1
|
Anzilotti S, Franco C, Valsecchi V, Cuomo O, Lombardi G, Di Muraglia N, De Iesu N, Laudati G, Annunziato L, Canzoniero LMT, Pignataro G. Modulation of ZnT-1 by Let7a unveils a therapeutic potential in amyotrophic lateral sclerosis. Neurotherapeutics 2025; 22:e00571. [PMID: 40113485 DOI: 10.1016/j.neurot.2025.e00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
The imbalance in cellular ionic homeostasis represents a hallmark of several neurodegenerative diseases, including Amyotrophic Lateral Sclerosis (ALS). Zinc Transporter 1 (ZnT1), the first described member of the ZnT family, stands out as the sole member of the SLC30 family responsible for exporting cytosolic zinc to the extracellular space. While ZnT1 is expressed across all tissues and cell types studied, it exhibits the highest prominence within the central nervous system. In ALS SOD1G93A mice, a reduction in ZnT1 expression consistent with disease progression has been observed, prompting our investigation into its role in ALS pathophysiology. Remarkably, through the use of a sequence complementary to the microRNA let-7a (anti-Let-7a) able to modulate ZnT1 expression, we demonstrated in ALS mice its capability to: (1) prevent the reduction in ZnT1 levels in the spinal cord; (2) preserve motor neuron survival in the ventral spinal horn; (3) decrease astroglial and microglial activation while sparing resident microglial cells in the spinal cord; and (4) improve the lifespan and alleviate motor symptoms.
Collapse
Affiliation(s)
- Serenella Anzilotti
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy; Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Cristina Franco
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giovanna Lombardi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Noemi Di Muraglia
- International School of Advanced Studies, University of Camerino, Camerino, Italy
| | | | - Giusy Laudati
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Naples, Italy
| | | | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
2
|
Zhang M, Zhang W, Chen Z, He L, Chen Q, Lan P, Li L, Wu X, Wu X, Xu J. LncRNA ENSSSCG00000035331 Alleviates Hippocampal Neuronal Ferroptosis and Brain Injury Following Porcine Cardiopulmonary Resuscitation by Regulating the miR-let7a/GPX4 Axis. CNS Neurosci Ther 2025; 31:e70377. [PMID: 40237277 PMCID: PMC12001066 DOI: 10.1111/cns.70377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/13/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Following successful cardiopulmonary resuscitation, those survivors of cardiac arrest (CA) often suffer from severe brain injury, and the latter can result in significant mortality and morbidity. Emerging evidence implicates that ferroptosis is involved in the pathogenesis of post-resuscitation brain injury, and its regulatory mechanisms remain to be investigated. Recently, some studies manifested that long noncoding RNAs could be critical regulators of cell ferroptosis in diverse ischemia-reperfusion injuries of vital organs. This study was designed to explore the role and mechanism of a newly screened long noncoding RNA ENSSSCG00000035331 in alleviating post-resuscitation hippocampal neuronal ferroptosis and further investigate its potential regulation by a novel antioxidant sulforaphane. METHODS AND RESULTS Healthy male pigs and mice were used to establish the models of CA and resuscitation in vivo. A hypoxia/reoxygenation (H/R) model using primary porcine hippocampal neurons was constructed to replicate post-resuscitation brain injury in vitro. We found that the expression of ENSSSCG00000035331 was significantly decreased in the post-resuscitation impaired hippocampus using RNA sequencing analysis and verification. Subsequently, ENSSSCG00000035331 overexpression significantly reduced ferroptosis-related ferrous iron and reactive oxygen species production while markedly increased glutathione and further alleviated post-resuscitation brain injury. Mechanistically, ENSSSCG00000035331 interacted with miR-let7a, then inhibited its binding with glutathione peroxidase 4 (GPX4) mRNA and finally promoted the recovery of the latter's translation after H/R stimulation. In addition, sulforaphane treatment significantly increased ENSSSCG00000035331 and GPX4 expression while markedly decreased miR-let7a expression and hippocampal neuronal ferroptosis and finally alleviated post-resuscitation brain injury. CONCLUSIONS Our findings highlighted that ENSSSCG00000035331 was a critical regulator of hippocampal neuronal ferroptosis after CA and resuscitation by targeting the miR-let7a/GPX4 axis, and additionally, sulforaphane might be a promising therapeutic agent for alleviating post-resuscitation brain injury by regulating the signaling axis mentioned above.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Emergency Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory of Trauma, Burn, and Medical RescueHangzhouChina
- Zhejiang Province Clinical Research Center for Emergency and Critical Care MedicineHangzhouChina
| | - Wenbin Zhang
- Department of Emergency Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory of Trauma, Burn, and Medical RescueHangzhouChina
- Zhejiang Province Clinical Research Center for Emergency and Critical Care MedicineHangzhouChina
| | - Ziwei Chen
- Department of Emergency Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory of Trauma, Burn, and Medical RescueHangzhouChina
- Zhejiang Province Clinical Research Center for Emergency and Critical Care MedicineHangzhouChina
| | - Lu He
- Department of Emergency Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory of Trauma, Burn, and Medical RescueHangzhouChina
- Zhejiang Province Clinical Research Center for Emergency and Critical Care MedicineHangzhouChina
| | - Qijiang Chen
- Department of Intensive Care MedicineThe First Hospital of NinghaiNingboChina
| | - Pin Lan
- Department of Emergency MedicineFifth Affiliated Hospital of Wenzhou Medical University, Lishui Central HospitalLishuiChina
| | - Lulu Li
- Department of Emergency Medicine, First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xianlong Wu
- Department of Emergency MedicineTaizhou First People's HospitalTaizhouChina
| | - Xingui Wu
- Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect DiseaseGuangzhouChina
- Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouChina
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Key Laboratory of Trauma, Burn, and Medical RescueHangzhouChina
- Zhejiang Province Clinical Research Center for Emergency and Critical Care MedicineHangzhouChina
| |
Collapse
|
3
|
Li T, Xu L, Shen P, Qiu J, Wang Y, Hu J, Guan P, Lin H, Jiang Z, Chen K, Wang J. The role of miRNAs in the associations between particulate matter and ischemic stroke: A nested case-control study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125750. [PMID: 39870131 DOI: 10.1016/j.envpol.2025.125750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/03/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Epidemiological studies have reported that atmospheric particulate matter (PM) contributes to ischemic stroke (IS). Biological studies also indicated that the pathway where PM induces IS involves several pathological processes. Moreover, exposure to PM can alter the expression of specific microRNAs (miRNAs) and ultimately accelerate the onset of IS by regulating related pathways. However, evidence on the role of miRNAs between PM and IS still needs to be fully elucidated. We used the miRNA sequencing datasets from the GEO (Gene Expression Omnibus) to screen miRNAs associated with IS. A nested case-control study was performed, including all incident ischemic stroke cases during the follow-up period and controls matched by age, sex, and entry seasons. Land use regression (LUR) models were constructed to estimate the levels of PM2.5 and PM10. The real-time quantitative PCR (RT-qPCR) assay was applied to detect the expression of candidate miRNAs in plasma samples collected at baseline to verify whether candidate miRNAs differentially expressed between cases and controls. Mediation analyses were applied to evaluate whether PM could induce IS by affecting the expression of miRNAs. We screened 23 miRNAs expressed differentially between cases and controls from the GEO database. A total of 605 incident ischemic stroke patients were finally included in the case group, and 605 healthy controls were matched. The RT-qPCR assay detected 15 differentially expressed miRNAs. Mediating effects of hsa-miR-107, hsa-miR-320b, hsa-miR-423-5p, hsa-miR-483-5p, and hsa-miR-935 were observed for the associations between PM and IS, indicating that PM could promote IS by altering the expression of those miRNAs. In this nested case-control study, PM might induce IS by affecting the expression of hsa-miR-107, hsa-miR-320b, hsa-miR-423-5p, hsa-miR-483-5p and hsa-miR-935.
