1
|
Chandra A, Law SF, Pignolo RJ. Changing landscape of hematopoietic and mesenchymal cells and their interactions during aging and in age-related skeletal pathologies. Mech Ageing Dev 2025; 225:112059. [PMID: 40220914 DOI: 10.1016/j.mad.2025.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Aging profoundly impacts mesenchymal and hematopoietic lineage cells, including their progenitors-the skeletal stem cells (SSCs) and hematopoietic stem cells (HSCs), respectively. SSCs are crucial for skeletal development, homeostasis, and regeneration, maintaining bone integrity by differentiating into osteoblasts, adipocytes, and other lineages that contribute to the bone marrow (BM) microenvironment. Meanwhile, HSCs sustain hematopoiesis and immune function. With aging, SSCs and HSCs undergo significant functional decline, partly driven by cellular senescence-a hallmark of aging characterized by irreversible growth arrest, secretion of pro-inflammatory factors (senescence associated secretory phenotype, SASP), and impaired regenerative potential. In SSCs, senescence skews lineage commitment toward adipogenesis at the expense of osteogenesis, contributing to increased bone marrow adiposity (BMAd), reduced bone quality, and osteoporosis. Similarly, aged HSCs exhibit diminished self-renewal, biased differentiation, and heightened inflammation, compromising hematopoietic output and immune function. In this review, we examine the age-related cellular and molecular changes in SSCs and HSCs, their lineage decisions in the aging microenvironment, and the interplay between skeletal and hematopoietic compartments. We also discuss the role of senescence-driven alterations in BM homeostasis and how targeting cellular aging mechanisms may offer therapeutic strategies for mitigating age-related skeletal and hematopoietic decline.
Collapse
Affiliation(s)
- Abhishek Chandra
- Department of Physiology and Biomedical Engineering; Department of Medicine, Divisions of Hospital Internal Medicine and Section on Geriatric Medicine and Gerontology; Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA.
| | - Susan F Law
- Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert J Pignolo
- Department of Physiology and Biomedical Engineering; Department of Medicine, Divisions of Hospital Internal Medicine and Section on Geriatric Medicine and Gerontology; Robert and Arlene Kogod Aging Center, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Li L, Zhao C, Zhang R, Wei W, Liu B, Dong J, Gao X, Zhang D, Wang X, Lu M, Zhang Y, Yu Y, Yuan N, Xu Y, Wang J, Fang Y. Beclin 1 of megakaryocytic lineage cells is locally dispensable for platelet hemostasis but functions distally in bone homeostasis. Bone Res 2025; 13:32. [PMID: 40032858 PMCID: PMC11876339 DOI: 10.1038/s41413-025-00410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 01/15/2025] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
The crosstalk between megakaryocytic lineage cells and the skeletal system has just begun to be explored but remains largely elusive. Using conditional gene knockout mouse models, we demonstrated that loss of Beclin 1 (Becn1), a major regulator of mammalian autophagy, exclusively in the megakaryocytic lineage disrupted autophagy in platelets but did not compromise megakaryopoiesis or the formation and function of platelets. Unexpectedly, conditional Becn1 deletion in male mice led to a remarkable increase in bone mass with improved bone quality, in association with a decrease in sex hormone binding globulin (SHBG) and an increase in free testosterone (FT). In vivo Becn1 overexpression in megakaryocytic lineage-specific cells reduced bone mass and quality, along with an increase in SHBG and a decrease in FT. Transplantation of wild-type bone marrow cells into megakaryocytic lineage Becn1-deficient male mice restored bone mass and normalized SHBG and FT. Furthermore, bilateral orchiectomy of Becn1f/f;Pf4-iCre mice, which are crippled with the production of testosterone, resulted in a reduction in bone mass and quality, whereas in vivo overexpression of SHBG, specifically in the liver of Becn1f/f;Pf4-iCre mice, decreased FT and reduced bone mass and quality. In addition, metformin treatment, which induces SHBG expression, reduced FT and normalized bone mass in Becn1f/f;Pf4-iCre mice. We thus concluded that Becn1 of the megakaryocytic lineage is dispensable locally for platelet hemostasis but limits bone mass by increasing SHBG, which in turn reduces the FT of male mice. Our findings highlight a mechanism by which Becn1 from megakaryocytic lineage cells distally balances bone growth.
Collapse
Affiliation(s)
- Lei Li
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China
| | - Chen Zhao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruizhi Zhang
- Osteoporosis Institute, Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wen Wei
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China
| | - Bowen Liu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Dong
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueqin Gao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Di Zhang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueqing Wang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meilin Lu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yumu Zhang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yao Yu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Na Yuan
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China
| | - Youjia Xu
- Osteoporosis Institute, Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jianrong Wang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China.
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China.
| | - Yixuan Fang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, Suzhou Medical College, Soochow University, Suzhou, China.
- National Research Center for Hematological Diseases, State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Hematology, Institute of Blood and Marrow Transplantation, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- The Affiliated Ninth Suzhou Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Fan J, Xie Y, Liu D, Cui R, Zhang W, Shen M, Cao L. Crosstalk Between H-Type Vascular Endothelial Cells and Macrophages: A Potential Regulator of Bone Homeostasis. J Inflamm Res 2025; 18:2743-2765. [PMID: 40026304 PMCID: PMC11871946 DOI: 10.2147/jir.s502604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
The crosstalk between H-type endothelial cells (ECs) and macrophages is critical for maintaining angiogenesis and osteogenesis in bone homeostasis. As core components of type H vessels, ECs respond to various pro-angiogenic signals, forming specialized vascular structures characterized by high expression of platelet-endothelial cell adhesion molecule-1 (CD31) and endothelial mucin (EMCN), thereby facilitating angiogenesis-osteogenesis coupling during bone formation. Macrophages, as key immune cells in the perivascular region, are primarily classified into the classically activated pro-inflammatory M1 phenotype and the selectively activated anti-inflammatory M2 phenotype, thereby performing dual functions in regulating local tissue homeostasis and innate immunity. In recent years, the complex crosstalk between type H vessel ECs and macrophages has garnered significant interest in the context of bone-related diseases. Orderly regulation of angiogenesis and bone immunity provides a new direction for preventing bone metabolic disorders such as osteoporosis and osteoarthritis. However, their interactions in bone homeostasis remain insufficiently understood, with limited clinical data available. This review comprehensively examines the intricate interactions between type H vessel ECs and macrophages with diverse phenotypes, and Insights into the signaling pathways that regulate their crosstalk, focusing on their roles in angiogenesis and osteogenesis. Furthermore, the review discusses recent interventions targeting this crosstalk and the challenges that remain. These insights may offer new perspectives on bone homeostasis and provide a theoretical foundation for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiaxuan Fan
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Yaohui Xie
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Desun Liu
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Rui Cui
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Wei Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Mengying Shen
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| | - Linzhong Cao
- Clinical College of Traditional Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, People’s Republic of China
| |
Collapse
|
4
|
Jiang H. Prostate Cancer Bone Metastasis: Molecular Mechanisms of Tumor and Bone Microenvironment. Cancer Manag Res 2025; 17:219-237. [PMID: 39912095 PMCID: PMC11796448 DOI: 10.2147/cmar.s495169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Prostate cancer is prevalent among men aged 65 and older. Bone metastasis occurs in up to 90% of advanced prostate cancer patients, metastatic prostate cancer is generally considered a non-curative condition which can impact quality of life. The tumor microenvironment, comprising diverse cellular and non-cellular elements, interacts with prostate cancer cells to affect tumor growth and bone metastasis. Within the bone microenvironment, different cell types, including osteoblasts, osteoclasts, adipocytes, endothelial cells, hematopoietic stem cells, and immune cells, engage with tumor cells. Some cells alter tumor behavior, while others are impacted or overpowered by tumor cells, leading to different phases of tumor cell movement, dormancy, latency, resistance to treatment, and advancement to visible bone metastasis. This review summarizes recent research on the tumor microenvironment and bone microenvironment in prostate cancer bone metastasis, exploring underlying mechanisms and the potential value of targeting these environments for treatment.
