dense extracellular matrix (ECM) characterizing this tumor acts as a natural physical barrier, impairing drug penetration. Consequently, all of the approaches combining stroma-targeting and anticancer therapy constitute an appealing option for improving drug penetration. Several strategies have been adopted in order to target the PDAC stroma, such as the depletion of ECM components and the targeting of cancer-associated fibroblasts (CAFs), which are responsible for the increased matrix deposition in cancer. Additionally, the leaky and collapsing blood vessels characterizing the tumor might be normalized, thus restoring blood perfusion and allowing drug penetration. Even though many stroma-targeting strategies have reported disappointing results in clinical trials, the ECM offers a wide range of potential therapeutic targets that are now being investigated. The dense ECM might be bypassed by implementing nanoparticle-based systems or by using mesenchymal stem cells as drug carriers. The present review aims to provide an overview of the principal mechanisms involved in the ECM remodeling and of new promising therapeutic strategies for PDAC.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Cataldo Pignatelli
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Mélissande Cossutta
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Antonio Citro
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - José Courty
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Lorenzo Piemonti
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
- Correspondence:
| |
Collapse
|
32
|
Pancreatic Ductal Adenocarcinoma: Relating Biomechanics and Prognosis. J Clin Med 2021; 10:jcm10122711. [PMID: 34205335 PMCID: PMC8234178 DOI: 10.3390/jcm10122711] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and carries a dismal prognosis. Resectable patients are treated predominantly with surgery while borderline resectable patients may receive neoadjuvant treatment (NAT) to downstage their disease prior to possible resection. PDAC tissue is stiffer than healthy pancreas, and tissue stiffness is associated with cancer progression. Another feature of PDAC is increased tissue heterogeneity. We postulate that tumour stiffness and heterogeneity may be used alongside currently employed diagnostics to better predict prognosis and response to treatment. In this review we summarise the biomechanical changes observed in PDAC, explore the factors behind these changes and describe the clinical consequences. We identify methods available for assessing PDAC biomechanics ex vivo and in vivo, outlining the relative merits of each. Finally, we discuss the potential use of radiological imaging for prognostic use.
Collapse
|
33
|
Bhuiyan A, Govindaiah A, Smith RT. An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging. J Ophthalmol 2021; 2021:6694784. [PMID: 34136281 PMCID: PMC8179760 DOI: 10.1155/2021/6694784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/11/2021] [Indexed: 10/26/2022] Open
Abstract
RESULTS The system achieved an accuracy of 89.67% (sensitivity, 83.33%; specificity, 93.89%; and AUC, 0.93). For external validation, the Retinal Fundus Image Database for Glaucoma Analysis dataset, which has 638 gradable quality images, was used. Here, the model achieved an accuracy of 83.54% (sensitivity, 80.11%; specificity, 84.96%; and AUC, 0.85). CONCLUSIONS Having demonstrated an accurate and fully automated glaucoma-suspect screening system that can be deployed on telemedicine platforms, we plan prospective trials to determine the feasibility of the system in primary-care settings.
Collapse
Affiliation(s)
- Alauddin Bhuiyan
- iHealthscreen Inc., New York, NY, USA
- New York Eye and Ear Infirmary, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - R. Theodore Smith
- New York Eye and Ear Infirmary, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
34
|
McGarry MDJ, Campo A, Payen T, Han Y, Konofagou EE. An analytical model of full-field displacement and strain induced by amplitude-modulated focused ultrasound in harmonic motion imaging. Phys Med Biol 2021; 66. [PMID: 33472178 DOI: 10.1088/1361-6560/abddd1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/20/2021] [Indexed: 11/12/2022]
Abstract
The majority of disease processes involves changes in the micro-structure of the affected tissue, which can translate to changes in the mechanical properties of the corresponding tissue. Harmonic motion imaging (HMI) is an elasticity imaging technique that allows the study of the mechanical parameters of tissue by detecting the tissue response by a harmonic motion field, which is generated by oscillatory acoustic radiation force (ARF). HMI has been demonstrated in tumor detection and characterization as well as monitoring of ablation procedures. In this study, an analytical HMI model is demonstrated and compared with a finite element model (FEM), allowing rapid and accurate computation of the displacement, strain, and shear wave velocity (SWV) at any location in a homogeneous linear elastic material. Average absolute differences between the analytical model and the FEM were respectively 1.2 % for the displacements and 0.5 % for the strains for 41940 force voxels at 0.22 seconds per displacement evaluation. A convergence study showed that the average difference could be further decreased to 1.0 % and 0.15 % for the displacements and strains, respectively, if force resolution is increased. SWV fields, as calculated with the FEM and the analytical model, have regional differences in velocities up to 0.57 m/s with an average absolute difference of 0.11±0.07 m/s, primarily due to imperfections in the non-reflecting FEM boundary conditions. The apparent SWV differed from the commonly used plane-wave approximation by up to 1.2 m/s due to near and intermediate field effects. Maximum displacement amplitudes for a model with an inclusion stabilize within 10 % of the homogeneous model at an inclusion radius of 10 mm while the maximum strain reacts faster, stabilizing at an inclusion radius of 3 mm. In conclusion, an analytical model for HMI stiffness estimation is presented in this paper. The analytical model has advantages over FEM as the full-field displacements do not need to be calculated to evaluate the model at a single measurement point. This advantage, together with the computational speed, makes the analytical model useful for real-time imaging applications. However, the analytical model was found to have restrictive assumptions on tissue homogeneity and infinite dimensions, while the FEM approaches were shown adaptable to variable geometry and non-homogeneous properties.