Collapse
Affiliation(s)
- Tiezheng Li
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China
| | - Lisha Xu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China
| | - Peng Shen
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo, China
| | - Jie Qiu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China
| | - Yixing Wang
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Hu
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China
| | - Peng Guan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Hongbo Lin
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo, China
| | - Zhiqin Jiang
- Department of Chronic Disease and Health Promotion, Yinzhou District Center for Disease Control and Prevention, Ningbo, China
| | - Kun Chen
- Department of Public Health, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jianbing Wang
- Department of Public Health, and Department of Endocrinology of the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, China.
| |
Collapse
|
4
|
Tedeschi V, Nele V, Valsecchi V, Anzilotti S, Vinciguerra A, Zucaro L, Sisalli MJ, Cassiano C, De Iesu N, Pignataro G, Canzoniero LMT, Pannaccione A, De Rosa G, Secondo A. Nanoparticles encapsulating phosphatidylinositol derivatives promote neuroprotection and functional improvement in preclinical models of ALS via a long-lasting activation of TRPML1 lysosomal channel. Pharmacol Res 2024; 210:107491. [PMID: 39491634 DOI: 10.1016/j.phrs.2024.107491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease currently incurable, in which motor neuron degeneration leads to voluntary skeletal muscle atrophy. Molecularly, ALS is characterized by protein aggregation, synaptic and organellar dysfunction, and Ca2+ dyshomeostasis. Of interest, autophagy dysfunction is emerging as one of the main putative targets of ALS therapy. A tune regulation of this cleansing process is affordable by a proper stimulation of TRPML1, one of the main lysosomal channels. However, TRPML1 activation by PI(3,5)P2 has low open probability to remain in an active conformation. To overcome this drawback we developed a lipid-based formulation of PI(3,5)P2 whose putative therapeutic potential has been tested in in vitro and in vivo ALS models. Pharmacodynamic properties of PI(3,5)P2 lipid-based formulations (F1 and F2) on TRPML1 activity have been characterized by means of patch-clamp electrophysiology and Fura-2AM video-imaging in motor neuronal cells. Once selected for the ability to stabilize TRPML1 activity, the most effective preparation F1 was studied in vivo to measure neuromuscular function and survival of SOD1G93A ALS mice, thereby establishing its therapeutic profile. F1, but not PI(3,5)P2 alone, stabilized the open state of the lysosomal channel TRPML1 and increased the persistence of intracellular calcium concentration ([Ca2+]i). Then, F1 was effective in delaying motor neuron loss, improving innervated endplants and muscle performance in SOD1G93A mice, extending overall lifespan by an average of 10 days. Of note F1 prevented gliosis and autophagy dysfunction in ALS mice by restoring PI(3,5)P2 level. Our novel self-assembling lipidic formulation for PI(3,5)P2 delivery exerts a neuroprotective effect in preclinical models of ALS mainly regulating dysfunctional autophagy through TRPML1 activity stabilization.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples "Federico II", Via S. Pansini 5, Naples 80131, Italy
| | - Valeria Nele
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples "Federico II", Via S. Pansini 5, Naples 80131, Italy
| | - Serenella Anzilotti
- Department of Science and Technology-DST, University of Sannio, Via Port'Arsa 11, Benevento 82100, Italy
| | - Antonio Vinciguerra
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica Delle Marche", Via Tronto 10/A, Ancona 60126, Italy
| | - Laura Zucaro
- Biogem Scarl, Istituto di Ricerche Genetiche, Ariano Irpino, AV, Italy; Department of Translational Medical Sciences, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Josè Sisalli
- Department of Translational Medical Sciences, University of Naples "Federico II", Via S. Pansini 5, Naples 80131, Italy
| | - Chiara Cassiano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy
| | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples "Federico II", Via S. Pansini 5, Naples 80131, Italy
| | | | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, University of Naples "Federico II", Via S. Pansini 5, Naples 80131, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, Naples 80131, Italy.
| | - Agnese Secondo
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica Delle Marche", Via Tronto 10/A, Ancona 60126, Italy.
| |
Collapse
|
5
|
Cuomo O, Anzilotti S, Brancaccio P, Cepparulo P, Lombardi G, Viscardi V, Vinciguerra A, Annunziato L, Pignataro G. Systemic administration of blood-derived exosomes induced by remote ischemic post-conditioning, by delivering a specific cluster of miRNAs, ameliorates ischemic damage and neurological function. J Cereb Blood Flow Metab 2024; 44:1459-1471. [PMID: 39129187 PMCID: PMC11693698 DOI: 10.1177/0271678x241270284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/26/2024] [Accepted: 06/22/2024] [Indexed: 08/13/2024]
Abstract
MicroRNAs, contained in exosomes or freely circulating in the plasma, might play a pivotal role in the infarct-sparing effect exerted by remote limb ischemic postconditioning (RLIP). The aims of the present study were: (1) To evaluate the effect of pure exosomes isolated from plasma of animals subjected to RLIP systemically administered to ischemic rats; (2) To finely dissect exosomes content in terms of miRNAs; (3) To select those regulatory miRNAs specifically expressed in protective exosomes and to identify molecular pathways involved in their neurobeneficial effects. Circulating exosomes were isolated from blood of animals exposed to RLIP and administered to animals exposed to tMCAO by intracerebroventricular, intraperitoneal or intranasal routes. Exosomal miRNA signature was evaluated by microarray and FISH analysis. Plasmatic exosomes isolated from plasma of RLIP rats attenuated cerebral ischemia reperfusion injury and improved neurological functions until 3 days after ischemia induction. Interestingly, miR-702-3p and miR-423-5p seem to be mainly involved in exosome protective action by modulating NOD1 and NLRP3, two key triggers of neuroinflammation and neuronal death. Collectively, the results of the present work demonstrated that plasma-released exosomes after RLIP may transfer a neuroprotective signal to the brain of ischemic animals, thus representing a potentially translatable therapeutic strategy in stroke.