Collapse
Affiliation(s)
- Hua Jiang
- Department of Urology, Fifth Affiliated Hospital of Zunyi Medical University (Zhuhai Sixth People’s Hospital), Zhuhai, People’s Republic of China
| |
Collapse
|
5
|
Yin Y, Tang Q, Yang J, Gui S, Zhang Y, Shen Y, Zhou X, Yu S, Chen G, Sun J, Han Z, Zhang L, Chen L. Endothelial BMAL1 decline during aging leads to bone loss by destabilizing extracellular fibrillin-1. J Clin Invest 2024; 134:e176660. [PMID: 39680455 DOI: 10.1172/jci176660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/15/2024] [Indexed: 12/18/2024] Open
Abstract
The occurrence of aging is intricately associated with alterations in circadian rhythms that coincide with stem cell exhaustion. Nonetheless, the extent to which the circadian system governs skeletal aging remains inadequately understood. Here, we noticed that skeletal aging in male mice was accompanied by a decline in a core circadian protein, BMAL1, especially in bone marrow endothelial cells (ECs). Using male mice with endothelial KO of aryl hydrocarbon receptor nuclear translocator-like protein 1 (Bmal1), we ascertained that endothelial BMAL1 in bone played a crucial role in ensuring the stability of an extracellular structural component, fibrillin-1 (FBN1), through regulation of the equilibrium between the extracellular matrix (ECM) proteases thrombospondin type 1 domain-containing protein 4 (THSD4) and metalloproteinase with thrombospondin motifs 4 (ADAMTS4), which promote FBN1 assembly and breakdown, respectively. The decline of endothelial BMAL1 during aging prompted excessive breakdown of FBN1, leading to persistent activation of TGF-β/SMAD3 signaling and exhaustion of bone marrow mesenchymal stem cells. Meanwhile, the free TGF-β could promote osteoclast formation. Further analysis revealed that activation of ADAMTS4 in ECs lacking BMAL1 was stimulated by TGF-β/SMAD3 signaling through an ECM-positive feedback mechanism, whereas THSD4 was under direct transcriptional control by endothelial BMAL1. Our investigation has elucidated the etiology of bone aging in male mice by defining the role of ECs in upholding the equilibrium within the ECM, consequently coordinating osteogenic and osteoclastic activities and retarding skeletal aging.
Collapse
Affiliation(s)
- Ying Yin
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jingxi Yang
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shiqi Gui
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yifan Zhang
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yufeng Shen
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xin Zhou
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Shaoling Yu
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Zhenshuo Han
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital and
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
6
|
Zhao K, Zhu GZ, Li HZ, Gao JW, Tu C, Wu DZ, Huang YS, Han D, Chen XY, Wu LY, Zhong ZM. Accumulation of Advanced Oxidation Protein Products Promotes Age-Related Decline of Type H Vessels in Bone. J Gerontol A Biol Sci Med Sci 2024; 80:glae271. [PMID: 39506899 DOI: 10.1093/gerona/glae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Indexed: 11/08/2024] Open
Abstract
Type H vessels have been proven to couple angiogenesis and osteogenesis. The decline of type H vessels contributes to bone loss in the aging process. Aging is accompanied by the accumulation of advanced oxidation protein products (AOPPs). However, whether AOPP accumulation is involved in age-related decline of type H vessels is unclear. Here, we show that the increase of AOPP levels in plasma and bone was correlated with the decline of type H vessels and loss of bone mass in old mice. Exposure of microvascular endothelial cells to AOPPs significantly inhibited cell proliferation, migration, and tube formation; increased NADPH oxidase activity and excessive reactive oxygen species generation; upregulated the expression of vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1; and eventually impaired angiogenesis, which was alleviated by redox modulator N-acetylcysteine and NADPH oxidase inhibitor apocynin. Furthermore, reduced AOPP accumulation by NAC treatment was able to alleviate significantly the decline of type H vessels, bone mass loss, and deterioration of bone microstructure in old mice. Collectively, these findings suggest that AOPPs accumulation contributes to the decline of type H vessels in the aging process, and illuminate a novel potential mechanism underlying age-related bone loss.
Collapse
Affiliation(s)
- Kai Zhao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, People's Republic of China
| | - Guo-Zheng Zhu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hong-Zhou Li
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jia-Wen Gao
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Chen Tu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Di-Zheng Wu
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yu-Sheng Huang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Dong Han
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xing-Yu Chen
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Long-Yan Wu
- Department of Ultrasound Medicine, Ganzhou People's Hospital, Ganzhou, People's Republic of China
| | - Zhao-Ming Zhong
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Huang Z, Iqbal Z, Zhao Z, Liu J, Alabsi AM, Shabbir M, Mahmood A, Liang Y, Li W, Deng Z. Cellular crosstalk in the bone marrow niche. J Transl Med 2024; 22:1096. [PMID: 39627858 PMCID: PMC11613879 DOI: 10.1186/s12967-024-05900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/19/2024] [Indexed: 12/08/2024] Open
Abstract
The bone marrow niche is a special microenvironment that comprises elements, including hematopoietic stem cells, osteoblasts, and endothelial cells, and helps maintain their characteristic functions. Here, we elaborate on the crosstalk between various cellular components, hematopoietic stem cells, and other cells in the bone marrow niche. We further explain the mechanism of preserving equilibrium in the bone marrow niche, which is crucial for the directional regulation of bone reconstruction and repair. Additionally, we elucidate the intercommunication among osteocytes, the regulation of osteoblast maturation and activation by lymphocytes, the deficiency of megakaryocytes that can markedly impair osteoblast formation, and the mechanism of interaction between macrophages and mesenchymal stem cells in the bone marrow niche. Finally, we discussed the new immunotherapies for bone tumors in the BM niche. In this review, we aimed to provide a candid overview of the crosstalk among bone marrow niche cells and to highlight new concepts underlying the unknown mechanisms of hematopoiesis and bone reconstruction. Thus, this review may provide a more comprehensive understanding of the role of these niche cells in improving hematopoietic function and help identify their therapeutic potential for different diseases in the future.
Collapse
Affiliation(s)
- Zeqi Huang
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zoya Iqbal
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Zhe Zhao
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - Jianquan Liu
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China
| | - A M Alabsi
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia
- School of Dentistry, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 ShahAlam, Selangor, Malaysia
| | - Maryam Shabbir
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Ayesha Mahmood
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Yujie Liang
- Faculty of Dentistry, MAHSA University, Selangor, Malaysia.
- Department of Child and Adolescent Psychiatry, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, 518020, China.
| | - Wencui Li
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| | - Zhiqin Deng
- Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
| |
Collapse
|
8
|
Nazzal MK, Battina HL, Tewari NP, Mostardo SL, Nagaraj RU, Zhou D, Awosanya OD, Majety SK, Samson S, Blosser RJ, Dadwal UC, Mulcrone PL, Kacena MA. The effects of young and aged, male and female megakaryocyte conditioned media on angiogenic properties of endothelial cells. Aging (Albany NY) 2024; 16:13181-13200. [PMID: 39578050 PMCID: PMC11719103 DOI: 10.18632/aging.206077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 07/11/2024] [Indexed: 11/24/2024]
Abstract
With aging, the risk of fractures and compromised healing increases. Angiogenesis plays a significant role in bone healing and is impaired with aging. We have previously shown the impact of megakaryocytes (MKs) in regulating bone healing. Notably, MKs produce factors known to promote angiogenesis. We examined the effects of conditioned media (CM) generated from MKs derived from young (3-4-month-old) and aged (22-24-month-old), male and female C57BL/6J mice on bone marrow endothelial cell (BMEC) growth and function. Female MK CM, regardless of age, caused a >65% increase in BMEC proliferation and improved vessel formation by >115%. Likewise, young male MK CM increased vessel formation by 160%. Although aged male MK CM resulted in >150% increases in the formation of vascular nodes and meshes, 62% fewer vessels formed compared to young male MK CM treatment. Aged female MK CM improved migration by over 2500%. However, aged female and male MK CM caused less wound closure. MK CM treatments also significantly altered the expression of several genes including PDGFRβ, CXCR4, and CD36 relative to controls and between ages. Further testing of mechanisms responsible for age-associated differences may allow for novel strategies to improve MK-mediated angiogenesis and bone healing, particularly within the aging population.
