1
|
Guo J, Wang K, Sun Q, Liu J, Zheng J. Targeting B4GALT3 in BMSCs-EVs for Therapeutic Control of HCC via NF-κB pathway inhibition. Cell Biol Toxicol 2025; 41:67. [PMID: 40186771 PMCID: PMC11972216 DOI: 10.1007/s10565-025-10013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Examining the communications in the tumor microenvironment (TME) specific to hepatocellular carcinoma (HCC), this exploration looks into the role played by beta-1,4-Galactosyltransferase III (B4GALT3) in bone marrow mesenchymal stromal cell-derived extracellular vesicles (BMSCs-EVs) regarding the NF-κB pathway and the triggering of cancer-associated fibroblasts (CAF). Through a multidisciplinary approach combining transcriptome sequencing, bioinformatic analysis, and various experimental models, the involvement of B4GALT3 in regulating CAF activity by modulating NF-κB signaling was brought to light in our study. The outcomes suggest that targeting B4GALT3 could impede HCC cell migration and invasion, promote apoptosis, and dampen tumor progression and metastasis, offering novel insights into potential therapeutic strategies for combating HCC.
Collapse
Affiliation(s)
- Juncheng Guo
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Kaiqiong Wang
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Qigang Sun
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Jun Liu
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Jinfang Zheng
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
2
|
Wang W, Wu D, Liu J, Yang DA. Potential protective role of Lycium ruthenicum Murray polysaccharides against lipopolysaccharide-induced liver injury via mitochondrial biogenesis. Int J Biol Macromol 2025:141365. [PMID: 39993693 DOI: 10.1016/j.ijbiomac.2025.141365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Acute liver injury (ALI), which manifests as abnormal liver function and hepatocyte damage, lacks effective treatment modalities and is associated with a high mortality rate. Recent studies have revealed that hepatoprotection is related to polysaccharide components. In this study, we examined the effect and mechanism of Lycium ruthenicum Murray polysaccharides (LRMP) on liver injury induced by lipopolysaccharide (LPS). Male ICR mice were pre-administered LRMP (100 and 400 mg/kg BW) once daily for 21 days. A single injection of LPS (10 mg/kg BW) was administered on day 21 to induce ALI. The difference between the groups indicated that LRMP supplementation had no adverse effect on body weight. LRMP administration considerably alleviated liver injury, as evidenced by the decreased levels of aspartate transaminase and alanine transaminase, increased levels of albumin, and preservation of liver structural integrity. Moreover, LRMP reduced oxidative stress and inflammatory responses in the liver, maintained mitochondrial structure, regulated mitochondrial apoptotic pathway, and upregulated Sirtuin 1/peroxisome proliferator-activated receptor γ coactivator-1α signalling pathway involved in mitochondrial biogenesis. This study suggests the potential therapeutic application of LRMP in liver-related diseases, which will provide a basis for innovative strategies.
Collapse
Affiliation(s)
- Wenjia Wang
- College of Animal Science, Ningxia University, Yinchuan 750021, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Desheng Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaguo Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Danchen Aaron Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Li Y, Ji W, Wang C, Chang L, Zhang Q, Gao J, Wang T, Wu W. Poly l-Lactic Acid Nanofiber Membrane Effectively Inhibits Liver Cancer Cells Growth and Prevents Postoperative Residual Cancer Recurrence. ACS APPLIED MATERIALS & INTERFACES 2025; 17:689-700. [PMID: 39681510 PMCID: PMC11783531 DOI: 10.1021/acsami.4c18625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/18/2024]
Abstract
Electrospun nanocarrier systems, widely employed in the medical field, exhibit the capability to encapsulate multiple drugs and mitigate complications. Doxorubicin hydrochloride (DOX) represents a frequently utilized chemotherapeutic agent for liver cancer patients. Sodium bicarbonate (SB) serves to neutralize the acidic tumor microenvironment, while ibuprofen (IBU) attenuates inflammatory factor production. The combination of these three commonly used drugs facilitates antitumor efficacy and relapse prevention. Composite fibrous membranes were prepared by incorporating the antitumor drug DOX into MSN, which was then codispersed with IBU in a poly l-lactic acid (PLLA) electrospinning solution after acid sensitization using SB. The resulting membrane was characterized using transmission electron microscopy and scanning electron microscopy. The toxic effect of this fibrous membrane and its pro-apoptotic effect on tumor cells were evaluated, along with the expression of cell proliferation-related factors, immune/inflammatory factors, and apoptosis-related factors. Immunohistochemistry and HE staining confirmed its ability to inhibit recurrence of postoperative residual cancer without causing toxicity to vital organs. The PLLA-MSN@DOX-SB-IBU nanofibrous membrane not only mitigates the cardiotoxicity associated with DOX but also inhibits tumor cell proliferation and enhances the tumor microenvironment, demonstrating significant antitumor efficacy. Furthermore, it effectively prevents the recurrence of residual cancer postsurgery while exhibiting excellent biocompatibility. The PLLA-MSN@DOX-SB-IBU nanofibrous membrane demonstrates significant potential in impeding the progression of hepatocellular carcinoma and mitigating the recurrence of residual cancer following surgical intervention for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yanxu Li
- General
Surgery Department, Affiliated Hospital
of Yang Zhou University, Medical College of Yang Zhou University,
Yang Zhou University, Yang Zhou, Jiang Su 225009, China
| | - Weiben Ji
- General
Surgery Department, Affiliated Hospital
of Yang Zhou University, Medical College of Yang Zhou University,
Yang Zhou University, Yang Zhou, Jiang Su 225009, China
| | - Chaoying Wang
- General
Surgery Department, Affiliated Hospital
of Yang Zhou University, Medical College of Yang Zhou University,
Yang Zhou University, Yang Zhou, Jiang Su 225009, China
| | - Lai Chang
- Taixing
People’s Hospital in Jiangsu Province, Tai Zhou, Jiang Su 225400, China
| | - Quan Zhang
- College
of Veterinary Medicine, Yangzhou University, Yang Zhou, Jiang Su 225009, China
| | - Jiefeng Gao
- School
of Chemistry and Chemical Engineering, Yangzhou
University, Yang Zhou, Jiang Su 225009, China
| | - Tao Wang
- College
of Veterinary Medicine, Yangzhou University, Yang Zhou, Jiang Su 225009, China
| | - Wei Wu
- General
Surgery Department, Affiliated Hospital
of Yang Zhou University, Medical College of Yang Zhou University,
Yang Zhou University, Yang Zhou, Jiang Su 225009, China
| |
Collapse
|
4
|
Zhang M, Huang K, Yin Q, Wu X, Zhu M, Li M. Spatial heterogeneity of the hepatocellular carcinoma microenvironment determines the efficacy of immunotherapy. Discov Oncol 2025; 16:15. [PMID: 39775241 PMCID: PMC11706828 DOI: 10.1007/s12672-025-01747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge owing to its widespread incidence and high mortality. HCC has a specific immune tolerance function because of its unique physiological structure, which limits the efficacy of chemotherapy, radiotherapy, and molecular targeting. In recent years, new immune approaches, including adoptive cell therapy, tumor vaccines, and oncolytic virus therapy, have shown great potential. As the efficacy of immunotherapy mainly depends on the spatial heterogeneity of the tumor immune microenvironment, it is necessary to elucidate the crosstalk between the composition of the liver cancer immune environment, from which potential therapeutic targets can be selected to provide more appropriate individualized treatment programs. The role of spatial heterogeneity of immune cells in the microenvironment of HCC in the progression and influence of immunotherapy on improving the treatment and prognosis of HCC were comprehensively analyzed, providing new inspiration for the subsequent clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Minni Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
- The First Affiliated Hospital, Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer, Hainan Medical University, Haikou, 570102, Hainan, People's Republic of China
| | - Kailin Huang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Qiushi Yin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Xueqin Wu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, 570023, Hainan, People's Republic of China.
- Key Laboratory of Tropical Translational Medicine, Ministry of Education, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
5
|
Li G, Wang P, Feng X, Li Y. Identification of a pyroptosis-related prognostic model for colorectal cancer and validation of the core gene SPTBN5. Discov Oncol 2024; 15:787. [PMID: 39692974 DOI: 10.1007/s12672-024-01691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Pyroptosis, an emerging type of programmed cell death. The mechanisms of pyroptosis mainly include inflammasome-activated pyroptosis and non-inflammasome-activated pyroptosis. Multiple prognostic scoring systems that utilize pyroptosis-related gene expression have been validated as effective predictors of patient outcomes. But the relationship between pyroptosis and colorectal cancer remains unclear. This study has established a gene signature associated with pyroptosis to forecast the prognosis of CRC patients. METHODS An analysis of 52 pyroptosis genes was conducted in both CRC and normal colorectal tissues, leading to the discovery of differentially expressed genes (DEGs). Core pyroptosis-related genes were identified using least absolute shrinkage and selection operator (LASSO) Cox regression to establish a prognostic risk score (PRS) for predicting CRC patient outcomes. The TCGA cohort was split into high-risk and low-risk groups based on the PRS, followed by Gene Ontology (GO) and KEGG pathway analyses. Additionally, differences in the enrichment scores of 16 immune cell types and the activity of 13 immune-related pathways were compared. The role of SPTBN5, a core pyroptosis-related gene, was validated through functional experiments on human colorectal adenocarcinoma cells (SW480). RESULTS 40 differentially expressed genes were identified from 52 pyroptosis genes. A risk model was subsequently developed using 25 core pyroptosis-related genes identified through LASSO Cox regression analysis, and this model was validated in GEO cohorts. GO and KEGG pathway analyses showed that the DEGs are predominantly associated with mineral absorption, thyroid hormone synthesis, and pancreatic secretion. Functional experiments demonstrated that down-regulation of SPTBN5 expression through transfection led to significant decreases in the proliferation, migration, and clonogenicity of SW480 cells. CONCLUSION The PRS can identify high-risk CRC patient groups and predict patient prognosis. SPTBN5 may present a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Guangyao Li
- Department of General Surgery, The First Afliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
- Department of Gastrointestinal Surgery, The Second People's Hospital of Wuhu, Wuhu, 241000, Anhui, China
| | - Pingyu Wang
- Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xiangnan Feng
- Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yongxiang Li
- Department of General Surgery, The First Afliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.
