1
|
Zhou Q, Yang T, Yu X, Li B, Liu J, Mao Y, Guo R, Feng Z, Zhou L, Zeng G, Li N, Liang J, Liu L, Feng P, Shu HB, Chen L. Lanatoside C activates the E3 ligase STUB1 to inhibit FOXP3 transcriptional activity and promote antitumor immunity. EMBO Mol Med 2025; 17:563-588. [PMID: 39979425 PMCID: PMC11904033 DOI: 10.1038/s44321-025-00200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/29/2024] [Accepted: 02/03/2025] [Indexed: 02/22/2025] Open
Abstract
Regulatory T cells (Tregs) play critical roles in inhibiting antitumor immunity, which is dependent on FOXP3-mediated transcriptional activity. However, no Treg-specific therapeutics has been approved for clinical use. We performed a high-throughput screen of FDA-approved drugs for potential inhibitors of FOXP3 transcriptional activity. These efforts identified Lanatoside C (Lac), which potently inhibits FOXP3 activity by causing degradation of RUNX1, a FOXP3-associated component required for its transcriptional activity. Lac directly binds the E3 ligase STUB1, leading to increased polyubiquitination and proteasomal degradation of RUNX1. Lac inhibits Tregs activity and promotes antitumor immunity in a mouse primary lung cancer model. In addition, Lac synergizes with PD-1 inhibitor to shrink lung cancers driven by mutant KRAS in a mouse model. Our findings suggested that the FDA-approved Lac is a Tregs inhibitor and serves as a candidate drug for cancer patients by its own or in combination with existing therapeutics such as PD-1 inhibitors.
Collapse
Affiliation(s)
- Qian Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, 510006, Guangzhou, China.
| | - Tong Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, 510006, Guangzhou, China
| | - Xixi Yu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, 510006, Guangzhou, China
| | - Bo Li
- MOE Key Laboratory of Glucolipid Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, College of Chinese Medicine Research, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Jin Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, 510006, Guangzhou, China
| | - Yongxin Mao
- MOE Key Laboratory of Glucolipid Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, College of Chinese Medicine Research, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Rongxiang Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, 510006, Guangzhou, China
| | - Zhuo Feng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, 510006, Guangzhou, China
| | - Li Zhou
- MOE Key Laboratory of Glucolipid Metabolic Diseases, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, College of Chinese Medicine Research, Guangdong Pharmaceutical University, 510006, Guangzhou, China
| | - Guandi Zeng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, 510006, Guangzhou, China
| | - Nan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, 510006, Guangzhou, China
| | - Jinxia Liang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, 510006, Guangzhou, China
| | - Lu Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, 510006, Guangzhou, China
| | - Pengju Feng
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou, 510632, Guangzhou, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, 430073, Wuhan, China.
| | - Liang Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Life Science and Technology, Jinan University, 510006, Guangzhou, China.
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 510632, Guangzhou, China.
| |
Collapse
|
2
|
Du X, Chen Z, Shui W. Clusterin: structure, function and roles in disease. Int J Med Sci 2025; 22:887-896. [PMID: 39991767 PMCID: PMC11843140 DOI: 10.7150/ijms.107159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/11/2025] [Indexed: 02/25/2025] Open
Abstract
Clusterin (CLU) is a glycoprotein that exists in various forms in cells, including nuclear, cytoplasmic, and secreted types. The relative molecular weight of CLU varies significantly due to differences in glycosylation and cleavage. Although CLU is commonly present in mammalian tissues and body fluids, its expression levels differ markedly under physiological and pathological conditions. The existence forms and molecular sizes of CLU in cells vary greatly, contributing to its diverse functions. For example, CLU can participate in the occurrence and development of neurological, fibrotic, and metabolic diseases by regulating cell endocytosis, apoptosis, and other processes. This article will review the structural characteristics, basic functions, and potential regulatory mechanisms of CLU protein in physiological and pathological processes.
Collapse
Affiliation(s)
- Xing Du
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Chongqing 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Zhongyao Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Chongqing 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Wei Shui
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, Chongqing 400016, China
- Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Mamun M, Zheng YC, Wang N, Wang B, Zhang Y, Pang JR, Shen DD, Liu HM, Gao Y. Decoding CLU (Clusterin): Conquering cancer treatment resistance and immunological barriers. Int Immunopharmacol 2024; 137:112355. [PMID: 38851158 DOI: 10.1016/j.intimp.2024.112355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
One major obstacle in the treatment of cancer is the presence of proteins resistant to cancer therapy, which can impede the effectiveness of traditional approaches such as radiation and chemotherapy. This resistance can lead to disease progression and cause treatment failure. Extensive research is currently focused on studying these proteins to create tailored treatments that can circumvent resistance mechanisms. CLU (Clusterin), a chaperone protein, has gained notoriety for its role in promoting resistance to a wide range of cancer treatments, including chemotherapy, radiation therapy, and targeted therapy. The protein has also been discovered to have a role in regulating the immunosuppressive environment within tumors. Its ability to influence oncogenic signaling and inhibit cell death bolster cancer cells resistant against treatments, which poses a significant challenge in the field of oncology. Researchers are actively investigating to the mechanisms by which CLU exerts its resistance-promoting effects, with the ultimate goal of developing strategies to circumvent its impact and enhance the effectiveness of cancer therapies. By exploring CLU's impact on cancer, resistance mechanisms, tumor microenvironment (TME), and therapeutic strategies, this review aims to contribute to the ongoing efforts to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Maa Mamun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yi-Chao Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ning Wang
- The School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Bo Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yu Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jing-Ru Pang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Dan-Dan Shen
- Key Laboratory of Endometrial Disease Prevention and Treatment, Zhengzhou China, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
4
|
Martín-García D, García-Aranda M, Redondo M. Therapeutic Potential of Clusterin Inhibition in Human Cancer. Cells 2024; 13:665. [PMID: 38667280 PMCID: PMC11049052 DOI: 10.3390/cells13080665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Clusterin (CLU) protein is involved in various pathophysiological processes including carcinogenesis and tumor progression. In recent years, the role of the secretory isoform has been demonstrated in tumor cells, where it inhibits apoptosis and favors the acquisition of resistance to conventional treatments used to treat cancer. To determine the possible therapeutic potential of inhibiting this protein, numerous studies have been carried out in this field. In this article, we present the existing knowledge to date on the inhibition of this protein in different types of cancer and analyze the importance it could have in the development of new therapies targeted against this disease.