Collapse
Affiliation(s)
- Murad K. Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hanisha L. Battina
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Nikhil P. Tewari
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah L. Mostardo
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Rohit U. Nagaraj
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Donghui Zhou
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Olatundun D. Awosanya
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Saveda K. Majety
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sue Samson
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rachel J. Blosser
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Ushashi C. Dadwal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Patrick L. Mulcrone
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush Veterans' Administration Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Chang L, Luo Y, Li W, Liu F, Guo J, Dai B, Tong W, Qin L, Wang J, Xu J. A comparative study on the effects of biodegradable high-purity magnesium screw and polymer screw for fixation in epiphyseal trabecular bone. Regen Biomater 2024; 11:rbae095. [PMID: 39346687 PMCID: PMC11427752 DOI: 10.1093/rb/rbae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 10/01/2024] Open
Abstract
With mechanical strength close to cortical bone, biodegradable and osteopromotive properties, magnesium (Mg)-based implants are promising biomaterials for orthopedic applications. However, during the degradation of such implants, there are still concerns on the potential adverse effects such as formation of cavities, osteolytic phenomena and chronic inflammation. Therefore, to transform Mg-based implants into clinical practice, the present study evaluated the local effects of high-purity Mg screws (HP-Mg, 99.99 wt%) by comparing with clinically approved polylactic acid (PLA) screws in epiphyseal trabecular bone of rabbits. After implantation of screws at the rabbit distal femur, bone microstructural, histomorphometric and biomechanical properties were measured at various time points (weeks 4, 8 and 16) using micro-CT, histology and histomorphometry, micro-indentation and scanning electron microscope. HP-Mg screws promoted peri-implant bone ingrowth with higher bone mass (BV/TV at week 4: 0.189 ± 0.022 in PLA group versus 0.313 ± 0.053 in Mg group), higher biomechanical properties (hardness at week 4: 35.045 ± 1.000 HV in PLA group versus 51.975 ± 2.565 HV in Mg group), more mature osteocyte LCN architecture, accelerated bone remodeling process and alleviated immunoreactive score (IRS of Ram11 at week 4: 5.8 ± 0.712 in PLA group versus 3.75 ± 0.866 in Mg group) as compared to PLA screws. Furthermore, we conducted finite element analysis to validate the superiority of HP-Mg screws as orthopedic implants by demonstrating reduced stress concentration and uniform stress distribution around the bone tunnel, which led to lower risks of trabecular microfractures. In conclusion, HP-Mg screws demonstrated greater osteogenic bioactivity and limited inflammatory response compared to PLA screws in the epiphyseal trabecular bone of rabbits. Our findings have paved a promising way for the clinical application of Mg-based implants.
Collapse
Affiliation(s)
- Liang Chang
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Ying Luo
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510000, China
| | - Weirong Li
- Dongguan Eontec Co., Ltd, Dongguan, Guangdong, 510730, China
| | - Fangfei Liu
- Dongguan Eontec Co., Ltd, Dongguan, Guangdong, 510730, China
| | - Jiaxin Guo
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Bingyang Dai
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, 510000, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
10
|
Liu J, Zhou Z, Hou M, Xia X, Liu Y, Zhao Z, Wu Y, Deng Y, Zhang Y, He F, Xu Y, Zhu X. Capturing cerium ions via hydrogel microspheres promotes vascularization for bone regeneration. Mater Today Bio 2024; 25:100956. [PMID: 38322657 PMCID: PMC10844749 DOI: 10.1016/j.mtbio.2024.100956] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/27/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
The rational design of multifunctional biomaterials with hierarchical porous structure and on-demand biological activity is of great consequence for bone tissue engineering (BTE) in the contemporary world. The advanced combination of trace element cerium ions (Ce3+) with bone repair materials makes the composite material capable of promoting angiogenesis and enhancing osteoblast activity. Herein, a living and phosphorylated injectable porous hydrogel microsphere (P-GelMA-Ce@BMSCs) is constructed by microfluidic technology and coordination reaction with metal ion ligands while loaded with exogenous BMSCs. Exogenous stem cells can adhere to and proliferate on hydrogel microspheres, thus promoting cell-extracellular matrix (ECM) and cell-cell interactions. The active ingredient Ce3+ promotes the proliferation, osteogenic differentiation of rat BMSCs, and angiogenesis of endotheliocytes by promoting mineral deposition, osteogenic gene expression, and VEGF secretion. The enhancement of osteogenesis and improvement of angiogenesis of the P-GelMA-Ce scaffold is mainly associated with the activation of the Wnt/β-catenin pathway. This study could provide novel and meaningful insights for treating bone defects with biofunctional materials on the basis of metal ions.
Collapse
Affiliation(s)
- Junlin Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Zhangzhe Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Mingzhuang Hou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Xiaowei Xia
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Zhijian Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yubin Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yaoge Deng
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yijian Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Xuesong Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China
- Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| |
Collapse
|
11
|
Kim OV, Litvinov RI, Gagne AL, French DL, Brass LF, Weisel JW. Megakaryocyte-induced contraction of plasma clots: cellular mechanisms and structural mechanobiology. Blood 2024; 143:548-560. [PMID: 37944157 PMCID: PMC11033616 DOI: 10.1182/blood.2023021545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
ABSTRACT Nonmuscle cell contractility is an essential feature underlying diverse cellular processes such as motility, morphogenesis, division and genome replication, intracellular transport, and secretion. Blood clot contraction is a well-studied process driven by contracting platelets. Megakaryocytes (MKs), which are the precursors to platelets, can be found in bone marrow and lungs. Although they express many of the same proteins and structures found in platelets, little is known about their ability to engage with extracellular proteins such as fibrin and contract. Here, we have measured the ability of MKs to compress plasma clots. Megakaryocytes derived from human induced pluripotent stem cells (iPSCs) were suspended in human platelet-free blood plasma and stimulated with thrombin. Using real-time macroscale optical tracking, confocal microscopy, and biomechanical measurements, we found that activated iPSC-derived MKs (iMKs) caused macroscopic volumetric clot shrinkage, as well as densification and stiffening of the fibrin network via fibrin-attached plasma membrane protrusions undergoing extension-retraction cycles that cause shortening and bending of fibrin fibers. Contraction induced by iMKs involved 2 kinetic phases with distinct rates and durations. It was suppressed by inhibitors of nonmuscle myosin IIA, actin polymerization, and integrin αIIbβ3-fibrin interactions, indicating that the molecular mechanisms of iMK contractility were similar or identical to those in activated platelets. Our findings provide new insights into MK biomechanics and suggest that iMKs can be used as a model system to study platelet contractility. Physiologically, the ability of MKs to contract plasma clots may play a role in the mechanical remodeling of intravascular blood clots and thrombi.
Collapse
Affiliation(s)
- Oleg V. Kim
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA
| | - Rustem I. Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alyssa L. Gagne
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Deborah L. French
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lawrence F. Brass
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
12
|
Wang K, Wu Z, Gong C, Zhao G, Zhang H. TGF-β1 Inhibits Osteoclast Differentiation and Abnormal Angiogenesis in Intervertebral Disc Degeneration: Evidence from RNA Sequencing and Animal Studies. Orthop Surg 2024; 16:167-182. [PMID: 38014468 PMCID: PMC10782258 DOI: 10.1111/os.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVE Mechanisms involved in developing intervertebral disc degeneration (IDD) are poorly understood, thus making developing effective therapies difficult. This study aimed to suggest a possible molecular mechanism, based on transcriptome sequencing-identified transforming growth factor (TGF-β), underlying the effects on bone homeostasis in IDD. METHODS A mouse model for IDD was established. Transcriptome sequencing of nucleus pulposus tissue from mice (n = 3) identified differentially expressed mRNAs and key genes impacting bone homeostasis. A protein-protein interaction network pinpointed core genes. GO and KEGG analysis revealed gene functions. Expression levels of TGF-β1, tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CTSK) were measured. Micro-CT evaluated vertebral structures and vascular imaging. Western Blot measured expression levels of Vegf, Opn, MMP3, and MMP13. Safranin O-Fast Green and TRAP staining were performed on intervertebral discs and endplates. RESULTS Transcriptomic analysis found 1790 differentially expressed mRNAs in IDD mice. Twenty-eight genes related to bone homeostasis in IDD were identified. TGF-β1 was confirmed as the core gene. GO and KEGG showed TGF-β1 regulates osteoclast markers like CTSK and TRAP through pathways including NF-κB and MAPK. Experimental validation revealed lower TGF-β1 expression in IDD mice than controls, and increased TRAP and CTSK expression. Micro-CT showed decreased bone mass and intervertebral disc space in IDD mice. Vascular imaging showed increased vascular volume in IDD cartilaginous endplates. Western blot displayed increased VEGF and OPN levels, but decreased MMP3 and MMP13 in IDD mice. Safranin O-fast green staining revealed severe IDD degeneration. However, TGF-β1 injection improved bone parameters in IDD mice. In vitro experiments confirmed TGF-β1 inhibits bone marrow macrophages differentiation into osteoclasts. CONCLUSION From our data, we conclude that TGF-β1 repressed osteoclast differentiation and aberrant bone-associated angiogenesis in cartilage endplates (EPs) to alleviate IDD, which may be instrumental for the therapeutic targeting of IDD.