Collapse
Affiliation(s)
- Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Serenella Anzilotti
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giovanna Lombardi
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Viviana Viscardi
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
- International School of Advanced Studies, University of Camerino, Camerino, Italy
| | - Antonio Vinciguerra
- Department of Biomedical Sciences and Public Healty, University “Politecnica delle Marche”, Ancona, Italy
| | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Yu H, Li X, Zhang Q, Geng L, Su B, Wang Y. miR-143-3p modulates depressive-like behaviors via Lasp1 in the mouse ventral hippocampus. Commun Biol 2024; 7:944. [PMID: 39098885 PMCID: PMC11298515 DOI: 10.1038/s42003-024-06639-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024] Open
Abstract
Depression is a prevalent and intricate mental disorder. The involvement of small RNA molecules, such as microRNAs in the pathogenesis and neuronal mechanisms underlying the depression have been documented. Previous studies have demonstrated the involvement of microRNA-143-3p (miR-143-3p) in the process of fear memory and pathogenesis of ischemia; however, the relationship between miR-143-3p and depression remains poorly understood. Here we utilized two kinds of mouse models to investigate the role of miR-143-3p in the pathogenesis of depression. Our findings reveal that the expression of miR-143-3p is upregulated in the ventral hippocampus (VH) of mice subjected to chronic restraint stress (CRS) or acute Lipopolysaccharide (LPS) treatment. Inhibiting the expression of miR-143-3p in the VH effectively alleviates depressive-like behaviors in CRS and LPS-treated mice. Furthermore, we identify Lasp1 as one of the downstream target genes regulated by miR-143-3p. The miR-143-3p/Lasp1 axis primarily affects the occurrence of depressive-like behaviors in mice by modulating synapse numbers in the VH. Finally, miR-143-3p/Lasp1-induced F-actin change is responsible for the synaptic number variations in the VH. In conclusion, this study enhances our understanding of microRNA-mediated depression pathogenesis and provides novel prospects for developing therapeutic approaches for this intractable mood disorder.
Collapse
Affiliation(s)
- Hui Yu
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Xiaobing Li
- Medical Experimental Center, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 250000, Jinan, China
- Department of Human Anatomy Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, China
| | - Qiyao Zhang
- Medical Experimental Center, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 250000, Jinan, China
| | - Lian Geng
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
| | - Bo Su
- Department of Cell Biology, Shandong Provincial Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China.
| | - Yue Wang
- Medical Experimental Center, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, 250000, Jinan, China.
- Department of Human Anatomy Histology and Embryology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 250117, Jinan, China.
| |
Collapse
|
7
|
Aslan ES, Aydin E. Investigating the role of let-7a microRNA in cisplatin sensitivity of A549 lung cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3979-3984. [PMID: 37991541 DOI: 10.1007/s00210-023-02858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Lung cancer (LC) is a major cause of death worldwide, and cisplatin is commonly used as a chemotherapeutic drug for the treatment of LC. However, high doses of cisplatin can reduce its efficacy, leading to the need for new methods to increase LC cell sensitivity to this drug molecule. To overcome this problem, it is important to discover new methods to increase the sensitivity of LC cells to cisplatin. In this study, we investigated the use of anti-let-7a, a microRNA, to enhance the cisplatin sensitivity in A549 LC cells by comparing its effects with the commonly used oncogenes akt1 and pik3ca. The A549 cell line was transfected with anti-let-7a, and its effects were analyzed using functional assays. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay was used for the measurement of cell viability, and gene expression levels of cell death-associated genes, were analyzed by using quantitative real-time PCR (qRT-PCR). Results showed that anti-let-7a downregulation decreased the viability of A549 cells significantly compared to the control group in the presence of cisplatin. Moreover, the single treatment of cells with anti-let-7a and cisplatin resulted in significant changes in gene expression levels, with the increased expression of pro-apoptotic genes and decreased expression of anti-apoptotic genes. Moreover, anti-let-7a treatment was found to increase the response of A549 cells to cisplatin by reducing the expression of oncogenes akt1 and pik3ca. This study suggests that anti-let-7a treatment may enhance the A549 LC cell sensitivity to cisplatin by modulating the expression of akt1 and pik3ca genes, making it a promising therapeutic target for LC treatment.
Collapse
Affiliation(s)
- Elif Sibel Aslan
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Biruni University, Merkezefendi, 75 Sk No:1-13 M. G, 34015, Zeytinburnu, İstanbul, Turkey.
| | - Ece Aydin
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Biruni University, Merkezefendi, 75 Sk No:1-13 M. G, 34015, Zeytinburnu, İstanbul, Turkey
| |
Collapse
|
8
|
Yan MY, Liu JM, Wu J, Chang Q. Impact of remote ischemic postconditioning on acute ischemic stroke in China: a systematic review and meta-analysis of randomized controlled trials. Syst Rev 2024; 13:141. [PMID: 38816852 PMCID: PMC11138007 DOI: 10.1186/s13643-024-02568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE Acute ischemic stroke (AIS) is a significant health burden in China, affecting a sizable portion of the population. Conventional pharmacological treatments frequently fall short of desirable outcomes. Therefore, exploring alternative therapies is crucial. Remote ischemic postconditioning (RIPostC) is a noninvasive and cost-effective adjunctive therapy. This study aimed to investigate the efficacy and safety of RIPostC as an adjunctive therapy for AIS to inform clinical practice. METHODS A comprehensive search was conducted across the PubMed, Embase, Web of Science, China National Knowledge Infrastructure (CNKI), WanFang, Weipu (VIP), and China Biology Medicine disc (CBM) databases up to October 2023. All included studies underwent bias risk assessment using the Cochrane risk-of-bias assessment tool. The primary outcome measure was the National Institute of Health Stroke Scale (NIHSS), with secondary outcomes including the Barthel index (BI), D-dimer, C-reactive protein (CRP), fibrinogen (FIB), brain-derived neurotrophic factor (BDNF), modified Rankin scale (mRS), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels. The data were analyzed using fixed-effects and random-effects models in Review Manager, with mean differences (MDs) and 95% confidence intervals (CIs) calculated for each outcome. The grading of recommendations, assessment, development, and evaluations (GRADE) approach was used to evaluate the level of evidence for each outcome measure. RESULTS This meta-analysis included 38 studies, encompassing 4334 patients. Compared with the control group, the RIPostC group had significantly lower NIHSS scores, serum CRP, D-dimer, IL-6, TNF-α, and FIB levels, and increased BDNF levels. Moreover, it improved the patient's BI and mRS scores. According to the GRADE approach, the quality of evidence for mRS was deemed "moderate," while the NIHSS, BI, and CRP were rated as "low" quality. IL-6, TNF-α, FIB, D-dimer, and BDNF received "very low" quality ratings. CONCLUSION The findings suggest that RIPostC activates endogenous protective mechanisms, providing benefits to patients with AIS.