Collapse
Affiliation(s)
- Desirée Martín-García
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| | - Marilina García-Aranda
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| | - Maximino Redondo
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain;
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC), Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Málaga, Spain;
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina—IBIMA Plataforma BIONAND, 29590 Málaga, Spain
- Research and Innovation Unit, Hospital Costa del Sol, 29602 Marbella, Spain
| |
Collapse
|
5
|
Weidle UH, Birzele F. Circular RNA in Non-small Cell Lung Carcinoma: Identification of Targets and New Treatment Modalities. Cancer Genomics Proteomics 2023; 20:646-668. [PMID: 38035705 PMCID: PMC10687737 DOI: 10.21873/cgp.20413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 12/02/2023] Open
Abstract
Despite availability of several treatment options for non-small cell lung cancer (NSCLC), such as surgery, chemotherapy, radiation, targeted therapy and immunotherapy, the survival rate of patients for five years is in the range of 22%. Therefore, identification of new targets and treatment modalities for this disease is an important issue. In this context, we screened the PubMed database for up-regulated circular RNAs (circRNAs) which promote growth of NSCLC in preclinical models in vitro as well as in vivo xenograft models in immuno-compromised mice. This approach led to potential targets for further validation and inhibition with small molecules or antibody-derived entities. In case of preclinical validation, the corresponding circRNAs can be inhibited with small interfering RNAs (siRNA) or short hairpin RNAs (shRNA). The identified circRNAs act by sponging microRNAs (miRs) preventing cleavage of the mRNA of the corresponding targets. We identified nine circRNAs up-regulating transmembrane receptors, five circRNAs increasing expression of secreted proteins, nine circRNAs promoting expression of components of signaling pathways, six circRNAs involved in regulation of splicing and RNA processing, six circRNAs up-regulating actin-related and RNA processing components, seven circRNAs increasing the steady-state levels of transcription factors, two circRNAs increasing high-mobility group proteins, four circRNAs increasing components of the epigenetic modification system and three circRNAs up-regulating protein components of additional systems.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
6
|
Meira DD, de Castro e Caetano MC, Casotti MC, Zetum ASS, Gonçalves AFM, Moreira AR, de Oliveira AH, Pesente F, Santana GM, de Almeida Duque D, Pereira GSC, de Castro GDSC, Pavan IP, Chagas JPS, Bourguignon JHB, de Oliveira JR, Barbosa KRM, Altoé LSC, Louro LS, Merigueti LP, Alves LNR, Machado MRR, Roque MLRO, Prates PS, de Paula Segáua SH, dos Santos Uchiya T, Louro TES, Daleprane VE, Guaitolini YM, Vicente CR, dos Reis Trabach RS, de Araújo BC, dos Santos EDVW, de Paula F, Lopes TJS, de Carvalho EF, Louro ID. Prognostic Factors and Markers in Non-Small Cell Lung Cancer: Recent Progress and Future Challenges. Genes (Basel) 2023; 14:1906. [PMID: 37895255 PMCID: PMC10606762 DOI: 10.3390/genes14101906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/29/2023] Open
Abstract
Lung cancer is a highly aggressive neoplasm and, despite the development of recent therapies, tumor progression and recurrence following the initial response remains unsolved. Several questions remain unanswered about non-small cell lung cancer (NSCLC): (1) Which patients will actually benefit from therapy? (2) What are the predictive factors of response to MAbs and TKIs? (3) What are the best combination strategies with conventional treatments or new antineoplastic drugs? To answer these questions, an integrative literature review was carried out, searching articles in PUBMED, NCBI-PMC, Google Academic, and others. Here, we will examine the molecular genetics of lung cancer, emphasizing NSCLC, and delineate the primary categories of inhibitors based on their molecular targets, alongside the main treatment alternatives depending on the type of acquired resistance. We highlighted new therapies based on epigenetic information and a single-cell approach as a potential source of new biomarkers. The current and future of NSCLC management hinges upon genotyping correct prognostic markers, as well as on the evolution of precision medicine, which guarantees a tailored drug combination with precise targeting.