| |
Collapse
|
6
|
Cobo‐Vuilleumier N, Rodríguez‐Fernandez S, López‐Noriega L, Lorenzo PI, Franco JM, Lachaud CC, Vazquez EM, Legido RA, Dorronsoro A, López‐Férnandez‐Sobrino R, Fernández‐Santos B, Serrano CE, Salas‐Lloret D, van Overbeek N, Ramos‐Rodriguez M, Mateo‐Rodríguez C, Hidalgo L, Marin‐Canas S, Nano R, Arroba AI, Caro AC, Vertegaal ACO, Martín‐Montalvo A, Martín F, Aguilar‐Diosdado M, Piemonti L, Pasquali L, Prieto RG, Sánchez MIG, Eizirik DL, Martínez‐Brocca MA, Vives‐Pi M, Gauthier BR. LRH-1/NR5A2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotype. Clin Transl Med 2024; 14:e70134. [PMID: 39702941 PMCID: PMC11659195 DOI: 10.1002/ctm2.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/01/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The complex aetiology of type 1 diabetes (T1D), characterised by a detrimental cross-talk between the immune system and insulin-producing beta cells, has hindered the development of effective disease-modifying therapies. The discovery that the pharmacological activation of LRH-1/NR5A2 can reverse hyperglycaemia in mouse models of T1D by attenuating the autoimmune attack coupled to beta cell survival/regeneration prompted us to investigate whether immune tolerisation could be translated to individuals with T1D by LRH-1/NR5A2 activation and improve islet survival. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated from individuals with and without T1D and derived into various immune cells, including macrophages and dendritic cells. Cell subpopulations were then treated or not with BL001, a pharmacological agonist of LRH-1/NR5A2, and processed for: (1) Cell surface marker profiling, (2) cytokine secretome profiling, (3) autologous T-cell proliferation, (4) RNAseq and (5) proteomic analysis. BL001-target gene expression levels were confirmed by quantitative PCR. Mitochondrial function was evaluated through the measurement of oxygen consumption rate using a Seahorse XF analyser. Co-cultures of PBMCs and iPSCs-derived islet organoids were performed to assess the impact of BL001 on beta cell viability. RESULTS LRH-1/NR5A2 activation induced a genetic and immunometabolic reprogramming of T1D immune cells, marked by reduced pro-inflammatory markers and cytokine secretion, along with enhanced mitohormesis in pro-inflammatory M1 macrophages and mitochondrial turnover in mature dendritic cells. These changes induced a shift from a pro-inflammatory to an anti-inflammatory/tolerogenic state, resulting in the inhibition of CD4+ and CD8+ T-cell proliferation. BL001 treatment also increased CD4+/CD25+/FoxP3+ regulatory T-cells and Th2 cells within PBMCs while decreasing CD8+ T-cell proliferation. Additionally, BL001 alleviated PBMC-induced apoptosis and maintained insulin expression in human iPSC-derived islet organoids. CONCLUSION These findings demonstrate the potential of LRH-1/NR5A2 activation to modulate immune responses and support beta cell viability in T1D, suggesting a new therapeutic approach. KEY POINTS LRH-1/NR5A2 activation in inflammatory cells of individuals with type 1 diabetes (T1D) reduces pro-inflammatory cell surface markers and cytokine release. LRH-1/NR5A2 promotes a mitohormesis-induced immuno-resistant phenotype to pro-inflammatory macrophages. Mature dendritic cells acquire a tolerogenic phenotype via LRH-1/NR5A2-stimulated mitochondria turnover. LRH-1/NR5A2 agonistic activation expands a CD4+/CD25+/FoxP3+ T-cell subpopulation. Pharmacological activation of LRH-1/NR5A2 improves the survival iPSC-islets-like organoids co-cultured with PBMCs from individuals with T1D.
Collapse
|
7
|
Li C, Wang X, Shi D, Yang M, Yang W, Chen L. FAM83H regulated by glis3 promotes triple-negative breast cancer tumorigenesis and activates the NF-κB signaling pathway. J Mol Histol 2024; 55:1271-1283. [PMID: 39304594 DOI: 10.1007/s10735-024-10268-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and invasive form of breast cancer (BC) with a high mortality rate and a lack of effective targeted drugs. Family with sequence similarity 83 member H (FAM83H) is critically implicated in tumorigenesis. However, the potential role of FAM83H in TNBC remains elusive. Here, we discovered that FAM83H exhibited high expression in tumor tissues of patients with TNBC and was associated with TNM stage. Gain- or loss-of-function experiments were conducted to explore the biological role of FAM83H in TNBC. Subsequently, functional enrichment analysis confirmed that FAM83H overexpression promoted TNBC cell proliferation, invasion, migration and epithelial-mesenchymal transition (EMT), accompanied by upregulation of cyclin E, cyclin D, Vimentin, N-cadherin and Slug. As observed, FAM83H knockdown showed anti-cancer effects, such as fostering apoptosis and inhibiting tumorigenicity and metastasis of TNBC cells. Mechanistically, FAM83H activated the NF-κB signaling pathway. Moreover, a dual-luciferase reporter assay demonstrated that GLIS family zinc finger 3 (GLIS3) bound to the promoter of FAM83H and enhanced its transcription. Notably, overexpression of GLIS3 significantly stimulated TNBC cell proliferation and invasion, and all of this was reversed by rescue experiments involving the knockdown of FAM83H. Overall, FAM83H exacerbates tumor progression, and in-depth understanding of FAM83H as a therapeutic target for TNBC will provide clinical translational potential for intervention therapy.
Collapse
Affiliation(s)
- Chenhao Li
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou, Hebei, China
| | - Xin Wang
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou, Hebei, China
| | - Dongliang Shi
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou, Hebei, China
| | - Meng Yang
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou, Hebei, China
| | - Wenhua Yang
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou, Hebei, China
| | - Liang Chen
- The Second Department of Thyroid and Breast Surgery, Cangzhou Central Hospital, No.16 Xinhua West Road, Cangzhou, Hebei, China.
| |
Collapse
|
8
|
Jasim SA, Salahdin OD, Malathi H, Sharma N, Rab SO, Aminov Z, Pramanik A, Mohammed IH, Jawad MA, Gabel BC. Targeting Hepatic Cancer Stem Cells (CSCs) and Related Drug Resistance by Small Interfering RNA (siRNA). Cell Biochem Biophys 2024; 82:3031-3051. [PMID: 39060914 DOI: 10.1007/s12013-024-01423-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Tumor recurrence after curative therapy and hepatocellular carcinoma (HCC) cells' resistance to conventional therapies is the reasons for the worse clinical results of HCC patients. A tiny population of cancer cells with a strong potential for self-renewal, differentiation, and tumorigenesis has been identified as cancer stem cells (CSCs). The discovery of CSC surface markers and the separation of CSC subpopulations from HCC cells have been made possible by recent developments in the study of hepatic (liver) CSCs. Hepatic CSC surface markers include epithelial cell adhesion molecules (EpCAM), CD133, CD90, CD13, CD44, OV-6, ALDH, and K19. CSCs have a significant influence on the development of cancer, invasiveness, self-renewal, metastasis, and drug resistance in HCC, and thus provide a therapeutic chance to treat HCC and avoid its recurrence. Therefore, it is essential to develop treatment approaches that specifically and effectively target hepatic stem cells. Given this, one potential treatment approach is to use particular small interfering RNA (siRNA) to target CSC, disrupting their behavior and microenvironment as well as changing their epigenetic state. The characteristics of CSCs in HCC are outlined in this study, along with new treatment approaches based on siRNA that may be used to target hepatic CSCs and overcome HCC resistance to traditional therapies.
Collapse
Affiliation(s)
| | | | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University, Bangalore, Karnataka, India
| | - Neha Sharma
- Chandigarh Pharmacy College, Chandigarh group of Colleges, Jhanjeri, 140307, Mohali, Punjab, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Israa Hussein Mohammed
- College of nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Mohammed Abed Jawad
- Department of Medical Laboratories Technology, Al-Nisour University College, Baghdad, Iraq
| | - Benien C Gabel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
9
|
Li Y, Yang J, Wang X, Luoreng Z. Transcriptome analysis reveals the regulation of miR-19b on inflammation in bovine mammary epithelial cells. Microb Pathog 2024; 197:107082. [PMID: 39461446 DOI: 10.1016/j.micpath.2024.107082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
MicroRNAs (miRNAs) are involved in various biological processes where they regulate the expression of mRNAs. Bovine mammary epithelial cells (bMECs) are functional cells that mediate mammary inflammatory immunity. Although numerous miRNAs regulate the function of bMECs, the role of miR-19b in bMECs has not been reported. In this study, the transcriptome of miR-19b overexpressed bMECs was analyzed by RNA-seq. Additionally, the differentially expressed genes (DEGs) were analyzed to establish the role of miR-19b in bMECs. The results revealed 269 DEGs between the miR-19b overexpression group and the negative control, including 199 up-regulated and 70 down-regulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that the DEGs regulated immune and inflammatory responses through Staphylococcus aureus (S. aureus) infection and phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. In addition, the expression of miR-19b was significantly upregulated in lipophosphoric acid (LTA)-induced bMECs, and overexpression of miR-19b negatively regulated the expression of inflammatory cytokines IL-1β and IL-6, thereby alleviating the inflammatory response of LTA-induced bMECs. Based on the above results, we speculate that miR-19b may inhibit in dairy cow mammary inflammation caused by S. aureus, and this process may be mediated through the regulation of relevant gene expression and signaling pathways. The findings from this study provide a new reference for analyzing the molecular regulation of miR-19b in bMECs.
Collapse
Affiliation(s)
- Yuhang Li
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jian Yang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Xingping Wang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| | - Zhuoma Luoreng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China.
| |
Collapse
|
10
|
Yang M, Lin Z, Zhuang L, Pan L, Wang R, Chen H, Hu Z, Shen W, Zhuo J, Yang X, Li H, He C, Yang Z, Xie Q, Dong S, Chen J, Su R, Wei X, Yin J, Zheng S, Lu D, Xu X. An inflammatory liquid fingerprint predicting tumor recurrence after liver transplantation for hepatocellular carcinoma. MedComm (Beijing) 2024; 5:e678. [PMID: 39188937 PMCID: PMC11345533 DOI: 10.1002/mco2.678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024] Open
Abstract
Tumor recurrence is a life-threatening complication after liver transplantation (LT) for hepatocellular carcinoma (HCC). Precise recurrence risk stratification before transplantation is essential for the management of recipients. Here, we aimed to establish an inflammation-related prediction model for posttransplant HCC recurrence based on pretransplant peripheral cytokine profiling. Two hundred and ninety-three patients who underwent LT in two independent medical centers were enrolled, and their pretransplant plasma samples were sent for cytokine profiling. We identified four independent risk factors, including alpha-fetoprotein, systemic immune-inflammation index, interleukin 6, and osteocalcin in the training cohort (n = 190) by COX regression analysis. A prediction model named inflammatory fingerprint (IFP) was established based on the above factors. The IFP effectively predicted posttransplant recurrence (area under the receiver operating characteristic curve [AUROC]: 0.792, C-index: 0.736). The high IFP group recipients had significantly worse 3-year recurrence-free survival rates (37.9 vs. 86.9%, p < 0.001). Simultaneous T-cell profiling revealed that recipients with high IFP were characterized by impaired T cell function. The IFP also performed well in the validation cohort (n = 103, AUROC: 0.807, C-index: 0.681). In conclusion, the IFP efficiently predicted posttransplant HCC recurrence and helped to refine pretransplant risk stratification. Impaired T cell function might be the intrinsic mechanism for the high recurrence risk of recipients in the high IFP group.
