1
|
Zhang Y, Ding R, Hu L, Liu E, Qu P. Epigenetics in metabolic dysfunction-associated steatohepatitis. Cell Signal 2025; 130:111684. [PMID: 39999913 DOI: 10.1016/j.cellsig.2025.111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a complex disease involving genetics, environment, and lifestyle, with the potential to progress to liver fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). Although the pathogenesis of MASH is not fully clear, increasing evidence has indicated that epigenetics plays an important role in the genesis and progression of MASH, during which, as drastic changes in metabolites, epigenetics undergo drastic changes. Roles of chromatin structure, chromatin accessibility, DNA methylation, histone modification, and non-coding RNAs were considered as bridges of pathogenic factors and MASH. In this review, the research progress on the epigenetics of MASH was summarized, and indepth research and therapeutic strategies based on epigenetics is expected to bring new hope to MASH patients.
Collapse
Affiliation(s)
- Yanru Zhang
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an 710049, China
| | - Ruike Ding
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an 710049, China
| | - Liangshuo Hu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an 710049, China.
| | - Pengxiang Qu
- Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an 710049, China.
| |
Collapse
|
2
|
Lu R, Cai H, Liu Y, Ma G, Wang J, Yan M, Zhang Z, Yu B, Li Z, Fang S. Long non-coding RNA AK023617 orchestrates atherosclerosis by regulating the circadian rhythm of immunity-related GTPase family M protein in macrophages. Noncoding RNA Res 2025; 11:262-272. [PMID: 39902258 PMCID: PMC11788686 DOI: 10.1016/j.ncrna.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025] Open
Abstract
Acute coronary events show a diurnal rhythm, and atherosclerotic plaque vulnerability, as a histomorphological characteristic of major adverse cardiovascular events, is a key target for intervention. Although oscillating microRNAs reduce plaque stability by facilitating macrophage apoptosis in lesions, whether rhythmic long non-coding RNA (lncRNA) can regulate diurnal oscillations in plaque stability and the potential underlying mechanism remain unclear. In this study, we examined whether rhythmic lncRNAs are involved in the pathogenesis and progression of atherosclerosis and detected a novel circadian lncRNA-AK023617, which is positively correlated with the peak occurrence of major adverse cardiovascular events. Transfection of short interfering RNA specific to lnc-AK023617 into THP-1 cells dampened the oscillation of immunity-related GTPase family M protein 1 (Irgm1), which is negatively related to plaque stability. In ApoE-/- mice fed a high-fat diet for 12 weeks, diurnal variations in lncAK023617 were consistent with the proportions of necroptotic cells in atherosclerotic plaques. In addition, reduced expression of lncAK023617 inhibited P-RIP3 and P-MLKL in THP-1 cells. Mechanistically, lncAK023617 interacted with the core molecular clock Bmal1 and promoted nuclear translocation of Bmal1, which could directly bind to the E-BOX elements in the Irgm1 promoter. Thus, oscillating lncAK023617 in macrophages can affect plaque stability by regulating necroptosis, which regulates circadian expression of the target gene Irgm1 by increasing the transcriptional activity of Bmal1, ultimately determining the diurnal oscillations in plaque stability. Therefore, lncAK023617 may serve as a specific target to ameliorate atherosclerotic plaque vulnerability.
Collapse
Affiliation(s)
- Rongzhe Lu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Hengxuan Cai
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yige Liu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Guanpeng Ma
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiaxin Wang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Miao Yan
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhenming Zhang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Bo Yu
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhaoying Li
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shaohong Fang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
3
|
Soltanieh SK, Khastar S, Kaur I, Kumar A, Bansal J, Fateh A, Nathiya D, Husseen B, Rajabivahid M, Dehghani-Ghorbi M, Akhavan-Sigari R. Long Non-Coding RNAs in Non-Alcoholic Fatty Liver Disease; Friends or Foes? Cell Biochem Biophys 2025; 83:279-294. [PMID: 39377981 DOI: 10.1007/s12013-024-01555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 01/03/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a range of conditions that start with the accumulation of fat in the liver (hepatic steatosis) and can progress to more severe stages like steatohepatitis (NASH) and fibrosis without drinking alcohol. Environmental and genetic variables both contribute to MAFLD's development, with various biological processes and mediators involved at every phase. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that are not translated into protein and are over 200 nucleotides long. They can impact genes that encode protein by controlling transcriptional and post-transcriptional procedures. Dysregulation of lncRNA has been connected to several liver diseases, including MAFLD. Recent research has linked lncRNAs to MAFLD pathology in both patients and animal models. However, the roles of most lncRNAs in MAFLD pathology are still not well recognized. This review provides a comprehensive catalog of recently reported lncRNAs in the pathogenesis of MAFLD and summarizes the current knowledge of lncRNAs usage as therapeutic strategies in MAFLD, the most common liver disease. Collectively, lncRNA's targeting could potentially offer a therapeutic approach by modulating MAFLD.
Collapse
Affiliation(s)
| | - Sahar Khastar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka-560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand-831001, India
| | - Jaya Bansal
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India
| | - Ata Fateh
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
| | - Mansour Rajabivahid
- Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mahmoud Dehghani-Ghorbi
- Hematology-Oncology Department, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warszawa, Poland
| |
Collapse
|
4
|
Salim Abed H, Oghenemaro EF, Kubaev A, Jeddoa ZMA, S R, Sharma S, Vashishth R, Jabir MS, Jawad SF, Zwamel AH. Non-coding RNAs as a Critical Player in the Regulation of Inflammasome in Inflammatory Bowel Diseases; Emphasize on lncRNAs. Cell Biochem Biophys 2024:10.1007/s12013-024-01585-2. [PMID: 39424765 DOI: 10.1007/s12013-024-01585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic disease caused by a dysregulated immune response to host intestinal microflora. A hyperactive inflammatory and immunological response in the gut has been shown to be one of the disease's long-term causes despite the complexity of the clinical pathology of IBD. The innate immune system activator known as human gut inflammasome is thought to be a significant underlying cause of pathology and is closely linked to the development of IBD. It is essential to comprehend the function of inflammasome activation in IBD to treat it effectively. Systemic inflammasome regulation may be a proper therapeutic and clinical strategy to manage IBD symptoms since inflammasomes may have a significant function in IBD. Non-coding RNAs (ncRNAs) are a type of RNA transcript that is incapable of encoding proteins or peptides. In IBD, inflammation develops and worsens as a result of its imbalance. Culminating evidence has been shown that ncRNAs, and particularly long non-coding RNAs (lncRNAs), may play a role in the regulation of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in IBD. The relationship between IBD and the gut inflammasome, as well as current developments in IBD research and treatment approaches, have been the main topics of this review. We have covered inflammasomes and their constituents, results from in vivo research, inflammasome inhibitors, and advancements in inflammasome-targeted therapeutics for IBD.