Collapse
Affiliation(s)
- Keping Wang
- Department of OrthopedicsSecond Hospital of Lanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhouChina
- Lanzhou UniversityLanzhouChina
| | - Zuolong Wu
- Department of OrthopedicsSecond Hospital of Lanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhouChina
- Lanzhou UniversityLanzhouChina
| | - Chaoyang Gong
- Department of OrthopedicsSecond Hospital of Lanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhouChina
- Lanzhou UniversityLanzhouChina
| | - Guanghai Zhao
- Department of OrthopedicsSecond Hospital of Lanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhouChina
- Lanzhou UniversityLanzhouChina
| | - Haihong Zhang
- Department of OrthopedicsSecond Hospital of Lanzhou UniversityLanzhouChina
- Key Laboratory of Orthopedics Disease of Gansu ProvinceLanzhouChina
- Lanzhou UniversityLanzhouChina
| |
Collapse
|
13
|
Deymeh SM, Hashemi-Najafabadi S, Baghaban-Eslaminejad M, Bagheri F. Investigation of osteogenesis and angiogenesis in perfusion bioreactors using improved multi-layer PCL-nHA-nZnO electrospun scaffolds. Biotechnol Lett 2023; 45:1223-1243. [PMID: 37439932 DOI: 10.1007/s10529-023-03411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/07/2023] [Accepted: 06/23/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE Bone tissue engineering aims to create a three-dimensional, matured, angiogenic scaffold with a suitable thickness that resembles a natural bone matrix. On the other hand, electrospun fibers, which researchers have considered due to their good biomimetic properties, are considered 2D structures. Due to the highly interwoven network and small pore size, achieving the desired thickness for bone lesions has always been challenging. In bone tissue engineering, bioreactors are crucial for achieving initial tissue maturity and introducing certain signals as flow parameters for differentiation. METHODS In the present study, Human bone marrow mesenchymal stem cells (hBMSCs) and human umbilical vein endothelial cells (HUVECs) were co-cultured in a perfusion bioreactor on treated (improved pore size by gelatin sacrification and subsequent ultrasonication) 5-layer polycaprolactone-nano hydroxyapatite-nano zinc oxide (T-PHZ) scaffolds to investigate osteogenesis and angiogenesis simultaneously. The flow parameters and stresses on the cells were studied using two patterns of parallel and vertical scaffolds relative to the flow of the culture medium. In dynamic vertical flow (DVF), the culture medium flows perpendicular to the scaffolds, and in dynamic parallel flow (DPF), the culture medium flows parallel to the scaffolds. In all evaluations, static samples (S) served as the control group. RESULTS Live/dead, and MTT assays demonstrated the biocompatibility of the 5-layer scaffolds and the suitability of the bioreactor's functional conditions. ALP activity, EDAX analysis, and calcium content measurements exhibited greater osteogenesis for T-PHZ scaffolds in DVF conditions. Calcium content increased by a factor of 2.2, 1.8, and 1.6 during days 7 to 14 of culture under DVF, DPF and S conditions, respectively. After 21 days of co-culturing, an immunohistochemistry (IHC) test was performed to investigate angiogenesis and osteogenesis. Five antibodies were investigated in DVF, CD31, VEGFA, and VEGFR2 for angiogenesis, osteocalcin, and RUNX2 for osteogenesis. Compressive stress applied in DVF mode has increased osteogenic activity compared to DPF. CONCLUSION The results indicated the development of ideal systems for osteogenesis and angiogenesis on the treated multilayer electrospun scaffolds in the perfusion bioreactor.
Collapse
Affiliation(s)
- Saeed Moghadam Deymeh
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sameereh Hashemi-Najafabadi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mohamadreza Baghaban-Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Cai G, Lu Y, Zhong W, Wang T, Li Y, Ruan X, Chen H, Sun L, Guan Z, Li G, Zhang H, Sun W, Chen M, Zhang W, Wang H. Piezo1-mediated M2 macrophage mechanotransduction enhances bone formation through secretion and activation of transforming growth factor-β1. Cell Prolif 2023; 56:e13440. [PMID: 36880296 PMCID: PMC10472522 DOI: 10.1111/cpr.13440] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023] Open
Abstract
Macrophages are multifunctional immune system cells that are essential for the mechanical stimulation-induced control of metabolism. Piezo1 is a non-selective calcium channel expressed in multifarious tissues to convey mechanical signals. Here, a cellular model of tension was used to study the effect of mechanical stretch on the phenotypic transformation of macrophages and its mechanism. An indirect co-culture system was used to explore the effect of macrophage activation on bone marrow mesenchymal stem cells (BMSCs), and a treadmill running model was used to validate the mechanism in vivo for in vitro studies. p53 was acetylated and deacetylated by macrophages as a result of mechanical strain being detected by Piezo1. This process is able to polarize macrophages towards M2 and secretes transforming growth factor-beta (TGF-β1), which subsequently stimulates BMSCs migration, proliferation and osteogenic differentiation. Knockdown of Piezo1 inhibits the conversion of macrophages to the reparative phenotype, thereby affecting bone remodelling. Blockade of TGF-β I, II receptors and Piezo1 significantly reduced exercise-increased bone mass in mice. In conclusion, we showed that mechanical tension causes calcium influx, p53 deacetylation, macrophage polarization towards M2 and TGF-β1 release through Piezo1. These events support BMSC osteogenesis.
Collapse
Affiliation(s)
- Guanhui Cai
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Yahui Lu
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingChina
| | - Weijie Zhong
- Department of StomatologyDushu Lake Hospital Affiliated to Soochow UniversitySoochowChina
- Department of StomatologyMedical Center of Soochow UniversitySoochowChina
| | - Ting Wang
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Yingyi Li
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Xiaolei Ruan
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Hongyu Chen
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Lian Sun
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhaolan Guan
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Gen Li
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Hengwei Zhang
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- Department of Pathology and Laboratory MedicineUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Wen Sun
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
| | - Minglong Chen
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Wei‐Bing Zhang
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- Department of StomatologyDushu Lake Hospital Affiliated to Soochow UniversitySoochowChina
- Department of StomatologyMedical Center of Soochow UniversitySoochowChina
| | - Hua Wang
- Department of OrthodonticsThe Affiliated Stomatological Hospital of Nanjing Medical UniversityNanjingChina
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingChina
- Department of OrthodonticsJiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingChina
| |
Collapse
|
15
|
Liu XL, Zhang CJ, Shi JJ, Ke QF, Ge YW, Zhu ZA, Guo YP. Nacre-mimetic cerium-doped nano-hydroxyapatite/chitosan layered composite scaffolds regulate bone regeneration via OPG/RANKL signaling pathway. J Nanobiotechnology 2023; 21:259. [PMID: 37550715 PMCID: PMC10408205 DOI: 10.1186/s12951-023-01988-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/07/2023] [Indexed: 08/09/2023] Open
Abstract
Autogenous bone grafting has long been considered the gold standard for treating critical bone defects. However, its use is plagued by numerous drawbacks, such as limited supply, donor site morbidity, and restricted use for giant-sized defects. For this reason, there is an increasing need for effective bone substitutes to treat these defects. Mollusk nacre is a natural structure with outstanding mechanical property due to its notable "brick-and-mortar" architecture. Inspired by the nacre architecture, our team designed and fabricated a nacre-mimetic cerium-doped layered nano-hydroxyapatite/chitosan layered composite scaffold (CeHA/CS). Hydroxyapatite can provide a certain strength to the material like a brick. And as a polymer material, chitosan can slow down the force when the material is impacted, like an adhesive. As seen in natural nacre, the combination of these inorganic and organic components results in remarkable tensile strength and fracture toughness. Cerium ions have been demonstrated exceptional anti-osteoclastogenesis capabilities. Our scaffold featured a distinct layered HA/CS composite structure with intervals ranging from 50 to 200 μm, which provided a conducive environment for human bone marrow mesenchymal stem cell (hBMSC) adhesion and proliferation, allowing for in situ growth of newly formed bone tissue. In vitro, Western-blot and qPCR analyses showed that the CeHA/CS layered composite scaffolds significantly promoted the osteogenic process by upregulating the expressions of osteogenic-related genes such as RUNX2, OCN, and COL1, while inhibiting osteoclast differentiation, as indicated by reduced TRAP-positive osteoclasts and decreased bone resorption. In vivo, calvarial defects in rats demonstrated that the layered CeHA/CS scaffolds significantly accelerated bone regeneration at the defect site, and immunofluorescence indicated a lowered RANKL/OPG ratio. Overall, our results demonstrate that CeHA/CS scaffolds offer a promising platform for bone regeneration in critical defect management, as they promote osteogenesis and inhibit osteoclast activation.