Collapse
Affiliation(s)
- Ming-Yuan Yan
- Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Min Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Jing Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Chang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| |
Collapse
|
9
|
Cepparulo P, Cuomo O, Campani V, Vinciguerra A, Sisalli MJ, Nele V, Anzilotti S, Valsecchi V, Casamassa A, Brancaccio P, Scorziello A, De Rosa G, Annunziato L, Pignataro G. Anti-miRNA103/107 encapsulated in transferrin-conjugated lipid nanoparticles crosses blood-brain barrier and reduces brain ischemic damage. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102131. [PMID: 38379726 PMCID: PMC10877170 DOI: 10.1016/j.omtn.2024.102131] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
Abstract
MicroRNA (miRNA), by post-transcriptionally regulating the expression of genes involved in stroke response, represents important effectors in stroke pathophysiology. Recently, the 103/107 miRNA family emerged as a possible therapeutic target in stroke, as it controls the expression of sodium calcium exchanger 1, a plasma membrane transporter that plays a fundamental role in stroke pathophysiology. Although the neuroprotective properties of this and other miRNAs are promising, several pharmacokinetic drawbacks remain to be faced for the development of a translatable therapy based on small RNAs in CNS diseases. In the present study, to overcome these limitations, the anti-miRNA103/107 was encapsulated in specific preparations of lipid nanoparticles (LNPs), and their effectiveness was evaluated both in an in vitro model of hypoxia represented by primary neuronal cortical cultures exposed to oxygen and glucose deprivation followed by reoxygenation, and in an in vivo model of stroke obtained in rats exposed to transient occlusion of the middle cerebral artery. The results of the present study demonstrated that the encapsulation of anti-miRNA103/107 in transferrin-conjugated PEG-stabilized LNPs allowed the blood-brain barrier crossing and significantly reduced brain ischemic damage. The present achievements pave the way for the exploitation of a systemic intravenous miRNA delivery strategy in stroke therapy.
Collapse
Affiliation(s)
- Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5 - 80131 Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5 - 80131 Naples, Italy
| | - Virginia Campani
- Department of Pharmacy, University Federico II of Naples, Via Domenico Montesano, 49 - 80131 Naples, Italy
| | - Antonio Vinciguerra
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", 60126 Ancona, Italy
| | - Maria Josè Sisalli
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5 - 80131 Naples, Italy
| | - Valeria Nele
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Serenella Anzilotti
- Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Valeria Valsecchi
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5 - 80131 Naples, Italy
| | | | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5 - 80131 Naples, Italy
| | - Antonella Scorziello
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5 - 80131 Naples, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University Federico II of Naples, Via Domenico Montesano, 49 - 80131 Naples, Italy
| | | | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5 - 80131 Naples, Italy
| |
Collapse
|
10
|
Cepparulo P, Brancaccio P, Sirabella R, Anzilotti S, Guida N, Laudati G, Valsecchi V, Vinciguerra A, Viscardi V, D'Esposito L, Formisano L, Annunziato L, Pignataro G, Cuomo O. miR135a administration ameliorates brain ischemic damage by preventing TRPM7 activation during brain ischemia. CNS Neurosci Ther 2024; 30:e14448. [PMID: 37718696 PMCID: PMC10916440 DOI: 10.1111/cns.14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/13/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND miRNA-based strategies have recently emerged as a promising therapeutic approach in several neurodegenerative diseases. Unregulated cation influx is implicated in several cellular mechanisms underlying neural cell death during ischemia. The brain constitutively active isoform of transient receptor potential melastatin 7 (TRPM7) represents a glutamate excitotoxicity-independent pathway that significantly contributes to the pathological Ca2+ overload during ischemia. AIMS In the light of these premises, inhibition of TRPM7 may be a reasonable strategy to reduce ischemic injury. Since TRPM7 is a putative target of miRNA135a, the aim of the present paper was to evaluate the role played by miRNA135a in cerebral ischemia. Therefore, the specific objectives of the present paper were: (1) to evaluate miR135a expression in temporoparietal cortex of ischemic rats; (2) to investigate the effect of the intracerebroventricular (icv) infusion of miR135a on ischemic damage and neurological functions; and (3) to verify whether miR135a effects may be mediated by an alteration of TRPM7 expression. METHODS miR135a expression was evaluated by RT- PCR and FISH assay in temporoparietal cortex of ischemic rats. Ischemic volume and neurological functions were determined in rats subjected to transient middle cerebral artery occlusion (tMCAo) after miR135a intracerebroventricular perfusion. Target analysis was performed by Western blot. RESULTS Our results demonstrated that, in brain cortex, 72 h after ischemia, miR135a expression increased, while TRPM7 expression was parallelly downregulated. Interestingly, miR135a icv perfusion strongly ameliorated the ischemic damage and improved neurological functions, and downregulated TRPM7 protein levels. CONCLUSIONS The early prevention of TRPM7 activation is protective during brain ischemia.
Collapse
Affiliation(s)
- P. Cepparulo
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - P. Brancaccio
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - R. Sirabella
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - S. Anzilotti
- Department of Science and TechnologyUniversity of SannioBeneventoItaly
| | - N. Guida
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - G. Laudati
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - V. Valsecchi
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - A. Vinciguerra
- Department of Biomedical Sciences and Public HealthUniversity “Politecnica delle Marche”AnconaItaly
| | - V. Viscardi
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - L. D'Esposito
- Veterinary Service CenterUniversity of Naples Federico IINaplesItaly
| | - L. Formisano
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | | | - G. Pignataro
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| | - O. Cuomo
- Division of Pharmacology, Department of Neuroscience, School of MedicineUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
11
|
Licastro E, Pignataro G, Iliff JJ, Xiang Y, Lo EH, Hayakawa K, Esposito E. Glymphatic and lymphatic communication with systemic responses during physiological and pathological conditions in the central nervous system. Commun Biol 2024; 7:229. [PMID: 38402351 PMCID: PMC10894274 DOI: 10.1038/s42003-024-05911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Crosstalk between central nervous system (CNS) and systemic responses is important in many pathological conditions, including stroke, neurodegeneration, schizophrenia, epilepsy, etc. Accumulating evidence suggest that signals for central-systemic crosstalk may utilize glymphatic and lymphatic pathways. The glymphatic system is functionally connected to the meningeal lymphatic system, and together these pathways may be involved in the distribution of soluble proteins and clearance of metabolites and waste products from the CNS. Lymphatic vessels in the dura and meninges transport cerebrospinal fluid, in part collected from the glymphatic system, to the cervical lymph nodes, where solutes coming from the brain (i.e., VEGFC, oligomeric α-syn, β-amyloid) might activate a systemic inflammatory response. There is also an element of time since the immune system is strongly regulated by circadian rhythms, and both glymphatic and lymphatic dynamics have been shown to change during the day and night. Understanding the mechanisms regulating the brain-cervical lymph node (CLN) signaling and how it might be affected by diurnal or circadian rhythms is fundamental to find specific targets and timing for therapeutic interventions.