Collapse
Affiliation(s)
- Modan Yang
- Department of Breast SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- NHC Key Laboratory of Combined Multi‐Organ TransplantationZhejiang UniversityHangzhouChina
| | - Zuyuan Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's Hospital, School of Medicine, Westlake UniversityHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
| | - Li Zhuang
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
| | - Linhui Pan
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Rui Wang
- Zhejiang University School of MedicineHangzhouChina
| | - Hao Chen
- Zhejiang University School of MedicineHangzhouChina
| | - Zhihang Hu
- Zhejiang University School of MedicineHangzhouChina
| | - Wei Shen
- Zhejiang University School of MedicineHangzhouChina
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Xinyu Yang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's Hospital, School of Medicine, Westlake UniversityHangzhouChina
- Zhejiang University School of MedicineHangzhouChina
| | - Huigang Li
- Zhejiang University School of MedicineHangzhouChina
| | - Chiyu He
- Zhejiang University School of MedicineHangzhouChina
| | - Zhe Yang
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
| | - Qinfen Xie
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
| | - Siyi Dong
- National Center for Healthcare Quality Management in Liver TransplantHangzhouChina
| | - Junli Chen
- National Center for Healthcare Quality Management in Liver TransplantHangzhouChina
| | - Renyi Su
- Zhejiang University School of MedicineHangzhouChina
| | - Xuyong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's Hospital, School of Medicine, Westlake UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Junjie Yin
- Department of Hepatobiliary and Pancreatic SurgeryAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityHangzhouChina
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi‐Organ TransplantationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryShulan (Hangzhou) HospitalHangzhouChina
- National Center for Healthcare Quality Management in Liver TransplantHangzhouChina
| | - Di Lu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital)School of Clinical MedicineHangzhou Medical CollegeHangzhouChina
| | - Xiao Xu
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital)School of Clinical MedicineHangzhou Medical CollegeHangzhouChina
- Institute of Translational MedicineZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
11
|
Gao H, Peng X, Li N, Gou L, Xu T, Wang Y, Qin J, Liang H, Ma P, Li S, Wu J, Qin X, Xue B. Emerging role of liver-bone axis in osteoporosis. J Orthop Translat 2024; 48:217-231. [PMID: 39290849 PMCID: PMC11407911 DOI: 10.1016/j.jot.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background Increasing attention to liver-bone crosstalk has spurred interest in targeted interventions for various forms of osteoporosis. Liver injury induced by different liver diseases can cause an imbalance in bone metabolism, indicating a novel regulatory paradigm between the liver and bone. However, the role of the liver-bone axis in both primary and secondary osteoporosis remains inadequately elucidated. Therefore, exploring the exact regulatory mechanisms of the liver-bone axis may offer innovative clinical approaches for treating diseases associated with the liver and bone. Methods Here, we summarize the latest research on the liver-bone axis by searching the PubMed and Web of Science databases and discuss the possible mechanism of the liver-bone axis in different types of osteoporosis. The literature directly reporting the regulatory role of the liver-bone axis in different types of osteoporosis from the PubMed and Web of Science databases has been included in the discussion of this review (including but not limited to the definition of the liver-bone axis, clinical studies, and basic research). In addition, articles discussing changes in bone metabolism caused by different etiologies of liver injury have also been included in the discussion of this review (including but not limited to clinical studies and basic research). Results Several endocrine factors (IGF-1, FGF21, hepcidin, vitamin D, osteocalcin, OPN, LCAT, Fetuin-A, PGs, BMP2/9, IL-1/6/17, and TNF-α) and key genes (SIRT2, ABCB4, ALDH2, TFR2, SPTBN1, ZNF687 and SREBP2) might be involved in the regulation of the liver-bone axis. In addition to the classic metabolic pathways involved in inflammation and oxidative stress, iron metabolism, cholesterol metabolism, lipid metabolism and immunometabolism mediated by the liver-bone axis require more research to elucidate the regulatory mechanisms involved in osteoporosis. Conclusion During primary and secondary osteoporosis, the liver-bone axis is responsible for liver and bone homeostasis via several hepatokines and osteokines as well as biochemical signaling. Combining multiomics technology and data mining technology could further advance our understanding of the liver-bone axis, providing new clinical strategies for managing liver and bone-related diseases.The translational potential of this article is as follows: Abnormal metabolism in the liver could seriously affect the metabolic imbalance of bone. This review summarizes the indispensable role of several endocrine factors and biochemical signaling pathways involved in the liver-bone axis and emphasizes the important role of liver metabolic homeostasis in the pathogenesis of osteoporosis, which provides novel potential directions for the prevention, diagnosis, and treatment of liver and bone-related diseases.
Collapse
Affiliation(s)
- Hongliang Gao
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
- Jiangsu Key Laboratory of Early Development and Chronic Disease Prevention in Children,Nanjing, Jiangsu,PR China
- Core Laboratory, Department of Clinical Laboratory, Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, PR China
- Department of pathophysiology, Wannan Medical College, Wuhu, Anhui, PR China
| | - Xing Peng
- Core Laboratory, Department of Clinical Laboratory, Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Ning Li
- Core Laboratory, Department of Clinical Laboratory, Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Liming Gou
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
- Jiangsu Key Laboratory of Early Development and Chronic Disease Prevention in Children,Nanjing, Jiangsu,PR China
| | - Tao Xu
- Core Laboratory, Department of Clinical Laboratory, Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yuqi Wang
- Core Laboratory, Department of Clinical Laboratory, Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jian Qin
- Department of Orthoprdics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu , PR China
| | - Hui Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Peiqi Ma
- Medical Imaging Center, Fuyang People's Hospital, Fuyang, Anhui, PR China
| | - Shu Li
- Department of pathophysiology, Wannan Medical College, Wuhu, Anhui, PR China
| | - Jing Wu
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
- Jiangsu Key Laboratory of Early Development and Chronic Disease Prevention in Children,Nanjing, Jiangsu,PR China
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xihu Qin
- Department of General Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, PR China
| | - Bin Xue
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
- Jiangsu Key Laboratory of Early Development and Chronic Disease Prevention in Children,Nanjing, Jiangsu,PR China
- Core Laboratory, Department of Clinical Laboratory, Sir Run Run Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, PR China
- Department of General Surgery, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, PR China
| |
Collapse
|
12
|
Shi YW, Xu CC, Sun CY, Liu JX, Zhao SY, Liu D, Fan XJ, Wang CP. GM1 Ameliorates Neuronal Injury in Rats after Cerebral Ischemia and Reperfusion: Potential Contribution of Effects on SPTBN1-mediated Signaling. Neuroscience 2024; 551:103-118. [PMID: 38810691 DOI: 10.1016/j.neuroscience.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Monosialoganglioside GM1 (GM1) has long been used as a therapeutic agent for neurological diseases in the clinical treatment of ischemic stroke. However, the mechanism underlying the neuroprotective function of GM1 is still obscure until now. In this study, we investigated the effects of GM1 in ischemia and reperfusion (I/R) brain injury models. Middle cerebral artery occlusion and reperfusion (MCAO/R) rats were treated with GM1 (60 mg·kg-1·d-1, tail vein injection) for 2 weeks. The results showed that GM1 substantially attenuated the MCAO/R-induced neurological dysfunction and inhibited the inflammatory responses and cell apoptosis in ischemic parietal cortex. We further revealed that GM1 inhibited the activation of NFκB/MAPK signaling pathway induced by MCAO/R injury. To explore its underlying mechanism of the neuroprotective effect, transcriptome sequencing was introduced to screen the differentially expressed genes (DEGs). By function enrichment and PPI network analyses, Sptbn1 was identified as a node gene in the network regulated by GM1 treatment. In the MCAO/R model of rats and oxygen-glucose deprivation and reperfusion (OGD/R) model of primary culture of rat cortical neurons, we first found that SPTBN1 was involved in the attenuation of I/R induced neuronal injury after GM1 administration. In SPTBN1-knockdown SH-SY5Y cells, the treatment with GM1 (20 μM) significantly increased SPTBN1 level. Moreover, OGD/R decreased SPTBN1 level in SPTBN1-overexpressed SH-SY5Y cells. These results indicated that GM1 might achieve its potent neuroprotective effects by regulating inflammatory response, cell apoptosis, and cytomembrane and cytoskeleton signals through SPTBN1. Therefore, SPTBN1 may be a potential target for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yun-Wei Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China; School of Life Science, Nantong Laboratory of Development and Diseases, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Chun-Cheng Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Chun-Yan Sun
- Qilu Pharmaceutical Co., Ltd., Ji'nan 250104, Shandong, People's Republic of China
| | - Jia-Xing Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China
| | - Shu-Yong Zhao
- Qilu Pharmaceutical Co., Ltd., Ji'nan 250104, Shandong, People's Republic of China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases, Nantong University, Nantong 226019, Jiangsu, People's Republic of China.
| | - Xing-Juan Fan
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, People's Republic of China.
| | - Cai-Ping Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Yu C, Wang J, Li Y. TRIM8 Promotes Proliferation, Invasion, and Migration of Cervical Cancer Cells by Ubiquitinating and Degrading SOCS1. Biochem Genet 2024:10.1007/s10528-024-10865-8. [PMID: 38918306 DOI: 10.1007/s10528-024-10865-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
Cervical cancer (CC) is a malignant tumor primarily caused by the persistent infection with high-risk strains of human papillomavirus. This study investigates the aberrant expression of Tripartite Motif Containing 8 (TRIM8) in CC and its impact on cell proliferation, invasion, and migration. Expression levels of TRIM8, Proliferating Cell Nuclear Antigen, and Suppressor of Cytokine Signaling 1 (SOCS1) were assessed in CC cell lines. CC cells were transfected with si-TRIM8, followed by cell counting kit-8 (CCK-8) assay, colony formation assay, and Transwell assay. Protein immunoprecipitation assay was employed to examine TRIM8's binding with SOCS1, and the ubiquitination level of SOCS1 was determined after MG132 treatment. Rescue experiments were conducted using si-SOCS1 and si-TRIM8 in combination. Results indicate upregulation of TRIM8 in CC cells. Inhibition of TRIM8 suppressed cell viability, proliferation, invasion, and migration. TRIM8 promoted CC cell proliferation, invasion, and migration of CC cells through ubiquitination-mediated degradation of SOCS1. Inhibition of SOCS1 partially reversed the inhibitory effects of si-TRIM8 on the proliferation, invasion, and migration of CC cells. In conclusion, TRIM8 enhances CC cell proliferation, invasion, and migration via ubiquitination-mediated degradation of SOCS1.