Collapse
Affiliation(s)
- Hussein Salim Abed
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Ramadi, Iraq
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria.
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, 140100, Uzbekistan
| | | | - RenukaJyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Shilpa Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Majid S Jabir
- Department of Applied Sciences, University of Technology, Karbala, Iraq
| | - Sabrean Farhan Jawad
- Department of Biochemistry, College of Science, Al-Mustaqbal University, 51001, Babil, Iraq
| | - Ahmed Hussein Zwamel
- Medical laboratory technique college, the Islamic University, Najaf, Iraq
- Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Zhao T, Li Q, Wang X, Tang B, Zhang X, Yu H, Li Z. Time-dependent effects of high-fat diet on cognition and cerebral insulin signaling: Window for recovery and potential therapeutic target. Mech Ageing Dev 2024; 220:111955. [PMID: 38852746 DOI: 10.1016/j.mad.2024.111955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
While high-fat diet (HFD)-induced obesity is a major threat to global public health, the effect of HFD on cognition and insulin signaling during ageing remains controversial. The aim of this study was to characterize the dynamic alterations in cognition and cerebral insulin signaling during 6-month HFD consumption, and to investigate the potential therapeutic target and optimal timing to rescue obesity-related cognitive deficits. In the present study, impaired memory retention induced by 2-month HFD was recovered after 4 months on HFD. Prolonged (6-month) HFD did not further enhance tau hyperphosphorylation and β-amyloid deposition, which was consistent with the alleviation of memory retention. In brain insulin signaling, 2-month HFD increased IRS-1 and p-IRS-1(Ser307)/IRS-1, while decreasing pAKT(Ser473)/AKT, PI3K and mTOR; 4-month HFD decreased IRS-1 and pAKT(Ser473)/AKT, while increasing AKT; 6-month HFD increased IRS-1, pAKT(Ser473)/AKT, and mTOR, while decreasing p-IRS-1(Ser307)/IRS-1, PI3K and AKT. Notably, bioinformatic analysis revealed a rhythmic process presented only in 4-month HFD group, with Srebf1 emerging as a link between circadian rhythms and insulin signaling pathway. These results suggest that prolonged HFD prevents further cognitive decline and the progression of Alzheimer's disease (AD)-related pathologies during ageing. Moreover, there may be a window for recovery, in which Srebf1 acts as a self-recovery switch to address obesity-related cognitive disorders in elders.
Collapse
Affiliation(s)
- Tianchuang Zhao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Qi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, China
| | - Xiaodan Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, China.
| |
Collapse
|
6
|
Ramachandran R, Manan A, Kim J, Choi S. NLRP3 inflammasome: a key player in the pathogenesis of life-style disorders. Exp Mol Med 2024; 56:1488-1500. [PMID: 38945951 PMCID: PMC11297159 DOI: 10.1038/s12276-024-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/27/2024] [Accepted: 03/25/2024] [Indexed: 07/02/2024] Open
Abstract
Proinflammatory cytokines and chemokines play a crucial role in regulating the inflammatory response, which is essential for the proper functioning of our immune system. When infections or threats to the body's defense mechanisms are detected, the innate immune system takes the lead. However, an excessive inflammatory response can lead to the production of high concentrations of cytotoxic molecules, resulting in tissue damage. Inflammasomes are significant contributors to innate immunity, and one of the most extensively studied inflammasome complexes is NOD-like receptor 3 (NLRP3). NLRP3 has a wide range of recognition mechanisms that streamline immune activation and eliminate pathogens. These cytosolic multiprotein complexes are composed of effector, adaptor, and sensor proteins, which are crucial for identifying intracellular bacterial breakdown products and initiating an innate immune cascade. To understand the diverse behavior of NLRP3 activation and its significance in the development of lifestyle-related diseases, one must delve into the study of the immune response and apoptosis mediated by the release of proinflammatory cytokines. In this review, we briefly explore the immune response in the context of lifestyle associated disorders such as obesity, hyperlipidemia, diabetes, chronic respiratory disease, oral disease, and cardiovascular disease.
Collapse
Affiliation(s)
- Rajath Ramachandran
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
| | - Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
| | - Jei Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Korea.
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon, 16502, Korea.
| |
Collapse
|
7
|
Sivagurunathan N, Rahamathulla MP, Al-Dossary H, Calivarathan L. Emerging Role of Long Noncoding RNAs in Regulating Inflammasome-Mediated Neurodegeneration in Parkinson's Disease. Mol Neurobiol 2024; 61:4619-4632. [PMID: 38105409 DOI: 10.1007/s12035-023-03809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
Parkinson's disease (PD) is one of the complex neurodegenerative disorders, primarily characterized by motor deficits, including bradykinesia, tremor, rigidity, and postural instability. The underlying pathophysiology involves the progressive loss of dopaminergic neurons within the substantia nigra pars compacta, leading to dopamine depletion in the basal ganglia circuitry. While motor symptoms are hallmark features of PD, emerging research highlights a wide range of non-motor symptoms, including cognitive impairments, mood disturbances, and autonomic dysfunctions. Inflammasome activation is pivotal in inducing neuroinflammation and promoting disease onset, progression, and severity of PD. Several studies have shown that long noncoding RNAs (lncRNAs) modulate inflammasomes in the pathogenesis of neurodegenerative diseases. Dysregulation of lncRNAs is linked to aberrant gene expression and cellular processes in neurodegeneration, causing the activation of inflammasomes that contribute to neuroinflammation and neurodegeneration. Inflammasomes are cytosolic proteins that form complexes upon activation, inducing inflammation and neuronal cell death. This review explores the significance of lncRNAs in regulating inflammasomes in PD, primarily focusing on specific lncRNAs such as nuclear paraspeckle assembly transcript 1 (NEATNEAT1), X-inactive specific transcript (XIST), growth arrest-specific 5 (GAS5), and HOX transcript antisense RNA (HOTAIR), which have been shown to activate or inhibit the NLRP3 inflammasome and induce the release of proinflammatory cytokines. Moreover, some lncRNAs mediate inflammasome activation through miRNA interactions. Understanding the roles of lncRNAs in inflammasome regulation provides new therapeutic targets for controlling neuroinflammation and reducing the progression of neurodegeneration. Identifying lncRNA-mediated regulatory pathways paves the way for novel therapies in the battle against these devastating neurodegenerative disorders.