Collapse
Affiliation(s)
- Ester Licastro
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University "Federico II", Naples, Italy
| | - Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Yanxiao Xiang
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, UK
| | - Kazuhide Hayakawa
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Elga Esposito
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
- Consortium International pour la Recherche Circadienne sur l'AVC (CIRCA), Radcliffe Department of Medicine, University of Oxford, Headington, Oxford, UK.
| |
Collapse
|
12
|
Yu L, Zhang Z, Chen H, Wang M, Mao W, Hu J, Zuo D, Lv B, Wu W, Qi S, Cui G. Remote limb ischemic postconditioning inhibits microglia pyroptosis by modulating HGF after acute ischemia stroke. Bioeng Transl Med 2023; 8:e10590. [PMID: 38023701 PMCID: PMC10658568 DOI: 10.1002/btm2.10590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 12/01/2023] Open
Abstract
The repetitive inflation-deflation of a blood pressure cuff on a limb is known as remote limb ischemic postconditioning (RIPostC). It prevents brain damage induced by acute ischemia stroke (AIS). Pyroptosis, executed by the pore-forming protein gasdermin D (GSDMD), is a type of regulated cell death triggered by proinflammatory signals. It contributes to the pathogenesis of ischemic brain injury. However, the effects of RIPostC on pyroptosis following AIS remain largely unknown. In our study, linear correlation analysis confirmed that serum GSDMD levels in AIS patients upon admission were positively correlated with NIHSS scores. RIPostC treatment significantly reduced GSDMD level compared with patients without RIPostC at 3 days post-treatment. Besides, middle cerebral artery occlusion (MCAO) surgery was performed on C57BL/6 male mice and RIPostC was induced immediately after MCAO. We found that RIPostC suppressed the activation of NLRP3 inflammasome to reduce the maturation of GSDMD, leading to decreased pyroptosis in microglia after AIS. Hepatocyte growth factor (HGF) was identified using the high throughput screening. Importantly, HGF siRNA, exogenous HGF, and ISG15 siRNA were used to reveal that HGF/ISG15 is a possible mechanism of RIPostC regulation in vivo and in vitro.
Collapse
Affiliation(s)
- Lu Yu
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Zuohui Zhang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Hao Chen
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Miao Wang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Wenqi Mao
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Jinxia Hu
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Dandan Zuo
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Bingchen Lv
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Weifeng Wu
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| | - Suhua Qi
- School of Medical Technology, Xuzhou Key Laboratory of Laboratory DiagnosticsXuzhou Medical UniversityXuzhouChina
| | - Guiyun Cui
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
13
|
Meng J, Zhang J, Fang J, Li M, Ding H, Zhang W, Chen C. Dynamic inflammatory changes of the neurovascular units after ischemic stroke. Brain Res Bull 2022; 190:140-151. [DOI: 10.1016/j.brainresbull.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/21/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022]
|
14
|
Han Z, Li L, Tao Z, Wang R, Zhao H, Zheng Y, Yang Z, Zhong L, Fan J, Luo Y. Neutrophilic noncoding RNAs predict outcomes of acute ischemic stroke patients treated with recombinant tissue plasminogen activator. Front Pharmacol 2022; 13:1003806. [PMID: 36278201 PMCID: PMC9582270 DOI: 10.3389/fphar.2022.1003806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
There’s no evidence demonstrating the association between noncoding RNAs levels before IV recombinant tissue plasminogen activator (rtPA) administration and the outcomes of acute ischemic stroke (AIS). 145 AIS patients received rtPA treatment were recruited at the stroke center from 2018 to 2019, and 103 patients were included in this study. A panel of noncoding RNAs (miRNA-23a, miRNA-193a, miRNA-128, miRNA-99a, miRNA-let-7a, miRNA-494, miRNA-424, and lncRNA H19) were measured in the circulating neutrophils of AIS patients before rtPA treatment. Endpoints included excellent outcome (modified Rankin Scale score [mRS] 0–1) or poor outcome (mRS > 1) at 3 months and symptomatic intracerebral hemorrhage (sICH) after rtPA treatment. Among the eight noncoding RNAs detected in circulating neutrophils of the 103 participants, miRNA-23a levels were associated with the stroke severity on admission and symptom progression at 24 h after rtPA treatment. A noncoding RNA score composed of miRNA-23a, miRNA-99a, and lncRNA H19 was screened to predict the functional outcome at 3 months and the incidence of sICH after rtPA treatment. In the logistic regression analysis, the noncoding RNA score ≥ −0.336 (OR = 2.862 [1.029–7.958], p = 0.044) was an independent predictor of the poor outcome at 3 months after adjustment of clinical variables, the addition of the noncoding RNA score to the clinical model improved the discrimination (IDI% = 4.68 [0.65–8.71], p = 0.020), as well as the net reclassification (NRI% = 33.04 [0.54–71.49], p = 0.016). The noncoding RNA score ≥ −0.336 (OR = 5.250 [1.096–25.135], p = 0.038) was also independently predicted the sICH, the addition of the noncoding RNA score to the clinical variables improved discrimination and reclassification as well. The noncoding RNA score was also associated with the infarct volume and symptom improvement at 7 days after rtPA treatment. In conclusion, a higher neutrophilic noncoding RNA score provides predictive value to identify AIS patients with worse outcomes after rtPA treatment. miRNA-23a, miRNA-99a, and lncRNA H19 are worth further investigation for their effects in thrombolysis after AIS.