Collapse
Affiliation(s)
- Matthew D J McGarry
- Biomedical Engineering, Columbia University, New York, New York, 10027-6902, UNITED STATES
| | - Adriaan Campo
- Faculty of Science, Universiteit Antwerpen, Groenenborgerlaan 171, 2020 Antwerp, antwerpen, BELGIUM
| | - Thomas Payen
- Biomedical engineering, Columbia University, 630 w 168th street, New York, New York, 10032, UNITED STATES
| | - Yang Han
- Biomedical Engineering, Columbia Univerisity, 630 West 168th Street Physicians & Surgeons 19-418, New York, New York, 10032, UNITED STATES
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, MC 8904, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA, New York, New York, UNITED STATES
| |
Collapse
|
35
|
Kamimura HAS, Saharkhiz N, Lee SA, Konofagou EE. Synchronous temperature variation monitoring during ultrasound imaging and/or treatment pulse application: a phantom study. IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 1:1-10. [PMID: 34713274 PMCID: PMC8547607 DOI: 10.1109/ojuffc.2021.3085539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ultrasound attenuation through soft tissues can produce an acoustic radiation force (ARF) and heating. The ARF-induced displacements and temperature evaluations can reveal tissue properties and provide insights into focused ultrasound (FUS) bio-effects. In this study, we describe an interleaving pulse sequence tested in a tissue-mimicking phantom that alternates FUS and plane-wave imaging pulses at a 1 kHz frame rate. The FUS is amplitude modulated, enabling the simultaneous evaluation of tissue-mimicking phantom displacement using harmonic motion imaging (HMI) and temperature rise using thermal strain imaging (TSI). The parameters were varied with a spatial peak temporal average acoustic intensity (I spta ) ranging from 1.5 to 311 W.cm-2, mechanical index (MI) from 0.43 to 4.0, and total energy (E) from 0.24 to 83 J.cm-2. The HMI and TSI processing could estimate displacement and temperature independently for temperatures below 1.80°C and displacements up to ~117 μm (I spta <311 W.cm-2, MI<4.0, and E<83 J.cm-2) indicated by a steady-state tissue-mimicking phantom displacement throughout the sonication and a comparable temperature estimation with simulations in the absence of tissue-mimicking phantom motion. The TSI estimations presented a mean error of ±0.03°C versus thermocouple estimations with a mean error of ±0.24°C. The results presented herein indicate that HMI can operate at diagnostic-temperature levels (i.e., <1°C) even when exceeding diagnostic acoustic intensity levels (720 mW.cm-2 < I spta < 207 W.cm-2). In addition, the combined HMI and TSI can potentially be used for simultaneous evaluation of safety during tissue elasticity imaging as well as FUS mechanism involved in novel ultrasound applications such as ultrasound neuromodulation and tumor ablation.
Collapse
Affiliation(s)
- Hermes A S Kamimura
- Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA
| | - Niloufar Saharkhiz
- Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA
| | - Stephen A Lee
- Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY 10027 USA
| |
Collapse
|
36
|
Saharkhiz N, Ha R, Taback B, Li XJ, Weber R, Nabavizadeh A, Lee SA, Hibshoosh H, Gatti V, Kamimura HAS, Konofagou EE. Harmonic motion imaging of human breast masses: an in vivo clinical feasibility. Sci Rep 2020; 10:15254. [PMID: 32943648 PMCID: PMC7498461 DOI: 10.1038/s41598-020-71960-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Non-invasive diagnosis of breast cancer is still challenging due to the low specificity of the imaging modalities that calls for unnecessary biopsies. The diagnostic accuracy can be improved by assessing the breast tissue mechanical properties associated with pathological changes. Harmonic motion imaging (HMI) is an elasticity imaging technique that uses acoustic radiation force to evaluate the localized mechanical properties of the underlying tissue. Herein, we studied the in vivo feasibility of a clinical HMI system to differentiate breast tumors based on their relative HMI displacements, in human subjects. We performed HMI scans in 10 female subjects with breast masses: five benign and five malignant masses. Results revealed that both benign and malignant masses were stiffer than the surrounding tissues. However, malignant tumors underwent lower mean HMI displacement (1.1 ± 0.5 µm) compared to benign tumors (3.6 ± 1.5 µm) and the adjacent non-cancerous tissue (6.4 ± 2.5 µm), which allowed to differentiate between tumor types. Additionally, the excised breast specimens of the same patients (n = 5) were imaged post-surgically, where there was an excellent agreement between the in vivo and ex vivo findings, confirmed with histology. Higher displacement contrast between cancerous and non-cancerous tissue was found ex vivo, potentially due to the lower nonlinearity in the elastic properties of ex vivo tissue. This preliminary study lays the foundation for the potential complementary application of HMI in clinical practice in conjunction with the B-mode to classify suspicious breast masses.
Collapse
Affiliation(s)
- Niloufar Saharkhiz
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Richard Ha
- Department of Radiology, New-York-Presbyterian/Columbia University Medical Center, New York, NY, USA
| | - Bret Taback
- Department of Surgery, New-York-Presbyterian/Columbia University Medical Center, New York, NY, USA
| | - Xiaoyue Judy Li
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Rachel Weber
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Alireza Nabavizadeh
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Stephen A Lee
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, New-York-Presbyterian/Columbia University Medical Center, New York, NY, USA
| | - Vittorio Gatti
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Hermes A S Kamimura
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA. .,Department of Radiology, New-York-Presbyterian/Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|