Collapse
Affiliation(s)
- Narmadhaa Sivagurunathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, 610005, India
| | - Mohamudha Parveen Rahamathulla
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Hussein Al-Dossary
- University Hospital, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Latchoumycandane Calivarathan
- Molecular Pharmacology & Toxicology Laboratory, Department of Biotechnology, School of Life Sciences, Central University of Tamil Nadu, Neelakudi Campus, Thiruvarur, 610005, India.
| |
Collapse
|
8
|
Liu Q, Tabrez S, Niekamp P, Kim CH. Circadian-clock-controlled endocrine and cytokine signals regulate multipotential innate lymphoid cell progenitors in the bone marrow. Cell Rep 2024; 43:114200. [PMID: 38717905 PMCID: PMC11264331 DOI: 10.1016/j.celrep.2024.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/12/2023] [Accepted: 04/22/2024] [Indexed: 06/01/2024] Open
Abstract
Innate lymphoid cells (ILCs), strategically positioned throughout the body, undergo population declines over time. A solution to counteract this problem is timely mobilization of multipotential progenitors from the bone marrow. It remains unknown what triggers the mobilization of bone marrow ILC progenitors (ILCPs). We report that ILCPs are regulated by the circadian clock to emigrate and generate mature ILCs in the periphery. We found that circadian-clock-defective ILCPs fail to normally emigrate and generate ILCs. We identified circadian-clock-controlled endocrine and cytokine cues that, respectively, regulate the retention and emigration of ILCPs at distinct times of each day. Activation of the stress-hormone-sensing glucocorticoid receptor upregulates CXCR4 on ILCPs for their retention in the bone marrow, while the interleukin-18 (IL-18) and RORα signals upregulate S1PR1 on ILCPs for their mobilization to the periphery. Our findings establish important roles of circadian signals for the homeostatic efflux of bone marrow ILCPs.
Collapse
Affiliation(s)
- Qingyang Liu
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shams Tabrez
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Patrick Niekamp
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA; Immunology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Tao Q, Xie J, Wu Y, Jin Y. Long non-coding RNAs as modulators and therapeutic targets in non-alcoholic fatty liver disease (NAFLD). GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:506-516. [PMID: 37806343 DOI: 10.1016/j.gastrohep.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world, with epidemiological studies indicating a 25% prevalence. NAFLD is considered to be a progressive disease that progresses from simple hepatic steatosis to non-alcoholic steatohepatitis (NASH), then to liver fibrosis, and finally to cirrhosis or hepatocellular carcinoma (HCC). Existing research has mostly elucidated the etiology of NAFLD, yet its particular molecular processes remain uncertain. Long non-coding RNAs (LncRNAs) have been linked in a wide range of biological processes in recent years, with the introduction of microarray and high-throughput sequencing technologies, and previous studies have established their tight relationship with several stages of NAFLD development. Existing studies have shown that lncRNAs can regulate the signaling pathways related to hepatic lipid metabolism, NASH, NASH-related fibrosis and HCC. This review aims to provide a basic overview of NAFLD and lncRNAs, summarize and describe the mechanisms of lncRNAs action involved in the development of NAFLD, and provide an outlook on the future of lncRNAs-based therapy for NAFLD.
Collapse
Affiliation(s)
- Qing Tao
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Jing Xie
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yongkang Wu
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China
| | - Yong Jin
- Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
10
|
Du G, Jiang Z, Xia T, Liu M, Liu Z, Zhou H, Zhang H, Zhai X, Jin B. lincRNA00907 promotes NASH progression by targeting miRNA-942-5p/TAOK1. Aging (Albany NY) 2024; 16:6868-6882. [PMID: 38613803 PMCID: PMC11087098 DOI: 10.18632/aging.205730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/27/2024] [Indexed: 04/15/2024]
Abstract
OBJECTIVE The study aims to examine the involvement of lincRNA00907 in the advancement of non-alcoholic steatohepatitis (NASH). METHODS The examination was conducted to assess the expression of linc00907 in liver tissues from NASH patients and healthy individuals. High-fat diets induced NASH in mouse models, while palmitic acid/oleic acid treatment was used to create in vitro cell models. Various techniques, such as qRT-PCR, Oil Red O staining and gene knockdown/overexpression, were used to assess the impact of linc00907 on genes related to lipid metabolism and immunity, as well as intracellular lipid accumulation. Furthermore, dual-luciferase reporter assays were carried out to confirm the connection between miRNA-942-5p and linc00907 or TAOK1 mRNA. RESULTS Linc00907 was found to be significantly upregulated in both NASH patients and NASH mouse models. Overexpression of linc00907 led to an increase in intracellular lipid accumulation, while knockdown of linc00907 resulted in decreased lipid content. It was found that miRNA-942-5p binds with linc00907, and their interaction was confirmed in dual-luciferase reporter assays. Additionally, TAOK1 was predicted to be a downstream target of miRNA-942-5p, and the upregulation of TAOK1 due to linc00907 was reversed by miRNA-942-5p overexpression. linc00907 overexpression reduces apoptosis but can be reversed by TAOK1 knockdown. The reduction of TAOK1 counteracted the impact of linc00907 on gene expression associated with lipid metabolism and immunity, as well as on the accumulation of intracellular lipids. CONCLUSIONS Our research suggests that linc00907 functions as a competitive endogenous RNA (ceRNA) by sequestering miRNA-942-5p, thus increasing the expression of TAOK1 and encouraging lipid accumulation in hepatocytes, leading to the aggravation of NASH development. Targeting the linc00907/miRNA-942-5p/TAOK1 axis may hold therapeutic potential for the treatment of NASH.
Collapse
Affiliation(s)
- Gang Du
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Zhaochen Jiang
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Tong Xia
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Mingkun Liu
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Zeyang Liu
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Huaxin Zhou
- Department of Hepatobiliary Surgery, The Second Hospital of Shangdong University, Jinan 250033, China
| | - Hao Zhang
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital of Shangdong University, Jinan 250033, China
| | - Bin Jin
- Organ Transplant Department, Qilu Hospital of Shangdong University, Jinan 250012, China
- Department of Hepatobiliary Surgery, The Second Hospital of Shangdong University, Jinan 250033, China
| |
Collapse
|
11
|
Deng J, Qin L, Qin S, Wu R, Huang G, Fang Y, Huang L, Zhou Z. NcRNA Regulated Pyroptosis in Liver Diseases and Traditional Chinese Medicine Intervention: A Narrative Review. J Inflamm Res 2024; 17:2073-2088. [PMID: 38585470 PMCID: PMC10999193 DOI: 10.2147/jir.s448723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Pyroptosis is a novel pro-inflammatory mode of programmed cell death that differs from ferroptosis, necrosis, and apoptosis in terms of its onset and regulatory mechanisms. Pyroptosis is dependent on cysteine aspartate protein hydrolase (caspase)-mediated activation of GSDMD, NLRP3, and the release of pro-inflammatory cytokines, interleukin-1 (IL-1β), and interleukin-18 (IL-18), ultimately leading to cell death. Non-coding RNA (ncRNA) is a type of RNA that does not encode proteins in gene transcription but plays an important regulatory role in other post-transcriptional links. NcRNA mediates pyroptosis by regulating various related pyroptosis factors, which we termed the pyroptosis signaling pathway. Previous researches have manifested that pyroptosis is closely related to the development of liver diseases, and is essential for liver injury, alcoholic fatty liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), liver fibrosis, and liver cancer. In this review, we attempt to address the role of the ncRNA-mediated pyroptosis pathway in the above liver diseases and their pathogenesis in recent years, and briefly outline that TCM (Traditional Chinese Medicine) intervene in liver diseases by modulating ncRNA-mediated pyroptosis, which will provide a strategy to find new therapeutic targets for the prevention and treatment of liver diseases in the future.