Collapse
Affiliation(s)
- Xiao-Liang Liu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Chuan-Jian Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Jing-Jing Shi
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Qin-Fei Ke
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Yu-Wei Ge
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Zhen-An Zhu
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Ya-Ping Guo
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
16
|
Karnik SJ, Nazzal MK, Kacena MA, Bruzzaniti A. Megakaryocyte Secreted Factors Regulate Bone Marrow Niche Cells During Skeletal Homeostasis, Aging, and Disease. Calcif Tissue Int 2023; 113:83-95. [PMID: 37243755 PMCID: PMC11179715 DOI: 10.1007/s00223-023-01095-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
The bone marrow microenvironment contains a diverse array of cell types under extensive regulatory control and provides for a novel and complex mechanism for bone regulation. Megakaryocytes (MKs) are one such cell type that potentially acts as a master regulator of the bone marrow microenvironment due to its effects on hematopoiesis, osteoblastogenesis, and osteoclastogenesis. While several of these processes are induced/inhibited through MK secreted factors, others are primarily regulated by direct cell-cell contact. Notably, the regulatory effects that MKs exert on these different cell populations has been found to change with aging and disease states. Overall, MKs are a critical component of the bone marrow that should be considered when examining regulation of the skeletal microenvironment. An increased understanding of the role of MKs in these physiological processes may provide insight into novel therapies that can be used to target specific pathways important in hematopoietic and skeletal disorders.
Collapse
Affiliation(s)
- Sonali J Karnik
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| | - Angela Bruzzaniti
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA.
| |
Collapse
|
17
|
Irfan D, Ahmad I, Patra I, Margiana R, Rasulova MT, Sivaraman R, Kandeel M, Mohammad HJ, Al-Qaim ZH, Jawad MA, Mustafa YF, Ansari MJ. Stem cell-derived exosomes in bone healing: focusing on their role in angiogenesis. Cytotherapy 2023; 25:353-361. [PMID: 36241491 DOI: 10.1016/j.jcyt.2022.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 12/12/2022]
Abstract
Fractures in bone, a tissue critical in protecting other organs, affect patients' quality of life and have a heavy economic burden on societies. Based on regenerative medicine and bone tissue engineering approaches, stem cells have become a promising and attractive strategy for repairing bone fractures via differentiation into bone-forming cells and production of favorable mediators. Recent evidence suggests that stem cell-derived exosomes could mediate the therapeutic effects of their counterpart cells and provide a cell-free therapeutic strategy in bone repair. Since bone is a highly vascularized tissue, coupling angiogenesis and osteogenesis is critical in bone fracture healing; thus, developing therapeutic strategies to promote angiogenesis will facilitate bone regeneration and healing. To this end, stem cell-derived exosomes with angiogenic potency have been developed to improve fracture healing. This review summarizes the effects of stem cell-derived exosomes on the repair of bone tissue, focusing on the angiogenesis process.
Collapse
Affiliation(s)
- Daniyal Irfan
- School of Management, Guangzhou University, Guangzhou, China
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Depok, Indonesia; Dr Soetomo General Academic Hospital, Surabaya, Indonesia.
| | | | - R Sivaraman
- Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, University of Madras, Chennai, India
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt.
| | | | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
18
|
Epimedii Folium and Ligustri Lucidi Fructus Promote Osteoblastogenesis and Inhibit Osteoclastogenesis against Osteoporosis via Acting on Osteoblast-Osteoclast Communication. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7212642. [PMID: 36760348 PMCID: PMC9904896 DOI: 10.1155/2023/7212642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 02/01/2023]
Abstract
Osteoblast (OB) and osteoclast (OC) play important roles in bone formation and bone resorption, which can communicate with each other through cytokine paracrine. Previous studies have confirmed that Epimedii Folium (EF) and Ligustri Lucidi Fructus (LLF) used alone or in combination can treat osteoporosis (OP) through regulating bone remodeling, but the effects of EF and LLF on osteoblastogenesis, osteoclastogenesis, and OB-OC communication are unclear. In this study, we investigated the direct and indirect effects of EF and LLF on OBs and OCs via monoculture and coculture (transwell) models of OBs and OCs. We found that the combination of EF and LLF (EF&LLF) could promote osteoblastogenesis and inhibit osteoclastogenesis directly and indirectly. In order to study the mechanisms of EF&LLF on indirectly regulating osteoblastogenesis and osteoclastogenesis, we detected the expression of cytokines by which OBs and OCs could communicate with each other. We found that EF&LLF could downregulate the expression of RANKL and M-CSF and the protein ratio of RANKL/OPG of OBs and Atp6v0d2 expression of OCs and upregulate the expression of OPG and TGF-β1 of OBs and the expression of TGF-β1, BMP-2, and IGF-1 of OCs, indicating that EF&LLF could regulate cytokine expressions of OBs/OCs to affect OB-OC communication. In addition, EF&LLF had a better effect on regulating cytokines of OBs and OCs than EF or LLF in single use. This study suggested that EF&LLF exhibited the effects of promoting osteoblastogenesis and inhibiting osteoclastogenesis via acting on OB-OC communication and provided some scientific evidences for EF&LLF against OP.
Collapse
|
19
|
Lu H, Xiao L, Wang W, Li X, Ma Y, Zhang Y, Wang X. Fibrinolysis Regulation: A Promising Approach to Promote Osteogenesis. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1192-1208. [PMID: 35442086 DOI: 10.1089/ten.teb.2021.0222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Soon after bone fracture, the initiation of the coagulation cascade results in the formation of a blood clot, which acts as a natural material to facilitate cell migration and osteogenic differentiation at the fracture site. The existence of hematoma is important in early stage of bone healing, but the persistence of hematoma is considered harmful for bone regeneration. Fibrinolysis is recently regarded as a period of critical transition in angiogenic-osteogenic coupling, it thereby is vital for the complete healing of the bone. Moreover, the enhanced fibrinolysis is proposed to boost bone regeneration through promoting the formation of blood vessels, and fibrinolysis system as well as the products of fibrinolysis also play crucial roles in the bone healing process. Therefore, the purpose of this review is to elucidate the fibrinolysis-derived effects on osteogenesis and summarize the potential approaches-improving bone healing by regulating fibrinolysis, with the purpose to further understand the integral roles of fibrinolysis in bone regeneration and to provide theoretical knowledge for potential fibrinolysis-related osteogenesis strategies. Impact statement Fibrinolysis emerging as a new and viable therapeutic intervention to be contained within osteogenesis strategies, however to now, there have been no review articles which collates the information between fibrinolysis and osteogenesis. This review, therefore, focusses on the effects that fibrinolysis exerts on bone healing, with a purpose to provide theoretical reference to develop new strategies to modulate fibrinolysis to accelerate fibrinolysis thus enhancing bone healing.
Collapse
Affiliation(s)
- Haiping Lu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.,The Australia-China Center for Tissue Engineering and Regenerative Medicine, Kelvin Grove, Brisbane, Queensland, Australia
| | - Weiqun Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuyan Li
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.,The Australia-China Center for Tissue Engineering and Regenerative Medicine, Kelvin Grove, Brisbane, Queensland, Australia
| |
Collapse
|
20
|
Karagianni A, Matsuura S, Gerstenfeld LC, Ravid K. Inhibition of Osteoblast Differentiation by JAK2V617F Megakaryocytes Derived From Male Mice With Primary Myelofibrosis. Front Oncol 2022; 12:929498. [PMID: 35880162 PMCID: PMC9307716 DOI: 10.3389/fonc.2022.929498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Past studies described interactions between normal megakaryocytes, the platelet precursors, and bone cell precursors in the bone marrow. This relationship has also been studied in context of various mutations associated with increased number of megakaryocytes. The current study is the first to examine the effects of megakaryocytes from transgenic mice carrying the most common mutation that causes primary myelofibrosis (PMF) in humans (JAK2V617F) on bone cell differentiation. Organ level assessments of mice using micro-computed tomography showed decreased bone volume in JAK2V617F males, compared to matching controls. Tissue level histology revealed increased deposition of osteoid (bone matrix prior mineralization) in these mutated mice, suggesting an effect on osteoblast differentiation. Mechanistic studies using a megakaryocyte-osteoblast co-culture system, showed that both wild type or JAK2V617F megakaryocytes derived from male mice inhibited osteoblast differentiation, but JAK2V617F cells exerted a more significant inhibitory effect. A mouse mRNA osteogenesis array showed increased expression of Noggin, Chordin, Alpha-2-HS-glycoprotein, Collagen type IV alpha 1 and Collagen type XIV alpha 1 (mostly known to inhibit bone differentiation), and decreased expression of alkaline phosphatase, Vascular cell adhesion molecule 1, Sclerostin, Distal-less homeobox 5 and Collagen type III alpha 1 (associated with osteogenesis) in JAK2V617F megakaryocytes, compared to controls. This suggested that the mutation re-programs megakaryocytes to express a cluster of genes, which together could orchestrate greater suppression of osteogenesis in male mice. These findings provide mechanistic insight into the effect of JAK2V617F mutation on bone, encouraging future examination of patients with this or other PMF-inducing mutations.