Collapse
Affiliation(s)
- Chunxiang Yu
- Department of Gynecology, Children's Hospital of Shanxi and Women Health Center of Shanxi, 13 Xinmin North Street, Xinghualing District, Taiyuan, 030002, Shanxi, China.
| | - Juan Wang
- Department of Gynecology, Children's Hospital of Shanxi and Women Health Center of Shanxi, 13 Xinmin North Street, Xinghualing District, Taiyuan, 030002, Shanxi, China
| | - Yan Li
- Department of Gynecology, Children's Hospital of Shanxi and Women Health Center of Shanxi, 13 Xinmin North Street, Xinghualing District, Taiyuan, 030002, Shanxi, China
| |
Collapse
|
14
|
Lyu J, Sheng M, Cao Y, Jia L, Zhang C, Weng Y, Yu W. Ischemia and reperfusion-injured liver-derived exosomes elicit acute lung injury through miR-122-5p regulated alveolar macrophage polarization. Int Immunopharmacol 2024; 131:111853. [PMID: 38503014 DOI: 10.1016/j.intimp.2024.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/16/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Acute lung injury (ALI) is a common postoperative complication, particularly in pediatric patients after liver transplantation. Hepatic ischemia-reperfusion (HIR) increases the release of exosomes (IR-Exos) in peripheral circulation. However, the role of IR-Exos in the pathogenesis of ALI induced by HIR remains unclear. Here, we explored the role of exosomes derived from the HIR-injured liver in ALI development. Intravenous injection of IR-Exos caused lung inflammation in naive rats, whereas pretreatment with an inhibitor of exosomal secretion (GW4869) attenuated HIR-related lung injury. In vivo and in vitro results show that IR-Exos promoted proinflammatory responses and M1 macrophage polarization. Furthermore, miRNA profiling of serum identified miR-122-5p as the exosomal miRNA with the highest increase in young rats with HIR compared with controls. Additionally, IR-Exos transferred miR-122-5p to macrophages and promoted proinflammatory responses and M1 phenotype polarization by targeting suppressor of cytokine signaling protein 1(SOCS-1)/nuclear factor (NF)-κB. Importantly, the pathological role of exosomal miR-122-5p in initiating lung inflammation was reversed by inhibition of miR-122-5p. Clinically, high levels of miR-122-5p were found in serum and correlated to the severity of lung injury in pediatric living-donor liver transplant recipients with ALI. Taken together, our findings reveal that IR-Exos transfer liver-specific miR-122-5p to alveolar macrophages and elicit ALI by inducing M1 macrophage polarization via the SOCS-1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jingshu Lyu
- Department of Anesthesiology, Tianjin First Central Hospital, 300192 Tianjin, China; Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital, Henan University People's Hospital, Henan Provincial People's Hospital, 450000 Zhengzhou, China
| | - Mingwei Sheng
- Department of Anesthesiology, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Yingli Cao
- School of Medicine, Nankai University, 300071 Tianjin, China
| | - Lili Jia
- Department of Anesthesiology, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Chen Zhang
- Department of Anesthesiology, The First Central Clinical School, Tianjin Medical University, Tianjin 300070, China
| | - Yiqi Weng
- Department of Anesthesiology, Tianjin First Central Hospital, 300192 Tianjin, China
| | - Wenli Yu
- Department of Anesthesiology, Tianjin First Central Hospital, 300192 Tianjin, China; School of Medicine, Nankai University, 300071 Tianjin, China.
| |
Collapse
|
15
|
Wu H, Jiang N, Li J, Jin Q, Jin J, Guo J, Wei X, Wang X, Yao L, Meng D, Zhi X. Tumor cell SPTBN1 inhibits M2 polarization of macrophages by suppressing CXCL1 expression. J Cell Physiol 2024; 239:97-111. [PMID: 37921259 DOI: 10.1002/jcp.31146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment, and the M2-type TAMs can promote tumor growth, invasion and angiogenesis, and suppress antitumor immune responses. It has been reported that spectrin beta, non-erythrocytic 1 (SPTBN1) may inhibit the infiltration of macrophages in Sptbn1+/- mouse liver, but whether tumor SPTBN1 affects TAMs polarization remains unclear. This study investigated the effect and mechanism of tumor cell SPTBN1 on polarization and migration of TAMs in hepatoma and breast cancer. By analyzing tumor immune databases, we found a negative correlation between SPTBN1 and abundance of macrophages and myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. By reverse transcription-quantitative real-time PCR assays and cell migration assays, the migration and M2 polarization of macrophages were enhanced by the culture medium from hepatocellular carcinoma cell line PLC/PRF/5, SNU449, and breast cancer cell line MDA-MB-231 with SPTBN1 suppression, which could be reversed by CXCL1 neutralizing antibody MAB275. Meanwhile, the ability of migration and colony formation of PLC/PRF/5, SNU449, and MDA-MB-231 cells were promoted when coculture with M2 macrophages. We also found that SPTBN1 regulated CXCL1 through p65 by cytoplasmic-nuclear protein isolation experiments and ChIP-qPCR. Our data suggest that tumor cell SPTBN1 inhibits migration and M2-type polarization of TAMs by reducing the expression and secretion of CXCL1 via inhibiting p65 nuclear localization.
Collapse
Affiliation(s)
- Huijie Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiajia Li
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Quanshan Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiayu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Liangqing Yao
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Jing Y, Jiang X, Ji Q, Wu Z, Wang W, Liu Z, Guillen-Garcia P, Esteban CR, Reddy P, Horvath S, Li J, Geng L, Hu Q, Wang S, Belmonte JCI, Ren J, Zhang W, Qu J, Liu GH. Genome-wide CRISPR activation screening in senescent cells reveals SOX5 as a driver and therapeutic target of rejuvenation. Cell Stem Cell 2023; 30:1452-1471.e10. [PMID: 37832549 DOI: 10.1016/j.stem.2023.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 08/04/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023]
Abstract
Our understanding of the molecular basis for cellular senescence remains incomplete, limiting the development of strategies to ameliorate age-related pathologies by preventing stem cell senescence. Here, we performed a genome-wide CRISPR activation (CRISPRa) screening using a human mesenchymal precursor cell (hMPC) model of the progeroid syndrome. We evaluated targets whose activation antagonizes cellular senescence, among which SOX5 outperformed as a top hit. Through decoding the epigenomic landscapes remodeled by overexpressing SOX5, we uncovered its role in resetting the transcription network for geroprotective genes, including HMGB2. Mechanistically, SOX5 binding elevated the enhancer activity of HMGB2 with increased levels of H3K27ac and H3K4me1, raising HMGB2 expression so as to promote rejuvenation. Furthermore, gene therapy with lentiviruses carrying SOX5 or HMGB2 rejuvenated cartilage and alleviated osteoarthritis in aged mice. Our study generated a comprehensive list of rejuvenators, pinpointing SOX5 as a potent driver for rejuvenation both in vitro and in vivo.
Collapse
Affiliation(s)
- Yaobin Jing
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Qianzhao Ji
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zeming Wu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Wei Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Pedro Guillen-Garcia
- Department of Traumatology and Research Unit, Clinica CEMTRO, 28035 Madrid, Spain
| | - Concepcion Rodriguez Esteban
- Altos Labs, Inc., San Diego, CA 94022, USA; Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Pradeep Reddy
- Altos Labs, Inc., San Diego, CA 94022, USA; Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Steve Horvath
- Altos Labs, Inc., San Diego, CA 94022, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 10833, USA
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lingling Geng
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Qinchao Hu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510060, China; Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510060, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Chongqing Renji Hospital, University of Chinese Academy of Sciences, Chongqing 400062, China
| | - Juan Carlos Izpisua Belmonte
- Altos Labs, Inc., San Diego, CA 94022, USA; Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jie Ren
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Weiqi Zhang
- Key Laboratory of RNA Science and Engineering, CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China; Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
17
|
Sun Q, Dai H, Wang S, Chen Y, Shi H. Progress in research on the role played by myeloid-derived suppressor cells in liver diseases. Scand J Immunol 2023; 98:e13312. [PMID: 38441348 DOI: 10.1111/sji.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 03/07/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) refer to a group of immature myeloid cells with potent immunosuppressive capacity upon activation by pathological conditions. Because of their potent immunosuppressive ability, MDSCs have garnered extensive attention in the past few years in the fields of oncology, infection, chronic inflammation and autoimmune diseases. Research on MDSCs in liver diseases has gradually increased, and their potential therapeutic roles will be further explored. This review presents a summary of the involvement and the role played by MDSCs in liver diseases, thus identifying their potential targets for the treatment of liver diseases and providing new directions for liver disease-related research.
Collapse
Affiliation(s)
- Qianqian Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Heng Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Siliang Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanyuan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Huilian Shi
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
18
|
Wang W, Liu R, Liao W, Ji L, Mei J, Su D. NOTCH2 gene mutation and gamma-secretase inhibitor in mediating the malignancy of ovarian cancer. Aging (Albany NY) 2023; 15:9743-9758. [PMID: 37728427 PMCID: PMC10564443 DOI: 10.18632/aging.205045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023]
Abstract
The carcinogenic mechanisms by which serous ovarian cancer (OC) occurs remain to be explored. Currently, we have conducted whole-exome sequencing (WES) and targeted deep sequencing to validate new molecular markers, including NOTCH2, that impede the progression of cell malignancy in ovarian cancer (OC). Following NOTCH2 P2113S mutation and NOTCH signaling pathway inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) treatment, the cell proliferation, migration, and invasion of A2780 and SKOV3 OC cells were examined in vitro. WES identified the P2113S point mutation in NOTCH2. The NOTCH2 mutation rate was 26.67 % among the 75 OC cases. The NOTCH2 P2113S mutation and DAPT treatment downregulated Notch-2 protein levels in the two OC cells. Functionally, interfering with NOTCH2 expression promoted the migrative, proliferative, and invasive capacities of OC cells. Western blotting further confirmed that NOTCH2-mediated tumorigenesis lies in reducing apoptosis through dysregulation of Bax/Bcl2, affecting repair of DNA damage through reducing DNA-PK and blocking the transcription factor Hes1 along with increasing immune regulator p65. Furthermore, the NOTCH2-mediated tumorigenesis was mostly reversed after NF-κB inhibitor Bay11-7082 treatment. These findings identified the NOTCH2 P2113S mutation in ovarian carcinogenesis, and NOTCH2 P2113S is a potential target in treating OC.