Collapse
Affiliation(s)
- Jiasheng Deng
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, People’s Republic of China
| | - Le Qin
- Department of Pharmacy, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Sulang Qin
- School of Graduate Studies, Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, People’s Republic of China
| | - Ruisheng Wu
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, People’s Republic of China
| | - Guidong Huang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, 530200, People’s Republic of China
| | - Yibin Fang
- Department of Pharmacy, Liuzhou People’s Hospital, Liuzhou, Guangxi, 545006, People’s Republic of China
| | - Lanlan Huang
- Department of Pharmacy, Liuzhou People’s Hospital, Liuzhou, Guangxi, 545006, People’s Republic of China
| | - Zhipin Zhou
- Department of Pharmacy, Liuzhou People’s Hospital, Liuzhou, Guangxi, 545006, People’s Republic of China
| |
Collapse
|
12
|
Lin Y, He L, Cai Y, Wang X, Wang S, Li F. The role of circadian clock in regulating cell functions: implications for diseases. MedComm (Beijing) 2024; 5:e504. [PMID: 38469551 PMCID: PMC10925886 DOI: 10.1002/mco2.504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
The circadian clock system orchestrates daily behavioral and physiological rhythms, facilitating adaptation to environmental and internal oscillations. Disruptions in circadian rhythms have been linked to increased susceptibility to various diseases and can exacerbate existing conditions. This review delves into the intricate regulation of diurnal gene expression and cell function by circadian clocks across diverse tissues. . Specifically, we explore the rhythmicity of gene expressions, behaviors, and functions in both immune and non-immune cells, elucidating the regulatory effects and mechanisms imposed by circadian clocks. A detailed discussion is centered on elucidating the complex functions of circadian clocks in regulating key cellular signaling pathways. We further review the circadian regulation in diverse diseases, with a focus on inflammatory diseases, cancers, and systemic diseases. By highlighting the intimate interplay between circadian clocks and diseases, especially through clock-controlled cell function, this review contributes to the development of novel disease intervention strategies. This enhanced understanding holds significant promise for the design of targeted therapies that can exploit the circadian regulation mechanisms for improved treatment efficacy.
Collapse
Affiliation(s)
- Yanke Lin
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
- Guangdong TCRCure Biopharma Technology Co., Ltd.GuangzhouChina
| | | | - Yuting Cai
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Shuai Wang
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhouChina
| | - Feng Li
- Infectious Diseases InstituteGuangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
13
|
Wang P, Wang Z, Lin Y, Castellano L, Stebbing J, Zhu L, Peng L. Development of a Novel Pyroptosis-Associated lncRNA Biomarker Signature in Lung Adenocarcinoma. Mol Biotechnol 2024; 66:332-353. [PMID: 37154865 DOI: 10.1007/s12033-023-00757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 04/15/2023] [Indexed: 05/10/2023]
Abstract
Pyroptosis is a novel type of cell death observed in various diseases. Our study aimed to investigate the relationship between pyroptosis-associated-long non-coding RNAs (lncRNAs), immune infiltration, and expression of immune checkpoints in the setting of lung adenocarcinoma and the prognostic value of pyroptosis-related lncRNAs. RNA-seq transcriptome data and clinical information from The Cancer Genome Atlas (TCGA) were downloaded, and consensus clustering analysis was used to separate the samples into two groups. Least absolute shrinkage and selection operator (LASSO) analyses were conducted to construct a risk signature. The association between pyroptosis-associated lncRNAs, immune infiltration, and expression of immune checkpoints were analysed. The cBioPortal tool was used to discover genomic alterations. Gene set enrichment analysis (GSEA) was utilized to investigate downstream pathways of the two clusters. Drug sensitivity was also examined. A total of 43 DEGs and 3643 differentially expressed lncRNAs were identified between 497 lung adenocarcinoma tissues and 54 normal samples. A signature consisting of 11 pyroptosis-related lncRNAs was established as prognostic for overall survival. Patients in the low-risk group have a significant overall survival advantage over those in the high-risk group in the training group. Immune checkpoints were expressed differently between the two risk groups. Risk scores were validated to develop an independent prognostic model based on multivariate Cox regression analysis. The area under time-dependent receiver operating characteristic curve (AUC of the ROC) at 1-, 3-, and 5-years measured0.778, 0.757, and 0.735, respectively. The high-risk group was more sensitive to chemotherapeutic drugs than the low-risk group. This study demonstrates the association between pyroptosis-associated lncRNAs and prognosis in lung adenocarcinoma and enables a robust predictive signature of 11 lncRNAs to inform overall survival.
Collapse
Affiliation(s)
- Peng Wang
- Department of Medical Oncology, Yidu Central Hospital of Weifang, Weifang, Shandong Province, China
| | - Zhiqiang Wang
- Department of Urology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong Province, China
| | - Yanke Lin
- Guangdong TCRCure Biopharma Technology Co., Ltd, Guangzhou, China
| | - Leandro Castellano
- Department of Biochemistry, School of Life Sciences, University of Sussex, Brighton, UK
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Justin Stebbing
- Department of Biomedical Sciences, Anglia Ruskin University, Cambridge, UK
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong Province, China
| | - Liping Zhu
- Department of Medical Oncology, Shouguang Hospital of Traditional Chinese Medicine, Shouguang, Shandong Province, China.
| | - Ling Peng
- Department of Respiratory Disease, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
14
|
Zailaie SA, Khoja BB, Siddiqui JJ, Mawardi MH, Heaphy E, Aljagthmi A, Sergi CM. Investigating the Role of Non-Coding RNA in Non-Alcoholic Fatty Liver Disease. Noncoding RNA 2024; 10:10. [PMID: 38392965 PMCID: PMC10891858 DOI: 10.3390/ncrna10010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Non-coding RNAs (ncRNAs) are RNA molecules that do not code for protein but play key roles in regulating cellular processes. NcRNAs globally affect gene expression in diverse physiological and pathological contexts. Functionally important ncRNAs act in chromatin modifications, in mRNA stabilization and translation, and in regulation of various signaling pathways. Non-alcoholic fatty liver disease (NAFLD) is a set of conditions caused by the accumulation of triacylglycerol in the liver. Studies of ncRNA in NAFLD are limited but have demonstrated that ncRNAs play a critical role in the pathogenesis of NAFLD. In this review, we summarize NAFLD's pathogenesis and clinical features, discuss current treatment options, and review the involvement of ncRNAs as regulatory molecules in NAFLD and its progression to non-alcoholic steatohepatitis (NASH). In addition, we highlight signaling pathways dysregulated in NAFLD and review their crosstalk with ncRNAs. Having a thorough understanding of the disease process's molecular mechanisms will facilitate development of highly effective diagnostic and therapeutic treatments. Such insights can also inform preventive strategies to minimize the disease's future development.