Collapse
Affiliation(s)
- Aikaterini Karagianni
- Department of Internal Medicine, University of Crete, School of Medicine, Heraklion, Greece
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, United States
| | - Shinobu Matsuura
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, United States
| | - Louis C. Gerstenfeld
- Department of Orthopaedic Surgery, Boston University School of Medicine, Boston, MA, United States
| | - Katya Ravid
- Department of Medicine, Whitaker Cardiovascular Research Institute, Boston University School of Medicine, Boston, MA, United States
- *Correspondence: Katya Ravid,
| |
Collapse
|
21
|
Lu X, Li W, Wang H, Cao M, Jin Z. The role of the Smad2/3/4 signaling pathway in osteogenic differentiation regulation by ClC-3 chloride channels in MC3T3-E1 cells. J Orthop Surg Res 2022; 17:338. [PMID: 35794618 PMCID: PMC9258226 DOI: 10.1186/s13018-022-03230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/25/2022] [Indexed: 11/15/2022] Open
Abstract
Background ClC-3 chloride channels promote osteogenic differentiation. Transforming growth factor-β1 (TGF-β1) and its receptors are closely related to ClC-3 chloride channels, and canonical TGF-β1 signaling is largely mediated by Smad proteins. The current study aimed to explore the role of the Smad2/3/4 signaling pathway in the mechanism by which ClC-3 chloride channels regulate osteogenic differentiation in osteoblasts. Methods First, real-time PCR and western blotting were used to detect the expression of Smad and mitogen-activated protein kinase (MAPK) proteins in response to ClC-3 chloride channels. Second, immunocytochemistry, coimmunoprecipitation (Co-IP) and immunofluorescence analyses were conducted to assess formation of the Smad2/3/4 complex and its translocation to the nucleus. Finally, markers of osteogenic differentiation were determined by real-time PCR, western blotting, ALP assays and Alizarin Red S staining. Results ClC-3 chloride channels knockdown led to increased expression of Smad2/3 but no significant change in p38 or Erk1/2. Furthermore, ClC-3 chloride channels knockdown resulted in increases in the formation of the Smad2/3/4 complex and its translocation to the nucleus. In contrast, the inhibition of TGF-β1 receptors decreased the expression of Smad2, Smad3, p38, and Erk1/2 and the formation of the Smad2/3/4 complex. Finally, the expression of osteogenesis-related markers were decreased upon ClC-3 and Smad2/3/4 knockdown, but the degree to which these parameters were altered was decreased upon the knockdown of ClC-3 and Smad2/3/4 together compared to independent knockdown of ClC-3 or Smad2/3/4. Conclusions The Smad2/3 proteins respond to changes in ClC-3 chloride channels. The Smad2/3/4 signaling pathway inhibits osteogenic differentiation regulation by ClC-3 chloride channels in MC3T3-E1 cells.
Collapse
|
22
|
Huang DY, Wang GM, Ke ZR, Zhou Y, Yang HH, Ma TL, Guan CX. Megakaryocytes in pulmonary diseases. Life Sci 2022; 301:120602. [DOI: 10.1016/j.lfs.2022.120602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023]
|
23
|
Lee SH, Park NR, Kim JE. Bioinformatics of Differentially Expressed Genes in Phorbol 12-Myristate 13-Acetate-Induced Megakaryocytic Differentiation of K562 Cells by Microarray Analysis. Int J Mol Sci 2022; 23:ijms23084221. [PMID: 35457039 PMCID: PMC9031040 DOI: 10.3390/ijms23084221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 01/27/2023] Open
Abstract
Megakaryocytes are large hematopoietic cells present in the bone marrow cavity, comprising less than 0.1% of all bone marrow cells. Despite their small number, megakaryocytes play important roles in blood coagulation, inflammatory responses, and platelet production. However, little is known about changes in gene expression during megakaryocyte maturation. Here we identified the genes whose expression was changed during K562 leukemia cell differentiation into megakaryocytes using an Affymetrix GeneChip microarray to determine the multifunctionality of megakaryocytes. K562 cells were differentiated into mature megakaryocytes by treatment for 7 days with phorbol 12-myristate 13-acetate, and a microarray was performed using RNA obtained from both types of cells. The expression of 44,629 genes was compared between K562 cells and mature megakaryocytes, and 954 differentially expressed genes (DEGs) were selected based on a p-value < 0.05 and a fold change >2. The DEGs was further functionally classified using five major megakaryocyte function-associated clusters—inflammatory response, angiogenesis, cell migration, extracellular matrix, and secretion. Furthermore, interaction analysis based on the STRING database was used to generate interactions between the proteins translated from the DEGs. This study provides information on the bioinformatics of the DEGs in mature megakaryocytes after K562 cell differentiation.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (S.-H.L.); (N.R.P.)
- BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - Na Rae Park
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (S.-H.L.); (N.R.P.)
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea; (S.-H.L.); (N.R.P.)
- BK21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: ; Tel.: +82-53-420-4949
| |
Collapse
|
24
|
Nurbaiti L, Taslim NA, Bukhari A, Hatta M. Serum Concentration and mRNA Expression of Transforming Growth Factor-Beta 1 (TGF-β1) in Stunted Stunting and Non- Stunted Toddlers. Clin Nutr ESPEN 2022; 49:208-216. [PMID: 35623815 DOI: 10.1016/j.clnesp.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
25
|
Cui L, Li J, Guan S, Zhang K, Zhang K, Li J. Injectable multifunctional CMC/HA-DA hydrogel for repairing skin injury. Mater Today Bio 2022; 14:100257. [PMID: 35469255 PMCID: PMC9034394 DOI: 10.1016/j.mtbio.2022.100257] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 12/20/2022] Open
Abstract
Injectable Hydrogels with adhesive, antioxidant and hemostatic properties are highly desired for promoting skin injury repair. In this study, we prepared a multi-functional carboxymethyl chitosan/hyaluronic acid-dopamine (CMC/HA-DA) hydrogel, which can be crosslinked by horseradish peroxidase and hydrogen peroxide. The antioxidation, gelation time, degradability, rheology and antihemorrhagic properties of hydrogels can be finely tuned by varying composition ratio. The cytocompatibility test and hemolysis test confirmed that the designed hydrogel holds good biocompatibility. More importantly, the repair effect of the hydrogel on full-thickness skin injury model in mice was studied. The results of wound healing, collagen deposition, immunohistochemistry and immunofluorescence showed that CMC/HA-DA hydrogel could significantly promote angiogenesis and cell proliferation at the injured site. Notably, the inflammatory response can also be regulated to promote the repair of full-thickness skin defect in mice. Results indicate that this injectable CMC/HA-DA hydrogel holds high application prospect for promising wound healing.
Collapse
Affiliation(s)
- Longlong Cui
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Jiankang Li
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Shuaimeng Guan
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, 450001, PR China
- Corresponding author. School of Life Science, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
- Corresponding author. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
26
|
Circulating platelet concentration is associated with bone mineral density in women. Arch Osteoporos 2022; 17:44. [PMID: 35257290 DOI: 10.1007/s11657-022-01089-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/26/2022] [Indexed: 02/03/2023]
Abstract
In this cross-sectional study, enrollment included 818 female adults undergoing bone mineral density (BMD) assessment during the health examination. Subjects with osteoporosis had the lowest circulating platelet concentrations. The circulating platelet concentration was positively correlated with BMD. A high platelet concentration had independently low odds of osteoporosis. PURPOSE Platelets play an important role in bone metabolism. However, the association between circulating platelet counts and bone mineral density (BMD) has been inconsistently reported. We aimed to investigate the relationship between platelet counts and osteoporosis in Chinese women. METHODS In this cross-sectional study, a total of 818 female adults who underwent BMD assessment during the health examination were enrolled. Blood cell counts and biochemistry data were recorded. RESULTS Subjects with osteoporosis had the lowest platelet counts (238 ± 59 × 109/L) compared with subjects with osteopenia (256 ± 64 × 109/L) and a normal BMD (269 ± 76 × 109/L, P < 0.001). The circulating platelet concentration was positively correlated with the BMD of the lumbar spine (r = 0.195, P < 0.001), left hip (r = 0.145, P < 0.001), and right hip (r = 0.149, P < 0.001). According to the receiver operating characteristic curve, the cutoff platelet concentration for differentiating osteoporosis was 260 × 109/L. A high platelet concentration had significantly low odds of osteoporosis after adjusting for other covariates (odds ratio = 0.574, 95% confidence interval: 0.346‒0.953, P = 0.032). CONCLUSION The circulating platelet concentration was significantly correlated with BMD in Chinese women.