Collapse
Affiliation(s)
- Ziping Han
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Lingzhi Li
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yangmin Zheng
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhenhong Yang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Liyuan Zhong
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Junfen Fan
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
- *Correspondence: Junfen Fan, ; Yumin Luo,
| | - Yumin Luo
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
- Beijing Institute for Brain Disorders, Beijing, China
- *Correspondence: Junfen Fan, ; Yumin Luo,
| |
Collapse
|
15
|
Knockdown of PVT1 Exerts Neuroprotective Effects against Ischemic Stroke Injury through Regulation of miR-214/Gpx1 Axis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1393177. [PMID: 35978647 PMCID: PMC9377929 DOI: 10.1155/2022/1393177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
Previous studies have reported that lncRNA PVT1 was closely related to ischemic stroke. Here, the role of PVT1 in ischemic stroke and the underlying mechanism were investigated. OGDR-stimulated PC12 cells were used to construct a cell model to mimic ischemic stroke. si-PVT1, miR-214 mimic, inhibitor, or the negative controls were transfected into PC12 cells prior to OGDR treatment. PVT1, miR-214, and Gpx1 expression was measured by qRT-PCR and western blotting assays. Cell proliferation and apoptosis were tested by CCK-8 assay and western blotting. The expression levels of inflammatory factors were determined by ELISA Kit. Results showed that PVT1 was increased significantly in OGDR PC12 cells. PVT1 knockdown significantly enhanced cell viability and attenuated cell apoptosis, ROS generation, and inflammation in OGDR PC12 cells. More importantly, PVT1 or Gpx1 was a target of miR-214. Mechanistically, PVT1 acted as a competing endogenous RNA of miR-214 to regulate the downstream gene Gpx1. In conclusion, PVT1 knockdown attenuated OGDR PC12 cell injury by modulating miR-214/Gpx1 axis. These findings offer a potential novel strategy for ischemic stroke therapy.
Collapse
|
16
|
Wang Z, Dong H, Luan S, Liu J, Wang Q, Tao D, Cao H, Ji X. Distanct ischemic postconditioning in acute mild to moderate ischemic stroke: A randomized clinical study. J Clin Neurosci 2022; 100:89-93. [DOI: 10.1016/j.jocn.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/18/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022]
|
17
|
Li S, Zhang L, Lin J, Su A, Liu X, Zhang J, Xian X, Hu Y, Li W, Sun S, Zhang M. LncRNA BIRF Promotes Brain Ischemic Tolerance Induced By Cerebral Ischemic Preconditioning Through Upregulating GLT-1 via Sponging miR-330-5p. Mol Neurobiol 2022; 59:3996-4014. [PMID: 35451738 PMCID: PMC9167204 DOI: 10.1007/s12035-022-02841-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/04/2022] [Indexed: 10/24/2022]
Abstract
Long noncoding RNAs (lncRNAs) play an important regulatory role in various diseases. However, the role of lncRNAs in brain ischemic tolerance (BIT) induced by cerebral ischemic preconditioning (CIPC) is still unknown. The lncRNA profile of rat cortical astrocytes pretreated with ischemic preconditioning was analyzed by high-throughput sequencing. The results of Cell-Counting Kit-8 (CCK-8) assay showed that a novel lncRNA, NONRATT009133.2, which we referred to as brain ischemia-related factor (BIRF), was highly correlated with BIT. Through bioinformatics analysis, we predicted that BIRF, miR-330-5p, and GLT-1 (also named Slc1a2) might constitute a ceRNA regulatory network in the induction of BIT. We found that BIRF was upregulated by CIPC, which promoted GLT-1 expression and BIT induction. BIRF could directly bind to miR-330-5p. Furthermore, miR-330-5p directly targeted GLT-1, and miR-330-5p inhibited both GLT-1 expression and BIT induction in vitro and in vivo. Moreover, BIRF acts as a molecular sponge to competitively bind to miR-330-5p with GLT-1 mRNA, while the miR-330-5p inhibitor reversed all the effects of BIRF siRNA on GLT-1 expression and neuronal vitality. Taken together, our results demonstrate the important roles of the BIRF/miR-330-5p/GLT-1 axis in the induction of BIT by CIPC. BIRF may be a potentially effective therapeutic strategy against stroke injury.
Collapse
Affiliation(s)
- Shichao Li
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Lingyan Zhang
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Jiajie Lin
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Shijiazhuang, China
| | - Achou Su
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Xiyun Liu
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Jingge Zhang
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Xiaohui Xian
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Yuyan Hu
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Wenbin Li
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China
| | - Shaoguang Sun
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Department of Biochemistry and Molecular Biology, Cardiovascular Medical Science Center, Shijiazhuang, China.
| | - Min Zhang
- Key Laboratory of Critical Disease Mechanism and intervention of Hebei Province, Department of Pathophysiology, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
18
|
Aldous EK, Toor SM, Parray A, Al-Sarraj Y, Diboun I, Abdelalim EM, Arredouani A, El-Agnaf O, Thornalley PJ, Akhtar N, Pananchikkal SV, Shuaib A, Alajez NM, Albagha OME. Identification of Novel Circulating miRNAs in Patients with Acute Ischemic Stroke. Int J Mol Sci 2022; 23:3387. [PMID: 35328807 PMCID: PMC8955546 DOI: 10.3390/ijms23063387] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Ischemic strokes are associated with significant morbidity and mortality, but currently there are no reliable prognostic or diagnostic blood biomarkers. MicroRNAs (miRNAs) regulate various molecular pathways and may be used as biomarkers. Using RNA-Seq, we conducted comprehensive circulating miRNA profiling in patients with ischemic stroke compared with healthy controls. Samples were collected within 24 h of clinical diagnosis. Stringent analysis criteria of discovery (46 cases and 95 controls) and validation (47 cases and 96 controls) cohorts led to the identification of 10 differentially regulated miRNAs, including 5 novel miRNAs, with potential diagnostic significance. Hsa-miR-451a was the most significantly upregulated miRNA (FC; 4.8, FDR; 3.78 × 10-85), while downregulated miRNAs included hsa-miR-574-5p and hsa-miR-142-3p, among others. Importantly, we computed a multivariate classifier based on the identified miRNA panel to differentiate between ischemic stroke patients and healthy controls, which showed remarkably high sensitivity (0.94) and specificity (0.99). The area under the ROC curve was 0.97 and it is superior to other current available biomarkers. Moreover, in samples collected one month following stroke, we found sustained upregulation of hsa-miR-451a and downregulation of another 5 miRNAs. Lastly, we report 3 miRNAs that were significantly associated with poor clinical outcomes of stroke, as defined by the modified Rankin scores. The clinical translation of the identified miRNA panel may be explored further.
Collapse
Affiliation(s)
- Eman K. Aldous
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (E.K.A.); (S.M.T.); (Y.A.-S.); (I.D.); (E.M.A.); (N.M.A.)
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (A.A.); (P.J.T.)
| | - Salman M. Toor
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (E.K.A.); (S.M.T.); (Y.A.-S.); (I.D.); (E.M.A.); (N.M.A.)
| | - Aijaz Parray
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar; (A.P.); (N.A.); (S.V.P.)
| | - Yasser Al-Sarraj
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (E.K.A.); (S.M.T.); (Y.A.-S.); (I.D.); (E.M.A.); (N.M.A.)