Collapse
Affiliation(s)
- Samar A. Zailaie
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Basmah B. Khoja
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Jumana J. Siddiqui
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammad H. Mawardi
- Medicine Department, Gastroenterology Section, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia;
| | - Emily Heaphy
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Amjad Aljagthmi
- Research Center, King Faisal Specialist Hospital & Research Center-Jeddah (KFSHRC-J), Jeddah 21499, Saudi Arabia; (S.A.Z.); (B.B.K.); (E.H.); (A.A.)
| | - Consolato M. Sergi
- Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
15
|
孔 祥, 张 腾, 张 妍, 高 灵, 汪 文, 汪 梦, 王 国, 吕 坤. [Overexpression of lncRNA HEM2M alleviates liver injury in mice with non-alcoholic fatty liver disease]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1-8. [PMID: 38293970 PMCID: PMC10878907 DOI: 10.12122/j.issn.1673-4254.2024.01.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To explore the effects of long non-coding RNA (lncRNA) HEM2M overexpression on liver injury in mice with non-alcoholic fatty liver disease (NAFLD). METHODS Wild-type C57BL/6 (WT) mice and myeloid cell-specific HEM2M knock-in (MYKI) mice were fed normal (ND) or high-fat diet (HFD) for 12 weeks. After intraperitoneal glucose tolerance and insulin tolerance tests, the mice were euthanized for detection of liver function indicators in the serum and liver tissue. HE staining and F4/80 immunohistochemical staining were used to examine liver pathologies, and the levels of IL-6, IL-1β, and TNF-α in the liver tissues were determined with ELISA. The mRNA expressions of HEM2M and the markers of M1 macrophages (TNF-α, iNOS, and IL-6) and M2 macrophages (Arg-1, YM-1, and IL-10) were detected using qRT-PCR, and the protein expressions of P-AKT, T-AKT, NLRC4, caspase-1 and GSDMD were assayed using immunoblotting. Caspase-1 activity in the liver tissues was determined with colorimetric measurement and immunofluorescence assay. RESULTS Compared with HFD-fed WT mice, MYKI mice with HFD feeding showed milder liver function damage (P < 0.01), alleviated hepatic steatosis, and reduced liver macrophage infiltration, glucose tolerance impairment and insulin resistance (P < 0.01). The levels of IL-6, IL-1β, and TNF-α and mRNA expressions of M1 type macrophage markers were significantly decreased (P < 0.01) and those of M2 type markers increased (P < 0.01) in the liver tissues of HFD-fed MYKI mice, which also showed reduced NLRC4 inflammasome activity, caspase-1 activation, and GSDMD-N protein expression compared with their WT counterparts (P < 0.05). CONCLUSION Overexpression of HEM2M reduces the production of hepatic inflammatory factors, improves insulin resistance and inhibits hepatic NLRC4 inflammasome activation, which leads to reduced hepatic pyroptosis and liver injury in NAFLD mice.
Collapse
Affiliation(s)
- 祥 孔
- 皖南医学院非编码RNA基础与临床转化安徽省重点实验室,安徽 芜湖 241001Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
- 皖南医学院弋矶山医院中心实验室,安徽 芜湖 241001Central Laboratory, Yijishan Hospital, Wannan Medical College, Wuhu 241001, China
- 皖南医学院弋矶山医院内分泌科,安徽 芜湖 241001Department of Endocrinology, Yijishan Hospital, Wannan Medical College, Wuhu 241001, China
| | - 腾 张
- 皖南医学院非编码RNA基础与临床转化安徽省重点实验室,安徽 芜湖 241001Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
- 皖南医学院弋矶山医院消化内科,安徽 芜湖 241001Department of Gastroenterology, Yijishan Hospital, Wannan Medical College, Wuhu 241001, China
| | - 妍 张
- 皖南医学院非编码RNA基础与临床转化安徽省重点实验室,安徽 芜湖 241001Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
- 皖南医学院弋矶山医院消化内科,安徽 芜湖 241001Department of Gastroenterology, Yijishan Hospital, Wannan Medical College, Wuhu 241001, China
| | - 灵犀 高
- 皖南医学院非编码RNA基础与临床转化安徽省重点实验室,安徽 芜湖 241001Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
- 皖南医学院弋矶山医院消化内科,安徽 芜湖 241001Department of Gastroenterology, Yijishan Hospital, Wannan Medical College, Wuhu 241001, China
| | - 文 汪
- 皖南医学院非编码RNA基础与临床转化安徽省重点实验室,安徽 芜湖 241001Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
- 皖南医学院弋矶山医院消化内科,安徽 芜湖 241001Department of Gastroenterology, Yijishan Hospital, Wannan Medical College, Wuhu 241001, China
| | - 梦燕 汪
- 皖南医学院药学院//安徽省多糖药物工程技术研究中心,安徽 芜湖 241002School of Pharmacy, Wannan Medical College, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
| | - 国栋 王
- 皖南医学院药学院//安徽省多糖药物工程技术研究中心,安徽 芜湖 241002School of Pharmacy, Wannan Medical College, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
| | - 坤 吕
- 皖南医学院非编码RNA基础与临床转化安徽省重点实验室,安徽 芜湖 241001Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241001, China
- 皖南医学院弋矶山医院中心实验室,安徽 芜湖 241001Central Laboratory, Yijishan Hospital, Wannan Medical College, Wuhu 241001, China
| |
Collapse
|
16
|
Fu X, Song L, Chen L, Jin S, Duan Z, Zhang B, Xing Y, Wang Y. Mechanistic insights into aniline-induced liver injury: Role of the mmu_circ_26984/Myh9/NLRP3 axis and modulation by N-acetylcysteine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115826. [PMID: 38118330 DOI: 10.1016/j.ecoenv.2023.115826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/16/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Aniline is a widely used chemical. Chronic or high-dose exposure to aniline can lead to hepatocellular damage. Although the hepatic pathogenicity of aniline has been established in previous studies, studies involving pathogenic genes during aniline-induced liver injury are limited. Our study first discovered and identified the role and mechanism underlying a new circRNA mmu_circ_26984 in aniline-induced chemical liver injury. Further, we discuss the protective effect of N-acetylcysteine (NAC) in this pathway. After constructing in vitro and in vivo models of aniline treatment, we screened the circRNA with significant differences in expression in AML12 cells from control and aniline-treated groups by circRNA microarray analysis. Next, using RNA pulldown, liquid chromatography-mass spectrometry (LC-MS), and RNA immunoprecipitation, we analyzed the relationship between mmu_circ_26984 and myosin heavy chain 9 (Myh9). Subsequently, we determined the specific mechanism of action of mmu_circ_26984 and Myh9 in aniline-induced liver injury and the protective effect of NAC against aniline-induced liver injury process using Cell Counting Kit-8, Western blot, RNA extraction, a reverse transcription quantitative polymerase chain reaction (RT-qPCR), fluorescence in situ hybridization, immunohistochemistry, and immunofluorescence. The expression of mmu_circ_26984 was significantly increased in liver tissues and AML12 cells of aniline-treated mice compared with the control group. This high expression of mmu_circ_26984 increased the expression of injury-related inflammatory factors, such as NLRP3, Caspase-1, IL-18, and IL-1β in vivo and ex vivo, which exacerbated the level of liver injury. The interaction of mmu_circ_26984 with Myh9 also affected the course of liver injury. Mmu_circ_26984 overexpression and reduced treatment affected the levels of Myh9 expression in AML12 cells, as well as downstream inflammatory factors associated with injury, such as NLRP3. In addition, NAC reduced the process of liver injury mediated by the mmu_circ_26984/Myh9/NLRP3 axis. In conclusion, mmu_circ_26984 is a potential molecular marker and therapeutic target in the process of aniline-induced liver injury that can mediate aniline-exposure-induced liver injury via modulation of the mmu_circ_26984/Myh9/NLRP3 axis, and NAC can effectively attenuate the effect of this liver injury.