Collapse
|
27
|
Goette NP, Borzone FR, Lupi ADD, Chasseing NA, Rubio MF, Costas MA, Heller PG, Marta RF, Lev PR. Megakaryocyte-stromal cell interactions: effect on megakaryocyte proliferation, proplatelet production, and survival. Exp Hematol 2022; 107:24-37. [PMID: 35032592 DOI: 10.1016/j.exphem.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
Bone marrow stromal cells provide a proper environment for the development of hematologic lineages. The incorporation of different stromal cells to in vitro culture systems would be an attractive model to study megakaryopoiesis and thrombopoiesis. Our objective was to evaluate the participation of different types of stromal cells on in vitro megakaryopoiesis, thrombopoiesis and megakaryocyte (MK) survival. CD34-positive progenitors from umbilical cord blood were differentiated into MK precursors and then co-cultured with umbilical vein endothelial cells (HUVEC), bone marrow mesenchymal stem cells (MSCs), skin fibroblasts (SF) (all human) or mouse fibroblast cell line (L929). The number of MKs (CD61-positive cells) was increased in the presence of HUVEC and SF while L929 cells decreased total and mature MK count. Concerning thrombopoiesis, HUVEC increased proplatelet (PP)-producing MKs, while MSCs, L929 and SF had the opposite effect (immunofluorescence staining and microscopic analysis). MK survival was enhanced in MSC and SF co-cultures, as assessed by evaluation of pyknotic nuclei. However, HUVEC and L929 did not prevent apoptosis of MKs. Reciprocally, the cloning efficiency of MSCs was decreased in the presence of MKs, while the ability of stromal cells (either MSCs or SF) to produce the extracellular matrix proteins type III collagen, fibronectin, dermatan sulfate, heparan sulfate and P4HB was preserved. These data indicate that each stromal cell type performs distinctive functions, which differentially modulate MK growth and platelet production, and, at the same time, that MKs also modify stromal cells behavior. Overall, our results highlight the relevance of considering the influence of stromal cells in MK research as well as the close interplay of different cell types within the bone marrow milieu.
Collapse
Affiliation(s)
- Nora P Goette
- Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina
| | - Francisco R Borzone
- Laboratory of Immunohematology, Institute of Biology and Experimental Medicine, National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Ailen D Discianni Lupi
- Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina
| | - Norma A Chasseing
- Laboratory of Immunohematology, Institute of Biology and Experimental Medicine, National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - María F Rubio
- Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina; Department of Molecular Biology and Apoptosis , Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Mónica A Costas
- Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina; Department of Molecular Biology and Apoptosis , Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Paula G Heller
- Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina; Department of Experimental Hematology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Rosana F Marta
- Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina; Department of Experimental Hematology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Paola R Lev
- Institute of Medical Research A Lanari, University of Buenos Aires, Buenos Aires, Argentina; Department of Experimental Hematology, Institute of Medical Research (IDIM), National Scientific and Technical Research Council (CONICET), University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
28
|
Stavnichuk M, Komarova SV. Megakaryocyte-driven changes in bone health: lessons from mouse models of myelofibrosis and related disorders. Am J Physiol Cell Physiol 2021; 322:C177-C184. [PMID: 34910601 DOI: 10.1152/ajpcell.00328.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the years, numerous studies demonstrated reciprocal communications between processes of bone marrow hematopoiesis and bone remodeling. Megakaryocytes, rare bone marrow cells responsible for platelet production, were demonstrated to be involved in bone homeostasis. Myelofibrosis, characterized by an increase in pleomorphic megakaryocytes in the bone marrow, commonly leads to the development of osteosclerosis. In vivo, an increase in megakaryocyte number was shown to result in osteosclerosis in GATA-1low, NF-E2-/-, TPOhigh, Mpllf/f;PF4cre, Lnk-/-, Mpig6b-/-, Mpig6bfl/fl;Gp1ba-Cr+/KI, Pt-vWD mouse models. In vitro, megakaryocytes stimulate osteoblast proliferation and have variable effects on osteoclast proliferation and activity through soluble factors and direct cell-cell communications. Intriguingly, new studies revealed that the ability of megakaryocytes to communicate with bone cells is affected by the age and sex of animals. This mini-review summarises changes seen in bone architecture and bone cell function in mouse models with an elevated number of megakaryocytes and the effects megakaryocytes have on osteoblasts and osteoclasts in vitro, and discusses potential molecular players that can mediate these effects.
Collapse
Affiliation(s)
- Mariya Stavnichuk
- Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Svetlana V Komarova
- Shriners Hospital for Children - Canada, Montreal, Quebec, Canada.,Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Wang W, Mao J, Chen Y, Zuo J, Chen L, Li Y, Gao Y, Lu Q. Naringin promotes osteogenesis and ameliorates osteoporosis development by targeting JAK2/STAT3 signalling. Clin Exp Pharmacol Physiol 2021; 49:113-121. [PMID: 34525226 DOI: 10.1111/1440-1681.13591] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/25/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Osteoporosis is a systemic bone metabolism disorder, which increases the risk of fractures, and in severe cases it may cause disability or even death. An important factor contributing to osteoporosis is the imbalance between bone formation and resorption. Naringin was reported to promote osteoblast differentiation, thus enhancing bone formation and alleviating osteoporosis development. However, the signalling pathways related to the regulatory mechanism of naringin in osteoporosis development are not clear. Proliferation of bone mesenchymal stem cells (BMSCs) treated with naringin in vitro was detected by CCK-8. An osteogenesis differentiation medium supplemented with naringin was applied to explore the effects of naringin on BMSC osteogenic differentiation, as detected by Alizarin red staining. Ovariectomy (OVX)-induced postmenopausal osteoporosis (PMOP) rats were orally administered with naringin. Dual-energy X-ray absorptiometry (DEXA) and micro-CT were applied to measure bone mineral density (BMD), bone volume/total volume (BV/TV), trabecula thickness (Tb.Th), trabecula number (Tb.N), trabecular separation (Tb.Sp) and bone surface/bone volume (BS/BV). H&E staining was performed to show pathological changes of the femur in PMOP rats after naringin treatment. Bone metabolism indicators were assessed by ELISA. We found that naringin suppressed the activation of the JAK2/STAT3 pathway. Naringin promoted BMSC proliferation and osteogenic differentiation. Furthermore, naringin alleviates bone loss and improves abnormal bone metabolism of PMOP rats. Collectively, naringin promotes BMSC osteogenic differentiation to ameliorate osteoporosis development by targeting JAK2/STAT3 signalling.
Collapse
Affiliation(s)
- Wang Wang
- Department of Gynecology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jie Mao
- Department of Gynecology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Chen
- Department of Gynecology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jing Zuo
- Department of Gynecology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lin Chen
- Department of Gynecology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yajing Li
- Department of Gynecology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yingqian Gao
- Department of Gynecology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qibin Lu
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Ghosh J, El Koussa R, Mohamad SF, Liu J, Kacena MA, Srour EF. Cellular components of the hematopoietic niche and their regulation of hematopoietic stem cell function. Curr Opin Hematol 2021; 28:243-250. [PMID: 33966008 PMCID: PMC8169581 DOI: 10.1097/moh.0000000000000656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Development and functions of hematopoietic stem cells (HSC) are regulated by multiple cellular components of the hematopoietic niche. Here we review the recent advances in studying the role of three such components -- osteoblasts, osteomacs, and megakaryocytes and how they interact with each other in the hematopoietic niche to regulate HSC. RECENT FINDINGS Recent advances in transgenic mice models, scRNA-seq, transcriptome profile, proteomics, and live animal imaging have revealed the location of HSC within the bone and signaling molecules required for the maintenance of the niche. Interaction between megakaryocytes, osteoblasts and osteomacs enhances hematopoietic stem and progenitor cells (HSPC) function. Studies also revealed the niche as a dynamic entity that undergoes cellular and molecular changes in response to stress. Aging, which results in reduced HSC function, is associated with a decrease in endosteal niches and osteomacs as well as reduced HSC--megakaryocyte interactions. SUMMARY Novel approaches to study the cellular components of the niche and their interactions to regulate HSC development and functions provided key insights about molecules involved in the maintenance of the hematopoietic system. Furthermore, these studies began to build a more comprehensive model of cellular interactions and dynamics in the hematopoietic niche.