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (A.A.); (P.J.T.)
| | - Ilhame Diboun
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (E.K.A.); (S.M.T.); (Y.A.-S.); (I.D.); (E.M.A.); (N.M.A.)
| | - Essam M. Abdelalim
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (E.K.A.); (S.M.T.); (Y.A.-S.); (I.D.); (E.M.A.); (N.M.A.)
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (A.A.); (P.J.T.)
| | - Abdelilah Arredouani
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (A.A.); (P.J.T.)
| | - Omar El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar;
| | - Paul J. Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (A.A.); (P.J.T.)
| | - Naveed Akhtar
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar; (A.P.); (N.A.); (S.V.P.)
| | - Sajitha V. Pananchikkal
- The Neuroscience Institute, Academic Health System, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar; (A.P.); (N.A.); (S.V.P.)
| | - Ashfaq Shuaib
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Department of Neurology, Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Nehad M. Alajez
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (E.K.A.); (S.M.T.); (Y.A.-S.); (I.D.); (E.M.A.); (N.M.A.)
- Translational Cancer and Immunity Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar
| | - Omar M. E. Albagha
- College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (E.K.A.); (S.M.T.); (Y.A.-S.); (I.D.); (E.M.A.); (N.M.A.)
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), Doha P.O. Box 34110, Qatar; (A.A.); (P.J.T.)
- Rheumatology and Bone Disease Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
19
|
Rani A, Barter J, Kumar A, Stortz JA, Hollen M, Nacionales D, Moldawer LL, Efron PA, Foster TC. Influence of age and sex on microRNA response and recovery in the hippocampus following sepsis. Aging (Albany NY) 2022; 14:728-746. [PMID: 35094981 PMCID: PMC8833110 DOI: 10.18632/aging.203868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 11/25/2022]
Abstract
Sepsis, defined as a dysregulated host immune response to infection, is a common and dangerous clinical syndrome. The excessive host inflammatory response can induce immediate and persistent cognitive decline, which can be worse in older individuals. Sex-specific differences in the outcome of infectious diseases and sepsis appear to favor females. We employed a murine model to examine the influence of age and sex on the brain's microRNA (miR) response following sepsis. Young and old mice of both sexes underwent cecal ligation and puncture (CLP) with daily restraint stress. Expression of hippocampal miR was examined in age- and sex-matched controls at 1 and 4 days post-CLP. Few miR were modified in a similar manner across age or sex and these few miR were generally associated with neuroprotection against inflammation. Similar to previous work examining transcription, young females exhibited a better recovery of the miR profile from day 1 to day 4, relative to young males and old females. For young males and all female groups, the initial response mainly involved a decrease in miR expression. In contrast, old males exhibited only upregulated miR on day 1 and day 4 and many of the miR upregulated on day 1 and day 4 were linked to neurodegeneration, increased neuroinflammation, and cognitive impairment. The results emphasize age and sex differences in epigenetic mechanisms that likely contribute to susceptibility or resilience to cognitive impairment due to sepsis.
Collapse
Affiliation(s)
- Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jolie Barter
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Julie A Stortz
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - McKenzie Hollen
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Dina Nacionales
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Lyle L Moldawer
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Philip A Efron
- Department of Surgery, University of Florida, Gainesville, FL 32611, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.,Genetics and Genomics Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
20
|
Jiao Y, Wang J, Xue M. Effect of remote limb ischemic post‐conditioning on the expression of miR‐21‐5p/PirB in the brain of rats with focal cerebral ischemia. Eur J Neurosci 2022; 55:1105-1117. [PMID: 35060207 DOI: 10.1111/ejn.15600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Yiming Jiao
- Department of Cerebrovascular Diseases The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Jinlan Wang
- Department of Cerebrovascular Diseases The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases The Second Affiliated Hospital of Zhengzhou University Zhengzhou Henan China
| |
Collapse
|
21
|
Pignataro G. Emerging Role of microRNAs in Stroke Protection Elicited by Remote Postconditioning. Front Neurol 2021; 12:748709. [PMID: 34744984 PMCID: PMC8567963 DOI: 10.3389/fneur.2021.748709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 12/27/2022] Open
Abstract
Remote ischemic conditioning (RIC) represents an innovative and attractive neuroprotective approach in brain ischemia. The purpose of this intervention is to activate endogenous tolerance mechanisms by inflicting a subliminal ischemia injury to the limbs, or to another “remote” region, leading to a protective systemic response against ischemic brain injury. Among the multiple candidates that have been proposed as putative mediators of the protective effect generated by the subthreshold peripheral ischemic insult, it has been hypothesized that microRNAs may play a vital role in the infarct-sparing effect of RIC. The effect of miRNAs can be exploited at different levels: (1) as transducers of protective messages to the brain or (2) as effectors of brain protection. The purpose of the present review is to summarize the most recent evidence supporting the involvement of microRNAs in brain protection elicited by remote conditioning, highlighting potential and pitfalls in their exploitation as diagnostic and therapeutic tools. The understanding of these processes could help provide light on the molecular pathways involved in brain protection for the future development of miRNA-based theranostic agents in stroke.
Collapse
Affiliation(s)
- Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, School of Medicine, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
22
|
Diamanti S, Beretta S, Tettamanti M, Sacco S, Sette G, Ornello R, Tiseo C, Caponnetto V, Beccia M, Alivernini D, Costanzo R, Ferrarese C. Multi-Center Randomized Phase II Clinical Trial on Remote Ischemic Conditioning in Acute Ischemic Stroke Within 9 Hours of Onset in Patients Ineligible to Recanalization Therapies (TRICS-9): Study Design and Protocol. Front Neurol 2021; 12:724050. [PMID: 34803872 PMCID: PMC8595400 DOI: 10.3389/fneur.2021.724050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
Aim: To assess the efficacy of remote ischemic conditioning (RIC) in patients with ischemic stroke within 9 h of onset, that are not candidates for recanalization therapies. Sample Size Estimates: A sample size of 80 patients (40 in each arm) should yield 80% power to detect a 20% difference in early neurological improvement at 72 h at p = 0.05, two sided. Methods and Design: TRICS-9 is a phase II, multicenter, controlled, block randomized, open-label, interventional clinical trial. Patients recruited in Italian academic hospitals will be randomized 1:1 to either RIC plus standard medical therapy or standard medical therapy alone. After randomization, RIC will be applied manually by four alternating cycles of inflation/deflation 5 min each, using a blood pressure cuff around the non-paretic arm. Study Outcomes: The primary efficacy outcome is early neurological improvement, defined as the percent change in the National Institute of Health Stroke Scale (NIHSS) at 72 h in each arm. Secondary outcomes include early neurologic improvement at 24 and 48 h, disability at 3 months, rate of symptomatic intracerebral hemorrhage, feasibility (proportion of patients completing RIC), tolerability after RIC and at 72 h, blood levels of HIF-1α, and HSP27 at 24 h and 72 h. Discussion/Conclusion: RIC in combination with recanalization therapies appears to add no clinical benefit to patients, but whether it is beneficial to those that are not candidates for recanalization therapies is still to be demonstrated. TRICS-9 has been developed to elucidate this issue. Clinical Trial Registration: ClinicalTrials.gov, identifier: NCT04400981.