Collapse
Affiliation(s)
- Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Maria Clara de Castro e Caetano
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Aléxia Stefani Siqueira Zetum
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - André Felipe Monteiro Gonçalves
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - André Rodrigues Moreira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Augusto Henrique de Oliveira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Fellipe Pesente
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Daniel de Almeida Duque
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Gierleson Santos Cangussu Pereira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Giulia de Souza Cupertino de Castro
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Isabele Pagani Pavan
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - João Pedro Sarcinelli Chagas
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - José Henrique Borges Bourguignon
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Juliana Ribeiro de Oliveira
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Karen Ruth Michio Barbosa
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Luana Santos Louro
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória 29090-040, Brazil
| | - Luiza Poppe Merigueti
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Marlon Ramos Rosado Machado
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Maria Luísa Rodrigues Oliveira Roque
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Pedro Santana Prates
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Sayuri Honorio de Paula Segáua
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Taissa dos Santos Uchiya
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM), Curso de Medicina, Vitória 29027-502, Brazil
| | - Vinicius Eduardo Daleprane
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Yasmin Moreto Guaitolini
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Creuza Rachel Vicente
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória 29090-040, Brazil
| | - Raquel Silva dos Reis Trabach
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Bruno Cancian de Araújo
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Eldamária de Vargas Wolfgramm dos Santos
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Flávia de Paula
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| | - Tiago José S. Lopes
- Department of Reproductive Biology, National Center for Child Health and Development Research Institute, Tokyo 157-8535, Japan
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo (UFES), Vitória 29075-910, Brazil (M.C.C.)
| |
Collapse
|
7
|
Zhang Y, Lv X, Chen L, Liu Y. The role and function of CLU in cancer biology and therapy. Clin Exp Med 2023; 23:1375-1391. [PMID: 36098834 DOI: 10.1007/s10238-022-00885-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/03/2022]
Abstract
Clusterin (CLU) is a highly evolutionary conserved glycoprotein with multiple isoform-specific functions and is widely distributed in different species. Accumulated evidence has shown the prominent role of CLU in regulating several essential physiological processes, including programmed cell death, metastasis, invasion, proliferation and cell growth via regulating diverse signaling pathways to mediate cancer progression in various cancers, such as prostate, breast, lung, liver, colon, bladder and pancreatic cancer. Several studies have revealed the potential benefit of inhibiting CLU in CLU inhibition-based targeted cancer therapies in vitro, in vivo or in human, suggesting CLU is a promising therapeutic target. This review discusses the multiple functions and mechanisms of CLU in regulating tumor progression of various cancers and summarizes the inhibitors of CLU used in CLU inhibition-based targeted cancer therapies.
Collapse
Affiliation(s)
- Yefei Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Xiang Lv
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Liming Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| | - Yan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Department of Biochemistry, Institute of Cancer, College of Life Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
8
|
Zhang Q, Teow JY, Kerishnan JP, Abd Halim AA, Chen Y. Clusterin and Its Isoforms in Oral Squamous Cell Carcinoma and Their Potential as Biomarkers: A Comprehensive Review. Biomedicines 2023; 11:biomedicines11051458. [PMID: 37239129 DOI: 10.3390/biomedicines11051458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent type of head and neck cancer, ranked as the sixth most common cancer worldwide, accounting for approximately 300,000 new cases and 145,000 deaths annually. Early detection using biomarkers significantly increases the 5-year survival rate of OSCC by up to 80-90%. Clusterin (CLU), also known as apolipoprotein J, is a sulfated chaperonic glycoprotein expressed in all tissues and human fluids and has been reported to be a potential biomarker of OSCC. CLU has been implicated as playing a vital role in many biological processes such as apoptosis, cell cycle, etc. Abnormal CLU expression has been linked with the development and progression of cancers. Despite the fact that there are many studies that have reported the involvement of CLU and its isoforms in OSCC, the exact roles of CLU and its isoforms in OSCC carcinogenesis have not been fully explored. This article aims to provide a comprehensive review of the current understanding of CLU structure and genetics and its correlation with OSCC tumorigenesis to better understand potential diagnostic and prognostic biomarker development. The relationship between CLU and chemotherapy resistance in cancer will also be discussed to explore the therapeutic application of CLU and its isoforms in OSCC.
Collapse
Affiliation(s)
- Qinyi Zhang
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Jun Yao Teow
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Adyani Azizah Abd Halim
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Yeng Chen
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
9
|
Fu Y, Du Q, Cui T, Lu Y, Niu G. A pan-cancer analysis reveals role of clusterin ( CLU) in carcinogenesis and prognosis of human tumors. Front Genet 2023; 13:1056184. [PMID: 36685863 PMCID: PMC9846084 DOI: 10.3389/fgene.2022.1056184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Clusterin (CLU) is a chaperone-like protein that has been demonstrated to have a direct relationship with cancer occurrence, progression, or metastasis. Clusterin was downregulated in tumor tissues using three datasets of tongue squamous carcinoma from the Gene Expression Omnibus. We further retrieved datasets from The Cancer Genome Atlas and Gene Expression Omnibus to thoroughly investigate the carcinogenic consequences of Clusterin. Our findings revealed that decreased Clusterin expression in malignancies was associated with a worse overall survival prognosis in individuals with multiple tumors; Clusterin gene deep deletions were found in almost all malignancies and were connected to most cancer patient's prognosis, Clusterin DNA methylation level was dependent on tumor type, Clusterin expression was also linked to the invasion of cancer-associated CD8+ T-cells and fibroblasts in numerous cancer forms. Moreover, pathway enrichment analysis revealed that Clusterin primarily regulates biological processes such as cholesterol metabolism, phospholipid binding, and protein-lipid complex formation. Overall, our pan-cancer research suggests that Clusterin expression levels are linked to tumor carcinogenesis and prognosis, which contributes to understanding the probable mechanism of Clusterin in tumorigenesis as well as its clinical prognostic significance.