Collapse
Affiliation(s)
- Wenjing Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Ruiqian Liu
- Deyang People’s Hospital, Deyang 618099, Sichuan, China
| | - Wei Liao
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Landie Ji
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
| | - Jie Mei
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610054, Sichuan, China
| | - Dan Su
- Department of Gynecology and Obstetrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610054, Sichuan, China
| |
Collapse
|
19
|
Krainer J, Hendling M, Siebenhandl S, Fuehner S, Kessel C, Verweyen E, Vierlinger K, Foell D, Schönthaler S, Weinhäusel A. Patients with Systemic Juvenile Idiopathic Arthritis (SJIA) Show Differences in Autoantibody Signatures Based on Disease Activity. Biomolecules 2023; 13:1392. [PMID: 37759792 PMCID: PMC10527260 DOI: 10.3390/biom13091392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Systemic juvenile idiopathic arthritis (SJIA) is a severe rheumatic disease in children. It is a subgroup of juvenile idiopathic arthritis (JIA; MIM #604302), which is the most common rheumatic disease in children. The diagnosis of SJIA often comes with a significant delay, and the classification between autoinflammatory and autoimmune disease is still discussed. In this study, we analyzed the immunological responses of patients with SJIA, using human proteome arrays presenting immobilized recombinantly expressed human proteins, to analyze the involvement of autoantibodies in SJIA. Results from group comparisons show several differentially reactive antigens involved in inflammatory processes. Intriguingly, many of the identified antigens had a high reactivity against proteins involved in the NF-κB pathway, and it is also notable that many of the detected DIRAGs are described as dysregulated in rheumatoid arthritis. Our data highlight novel proteins and pathways potentially dysregulated in SJIA and offer a unique approach to unraveling the underlying disease pathogenesis in this chronic arthropathy.
Collapse
Affiliation(s)
- Julie Krainer
- Center for Health and Bioresources, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria; (M.H.); (K.V.); (S.S.)
| | - Michaela Hendling
- Center for Health and Bioresources, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria; (M.H.); (K.V.); (S.S.)
| | - Sandra Siebenhandl
- Center for Health and Bioresources, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria; (M.H.); (K.V.); (S.S.)
| | - Sabrina Fuehner
- Pediatric Rheumatology & Immunology, University Children’s Hospital, 48149 Münster, Germany; (S.F.); (C.K.); (E.V.); (D.F.)
| | - Christoph Kessel
- Pediatric Rheumatology & Immunology, University Children’s Hospital, 48149 Münster, Germany; (S.F.); (C.K.); (E.V.); (D.F.)
| | - Emely Verweyen
- Pediatric Rheumatology & Immunology, University Children’s Hospital, 48149 Münster, Germany; (S.F.); (C.K.); (E.V.); (D.F.)
| | - Klemens Vierlinger
- Center for Health and Bioresources, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria; (M.H.); (K.V.); (S.S.)
| | - Dirk Foell
- Pediatric Rheumatology & Immunology, University Children’s Hospital, 48149 Münster, Germany; (S.F.); (C.K.); (E.V.); (D.F.)
| | - Silvia Schönthaler
- Center for Health and Bioresources, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria; (M.H.); (K.V.); (S.S.)
| | - Andreas Weinhäusel
- Center for Health and Bioresources, Molecular Diagnostics, AIT Austrian Institute of Technology GmbH, Giefinggasse 4, 1210 Vienna, Austria; (M.H.); (K.V.); (S.S.)
| |
Collapse
|
20
|
Zhao J, Zhao Z, Ying P, Zhou Y, Xu Z, Wang H, Tang L. METTL3-mediated m 6 A modification of circPRKAR1B promotes Crohn's colitis by inducing pyroptosis via autophagy inhibition. Clin Transl Med 2023; 13:e1405. [PMID: 37679886 PMCID: PMC10485333 DOI: 10.1002/ctm2.1405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND The roles of circRNA and N6-methyladenosine (m6 A) methylation in Crohn's disease (CD) have drawn much attention. Therefore, this investigation aimed to discover how the m6 A modification of circRNAs contributes to CD progression. METHODS The study performed circRNA sequencing on colon samples from four CD patients and four normal controls (NCs) to screen for dysregulated circRNAs. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to validate the candidate circRNA expression and determine its correlation to CD-associated inflammatory indicators. In vivo and in vitro investigations were conducted to examine the functions and pathways of circPRKAR1B in CD, besides investigating the m6 A modification role in circRNA expression modulation. RESULTS The RNA-seq revealed that hsa_circ_0008039 (circPRKAR1B) was the most significant upregulated circRNA and was identified as the candidate circRNA for further examinations. Relative circPRKAR1B expression was significantly upregulated in CD colon tissues and closely related to CD-associated inflammatory indices. The circPRKAR1B expression and function were regulated by methyltransferase-like 3 (METTL3)-mediated m6 A methylation. In vitro studies indicated that circPRKAR1B promoted pyroptosis mediated by NLRP3 inflammasome (NLRP3; nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing 3) and impaired autophagy by interacting with the RNA-binding protein (RBP) SPTBN1, (SPTBN1; spectrin beta, non-erythrocytic 1). The in vivo investigations revealed the treatment effects of si-circPRKAR1B and si-METTL3 in colitis models of IL-10-deficient mice. CONCLUSION Our study reveals that METTL3-mediated m6 A modification of circPRKAR1B promotes Crohn's colitis by aggravating NLRP3 inflammasome-mediated pyroptosis via autophagy impairment in colonic epithelial cells.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Gastrointestinal SurgeryAffiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouP. R. China
| | - Zhibin Zhao
- Department of GastroenterologyAffiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical UniversityTaizhouP. R. China
| | - Pu Ying
- Department of OrthopedicsChangshu Hospital Affiliated to Nanjing University of Chinese MedicineChangshuP. R. China
| | - Yan Zhou
- Department of Gastrointestinal SurgeryAffiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouP. R. China
| | - Ziwei Xu
- Department of General SurgeryFirst Affiliated Hospital of Nanjing Medical UniversityNanjingP. R. China
| | - Honggang Wang
- Department of General SurgeryAffiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical UniversityTaizhouP. R. China
| | - Liming Tang
- Department of Gastrointestinal SurgeryAffiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center, Nanjing Medical UniversityChangzhouP. R. China
| |
Collapse
|
21
|
Han X, Wei Q, Xu RX, Wang S, Liu XY, Guo C, Gao Q, Zhou X, Chen LP, Li ZF. Minocycline induces tolerance to dendritic cell production probably by targeting the SOCS1/ TLR4/NF-κB signaling pathway. Transpl Immunol 2023; 79:101856. [PMID: 37196867 DOI: 10.1016/j.trim.2023.101856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/10/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in maintaining peripheral immune tolerance. The use of tolerogenic DCs (tolDCs), i.e., semi-mature DCs that express co-stimulatory molecules but not pro-inflammatory cytokines, has been proposed. However, the mechanism of tolDCs induced by minocycline is still unclear. Our previous bioinformatics analyses based on multiple databases suggested that the suppressor of cytokine signaling 1/Toll-like receptor 4/NF-κB (SOCS1/TLR4/NF-κB) signal pathway was associated with DCs maturation. Thus, we studied whether minocycline could induce DC tolerance through this pathway. METHODS A search for potential targets was carried out through public databases, and pathway analysis was performed on these potential targets to obtain pathways relevant to the experiment. Flow cytometry was used to detect the expression of DC surface markers CD11c, CD86, and CD80, and major histocompatibility complex II. The secretion of interleukin (IL)-12p70, tumor necrosis factor alpha (TNF- α), and IL-10 in the DC supernatant was detected by enzyme-linked immunoassay. The ability of three groups (Ctrl-DCs, Mino-DCs, and LPS-DCs) of DCs to stimulate allogeneic CD4+ T cells was analyzed using a mixed lymphocyte reaction assay. Western blotting was used to detect the expression of TLR4, NF-κB-p65, NF-κB-p-p65, IκB-α, and SOCS1 proteins. RESULTS The hub gene plays a vital role in biological processes; in related pathways, the regulation of other genes is often affected by it. The SOCS1/TLR4/NF-κB signaling pathway was further validated by searching for potential targets through public databases to obtain relevant pathways. The minocycline-induced tolDCs showed characteristics of semi-mature DCs. Moreover, the IL-12p70 and TNF-α levels in the minocycline-stimulated DC group (Mino-DC group) were lower than those in the lipopolysaccharide (LPS)-DC group, and the IL-10 levels were higher in the Mino-DC group than in the LPS-DC and control DC groups. In addition, the Mino-DC group had decreased protein expression levels of TLR4 and NF-κB-p65 and upregulated protein levels of NF-κB-p-p65, IκB-α, and SOCS1 compared with the other groups. CONCLUSION The results of this study indicate that minocycline could improve the tolerance of DCs probably by blocking the SOCS1/TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xu Han
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Qiao Wei
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Rui-Xue Xu
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Shi Wang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Xue-Yu Liu
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Cong Guo
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Qian Gao
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Xuan Zhou
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Li-Ping Chen
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China.
| | - Zhen-Fei Li
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| |
Collapse
|
22
|
Yang Y, Ma T, Zhang J, Tang Y, Tang M, Zou C, Zhang Y, Wu M, Hu X, Liu H, Zhang Q, Liu Y, Li H, Li JS, Liu Z, Li J, Li T, Zhou X. An integrated multi-omics analysis of identifies distinct molecular characteristics in pulmonary infections of Pseudomonas aeruginosa. PLoS Pathog 2023; 19:e1011570. [PMID: 37643174 PMCID: PMC10464988 DOI: 10.1371/journal.ppat.1011570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) can cause severe acute infections, including pneumonia and sepsis, and cause chronic infections, commonly in patients with structural respiratory diseases. However, the molecular and pathophysiological mechanisms of P. aeruginosa respiratory infection are largely unknown. Here, we performed assays for transposase-accessible chromatin using sequencing (ATAC-seq), transcriptomics, and quantitative mass spectrometry-based proteomics and ubiquitin-proteomics in P. aeruginosa-infected lung tissues for multi-omics analysis, while ATAC-seq and transcriptomics were also examined in P. aeruginosa-infected mouse macrophages. To identify the pivotal factors that are involved in host immune defense, we integrated chromatin accessibility and gene expression to investigate molecular changes in P. aeruginosa-infected lung tissues combined with proteomics and ubiquitin-proteomics. Our multi-omics investigation discovered a significant concordance for innate immunological and inflammatory responses following P. aeruginosa infection between hosts and alveolar macrophages. Furthermore, we discovered that multi-omics changes in pioneer factors Stat1 and Stat3 play a crucial role in the immunological regulation of P. aeruginosa infection and that their downstream molecules (e.g., Fas) may be implicated in both immunosuppressive and inflammation-promoting processes. Taken together, these findings indicate that transcription factors and their downstream signaling molecules play a critical role in the mobilization and rebalancing of the host immune response against P. aeruginosa infection and may serve as potential targets for bacterial infections and inflammatory diseases, providing insights and resources for omics analyses.