Collapse
Affiliation(s)
- Xinyu Fu
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Li Song
- Department of Occupational Poisoning, Occupational Disease Research Institute of Heilongjiang Province, Harbin 150010, China
| | - Lili Chen
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Shuo Jin
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Zhongliang Duan
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Bo Zhang
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Yuechen Xing
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China
| | - Yue Wang
- College of Public Health, Harbin Medical University, 157 Baojian Road, Harbin 150086, China.
| |
Collapse
|
17
|
Karri K, Waxman DJ. TCDD dysregulation of lncRNA expression, liver zonation and intercellular communication across the liver lobule. Toxicol Appl Pharmacol 2023; 471:116550. [PMID: 37172768 PMCID: PMC10330769 DOI: 10.1016/j.taap.2023.116550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and subchronic (4 wk) TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of lncRNAs. TCDD dysregulated >4000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 lncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cell-cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolism. Networks were validated by the striking enrichments that predicted regulatory lncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.
Collapse
Affiliation(s)
- Kritika Karri
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
18
|
Shi N, Sun K, Tang H, Mao J. The impact and role of identified long noncoding RNAs in nonalcoholic fatty liver disease: A narrative review. J Clin Lab Anal 2023; 37:e24943. [PMID: 37435630 PMCID: PMC10431402 DOI: 10.1002/jcla.24943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide, but its mechanism and pathophysiology remain unclear. Long noncoding RNAs (lncRNAs) may exert a vital influence on regulating various biological functions in NAFLD. METHODS The databases such as Google Scholar, PubMed, and Medline were searched using the following keywords: nonalcoholic fatty liver disease, nonalcoholic fatty liver disease, NAFLD, nonalcoholic steatohepatitis, nonalcoholic steatohepatitis, NASH, long noncoding RNAs, and lncRNAs. Considering the titles and abstracts, unrelated studies were excluded. The authors evaluated the full texts of the remaining studies. RESULTS We summarized the current knowledge of lncRNAs and the main signaling pathways of lncRNAs involved in NAFLD explored in recent years. As a heterogeneous group of noncoding RNAs (ncRNAs), lncRNAs play crucial roles in biological processes underlying the pathophysiology of NAFLD. The mechanisms, particularly those associated with the regulation of the expression and activities of lncRNAs, play important roles in NAFLD. CONCLUSION A better comprehension of the mechanism controlled by lncRNAs in NAFLD is necessary for the identification of novel therapeutic targets for drug development and improved, noninvasive methods for diagnosis.
Collapse
Affiliation(s)
- Na Shi
- Department of GastroenterologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Internal MedicineThe Third People's Hospital of ChengduChengduChina
| | - Kang Sun
- Department of GastroenterologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Haiying Tang
- Department of Respiratory and Critical Care MedicineFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jingwei Mao
- Department of GastroenterologyFirst Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
19
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
20
|
Karri K, Waxman DJ. TCDD dysregulation of lncRNA expression, liver zonation and intercellular communication across the liver lobule. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.07.523119. [PMID: 36711947 PMCID: PMC9881922 DOI: 10.1101/2023.01.07.523119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The persistent environmental aryl hydrocarbon receptor agonist and hepatotoxin TCDD (2,3,7,8-tetrachlorodibenzo- p -dioxin) induces hepatic lipid accumulation (steatosis), inflammation (steatohepatitis) and fibrosis. Thousands of liver-expressed, nuclear-localized lncRNAs with regulatory potential have been identified; however, their roles in TCDD-induced hepatoxicity and liver disease are unknown. We analyzed single nucleus (sn)RNA-seq data from control and chronic TCDD-exposed mouse liver to determine liver cell-type specificity, zonation and differential expression profiles for thousands of IncRNAs. TCDD dysregulated >4,000 of these lncRNAs in one or more liver cell types, including 684 lncRNAs specifically dysregulated in liver non-parenchymal cells. Trajectory inference analysis revealed major disruption by TCDD of hepatocyte zonation, affecting >800 genes, including 121 IncRNAs, with strong enrichment for lipid metabolism genes. TCDD also dysregulated expression of >200 transcription factors, including 19 Nuclear Receptors, most notably in hepatocytes and Kupffer cells. TCDD-induced changes in cellâ€"cell communication patterns included marked decreases in EGF signaling from hepatocytes to non-parenchymal cells and increases in extracellular matrix-receptor interactions central to liver fibrosis. Gene regulatory networks constructed from the snRNA-seq data identified TCDD-exposed liver network-essential lncRNA regulators linked to functions such as fatty acid metabolic process, peroxisome and xenobiotic metabolic. Networks were validated by the striking enrichments that predicted regulatory IncRNAs showed for specific biological pathways. These findings highlight the power of snRNA-seq to discover functional roles for many xenobiotic-responsive lncRNAs in both hepatocytes and liver non-parenchymal cells and to elucidate novel aspects of foreign chemical-induced hepatotoxicity and liver disease, including dysregulation of intercellular communication within the liver lobule.