Collapse
Affiliation(s)
- Yizhe Fu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Stomatology, Beijing Integrated Traditional Chinese and Western Medicine Hospital, Beijing, China
| | - Qiao Du
- Department of Stomatology, Beijing Integrated Traditional Chinese and Western Medicine Hospital, Beijing, China
| | - Tiehan Cui
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuying Lu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Stomatology, Beijing Integrated Traditional Chinese and Western Medicine Hospital, Beijing, China
| | - Guangliang Niu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, China,Department of Stomatology, Beijing Integrated Traditional Chinese and Western Medicine Hospital, Beijing, China,*Correspondence: Guangliang Niu,
| |
Collapse
|
10
|
Xu F, Zhang X, Chen Z, He S, Guo J, Yu L, Wang Y, Hou C, Ai-Furas H, Zheng Z, Smaill JB, Patterson AV, Zhang ZM, Chen L, Ren X, Ding K. Discovery of Isoform-Selective Akt3 Degraders Overcoming Osimertinib-Induced Resistance in Non-Small Cell Lung Cancer Cells. J Med Chem 2022; 65:14032-14048. [PMID: 36173763 DOI: 10.1021/acs.jmedchem.2c01246] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
EGFR inhibitor therapies have brought significant benefit to NSCLC patients. However, all patients gradually progress to acquired resistance via diverse mechanisms. Akt3 overexpression but not Akt1/2 is one of the found molecular events that mediate osimertinib (1) resistance in NSCLC patients. Here, we report 12l as the first bona fide isoform-selective Akt3 degrader which potently induced proteasomal degradation of the target both in vitro and in vivo, whereas its effects on Akt1/2 were minimal. Using 12l as a tool, non-canonical function of Akt3 was validated to contribute greatly to survival of 1-resistant H1975OR NSCLC cells. Degrader 12l potently suppressed the growth of H1975OR as well as several NSCLC cell lines with low nanomolar IC50 values and demonstrated promising in vivo antitumor efficacy in nude mice bearing H1975OR or PC9 NSCLC xenograft models. Selective degradation of Akt3 may be considered as a novel strategy for human cancer therapy.
Collapse
Affiliation(s)
- Fang Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, Guangzhou 510632, China
| | - Xin Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, Guangzhou 510632, China
| | - Zhipeng Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Sheng He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jing Guo
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lei Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yongjin Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Caiyun Hou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hawaa Ai-Furas
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zongyao Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Adam V Patterson
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Liang Chen
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiaomei Ren
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 210530, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, Guangzhou 510632, China.,The First Affiliated Hospital (Huaqiao Hospital), Jinan University, Guangzhou 510632, China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 210530, China
| |
Collapse
|
11
|
Clusterin negatively modulates mechanical stress-mediated ligamentum flavum hypertrophy through TGF-β1 signaling. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1549-1562. [PMID: 36131026 PMCID: PMC9534863 DOI: 10.1038/s12276-022-00849-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/20/2022] [Accepted: 07/10/2022] [Indexed: 11/25/2022]
Abstract
Ligamentum flavum hypertrophy (LFH) is a major cause of lumbar spinal canal stenosis (LSCS). The pathomechanisms for LFH have not been fully elucidated. Isobaric tags for relative and absolute quantitation (iTRAQ) technology, proteomics assessments of human ligamentum flavum (LF), and successive assays were performed to explore the effect of clusterin (CLU) upregulation on LFH pathogenesis. LFH samples exhibited higher cell positive rates of the CLU, TGF-β1, α-SMA, ALK5 and p-SMAD3 proteins than non-LFH samples. Mechanical stress and TGF-β1 initiated CLU expression in LF cells. Notably, CLU inhibited the expression of mechanical stress-stimulated and TGF-β1-stimulated COL1A2 and α-SMA. Mechanistic studies showed that CLU inhibited mechanical stress-stimulated and TGF-β1-induced SMAD3 activities through suppression of the phosphorylation of SMAD3 and by inhibiting its nuclear translocation by competitively binding to ALK5. PRKD3 stabilized CLU protein by inhibiting lysosomal distribution and degradation of CLU. CLU attenuated mechanical stress-induced LFH in vivo. In summary, the findings showed that CLU attenuates mechanical stress-induced LFH by modulating the TGF-β1 pathways in vitro and in vivo. These findings imply that CLU is induced by mechanical stress and TGF-β1 and inhibits LF fibrotic responses via negative feedback regulation of the TGF-β1 pathway. These findings indicate that CLU is a potential treatment target for LFH. The protein clusterin regulates the body’s response to lower back pain induced by mechanical stress and could be a target for treatments. Lower back pain is common and is exacerbated by our upright stance. A major cause of the pain is excessive cell growth (hypertrophy) in the ligaments between vertebrae. This growth narrows the spinal canal and compresses nerves. Using a unique mouse model bred to walk upright, Zhongmin Zhang and Liang Wang at Southern Medical University in Guangzhou, China, and co-workers showed that clusterin, a protein involved in regulation of cell survival, can reduce the hypertrophy caused by mechanical stresses, and could be used in back pain treatments. Clusterin regulates the activity of the growth factor TGF-β1, which plays a role in synthesizing new tissues after injury, but can spur excessive growth.