Collapse
Affiliation(s)
- Yang Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Teng Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Miao Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chaoyu Zou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yige Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mingbo Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueli Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qianhua Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yilin Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongliang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Shirley Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuochong Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xikun Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Zhou S, Zhao Z, Zhong H, Ren Z, Li Y, Wang H, Qiu Y. The role of myeloid-derived suppressor cells in liver cancer. Discov Oncol 2023; 14:77. [PMID: 37217620 DOI: 10.1007/s12672-023-00681-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
MDSCs are immature myeloid immune cells, which accumulate in models of liver cancer to reduce effector immune cell activity, contribute to immune escape and treatment resistance. The accumulation of MDSCs suppresses the role of CTL and the killing effects of NK cells, induces the accumulation of Treg cells, and blocks the antigen presentation of DCs, thus promoting the progression of liver cancer. Recently, immunotherapy has emerged a valuable approach following chemoradiotherapy in the therapy of advanced liver cancer. A considerable increasing of researches had proved that targeting MDSCs has become one of the therapeutic targets to enhance tumor immunity. In preclinical study models, targeting MDSCs have shown encouraging results in both alone and in combination administration. In this paper, we elaborated immune microenvironment of the liver, function and regulatory mechanisms of MDSCs, and therapeutic approaches to target MDSCs. We also expect these strategies to supply new views for future immunotherapy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Shiyue Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd., West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617, China
| | - Zixuan Zhao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Hao Zhong
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Zehao Ren
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yuye Li
- Binhai New Area Hospital of TCM, Tianjin, 300451, China.
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Rd., West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617, China.
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
24
|
Gao Y, Wang R, Li L, He Y, Yuan D, Zhang Y, Hu Y, Wang S, Yuan C. Total saponins from Panax japonicus reduce inflammation in adipocytes through the miR155/SOCS1/NFκB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154827. [PMID: 37087792 DOI: 10.1016/j.phymed.2023.154827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The rising incidence of metabolic diseases due to chronic inflammation in the adipose tissue has been attributed to factors such as high fat diet (HFD). Previous studies have demonstrated that the total saponins from Panax japonicus (TSPJ) can reduce HFD-induced adipocyte inflammation, but the underlying mechanism remains unclear. In this work, we explored the molecular mechanism by which TSPJ reduces inflammation response in adipocytes. METHODS We first established C57BL/6 mouse and 3T3-L1 adipocyte models. Lentiviruses packaged with the plasmids were injected into mice through the tail vein or into adipocytes to generate the in vivo and in vitro models with miR155 knockdown and overexpression. The mice were fed with HFD to trigger inflammation and administered TSPJ (25 mg/kg∙d and 75 mg/kg∙d) by gavage. The adipocytes were treated with palmitic acid (PA) to trigger inflammation response, then treated with TSPJ (25 μg/ml and 50 μg/ml). Finally, the expression of miR155, inflammatory factors, SOCS1, and NFκB pathway-related proteins was explored. RESULTS TSPJ significantly inhibited the expression of inflammation-related genes and the miR155 expression in adipocytes both in vitro and in vivo. The dual luciferase reporter gene assay revealed that miR155 mediated the downregulation of SOCS1. TSPJ significantly inhibited and upregulated the phosphorylation of the NFκB protein and the SOCS1 proteins, respectively. CONCLUSION TSPJ inhibits miR155 to upregulate the SOCS1 expression, which subsequently inhibits the NFκB signaling pathway, thereby mitigating the inflammatory response in the adipocytes of HFD mice.
Collapse
Affiliation(s)
- Yan Gao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Rui Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Luoying Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yumin He
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Yifan Zhang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Yaqi Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Shuwen Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, 443002, China; College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China.
| |
Collapse
|
25
|
Identification of Anoikis-Related Subgroups and Prognosis Model in Liver Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24032862. [PMID: 36769187 PMCID: PMC9918018 DOI: 10.3390/ijms24032862] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 02/05/2023] Open
Abstract
Resistance to anoikis is a key characteristic of many cancer cells, promoting cell survival. However, the mechanism of anoikis in hepatocellular carcinoma (HCC) remains unknown. In this study, we applied differentially expressed overlapping anoikis-related genes to classify The Cancer Genome Atlas (TCGA) samples using an unsupervised cluster algorithm. Then, we employed weighted gene coexpression network analysis (WGCNA) to identify highly correlated genes and constructed a prognostic risk model based on univariate Cox proportional hazards regression. This model was validated using external datasets from the International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO). Finally, we used a CIBERSORT algorithm to investigate the correlation between risk score and immune infiltration. Our results showed that the TCGA cohorts could be divided into two subgroups, with subgroup A having a lower survival probability. Five genes (BAK1, SPP1, BSG, PBK and DAP3) were identified as anoikis-related prognostic genes. Moreover, the prognostic risk model effectively predicted overall survival, which was validated using ICGC and GEO datasets. In addition, there was a strong correlation between infiltrating immune cells and prognostic genes and risk score. In conclusion, we identified anoikis-related subgroups and prognostic genes in HCC, which could be significant for understanding the molecular mechanisms and treatment of HCC.
Collapse
|
26
|
Xu Y, Guo Y, Lu C, Yu L, Fang C, Li C. Polygonatum sibiricum Polysaccharide Inhibited Liver Cancer in a Simulated Tumor Microenvironment by Eliminating TLR4/STAT3 Pathway. Biol Pharm Bull 2023; 46:1249-1259. [PMID: 37661404 DOI: 10.1248/bpb.b23-00198] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Liver cancer is one of the most aggressive tumors and one of the most common malignant tumors which seriously threatens human health. Traditional Chinese medicine (TCM) was reported to resist the proliferation and metastasis of liver cancer cells. In this study, we aimed to explore the potential anti-cancer effect of Polygonatum sibiricum polysaccharide (PSP) on the tumor immune microenvironment in liver cancer cells. HepG2 and Hep3B cells were pretreated in the absence or the presence of PSP (20, 50, 100 µg/mL) for a period of 24 h. Subsequently, dendritic cells (DCs) were co-cultured with HepG2 and Hep3B cell supernatant to investigate the effect of PSP on the tumor microenvironment. The results showed that PSP dose-dependently inhibited proliferation and promoted apoptosis of HepG2 and Hep3B cells. Meanwhile, PSP dose-dependently inhibited migration, invasion, and epithelial-to-mesenchymal transition (EMT) of liver cancer cells. In addition, PSP dose-dependently induced inflammatory response of DCs, characterized by increases of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α in DCs. Mechanically, PSP dose-dependently reduced the activation of the Toll-like receptor 4 (TLR4)/Signal transducer and activator of transcription 3 (STAT3) and noncanonical nuclear factor-kappa B (NF-κB) signaling pathways. TLR4 agonist lipopolysaccharide (LPS) reversed the anti-oncogenic effects of PSP in liver cancer cells. Taken together, PSP inhibited liver cancer in a simulated tumor microenvironment by eliminating TLR4/STAT3 pathway. PSP promises an important and useful alternative to liver cancer treatment.
Collapse
Affiliation(s)
- Yunke Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University
| | - Yong Guo
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University
| | - Changyou Lu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University
| | - Linlin Yu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University
| | - Chao Fang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University
| | - Chuntao Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University
| |
Collapse
|
27
|
Wu J, Miao C, Wang Y, Wang S, Wang Z, Liu Y, Wang X, Wang Z. SPTBN1 abrogates renal clear cell carcinoma progression via glycolysis reprogramming in a GPT2-dependent manner. J Transl Med 2022; 20:603. [PMID: 36527113 PMCID: PMC9756479 DOI: 10.1186/s12967-022-03805-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Renal clear cell carcinoma (ccRCC) is the most prevalent tumors worldwide. Discovering effective biomarkers is essential to monitor the prognosis and provide alternative clinical options. SPTBN1 is implicated in various cancerous processes. However, its role in ccRCC remains unelucidated. This study intends to explore the biological function and mechanism of SPTBN1 in ccRCC. METHODS Single-cell and bulk RNA-seq, tissue microarray, real-time quantitative PCR, and western blotting were applied to verify the expression and predictive value of SPTBN1 in ccRCC. Gain or loss of functional ccRCC cell line models were constructed, and in vitro and in vivo assays were performed to elucidate its tumorigenic phenotypes. Actinomycin D experiment, RNA immunoprecipitation (RIP), specific inhibitors, and rescue experiments were carried out to define the molecular mechanisms. RESULTS SPTBN1 was down-regulated in ccRCC and knockdown of SPTBN1 displayed a remarkably oncogenic role both in vitro and in vivo; while overexpressing SPTBN1 reversed this effect. SPTBN1 mediated ccRCC progression via the pathway of glutamate pyruvate transaminase 2 (GPT2)-dependent glycolysis. The expression of GPT2 was significantly negatively correlated with that of SPTBN1. As an RNA binding protein SPTBN1, regulated the mRNA stability of GPT2. CONCLUSION Our research demonstrated that SPTBN1 is significantly down-regulated in ccRCC. SPTBN1 knockdown promotes ccRCC progression via activating GPT2-dependent glycolysis. SPTBN1 may serve as a therapeutic target for the treatment of ccRCC.