Collapse
Affiliation(s)
- Susanna Diamanti
- Stroke Unit and Neurology Unit, Azienda Socio Sanitaria Territoriale (ASST)-Monza San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Simone Beretta
- Stroke Unit and Neurology Unit, Azienda Socio Sanitaria Territoriale (ASST)-Monza San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Mauro Tettamanti
- Dipartimento di Ricerca Neuroscienze, Istituto di Ricerche Farmacologiche Mario Negri Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Milano, Italy
| | - Simona Sacco
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy
| | - Giuliano Sette
- NEuroscienze Salute Mentale e Organi di Senso (NESMOS) Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Roma, Italy
| | - Raffaele Ornello
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy
| | - Cindy Tiseo
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy
| | - Valeria Caponnetto
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, L'Aquila, Italy
| | - Mario Beccia
- NEuroscienze Salute Mentale e Organi di Senso (NESMOS) Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Roma, Italy
| | - Diletta Alivernini
- NEuroscienze Salute Mentale e Organi di Senso (NESMOS) Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Roma, Italy
| | - Rocco Costanzo
- NEuroscienze Salute Mentale e Organi di Senso (NESMOS) Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Roma, Italy
| | - Carlo Ferrarese
- Stroke Unit and Neurology Unit, Azienda Socio Sanitaria Territoriale (ASST)-Monza San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
23
|
Nizari S, Basalay M, Chapman P, Korte N, Korsak A, Christie IN, Theparambil SM, Davidson SM, Reimann F, Trapp S, Yellon DM, Gourine AV. Glucagon-like peptide-1 (GLP-1) receptor activation dilates cerebral arterioles, increases cerebral blood flow, and mediates remote (pre)conditioning neuroprotection against ischaemic stroke. Basic Res Cardiol 2021; 116:32. [PMID: 33942194 PMCID: PMC8093159 DOI: 10.1007/s00395-021-00873-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/22/2021] [Indexed: 12/12/2022]
Abstract
Stroke remains one of the most common causes of death and disability worldwide. Several preclinical studies demonstrated that the brain can be effectively protected against ischaemic stroke by two seemingly distinct treatments: remote ischaemic conditioning (RIC), involving cycles of ischaemia/reperfusion applied to a peripheral organ or tissue, or by systemic administration of glucagon-like-peptide-1 (GLP-1) receptor (GLP-1R) agonists. The mechanisms underlying RIC- and GLP-1-induced neuroprotection are not completely understood. In this study, we tested the hypothesis that GLP-1 mediates neuroprotection induced by RIC and investigated the effect of GLP-1R activation on cerebral blood vessels, as a potential mechanism of GLP-1-induced protection against ischaemic stroke. A rat model of ischaemic stroke (90 min of middle cerebral artery occlusion followed by 24-h reperfusion) was used. RIC was induced by 4 cycles of 5 min left hind limb ischaemia interleaved with 5-min reperfusion periods. RIC markedly (by ~ 80%) reduced the cerebral infarct size and improved the neurological score. The neuroprotection established by RIC was abolished by systemic blockade of GLP-1R with a specific antagonist Exendin(9-39). In the cerebral cortex of GLP-1R reporter mice, ~ 70% of cortical arterioles displayed GLP-1R expression. In acute brain slices of the rat cerebral cortex, activation of GLP-1R with an agonist Exendin-4 had a strong dilatory effect on cortical arterioles and effectively reversed arteriolar constrictions induced by metabolite lactate or oxygen and glucose deprivation, as an ex vivo model of ischaemic stroke. In anaesthetised rats, Exendin-4 induced lasting increases in brain tissue PO2, indicative of increased cerebral blood flow. These results demonstrate that neuroprotection against ischaemic stroke established by remote ischaemic conditioning is mediated by a mechanism involving GLP-1R signalling. Potent dilatory effect of GLP-1R activation on cortical arterioles suggests that the neuroprotection in this model is mediated via modulation of cerebral blood flow and improved brain perfusion.
Collapse
Affiliation(s)
- Shereen Nizari
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Marina Basalay
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Philippa Chapman
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Nils Korte
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Alla Korsak
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Isabel N Christie
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Frank Reimann
- Wellcome Trust/MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Stefan Trapp
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
24
|
Tagliaferri S, Cepparulo P, Vinciguerra A, Campanile M, Esposito G, Maruotti GM, Zullo F, Annunziato L, Pignataro G. miR-16-5p, miR-103-3p, and miR-27b-3p as Early Peripheral Biomarkers of Fetal Growth Restriction. Front Pediatr 2021; 9:611112. [PMID: 33777862 PMCID: PMC7991078 DOI: 10.3389/fped.2021.611112] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
Current tests available to diagnose fetal hypoxia in-utero lack sensitivity thus failing to identify many fetuses at risk. Emerging evidence suggests that microRNAs derived from the placenta circulate in the maternal blood during pregnancy and may be used as non-invasive biomarkers for pregnancy complications. With the intent to identify putative markers of fetal growth restriction (FGR) and new therapeutic druggable targets, we examined, in maternal blood samples, the expression of a group of microRNAs, known to be regulated by hypoxia. The expression of microRNAs was evaluated in maternal plasma samples collected from (1) women carrying a preterm FGR fetus (FGR group) or (2) women with an appropriately grown fetus matched at the same gestational age (Control group). To discriminate between early- and late-onset FGR, the study population was divided into two subgroups according to the gestational age at delivery. Four microRNAs were identified as possible candidates for the diagnosis of FGR: miR-16-5p, miR-103-3p, miR-107-3p, and miR-27b-3p. All four selected miRNAs, measured by RT-PCR, resulted upregulated in FGR blood samples before the 32nd week of gestation. By contrast, miRNA103-3p and miRNA107-3p, analyzed between the 32nd and 37th week of gestation, showed lower expression in the FGR group compared to aged matched controls. Our results showed that measurement of miRNAs in maternal blood may form the basis for a future diagnostic test to determine the degree of fetal hypoxia in FGR, thus allowing the start of appropriate therapeutic interventions to alleviate the burden of this disease.
Collapse
Affiliation(s)
- Salvatore Tagliaferri
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Pasquale Cepparulo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Antonio Vinciguerra
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Marta Campanile
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Giuseppina Esposito
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Giuseppe Maria Maruotti
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Fulvio Zullo
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | | | - Giuseppe Pignataro
- Division of Obstetrics and Gynecology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy.,Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| |
Collapse
|