Collapse
|
12
|
Chang X, Lu T, Xu R, Wang C, Zhao J, Zhang L. Identification of lactate metabolism-related subtypes and development of a lactate-related prognostic indicator of lung adenocarcinoma. Front Genet 2022; 13:949310. [PMID: 36092870 PMCID: PMC9449370 DOI: 10.3389/fgene.2022.949310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/28/2022] [Indexed: 12/25/2022] Open
Abstract
Background: Increasing evidence supports that lactate plays an important role in tumor proliferation, invasion and within the tumor microenvironment (TME). This is particularly relevant in lung adenocarcinoma (LUAD). Therefore, there is a current need to investigate lactate metabolism in LUAD patients and how lactate metabolism is affected by different therapies. Methods: Data from LUAD patients were collected from The Cancer Genome Atlas (TCGA) and patients were divided into two subtypes according to 12 lactate metabolism-related genes to explore the effect of lactate metabolism in LUAD. We established a lactate-related prognostic indicator (LRPI) based on different gene expression profiles. Subsequently, we investigated associations between this LRPI and patient survival, molecular characteristics and response to therapy. Some analyses were conducted using the Genomics of Drug Sensitivity in Cancer (GDSC) database. Results: The two LUAD subtypes exhibited different levels of lactate metabolism, in which patients that displayed high lactate metabolism also had a worse prognosis and a poorer immune environment. Indeed, LRPI was shown to accurately predict the prognosis of LUAD patients. Patients with a high LRPI showed a poor prognosis coupled with high sensitivity to chemotherapy using GDSC data. Meanwhile, these patients exhibited a high responsiveness to immunotherapy in TMB (Tumor mutation burden) and TIDE (Tumor Immune Dysfunction and Exclusion) analyses. Conclusion: We validated the effect of lactate metabolism on the prognosis of LUAD patients and established a promising biomarker. LRPI can predict LUAD patient survival, molecular characteristics and response to therapy, which can aid the individualized treatment of LUAD patients.
Collapse
|
13
|
Li H, Da D, Yu W, Chen L, Yang S, Zhang B, Wang Y, Li L, Dang C. Tumor suppressor genes are reactivated by miR-26A1 via enhancer reprogramming in NSCLC. Hum Mol Genet 2022; 32:79-92. [PMID: 35921230 PMCID: PMC9838096 DOI: 10.1093/hmg/ddac185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most malignant epithelial tumors. Studies have suggested that DNA hypermethylation of promoters and abnormal histone modifications could induce tumor suppressor genes (TSGs) downregulation in NSCLC. However, the exact mechanism of TSGs downregulation remains unclear. In this study, we found that there is no difference in the regions of most TSGs promoters in NSCLC. Moreover, we found that there is no DNA methylation difference in the region of VILL promoter in NSCLC compared with adjacent tissue samples by pyrosequencing. We further demonstrated that VILL was markedly reactivated in A549 and H1703 cells infected with miR-26A1 lentivirus while this activation was inhibited by JQ1, an enhancer inhibitor. In addition, we identified that miR-26A1 could function as a tumor suppressor to inhibit proliferation and metastasis of NSCLC cells. Chromatin immunoprecipitation assays revealed that overexpression of miR-26A1 could significantly induce the enrichment of H3K27ac at the enhancer regions in A549 cells. To sum up, our findings revealed that enhancer-mediated TSGs regulation occured in NSCLC, suggesting that miR-26A1 could serve as a key regulator and may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Hongling Li
- To whom correspondence should be addressed at: Department of Oncology, Gansu Provincial Hospital, Lanzhou 730000, PR China. Tel: +86-0931-8281563;
| | | | | | - Lu Chen
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200000, PR China
| | - Shuai Yang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200000, PR China
| | - Baolong Zhang
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200000, PR China
| | - Yongying Wang
- Department of Oncology, Gansu Provincial Hospital, The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, PR China
| | - Linyu Li
- Department of Oncology, Gansu Provincial Hospital, The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, PR China
| | - Chunyan Dang
- Department of Oncology, Gansu Provincial Hospital, The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou 730000, PR China
| |
Collapse
|
14
|
Cytoplasmic Clusterin Suppresses Lung Cancer Metastasis by Inhibiting the ROCK1-ERK Axis. Cancers (Basel) 2022; 14:cancers14102463. [PMID: 35626071 PMCID: PMC9140019 DOI: 10.3390/cancers14102463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary We show that CLU, especially cytoplasmic precursor CLU, is downregulated in lung cancer and correlates with poor survival. The silencing of CLU promotes lung cancer cell migration and invasion, while the overexpression of CLU potently inhibits these phenomena. Interestingly, secretory CLU proteins are slightly decreased in lung cancer tissue and fail to exert similar anti-metastatic effects like cytoplasmic precursor CLU, demonstrating that cytoplasmic precursor CLU is the primary functional isoform of CLU, which exerts the anti-metastatic effects of lung cancer. Mechanistically, cytoplasmic precursor CLU binds ROCK1 to decrease phosphorylation of ERK1/2 by inhibiting the kinase activity of ROCK1, leading to an anti-metastatic effect in lung cancer cells. These findings reveal a novel insight into the function and regulation of cytoplasmic CLU in lung cancer, which might be a potential target for the diagnosis and treatment of metastatic lung cancer. Abstract Clusterin (CLU) is a heterodimeric glycoprotein that has been detected in diverse human tissues and implicated in many cellular processes. Accumulating evidence indicates that the expression of secreted CLU correlates with the progression of cancers. However, the molecular mechanisms underlying its tumor-suppressive roles are incompletely uncovered. In this study, we demonstrate that precursor CLU is widely downregulated in lung cancer tissue, in which secretory CLU proteins are slightly decreased. Impressively, overexpressing CLU potently inhibits the migration, invasion and metastasis of lung cancer cells, whereas silencing CLU promotes this behavior; however, it appears that secretory CLU fails to exert similar anti-metastatic effects. Interestingly, the cytoplasmic precursor CLU binds ROCK1 to abrogate the interaction between ROCK1 and ERK and impair ERK activity, leading to the suppression of lung cancer invasiveness. Meanwhile, the expression of CLU was remarkably diminished in lung cancer bone metastasis loci when compared with subcutaneous tumors in the mouse model and hardly detected in the bone metastasis loci of lung cancer patients when compared with the primary. These findings reveal a novel insight into the function and regulation of cytoplasmic CLU in lung cancer, which might be a potential target for the diagnosis and treatment of metastatic lung cancer.