Collapse
Affiliation(s)
- Jiajin Wu
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Chenkui Miao
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Yuhao Wang
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Songbo Wang
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Zhongyuan Wang
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Yiyang Liu
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Xiaoyi Wang
- grid.412676.00000 0004 1799 0784Core Facility Center, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| | - Zengjun Wang
- grid.412676.00000 0004 1799 0784Department of Urology, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, No. 300 Guangzhou Road, Nanjing, 210029 China
| |
Collapse
|
28
|
Xu M, Xia S, Wang M, Liu X, Li X, Chen W, Wang Y, Li H, Xia C, Chen J, Wu J. Enzymatic independent role of sphingosine kinase 2 in regulating the expression of type I interferon during influenza A virus infection. PLoS Pathog 2022; 18:e1010794. [PMID: 36070294 PMCID: PMC9451060 DOI: 10.1371/journal.ppat.1010794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Influenza virus has the ability to circumvent host innate immune system through regulating certain host factors for its effective propagation. However, the detailed mechanism is still not fully understood. Here, we report that a host sphingolipid metabolism-related factor, sphingosine kinase 2 (SPHK2), upregulated during influenza A virus (IAV) infection, promotes IAV infection in an enzymatic independent manner. The enhancement of the virus replication is not abolished in the catalytic-incompetent SPHK2 (G212E) overexpressing cells. Intriguingly, the sphingosine-1-phosphate (S1P) related factor HDAC1 also plays a crucial role in SPHK2-mediated IAV infection. We found that SPHK2 cannot facilitate IAV infection in HDAC1 deficient cells. More importantly, SPHK2 overexpression diminishes the IFN-β promoter activity upon IAV infection, resulting in the suppression of type I IFN signaling. Furthermore, ChIP-qPCR assay revealed that SPHK2 interacts with IFN-β promoter through the binding of demethylase TET3, but not with the other promoters regulated by TET3, such as TGF-β1 and IL6 promoters. The specific regulation of SPHK2 on IFN-β promoter through TET3 can in turn recruit HDAC1 to the IFN-β promoter, enhancing the deacetylation of IFN-β promoter, therefore leading to the inhibition of IFN-β transcription. These findings reveal an enzymatic independent mechanism on host SPHK2, which associates with TET3 and HDAC1 to negatively regulate type I IFN expression and thus facilitates IAV propagation.
Collapse
Affiliation(s)
- Mengqiong Xu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Sisi Xia
- Department of Biological Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Mei Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xiaolian Liu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xin Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Weijie Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yaohao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Hongjian Li
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- * E-mail: (HL); (CX); (JC); (JW)
| | - Chuan Xia
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- * E-mail: (HL); (CX); (JC); (JW)
| | - Jun Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, Guangdong, China
- * E-mail: (HL); (CX); (JC); (JW)
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, Guangdong, China
- * E-mail: (HL); (CX); (JC); (JW)
| |
Collapse
|
29
|
Wang Z, Mo S, Han P, Liu L, Liu Z, Fu X, Tian Y. The role of UXT in tumors and prospects for its application in hepatocellular carcinoma. Future Oncol 2022; 18:3335-3348. [PMID: 36000398 DOI: 10.2217/fon-2022-0582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UXT is widely expressed in human and mouse tissues and aberrantly expressed in various tumor tissues. UXT may play a pro-cancer or tumor suppressor role in different tumor types and microenvironments with different mechanisms of action. Studies have shown that UXT can interact with related receptors to exert its functions and affect tumor proliferation and metastasis, leading to a poor prognosis when the biological functions of these tumors are changed. Interestingly, the signaling pathways and mechanism-related molecules that interact with UXT are closely related to the occurrence of hepatocellular carcinoma (HCC) during disease progression. This article reviews the research progress of UXT and prospects for its application in HCC, with the aim of providing possible scientific suggestions for the basic research, diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Zhengwang Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Shaojian Mo
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Pengzhe Han
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Lu Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Ziang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xifeng Fu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yanzhang Tian
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| |
Collapse
|
30
|
Li Z, Huang F, Chen L, Huang T, Cai YD. Identifying In Vitro Cultured Human Hepatocytes Markers with Machine Learning Methods Based on Single-Cell RNA-Seq Data. Front Bioeng Biotechnol 2022; 10:916309. [PMID: 35706505 PMCID: PMC9189284 DOI: 10.3389/fbioe.2022.916309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/11/2022] [Indexed: 01/12/2023] Open
Abstract
Cell transplantation is an effective method for compensating for the loss of liver function and improve patient survival. However, given that hepatocytes cultivated in vitro have diverse developmental processes and physiological features, obtaining hepatocytes that can properly function in vivo is difficult. In the present study, we present an advanced computational analysis on single-cell transcriptional profiling to resolve the heterogeneity of the hepatocyte differentiation process in vitro and to mine biomarkers at different periods of differentiation. We obtained a batch of compressed and effective classification features with the Boruta method and ranked them using the Max-Relevance and Min-Redundancy method. Some key genes were identified during the in vitro culture of hepatocytes, including CD147, which not only regulates terminally differentiated cells in the liver but also affects cell differentiation. PPIA, which encodes a CD147 ligand, also appeared in the identified gene list, and the combination of the two proteins mediated multiple biological pathways. Other genes, such as TMSB10, TMEM176B, and CD63, which are involved in the maturation and differentiation of hepatocytes and assist different hepatic cell types in performing their roles were also identified. Then, several classifiers were trained and evaluated to obtain optimal classifiers and optimal feature subsets, using three classification algorithms (random forest, k-nearest neighbor, and decision tree) and the incremental feature selection method. The best random forest classifier with a 0.940 Matthews correlation coefficient was constructed to distinguish different hepatic cell types. Finally, classification rules were created for quantitatively describing hepatic cell types. In summary, This study provided potential targets for cell transplantation associated liver disease treatment strategies by elucidating the process and mechanism of hepatocyte development at both qualitative and quantitative levels.
Collapse
Affiliation(s)
- ZhanDong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
31
|
Zhang Y, Murphy S, Lu X. Cancer-cell-intrinsic mechanisms regulate MDSCs through cytokine networks. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 375:1-31. [PMID: 36967150 DOI: 10.1016/bs.ircmb.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunotherapy has shifted the paradigm of cancer treatment. However, the majority of cancer patients display de novo or acquired resistance to immunotherapy. One of the main mechanisms of immunotherapy resistance is the immunosuppressive microenvironment dominated by the myeloid-derived suppressor cells (MDSCs). Emerging evidence demonstrates that genetic or epigenetic aberrations in cancer cells shape the accumulation and activation of MDSCs. Understanding this genotype-immunophenotype relationship is critical to the rational design of combination immunotherapy. Here, we review the mechanisms of how molecular changes in cancer cells induce recruitment and reprogram the function of tumor-infiltrating myeloid cells, particularly MDSCs. Tumor-infiltrating MDSCs elicit various pro-tumor functions to promote tumor cell fitness, immune evasion, angiogenesis, tissue remodeling, and metastasis. Through understanding the genotype-immunophenotype relationship between neoplastic cells and MDSCs, new approaches can be developed to tailor current immunotherapy strategies to improve cancer patient outcomes.
Collapse
|
32
|
Rao S, Yang X, Ohshiro K, Zaidi S, Wang Z, Shetty K, Xiang X, Hassan I, Mohammad T, Latham PS, Nguyen BN, Wong L, Yu H, Al-Abed Y, Mishra B, Vacca M, Guenigault G, Allison MED, Vidal-Puig A, Benhammou JN, Alvarez M, Pajukanta P, Pisegna JR, Mishra L. β2-spectrin (SPTBN1) as a therapeutic target for diet-induced liver disease and preventing cancer development. Sci Transl Med 2021; 13:eabk2267. [PMID: 34910547 PMCID: PMC8941321 DOI: 10.1126/scitranslmed.abk2267] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prevalence of nonalcoholic steatohepatitis (NASH) and liver cancer is increasing. De novo lipogenesis and fibrosis contribute to disease progression and cancerous transformation. Here, we found that β2-spectrin (SPTBN1) promotes sterol regulatory element (SRE)–binding protein (SREBP)–stimulated lipogenesis and development of liver cancer in mice fed a high-fat diet (HFD) or a western diet (WD). Either hepatocyte-specific knockout of SPTBN1 or siRNA-mediated therapy protected mice from HFD/WD-induced obesity and fibrosis, lipid accumulation, and tissue damage in the liver. Biochemical analysis suggested that HFD/WD induces SPTBN1 and SREBP1 cleavage by CASPASE-3 and that the cleaved products interact to promote expression of genes with sterol response elements. Analysis of human NASH tissue revealed increased SPTBN1 and CASPASE-3 expression. Thus, our data indicate that SPTBN1 represents a potential target for therapeutic intervention in NASH and liver cancer.