Collapse
Affiliation(s)
- Joydeep Ghosh
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Roy El Koussa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Safa F. Mohamad
- Department of Hematology/Oncology, Boston Children’s Hospital, Harvard University, Boston, MA, USA
| | - Jianyun Liu
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward F. Srour
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
31
|
Tang Y, Luo K, Tan J, Zhou R, Chen Y, Chen C, Rong Z, Deng M, Yu X, Zhang C, Dai Q, Wu W, Xu J, Dong S, Luo F. Laminin alpha 4 promotes bone regeneration by facilitating cell adhesion and vascularization. Acta Biomater 2021; 126:183-198. [PMID: 33711525 DOI: 10.1016/j.actbio.2021.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/17/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022]
Abstract
Selective cell retention (SCR) has been widely used as a bone tissue engineering technique for the real-time fabrication of bone grafts. The greater the number of mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) retained in the scaffold, the better the osteoinductive and angiogenic properties of the scaffold's microenvironment. Improved bioscaffold properties in turn lead to improved bone graft survival, bone regeneration, and angiogenesis. Laminin plays a key role in cell-matrix adhesion, cell proliferation, and differentiation. We designed a collagen-binding domain (CBD) containing the core functional amino acid sequences of laminin α4 (CBD-LN peptide) to supplement the functional surface of a collagen-based decalcified bone matrix (DBM) scaffold. This scaffold promoted MSCs and EPCs early cell adhesion through up-regulating the expression of integrin α5β1 and integrin αvβ3 respectively, thus accelerated the following cell spreading, proliferation, and differentiation. Interestingly, it promoted the retention of MSCs (CD90+/CD105+ cells) and EPCs (CD31+ cells) in the scaffold following the use of clinical SCR technology. Furthermore, the DBM/CBD-LN scaffold induced the formation of type H vessels through the activation of the HIF-1α signaling pathway. The DBM/CBD-LN scaffold displayed rapid bone formation and angiogenesis in vivo, suggesting that it might be used as a new biomaterial in bone tissue engineering. STATEMENT OF SIGNIFICANCE: Selective cell retention technology (SCR) has been utilized in clinical settings to manufacture bioactive bone grafts. Specifically, demineralized bone matrix (DBM) is a widely-used SCR clinical biomaterial but it displays poor adhesion performance and angiogenic activity. In this work, we designed a collagen-binding domain (CBD) containing the core functional amino acid sequences of laminin α4 to supplement the functional surface of a collagen-based DBM scaffold. This bioscaffold promoted SCR-mediated MSCs and EPCs early cell adhesion, thus accelerated the following cell spreading, proliferation, and differentiation. Our results indicate this bioscaffold greatly induced osteogenesis and angiogenesis in vivo. In general, this bioscaffold has a good prospect for SCR application and may provide highly bioactive bone implant in clinical environment.
Collapse
Affiliation(s)
- Yong Tang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Orthopaedics, 72nd Group Army Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Keyu Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jiulin Tan
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Rui Zhou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yueqi Chen
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Can Chen
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhigang Rong
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Moyuan Deng
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xueke Yu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chengmin Zhang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qijie Dai
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wenjie Wu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianzhong Xu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Shiwu Dong
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China; Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China.
| | - Fei Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
32
|
Zhang Z, Qi H, Xia H, Liu Q, Ren Y, Zhang K, Xue Y, Hong W. Preosteoblast-enriched lnc-Evf2 facilitates osteogenic differentiation by targeting Notch. Acta Biochim Biophys Sin (Shanghai) 2021; 53:179-188. [PMID: 33377486 DOI: 10.1093/abbs/gmaa156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 11/15/2022] Open
Abstract
Ossification of ligaments (OL) and osteoporosis (OP) are multifactorial disorders without definitive clinical biomarkers. Long non-coding RNAs (lncRNAs) are known to involve in regulating pathogenesis. Here, we have identified a preosteoblast-enriched lnc-Evf2 that was overexpressed in ossified ligamentum flavum (OLF) and down-expressed in OP. lnc-Evf2 is gradually upregulated during osteogenic induction, correlating with the enhanced expression of osteogenic marker genes and matrix mineralization. Moreover, knockdown of lnc-Evf2 significantly inhibits the expression of osteogenic differentiation markers and delays the osteoblastic mineralization process, indicating that this molecule is involved in osteogenesis. Mechanistically, we demonstrated that silencing of lnc-Evf2 decreases the protein level but not the mRNA levels of Notch2, Notch3, and Hes1, all of which correlate with osteogenesis. Taken together, our data demonstrate that lnc-Evf2 promotes osteogenic differentiation and bone formation through the Notch signaling, revealing that lnc-Evf2 may serve as a novel potential clinical target of OL and OP.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Orthopedic Surgery, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin 300070, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Haixia Qi
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| | - Han Xia
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qi Liu
- Department of Orthopedic Surgery, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Yi Ren
- Department of Orthopedic Surgery, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Kun Zhang
- Department of Orthopedic Surgery, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Yuan Xue
- Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wei Hong
- Department of Orthopedic Surgery, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, Tianjin 300070, China
| |
Collapse
|
33
|
Tang Y, Luo K, Chen Y, Chen Y, Zhou R, Chen C, Tan J, Deng M, Dai Q, Yu X, Liu J, Zhang C, Wu W, Xu J, Dong S, Luo F. Phosphorylation inhibition of protein-tyrosine phosphatase 1B tyrosine-152 induces bone regeneration coupled with angiogenesis for bone tissue engineering. Bioact Mater 2021; 6:2039-2057. [PMID: 33511306 PMCID: PMC7809253 DOI: 10.1016/j.bioactmat.2020.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/06/2020] [Accepted: 12/25/2020] [Indexed: 12/26/2022] Open
Abstract
A close relationship has been reported to exist between cadherin-mediated cell–cell adhesion and integrin-mediated cell mobility, and protein tyrosine phosphatase 1B (PTP1B) may be involved in maintaining this homeostasis. The stable residence of mesenchymal stem cells (MSCs) and endothelial cells (ECs) in their niches is closely related to the regulation of PTP1B. However, the exact role of the departure of MSCs and ECs from their niches during bone regeneration is largely unknown. Here, we show that the phosphorylation state of PTP1B tyrosine-152 (Y152) plays a central role in initiating the departure of these cells from their niches and their subsequent recruitment to bone defects. Based on our previous design of a PTP1B Y152 region-mimicking peptide (152RM) that significantly inhibits the phosphorylation of PTP1B Y152, further investigations revealed that 152RM enhanced cell migration partly via integrin αvβ3 and promoted MSCs osteogenic differentiation partly by inhibiting ATF3. Moreover, 152RM induced type H vessels formation by activating Notch signaling. Demineralized bone matrix (DBM) scaffolds were fabricated with mesoporous silica nanoparticles (MSNs), and 152RM was then loaded onto them by electrostatic adsorption. The DBM-MSN/152RM scaffolds were demonstrated to induce bone formation and type H vessels expansion in vivo. In conclusion, our data reveal that 152RM contributes to bone formation by coupling osteogenesis with angiogenesis, which may offer a potential therapeutic strategy for bone defects. PTP1B plays a dual regulatory role in cadherin- and integrin-related pathways. Inhibition of PTP1B Y152 phosphorylation enhances the departure of MSCs from the stem cell niche. DBM-MSN/152RM scaffolds coordinate the recruitment of MSCs and ECs. DBM-MSN/152RM scaffolds promote bone regeneration and angiogenesis in bone defects.
Collapse
Affiliation(s)
- Yong Tang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China.,Department of Orthopaedics, 72nd Group Army Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Keyu Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Spine Surgery, Center for Orthopedics, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Yueqi Chen
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Rui Zhou
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Can Chen
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiulin Tan
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Moyuan Deng
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qijie Dai
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xueke Yu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jian Liu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chengmin Zhang
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wenjie Wu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jianzhong Xu
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Biomedical Materials Science, Third Military Medical University, Chongqing, China
| | - Fei Luo
- National & Regional United Engineering Lab of Tissue Engineering, Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|