Collapse
|
15
|
Pathak K, Pathak MP, Saikia R, Gogoi U, Sahariah JJ, Zothantluanga JH, Samanta A, Das A. Cancer Chemotherapy via Natural Bioactive Compounds. Curr Drug Discov Technol 2022; 19:e310322202888. [PMID: 35362385 DOI: 10.2174/1570163819666220331095744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Cancer-induced mortality is increasingly prevalent globally which skyrocketed the necessity to discover new/novel safe and effective anticancer drugs. Cancer is characterized by the continuous multiplication of cells in the human which is unable to control. Scientific research is drawing its attention towards naturally-derived bioactive compounds as they have fewer side effects compared to the current synthetic drugs used for chemotherapy. OBJECTIVE Drugs isolated from natural sources and their role in the manipulation of epigenetic markers in cancer are discussed briefly in this review article. METHODS With advancing medicinal plant biotechnology and microbiology in the past century, several anticancer phytomedicines were developed. Modern pharmacopeia contains at least 25% herbal-based remedy including clinically used anticancer drugs. These drugs mainly include the podophyllotoxin derivatives vinca alkaloids, curcumin, mistletoe plant extracts, taxanes, camptothecin, combretastatin, and others including colchicine, artesunate, homoharringtonine, ellipticine, roscovitine, maytanasin, tapsigargin,andbruceantin. RESULTS Compounds (psammaplin, didemnin, dolastin, ecteinascidin,and halichondrin) isolated from marine sources and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates. They have been evaluated for their anticancer activity on cells and experimental animal models and used chemotherapy.Drug induced manipulation of epigenetic markers plays an important role in the treatment of cancer. CONCLUSION The development of a new drug from isolated bioactive compounds of plant sources has been a feasible way to lower the toxicity and increase their effectiveness against cancer. Potential anticancer therapeutic leads obtained from various ethnomedicinal plants, foods, marine, and microorganisms are showing effective yet realistically safe pharmacological activity. This review will highlight important plant-based bioactive compounds like curcumin, stilbenes, terpenes, other polyphenolic phyto-compounds, and structurally related families that are used to prevent/ ameliorate cancer. However, a contribution from all possible fields of science is still a prerequisite for discovering safe and effective anticancer drugs.
Collapse
Affiliation(s)
- Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Sciences, Assam down town University, Panikhaiti, Guwahati-781026, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Jon Jyoti Sahariah
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Abhishek Samanta
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| |
Collapse
|
16
|
Identification of Candidate lncRNA and Pseudogene Biomarkers Associated with Carbon-Nanotube-Induced Malignant Transformation of Lung Cells and Prediction of Potential Preventive Drugs. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052936. [PMID: 35270630 PMCID: PMC8910615 DOI: 10.3390/ijerph19052936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 02/05/2023]
Abstract
Mounting evidence has linked carbon nanotube (CNT) exposure with malignant transformation of lungs. Long non-coding RNAs (lncRNAs) and pseudogenes are important regulators to mediate the pathogenesis of diseases, representing potential biomarkers for surveillance of lung carcinogenesis in workers exposed to CNTs and possible targets to develop preventive strategies. The aim of this study was to screen crucial lncRNAs and pseudogenes and predict preventive drugs. GSE41178 (small airway epithelial cells exposed to single- or multi-walled CNTs or dispersant control) and GSE56104 (lung epithelial cells exposed to single-walled CNTs or dispersant control) datasets were downloaded from the Gene Expression Omnibus database. Weighted correlation network analysis was performed for these two datasets, and the turquoise module was preserved and associated with CNT-induced malignant phenotypes. In total, 24 lncRNAs and 112 pseudogenes in this module were identified as differentially expressed in CNT-exposed cells compared with controls. Four lncRNAs (MEG3, ARHGAP5-AS1, LINC00174 and PVT1) and five pseudogenes (MT1JP, MT1L, RPL23AP64, ZNF826P and TMEM198B) were predicted to function by competing endogenous RNA (MEG3/RPL23AP64-hsa-miR-942-5p-CPEB2/PHF21A/BAMBI; ZNF826P-hsa-miR-23a-3p-SYNGAP1, TMEM198B-hsa-miR-15b-5p-SYNGAP1/CLU; PVT1-hsa-miR-423-5p-PSME3) or co-expression (MEG3/MT1L/ZNF826P/MT1JP-ATM; ARHGAP5-AS1-TMED10, LINC00174-NEDD4L, ARHGAP5-AS1/PVT1-NIP7; MT1L/MT1JP-SYNGAP1; MT1L/MT1JP-CLU) mechanisms. The expression levels and prognosis of all genes in the above interaction pairs were validated using lung cancer patient samples. The receiver operating characteristic curve analysis showed the combination of four lncRNAs, five pseudogenes or lncRNAs + pseudogenes were all effective for predicting lung cancer (accuracy >0.8). The comparative toxicogenomics database suggested schizandrin A, folic acid, zinc or gamma-linolenic acid may be preventive drugs by reversing the expression levels of lncRNAs or pseudogenes. In conclusion, this study highlights lncRNAs and pseudogenes as candidate diagnostic biomarkers and drug targets for CNT-induced lung cancer.