Collapse
Affiliation(s)
- Shuyun Rao
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
- Center for Translational Medicine, Department of Surgery, The George Washington University, DC, 20037, USA
| | - Xiaochun Yang
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
| | - Kazufumi Ohshiro
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
| | - Sobia Zaidi
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
| | - Zhanhuai Wang
- Center for Translational Medicine, Department of Surgery, The George Washington University, DC, 20037, USA
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Kirti Shetty
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, 21201, USA
| | - Xiyan Xiang
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Patricia S. Latham
- Center for Translational Medicine, Department of Surgery, The George Washington University, DC, 20037, USA
- Department of Pathology, The George Washington University, DC, 20037, USA
| | - Bao-Ngoc Nguyen
- Center for Translational Medicine, Department of Surgery, The George Washington University, DC, 20037, USA
| | - Linda Wong
- Cancer Biology department, University of Hawaii Cancer Center, HI, 96813, USA
- Dept of Surgery, University of Hawaii John A. Burns School of Medicine, HI, 96813, USA
| | - Herbert Yu
- Epidemiology Program, University of Hawaii Cancer Center, HI, 96813, USA
| | - Yousef Al-Abed
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
| | - Bibhuti Mishra
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
- Department of Neurology, Northwell Health, Manhasset, NY, 11030, USA
| | - Michele Vacca
- TVP Lab, Metabolic Research Laboratories, WT/MRC Institute of Metabolic Science Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
| | | | - Michael ED Allison
- Liver Unit, Cambridge Biomedical Research Centre, Cambridge University Hospitals, CB2 0QQ, United Kingdom
| | - Antonio Vidal-Puig
- TVP Lab, Metabolic Research Laboratories, WT/MRC Institute of Metabolic Science Addenbrooke's Hospital, Cambridge, CB2 0QQ, United Kingdom
- Welcome Trust Sanger Institute, Hinxton, CB10 1SA, United Kingdom
- Cambridge University Nanjing Centre of Technology and Innovation, Jiangbei Area, Nanjing, 210000, China
| | - Jihane N Benhammou
- Vatche and Tamar Manoukian Division of Digestive Diseases and Gastroenterology, Hepatology and Parenteral Nutrition, David Geffen School of Medicine at UCLA and VA Greater Los Angeles HCS, Los Angeles, CA, 90095, USA
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Joseph R. Pisegna
- Department of Medicine and Human Genetics, Division of Gastroenterology, Hepatology and Parenteral Nutrition, David Geffen School of Medicine at UCLA and VA Greater Los Angeles HCS, Los Angeles, CA, 90095, USA
| | - Lopa Mishra
- The Institute for Bioelectronic Medicine, Feinstein Institutes for Medical Research, & Cold Spring Harbor Laboratory, Department of Medicine, Divisions of Gastroenterology and Hepatology, Northwell Health, Manhasset, NY, 11030, USA
- Center for Translational Medicine, Department of Surgery, The George Washington University, DC, 20037, USA
| |
Collapse
|
33
|
Hao X, Sun G, Zhang Y, Kong X, Rong D, Song J, Tang W, Wang X. Targeting Immune Cells in the Tumor Microenvironment of HCC: New Opportunities and Challenges. Front Cell Dev Biol 2021; 9:775462. [PMID: 34869376 PMCID: PMC8633569 DOI: 10.3389/fcell.2021.775462] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022] Open
Abstract
Immune associated cells in the microenvironment have a significant impact on the development and progression of hepatocellular carcinoma (HCC) and have received more and more attention. Different types of immune-associated cells play different roles, including promoting/inhibiting HCC and several different types that are controversial. It is well known that immune escape of HCC has become a difficult problem in tumor therapy. Therefore, in recent years, a large number of studies have focused on the immune microenvironment of HCC, explored many mechanisms worth identifying tumor immunosuppression, and developed a variety of immunotherapy methods as targets, laying the foundation for the final victory in the fight against HCC. This paper reviews recent studies on the immune microenvironment of HCC that are more reliable and important, and provides a more comprehensive view of the investigation of the immune microenvironment of HCC and the development of more immunotherapeutic approaches based on the relevant summaries of different immune cells.
Collapse
Affiliation(s)
- Xiaopei Hao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yao Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Xiangyi Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Dawei Rong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Jinhua Song
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| | - Xuehao Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Therapeutic Values of Myeloid-Derived Suppressor Cells in Hepatocellular Carcinoma: Facts and Hopes. Cancers (Basel) 2021; 13:cancers13205127. [PMID: 34680276 PMCID: PMC8534227 DOI: 10.3390/cancers13205127] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Myeloid-derived suppressor cells restrict the effectiveness of immune-checkpoint inhibitors for a subset of patients mainly through thwarting T cell infiltration into tumor sites. Treatments targeting MDSCs have shown potent inhibitory effects on multiple tumors, including hepatocellular carcinoma. In this review, we summarize the pathological mechanisms of MDSCs and their clinical significance as prognostic and predictive biomarkers for HCC patients, and we provide the latest progress of MDSCs-targeting treatment in HCC. Abstract One of the major challenges in hepatocellular carcinoma (HCC) treatment is drug resistance and low responsiveness to systemic therapies, partly due to insufficient T cell infiltration. Myeloid-derived suppressor cells (MDSCs) are immature marrow-derived cell populations with heterogeneity and immunosuppression characteristics and are essential components of the suppressive tumor immune microenvironment (TIME). Increasing evidence has demonstrated that MDSCs are indispensable contributing factors to HCC development in a T cell-dependent or non-dependent manner. Clinically, the frequency of MDSCs is firmly linked to HCC clinical outcomes and the effectiveness of immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs). Furthermore, MDSCs can also be used as prognostic and predictive biomarkers for patients with HCC. Therefore, treatments reprograming MDSCs may offer potential therapeutic opportunities in HCC. Here, we recapitulated the dynamic relevance of MDSCs in the initiation and development of HCC and paid special attention to the effect of MDSCs on T cells infiltration in HCC. Finally, we pointed out the potential therapeutic effect of targeting MDSCs alone or in combination, hoping to provide new insights into HCC treatment.
Collapse
|
35
|
Hu ZW, Wen YH, Ma RQ, Chen L, Zeng XL, Wen WP, Sun W. Ferroptosis Driver SOCS1 and Suppressor FTH1 Independently Correlate With M1 and M2 Macrophage Infiltration in Head and Neck Squamous Cell Carcinoma. Front Cell Dev Biol 2021; 9:727762. [PMID: 34527677 PMCID: PMC8437260 DOI: 10.3389/fcell.2021.727762] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 08/11/2021] [Indexed: 12/23/2022] Open
Abstract
Objective To investigate the role of ferroptosis, an iron-dependent form of non-apoptotic cell death, in the head and neck squamous cell carcinoma (HNSCC) immune microenvironment. Materials and Methods A list of ferroptosis-related genes was obtained from the FerrDb database. Gene expression data were acquired from the cancer genome atlas (TCGA) and analyzed using the R language. Protein–protein interaction analysis was conducted using STRING and GeneMANIA. The correlations between gene expression levels and a patient’s survival were analyzed using GEPIA, the Kaplan–Meier estimate, and a multivariate Cox proportional hazards model. The expression results were verified using Oncomine and Human Protein Atlas data. We used the TIMER, GEPIA2, GEPIA2021, and TIMER2 databases to investigate the relationships between gene expression and infiltrating immune cells. Results Analysis of differentially expressed genes (DEGs) identified nine each ferroptosis drivers and ferroptosis suppressors, among which four genes correlated with survival as follows: two drivers (SOCS1, CDKN2A) associated with better survival and two suppressors (FTH1, CAV1) associated with poorer survival. Multivariate Cox survival analysis identified SOCS1 and FTH1 as independent prognostic factors for HNSCC, and their higher expression levels were verified using Oncomine and HPA data. The results acquired using TIMER, GEPIA2, GEPIA2021, and TIMER2 data revealed that the driver SOCS1 and the suppressor FTH1 independently correlated with M1 and M2 macrophage infiltration. Conclusions The ferroptosis driver SOCS1 and suppressor FTH1 are independent prognostic factors and that correlate with M1 and M2 macrophage infiltration in HNSCC. Targeting ferroptosis-immunomodulation may serve as a strategy to enhance the activity of immunotherapy.
Collapse
Affiliation(s)
- Zhang-Wei Hu
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China
| | - Yi-Hui Wen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China
| | - Ren-Qiang Ma
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China
| | - Lin Chen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China
| | - Xue-Lan Zeng
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China
| | - Wei-Ping Wen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China.,Department of Otolaryngology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Sun
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Wu H, Chen S, Liu C, Li J, Wei X, Jia M, Guo J, Jin J, Meng D, Zhi X. SPTBN1 inhibits growth and epithelial-mesenchymal transition in breast cancer by downregulating miR-21. Eur J Pharmacol 2021; 909:174401. [PMID: 34358482 DOI: 10.1016/j.ejphar.2021.174401] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 01/05/2023]
Abstract
SPTBN1 (spectrin beta, non-erythrocytic 1) has been linked to tumor progression and epithelial-mesenchymal transition (EMT). However, the role of SPTBN1 has yet to be investigated in breast cancer. This study aimed to evaluate the viability, growth, and migration ability of the breast cancer cell line MDA-MB-231 and BT549 using CCK-8 assay, xenograft models, and Transwell assays. The expression of SPTBN1, EMT-related genes, and miRNA21 in breast cancer cells and tissues were assessed by quantitative real-time polymerase chain reaction (qPCR) and Western blot. SPTBN1 staining of breast cancer tissues was analyzed by the Human Protein Atlas databases. Both chromatin immunoprecipitation qPCR and immunofluorescence were performed to detect how SPTBN1 regulates miRNA21. Our results showed that the expression of SPTBN1 in primary breast cancer tumors was dramatically lower than that in normal tissues and that lower levels of SPTBN1 were associated with significantly shorter progression-free survival. We also discovered that the loss of SPTBN1 promotes EMT, the viability of MDA-MB-231 and BT549 in vitro, and the growth of MDA-MB-231 tumor xenografts in vivo by upregulating miR-21 level. Furthermore, loss of SPTBN1-mediated miR-21 upregulation was dependent on the stability and nuclear translocation of NF-κB p65. Therefore, SPTBN1 is a pivotal regulator that inhibits EMT and the growth of breast cancer.
Collapse
Affiliation(s)
- Huijie Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shuyi Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenyang Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiajia Li
- Department of Gynecology, Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Mengping Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiayu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
37
|
Huang CJ, Wang LHC, Wang YC. Identification of Therapeutic Targets for the Selective Killing of HBV-Positive Hepatocytes. J Pers Med 2021; 11:jpm11070649. [PMID: 34357116 PMCID: PMC8307716 DOI: 10.3390/jpm11070649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
The hepatitis B virus (HBV) infection is a major risk factor for cirrhosis and hepatocellular carcinoma. Most infected individuals become lifelong carriers of HBV as the drugs currently used to treat the patients can only control the disease, thereby achieving functional cure (loss of the hepatitis B surface antigen) but not complete cure (elimination of infected hepatocytes). Therefore, we aimed to identify the target genes for the selective killing of HBV-positive hepatocytes to develop a novel therapy for the treatment of HBV infection. Our strategy was to recognize the conditionally essential genes that are essential for the survival of HBV-positive hepatocytes, but non-essential for the HBV-negative hepatocytes. Using microarray gene expression data curated from the Gene Expression Omnibus database and the known essential genes from the Online GEne Essentiality database, we used two approaches, comprising the random walk with restart algorithm and the support vector machine approach, to determine the potential targets for the selective killing of HBV-positive hepatocytes. The final candidate genes list obtained using these two approaches consisted of 36 target genes, which may be conditionally essential for the cell survival of HBV-positive hepatocytes; however, this requires further experimental validation. Therefore, the genes identified in this study can be used as potential drug targets to develop novel therapeutic strategies for the treatment of HBV, and may ultimately help in achieving the elusive goal of a complete cure for hepatitis B.
Collapse
Affiliation(s)
- Chien-Jung Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300044, Taiwan;
- Department of Medical Science, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-Chao Wang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Correspondence:
| |
Collapse
|