Collapse
|
21
|
Zhu X, Xia M, Gao X. Update on genetics and epigenetics in metabolic associated fatty liver disease. Ther Adv Endocrinol Metab 2022; 13:20420188221132138. [PMID: 36325500 PMCID: PMC9619279 DOI: 10.1177/20420188221132138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the most frequent chronic liver disease worldwide. Metabolic (dysfunction) associated fatty liver disease (MAFLD) is suggested to replace the nomenclature of NAFLD. For individuals with metabolic dysfunction, multiple NAFLD-related factors also contribute to the development and progression of MAFLD including genetics and epigenetics. The application of genome-wide association study (GWAS) and exome-wide association study (EWAS) uncovers single-nucleotide polymorphisms (SNPs) in MAFLD. In addition to the classic SNPs in PNPLA3, TM6SF2, and GCKR, some new SNPs have been found recently to contribute to the pathogenesis of liver steatosis. Epigenetic factors involving DNA methylation, histone modifications, non-coding RNAs regulations, and RNA methylation also play a critical role in MAFLD. DNA methylation is the most reported epigenetic modification. Developing a non-invasion biomarker to distinguish metabolic steatohepatitis (MASH) or liver fibrosis is ongoing. In this review, we summarized and discussed the latest progress in genetic and epigenetic factors of NAFLD/MAFLD, in order to provide potential clues for MAFLD treatment.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Wang X, Rao J, Tan Z, Xun T, Zhao J, Yang X. Inflammatory signaling on cytochrome P450-mediated drug metabolism in hepatocytes. Front Pharmacol 2022; 13:1043836. [PMID: 36353494 PMCID: PMC9637984 DOI: 10.3389/fphar.2022.1043836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 12/11/2023] Open
Abstract
Cytochrome P450 (CYP450) enzymes are membrane-bound blood proteins that are vital to drug detoxification, cell metabolism, and homeostasis. CYP450s belonging to CYP families 1-3 are responsible for nearly 80% of oxidative metabolism and complete elimination of approximately 50% of all common clinical drugs in humans liver hepatocytes. CYP450s can affect the body's response to drugs by altering the reaction, safety, bioavailability, and toxicity. They can also regulate metabolic organs and the body's local action sites to produce drug resistance through altered drug metabolism. Genetic polymorphisms in the CYP gene alone do not explain ethnic and individual differences in drug efficacy in the context of complex diseases. The purpose of this review is to summarize the impact of new inflammatory-response signaling pathways on the activity and expression of CYP drug-metabolizing enzymes. Included is a summary of recent studies that have identified drugs with the potential to regulate drug-metabolizing enzyme activity. Our goal is to inspire the development of clinical drug treatment processes that consider the impact of the inflammatory environment on drug treatment, as well as provide research targets for those studying drug metabolism.
Collapse
Affiliation(s)
- Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jiaoyu Rao
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Zhiyi Tan
- Guangzhou Customs Technology Center, Guangzhou, China
| | - Tianrong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingqian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
23
|
Noncoding RNAs Associated with PPARs in Etiology of MAFLD as a Novel Approach for Therapeutics Targets. PPAR Res 2022; 2022:6161694. [PMID: 36164476 PMCID: PMC9509273 DOI: 10.1155/2022/6161694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/25/2022] [Accepted: 08/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Metabolic associated fatty liver disease (MAFLD) is a complex disease that results from the accumulation of fat in the liver. MAFLD is directly associated with obesity, insulin resistance, diabetes, and metabolic syndrome. PPARγ ligands, including pioglitazone, are also used in the management of this disease. Noncoding RNAs play a critical role in various diseases such as diabetes, obesity, and liver diseases including MAFLD. However, there is no adequate knowledge about the translation of using these ncRNAs to the clinics, particularly in MAFLD conditions. The aim of this study was to identify ncRNAs in the etiology of MAFLD as a novel approach to the therapeutic targets. Methods. We collected human and mouse MAFLD gene expression datasets available in GEO. We performed pathway enrichment analysis of total mRNAs based on KEGG repository data to screen the most potential pathways in the liver of MAFLD human subjects and mice model, and analyzed pathway interconnections via ClueGO. Finally, we screened disease causality of the MAFLD ncRNAs, which were associated with PPARs, and then discussed the role of revealed ncRNAs in PPAR signaling and MAFLD. Results. We found 127 ncRNAs in MAFLD which 25 out of them were strongly validated before for regulation of PPARs. With a polypharmacology approach, we screened 51 ncRNAs which were causal to a subset of diseases related to MAFLD. Conclusion. This study revealed a subset of ncRNAs that could help in more clear and guided designation of preclinical and clinical studies to verify the therapeutic application of the revealed ncRNAs by manipulating the PPARs molecular mechanism in MAFLD.
Collapse
|
24
|
Wang Z, Chen G. Insights about circadian clock in glioma: From molecular pathways to therapeutic drugs. CNS Neurosci Ther 2022; 28:1930-1941. [PMID: 36066207 PMCID: PMC9627379 DOI: 10.1111/cns.13966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Glioma is characterized as the most aggressive brain tumor that occurred in the central nervous system. The circadian rhythm is an essential cyclic change system generated by the endogenous circadian clock. Current studies found that the circadian clock affects glioma pathophysiology. It is still controversial whether the circadian rhythm disruption is a cause or an effect of tumorigenesis. This review discussed the association between cell cycle and circadian clock and provided a prominent molecular theoretical basis for tumor therapy. We illustrated the external factors affecting the circadian clock including thermodynamics, hypoxia, post-translation, and microRNA, while the internal characteristics concerning the circadian clock in glioma involve stemness, metabolism, radiotherapy sensitivity, and chemotherapy sensitivity. We also summarized the molecular pathways and the therapeutic drugs involved in the glioma circadian rhythm. There are still many questions in this field waiting for further investigation. The results of glioma chronotherapy in sensitizing radiation therapy and chemotherapy have shown great therapeutic potential in improving clinical outcomes. These findings will help us further understand the characteristics of glioma pathophysiology.
Collapse
Affiliation(s)
- Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research LaboratoryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Institute of Stroke ResearchSoochow UniversitySuzhouChina
| |
Collapse
|
25
|
Wang Y, Liu F, Chen L, Fang C, Li S, Yuan S, Qian X, Yin Y, Yu B, Fu B, Zhang X, Li Y. Neutrophil Extracellular Traps (NETs) Promote Non-Small Cell Lung Cancer Metastasis by Suppressing lncRNA MIR503HG to Activate the NF-κB/NLRP3 Inflammasome Pathway. Front Immunol 2022; 13:867516. [PMID: 35707534 PMCID: PMC9190762 DOI: 10.3389/fimmu.2022.867516] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022] Open
Abstract
Neutrophil extracellular traps (NETs) that are produced in the tumour microenvironment (TME) have been suggested to play an essential role in the dissemination of metastatic cancer under multiple infectious and inflammatory conditions. However, the functions of NETs in promoting non-small cell lung cancer (NSCLC) metastasis and the underlying mechanisms remain incompletely understood. Here, we found that NETs promoted NSCLC cell invasion and migration by inducing epithelial to mesenchymal transition (EMT). To explore how NETs contribute to NSCLC metastasis, microarrays were performed to identify substantial numbers of long noncoding RNAs (lncRNAs) and mRNAs that were differentially expressed in NSCLC cells after stimulation with NETs. Interestingly, we observed that the expression of lncRNA MIR503HG was downregulated after NETs stimulation, and ectopic MIR503HG expression reversed the metastasis-promoting effect of NETs in vitro and in vivo. Notably, bioinformatics analysis revealed that differentially expressed genes were involved in the NOD-like receptor and NF-κB signalling pathways that are associated with inflammation. NETs facilitated EMT and thereby contributed to NSCLC metastasis by activating the NF-κB/NOD-like receptor protein 3 (NLRP3) signalling pathway. Further studies revealed that MIR503HG inhibited NETs-triggered NSCLC cell metastasis in an NF-κB/NLRP3-dependent manner, as overexpression of NF-κB or NLRP3 impaired the suppressive effect of MIR503HG on NETs-induced cancer cell metastasis. Together, these results show that NETs activate the NF-κB/NLRP3 pathway by downregulating MIR503HG expression to promote EMT and NSCLC metastasis. Targeting the formation of NETs may be a novel therapeutic strategy for treating NSCLC metastasis.