Collapse
|
17
|
Cui Y, Miao C, Liu S, Tang J, Zhang J, Bu H, Wang Y, Liang C, Bao M, Hou C, Wu J, Chen X, Zhang X, Wang Z, Liu B. Clusterin suppresses invasion and metastasis of testicular seminoma by upregulating COL15a1. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1336-1350. [PMID: 34853731 PMCID: PMC8608570 DOI: 10.1016/j.omtn.2021.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/20/2021] [Accepted: 11/04/2021] [Indexed: 01/26/2023]
Abstract
Seminoma is the most common subtype of testicular germ cell tumor, with an increasing incidence worldwide. Clusterin (CLU) expression was found to be downregulated in testicular seminoma in our previous study. We now expanded the sample size, and further indicated that CLU expression correlates with tumor stage. Tcam-2 cell line was used to investigate the CLU function in testicular seminoma, and CLU was found to inhibit the proliferation and metastasis abilities. Besides, extracellular matrix protein COL15a1 was demonstrated as the downstream of CLU to affect the epithelial-mesenchymal transition (EMT) process via competitively binding to DDR1 with COL1A1 and inhibiting the phosphorylation of PYK2. MEF2A was found to interact with CLU and bind to the promoter of COL15a1 and so upregulate its expression. This is the first study using testicular xenografts in situ to simulate testicular seminoma metastatic and proliferative capacities. In conclusion, CLU acts as a tumor suppressor to inhibit the metastasis of testicular seminoma by interacting with MEF2A to upregulate COL15a1 and blocking the EMT process.
Collapse
Affiliation(s)
- Yankang Cui
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chenkui Miao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shouyong Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jingyuan Tang
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Hengtao Bu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuhao Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Meiling Bao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chao Hou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiajin Wu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaochao Chen
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiang Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
18
|
Ge QY, Chen J, Li GX, Tan XL, Song J, Ning D, Mo J, Du PC, Liu QM, Liang HF, Ding ZY, Zhang XW, Zhang BX. GRAMD4 inhibits tumour metastasis by recruiting the E3 ligase ITCH to target TAK1 for degradation in hepatocellular carcinoma. Clin Transl Med 2021; 11:e635. [PMID: 34841685 PMCID: PMC8597946 DOI: 10.1002/ctm2.635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Aberrant TAK1 (transforming growth factor β-activated kinase 1) activity is known to be involved in a variety of malignancies, but the regulatory mechanisms of TAK1 remain poorly understood. GRAMD4 (glucosyltransferase Rab-like GTPase activator and myotubularin domain containing 4) is a newly discovered p53-independent proapoptotic protein with an unclear role in HCC (hepatocellular carcinoma). RESULTS In this research, we found that GRAMD4 expression was lower in HCC samples, and its downregulation predicted worse prognosis for patients after surgical resection. Functionally, GRAMD4 inhibited HCC migration, invasion and metastasis. Mechanistically, GRAMD4 interacted with TAK1 to promote its protein degradation, thus, resulting in the inactivation of MAPK (Mitogen-activated protein kinase) and NF-κB pathways. Furthermore, GRAMD4 was proved to recruit ITCH (itchy E3 ubiquitin protein ligase) to promote the ubiquitination of TAK1. Moreover, high expression of TAK1 was correlated with low expression of GRAMD4 in HCC patients. CONCLUSIONS GRAMD4 inhibits the migration and metastasis of HCC, mainly by recruiting ITCH to promote the degradation of TAK1, which leads to the inactivation of MAPK and NF-κB signalling pathways.
Collapse
Affiliation(s)
- Qian yun Ge
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Jin Chen
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Gan xun Li
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Xiao long Tan
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Jia Song
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Deng Ning
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Jie Mo
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Peng cheng Du
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Qiu meng Liu
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Hui fang Liang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Ze yang Ding
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Xue wu Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
| | - Bi xiang Zhang
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP. R. China
- Clinical Medical Research Center of Hepatic SurgeryWuhanP. R. China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanP. R. China
- Key Laboratory of Organ TransplantationMinistry of EducationWuhanP. R. China
- Key Laboratory of Organ TransplantationNational Health CommissionWuhanP. R. China
- Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanP. R. China
| |
Collapse
|
19
|
Marozzi M, Parnigoni A, Negri A, Viola M, Vigetti D, Passi A, Karousou E, Rizzi F. Inflammation, Extracellular Matrix Remodeling, and Proteostasis in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22158102. [PMID: 34360868 PMCID: PMC8346982 DOI: 10.3390/ijms22158102] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is a multifaceted and complex pathology characterized by uncontrolled cell proliferation and decreased apoptosis. Most cancers are recognized by an inflammatory environment rich in a myriad of factors produced by immune infiltrate cells that induce host cells to differentiate and to produce a matrix that is more favorable to tumor cells’ survival and metastasis. As a result, the extracellular matrix (ECM) is changed in terms of macromolecules content, degrading enzymes, and proteins. Altered ECM components, derived from remodeling processes, interact with a variety of surface receptors triggering intracellular signaling that, in turn, cancer cells exploit to their own benefit. This review aims to present the role of different aspects of ECM components in the tumor microenvironment. Particularly, we highlight the effect of pro- and inflammatory factors on ECM degrading enzymes, such as metalloproteases, and in a more detailed manner on hyaluronan metabolism and the signaling pathways triggered by the binding of hyaluronan with its receptors. In addition, we sought to explore the role of extracellular chaperones, especially of clusterin which is one of the most prominent in the extracellular space, in proteostasis and signaling transduction in the tumor microenvironment. Although the described tumor microenvironment components have different biological roles, they may engage common signaling pathways that favor tumor growth and metastasis.
