1
|
Hu X, Shui Y, Hirano H, Kusano K, Guo WZ, Fujino M, Li XK. PD-L1 antibody enhanced β-glucan antitumor effects via blockade of the immune checkpoints in a melanoma model. Cancer Immunol Immunother 2023; 72:719-731. [PMID: 36053290 DOI: 10.1007/s00262-022-03276-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/11/2022] [Indexed: 10/14/2022]
Abstract
In the tumor microenvironment (TME), one of the major functions of tumor-recruited CD11b+ cells are the suppression of the T-cell-mediated anti-tumor immune response. β-glucan could convert the phenotype of tumor-recruited CD11b+ cells from the suppressive to the promotive, and enhanced their anti-tumor effects. However, β-glucan could enhance the PD-1/PD-L1 expression on CD11b+ cells, while PD-1 could inhibit macrophage phagocytosis and PD-L1 could induce a co-inhibitory signal in T-cells and lead to T-cell apoptosis and anergy. These protumor effects may be reversed by PD-1/PD-L1 block therapy. In the present study, we focused on the efficacy of β-glucan anti-tumor therapy combined with anti-PD-L1 mAb treatment, and the mechanism of their synergistic effects could be fully verified. We verified the effect of β-glucan (i.e., inflammatory cytokine secretion of TNF-α, IL-12, IL-6, IL-1β and the expression of immune checkpoint PD-1/PD-L1) in naïve mouse peritoneal exudate CD11b+ cells. In our mouse melanoma model, treatment with a PD-L1 blocking antibody with β-glucan synergized tumor regression. After treatment with β-glucan and anti-PD-L1 mAb antibody, tumor infiltrating leukocyte (TILs) not only showed a competent T-cell function (CD107a, perforin, IL-2, IFN-γ and Ki67) and CTL population, but also showed enhanced tumor-recruited CD11b+ cell activity (IL-12, IL-6, IL-1β and PD-1). This effect was also verified in the peritoneal exudate CD11b+ cells of tumor-bearing mice. PD-1/PD-L1 blockade therapy enhanced the β-glucan antitumor effects via the blockade of tumor-recruited CD11b+ cell immune checkpoints in the melanoma model.
Collapse
Affiliation(s)
- Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Yifang Shui
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hiroshi Hirano
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | | | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan. .,Laboratory Animal, and Pathogen Bank, Management Department of Biosafety, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan. .,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Arnouk S, De Groof TW, Van Ginderachter JA. Imaging and therapeutic targeting of the tumor immune microenvironment with biologics. Adv Drug Deliv Rev 2022; 184:114239. [PMID: 35351469 DOI: 10.1016/j.addr.2022.114239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/14/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
The important role of tumor microenvironmental elements in determining tumor progression and metastasis has been firmly established. In particular, the presence and activity profile of tumor-infiltrating immune cells may be associated with the outcome of the disease and may predict responsiveness to (immuno)therapy. Indeed, while some immune cell types, such as macrophages, support cancer cell outgrowth and mediate therapy resistance, the presence of activated CD8+ T cells is usually indicative of a better prognosis. It is therefore of the utmost interest to obtain a full picture of the immune infiltrate in tumors, either as a prognostic test, as a way to stratify patients to maximize therapeutic success, or as therapy follow-up. Hence, the non-invasive imaging of these cells is highly warranted, with biologics being prime candidates to achieve this goal.
Collapse
|
3
|
Ng TSC, Allen HH, Rashidian M, Miller MA. Probing immune infiltration dynamics in cancer by in vivo imaging. Curr Opin Chem Biol 2022; 67:102117. [PMID: 35219177 PMCID: PMC9118268 DOI: 10.1016/j.cbpa.2022.102117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022]
Abstract
Cancer immunotherapies typically aim to stimulate the accumulation and activity of cytotoxic T-cells or pro-inflammatory antigen-presenting cells, reduce immunosuppressive myeloid cells or regulatory T-cells, or elicit some combination of effects thereof. Notwithstanding the encouraging results, immunotherapies such as PD-1/PD-L1-targeted immune checkpoint blockade act heterogeneously across individual patients. It remains challenging to predict and monitor individual responses, especially across multiple sites of metastasis or sites of potential toxicity. To address this need, in vivo imaging of both adaptive and innate immune cell populations has emerged as a tool to quantify spatial leukocyte accumulation in tumors non-invasively. Here we review recent progress in the translational development of probes for in vivo leukocyte imaging, focusing on complementary perspectives provided by imaging of T-cells, phagocytic macrophages, and their responses to therapy.
Collapse
Affiliation(s)
- Thomas S C Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Boston, MA 02114, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, United States
| | - Harris H Allen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02115, United States
| | - Mohammad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Ave, Boston, MA 02115, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, United States
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, 185 Cambridge St, Boston, MA 02114, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, Boston, MA 02114, United States.
| |
Collapse
|
4
|
Foster A, Nigam S, Tatum DS, Raphael I, Xu J, Kumar R, Plakseychuk E, Latoche JD, Vincze S, Li B, Giri R, McCarl LH, Edinger R, Ak M, Peddagangireddy V, Foley LM, Hitchens TK, Colen RR, Pollack IF, Panigrahy A, Magda D, Anderson CJ, Edwards WB, Kohanbash G. Novel theranostic agent for PET imaging and targeted radiopharmaceutical therapy of tumour-infiltrating immune cells in glioma. EBioMedicine 2021; 71:103571. [PMID: 34530385 PMCID: PMC8446777 DOI: 10.1016/j.ebiom.2021.103571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Malignant gliomas are deadly tumours with few therapeutic options. Although immunotherapy may be a promising therapeutic strategy for treating gliomas, a significant barrier is the CD11b+ tumour-associated myeloid cells (TAMCs), a heterogeneous glioma infiltrate comprising up to 40% of a glioma's cellular mass that inhibits anti-tumour T-cell function and promotes tumour progression. A theranostic approach uses a single molecule for targeted radiopharmaceutical therapy (TRT) and diagnostic imaging; however, there are few reports of theranostics targeting the tumour microenvironment. METHODS Utilizing a newly developed bifunctional chelator, Lumi804, an anti-CD11b antibody (αCD11b) was readily labelled with either Zr-89 or Lu-177, yielding functional radiolabelled conjugates for PET, SPECT, and TRT. FINDINGS 89Zr/177Lu-labeled Lumi804-αCD11b enabled non-invasive imaging of TAMCs in murine gliomas. Additionally, 177Lu-Lumi804-αCD11b treatment reduced TAMC populations in the spleen and tumour and improved the efficacy of checkpoint immunotherapy. INTERPRETATION 89Zr- and 177Lu-labeled Lumi804-αCD11b may be a promising theranostic pair for monitoring and reducing TAMCs in gliomas to improve immunotherapy responses. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Alexandra Foster
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shubhanchi Nigam
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David S Tatum
- Lumiphore, Inc., 600 Bancroft Way Berkeley, CA 94710, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jide Xu
- Lumiphore, Inc., 600 Bancroft Way Berkeley, CA 94710, USA
| | - Rajeev Kumar
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Joseph D Latoche
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Sarah Vincze
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Bo Li
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rajan Giri
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Lauren H McCarl
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert Edinger
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Murat Ak
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Lesley M Foley
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - T Kevin Hitchens
- Animal Imaging Center, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rivka R Colen
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Darren Magda
- Lumiphore, Inc., 600 Bancroft Way Berkeley, CA 94710, USA.
| | - Carolyn J Anderson
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh 15213, USA; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Chemistry, University of Missouri, Columbia, MO, 65211 USA.
| | - W Barry Edwards
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA.
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|