Collapse
Affiliation(s)
- Marina Marozzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| | - Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Aide Negri
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Via J.H. Dunant 5, 21100 Varese, Italy; (A.P.); (M.V.); (D.V.); (A.P.)
- Correspondence:
| | - Federica Rizzi
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43125 Parma, Italy; (M.M.); (A.N.); (F.R.)
| |
Collapse
|
20
|
Xu P, Mo X, Xia R, Jiang L, Zhang C, Xu H, Sun Q, Zhou G, Zhang Y, Wang Y, Xia H. KCNN4 promotes the progression of lung adenocarcinoma by activating the AKT and ERK signaling pathways. Cancer Biomark 2021; 31:187-201. [PMID: 33896824 DOI: 10.3233/cbm-201045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Potassium channels, encoded by more than seventy genes, are cell excitability transmembrane proteins and become evident to play essential roles in tumor biology. OBJECTIVE The deregulation of potassium channel genes has been related to cancer development and patient prognosis. The objective of this study is to understand the role of potassium channels in lung cancer. METHODS We examined all potassium channel genes and identified that KCNN4 is the most significantly overexpressed one in lung adenocarcinoma. The role and mechanism of KCNN4 in lung adenocarcinoma were further investigated by in vitro cell and molecular assay and in vivo mouse xenograft models. RESULTS We revealed that the silencing of KCNN4 significantly inhibits cell proliferation, migration, invasion, and tumorigenicity of lung adenocarcinoma. Further studies showed that knockdown of KCNN4 promotes cell apoptosis, induces cell cycle arrested in the S phase, and is associated with the epithelial to mesenchymal transition (EMT) process. Most importantly, we demonstrated that KCNN4 regulates the progression of lung adenocarcinoma through P13K/AKT and MEK/ERK signaling pathways. The use of inhibitors that targeted AKT and ERK also significantly inhibit the proliferation and metastasis of lung adenocarcinoma cells. CONCLUSIONS This study investigated the function and mechanism of KCNN4 in lung adenocarcinoma. On this basis, this means that KCNN4 can be used as a tumor marker for lung adenocarcinoma and is expected to become an important target for a potential drug.
Collapse
Affiliation(s)
- Ping Xu
- Department of Pathology, School of Basic Medical Sciences and Sir Run Run Hospital and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Pathology, School of Basic Medical Sciences and Sir Run Run Hospital and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Mo
- Department of Pathology, School of Basic Medical Sciences and Sir Run Run Hospital and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Pathology, School of Basic Medical Sciences and Sir Run Run Hospital and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruixue Xia
- Department of Respiratory and Critical Care Medicine, Henan University Huaihe Hospital, Kaifeng, Henan, China.,Department of Pathology, School of Basic Medical Sciences and Sir Run Run Hospital and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Long Jiang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Pathology, School of Basic Medical Sciences and Sir Run Run Hospital and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chengfei Zhang
- Department of Pathology, School of Basic Medical Sciences and Sir Run Run Hospital and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haojun Xu
- Department of Pathology, School of Basic Medical Sciences and Sir Run Run Hospital and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Sun
- Department of Pathology, School of Basic Medical Sciences and Sir Run Run Hospital and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, Jiangsu, China.,Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital and the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Yijie Zhang
- Department of Respiratory and Critical Care Medicine, Henan University Huaihe Hospital, Kaifeng, Henan, China
| | - Yongsheng Wang
- Nanjing Drum Tower Hospital Affiliated to Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hongping Xia
- Department of Pathology, School of Basic Medical Sciences and Sir Run Run Hospital and Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Cancer Hospital and the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.,Department of Respiratory and Critical Care Medicine, Henan University Huaihe Hospital, Kaifeng, Henan, China
| |
Collapse
|
21
|
Rodríguez-Rivera C, Garcia MM, Molina-Álvarez M, González-Martín C, Goicoechea C. Clusterin: Always protecting. Synthesis, function and potential issues. Biomed Pharmacother 2021; 134:111174. [DOI: 10.1016/j.biopha.2020.111174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
|
22
|
Praharaj PP, Patra S, Panigrahi DP, Patra SK, Bhutia SK. Clusterin as modulator of carcinogenesis: A potential avenue for targeted cancer therapy. Biochim Biophys Acta Rev Cancer 2020; 1875:188500. [PMID: 33385484 DOI: 10.1016/j.bbcan.2020.188500] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/30/2022]
Abstract
Clusterin (CLU) is an evolutionary conserved molecular chaperone present in different human tissues and fluids and established to be a significant cancer regulator. It controls several cancer-associated cellular events, including cancer cell proliferation, stemness, survival, metastasis, epithelial-mesenchymal transition, therapy resistance, and inhibition of programmed cell death to support cancer growth and recurrence. This multifunctional role of CLU makes it an ideal target for cancer control. More importantly, genetic and antisense-mediated (OGX-011) inhibition of CLU enhances the anticancer potential of different FDA-approved chemotherapeutic drugs at the clinical level, improving patient's survival. In this review, we have discussed the detailed mechanism of CLU-mediated modulation of different cancer-associated signaling pathways. We have also provided updated information on the current preclinical and clinical findings that drive trials in various cancer types for potential targeted cancer therapy.
Collapse
Affiliation(s)
- Prakash Priyadarshi Praharaj
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Debasna Pritimanjari Panigrahi
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|