Collapse
Affiliation(s)
- Yong Wang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fen Liu
- Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin Chen
- Department of Internal Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chen Fang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuangyan Li
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shangkun Yuan
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoying Qian
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Yin
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Biao Yu
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Biqi Fu
- Department of Rheumatology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinwei Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Li
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
26
|
Wang Z, Huang Y, Chu F, Ji S, Liao K, Cui Z, Chen J, Tang S. Clock Gene Nr1d1 Alleviates Retinal Inflammation Through Repression of Hmga2 in Microglia. J Inflamm Res 2021; 14:5901-5918. [PMID: 34795498 PMCID: PMC8594447 DOI: 10.2147/jir.s326091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/30/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Retinal inflammation is involved in the pathogenesis of several retinal diseases. As one of the core clock genes, Nr1d1 has been reported to suppress inflammation in many diseases. We investigated whether pharmacological activation of Nr1d1 can inhibit retinal inflammation and delineated the mechanisms of Nr1d1 in alleviating microglia activation. Methods Lipopolysaccharide (LPS) induced mice models were used to examine the effects of SR9009 (agonist of NR1D1) treatment on inflammatory phenotypes in vivo. Anti-inflammatory effects of Nr1d1 and associated mechanisms were investigated in the BV2 microglia cell line, and in primary retinal microglia in vitro. Results SR9009 treatment alleviated LPS-induced inflammatory cell infiltration, elevated cytokine levels and morphological changes of the microglia in mice models. In LPS-stimulated BV2 cells and primary retinal microglia, SR9009 suppressed cytokine expressions by inhibiting the NF-κB signaling pathway. Moreover, SR9009 treatment increased the levels of the M2 phenotype marker (CD206) and the proportions of ramified microglia. Suppression of Nr1d1 with siRNA reversed the inhibitory effects of SR9009 on cytokine production in BV2 cells. RNA-seq analysis showed that genes that were upregulated following Nr1d1 knockdown were enriched in inflammatory-associated biological processes. Subsequently, ChIP-seq of NR1D1 in BV2 was performed, and the results were integrated with RNA-seq results using the Binding and Expression Target Analysis (BETA) tool. Luciferase assays, electrophoretic mobility shift assay (EMSA), qPCR and Western blotting assays revealed that NR1D1 binds the promoter of Hmga2 to suppress its transcription. Notably, overexpressed Hmga2 in activated microglia could partly abolish the anti-inflammatory effects of Nr1d1. Conclusion The clock gene Nr1d1 protects against retinal inflammation and microglia activation in part by suppressing Hmga2 transcription.
Collapse
Affiliation(s)
- Zhijie Wang
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China
| | - Yinhua Huang
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China
| | - Feixue Chu
- Department of Ophthalmology, Hangzhou Xihu Zhijiang Eye Hospital, Hangzhou, People's Republic of China
| | - Shangli Ji
- Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China
| | - Kai Liao
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China
| | - Zekai Cui
- Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China
| | - Jiansu Chen
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China.,Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, People's Republic of China.,Institute of Ophthalmology, Jinan University, Guangzhou, People's Republic of China
| | - Shibo Tang
- Aier School of Ophthalmology, Central South University, Changsha, People's Republic of China.,Aier Eye Institute, Aier Eye Hospital Group, Changsha, People's Republic of China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Wang W, Yang N, Yang YH, Wen R, Liu CF, Zhang TN. Non-Coding RNAs: Master Regulators of Inflammasomes in Inflammatory Diseases. J Inflamm Res 2021; 14:5023-5050. [PMID: 34616171 PMCID: PMC8490125 DOI: 10.2147/jir.s332840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging data indicates that non-coding RNAs (ncRNAs) represent more than just “junk sequences” of the genome and have been found to be involved in multiple diseases by regulating various biological process, including the activation of inflammasomes. As an important aspect of innate immunity, inflammasomes are large immune multiprotein complexes that tightly regulate the production of pro-inflammatory cytokines and mediate pyroptosis; the activation of the inflammasomes is a vital biological process in inflammatory diseases. Recent studies have emphasized the function of ncRNAs in the fine control of inflammasomes activation either by directly targeting components of the inflammasomes or by controlling the activity of various factors that control the activation of inflammasomes; consequently, ncRNAs may represent potential therapeutic targets for inflammatory diseases. Understanding the precise role of ncRNAs in controlling the activation of inflammasomes will help us to design targeted therapies for multiple inflammatory diseases. In this review, we summarize the regulatory role and therapeutic potential of ncRNAs in the activation of inflammasomes by focusing on a range of inflammatory diseases, including microbial infection, sterile inflammatory diseases, and fibrosis-related diseases. Our goal is to provide new ideas and perspectives for future research.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
28
|
Nuclear Receptors and Clock Components in Cardiovascular Diseases. Int J Mol Sci 2021; 22:ijms22189721. [PMID: 34575881 PMCID: PMC8468608 DOI: 10.3390/ijms22189721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVD) are still the first cause of death worldwide. Their main origin is the development of atherosclerotic plaque, which consists in the accumulation of lipids and inflammatory leucocytes within the vascular wall of large vessels. Beyond dyslipidemia, diabetes, obesity, hypertension and smoking, the alteration of circadian rhythms, in shift workers for instance, has recently been recognized as an additional risk factor. Accordingly, targeting a pro-atherogenic pathway at the right time window, namely chronotherapy, has proven its efficiency in reducing plaque progression without affecting healthy tissues in mice, thus providing the rationale of such an approach to treat CVD and to reduce drug side effects. Nuclear receptors are transcriptional factors involved in the control of many physiological processes. Among them, Rev-erbs and RORs control metabolic homeostasis, inflammatory processes and the biological clock. In this review, we discuss the opportunity to dampen atherosclerosis progression by targeting such ligand-activated core clock components in a (chrono-)therapeutic approach in order to treat CVD.
Collapse
|
29
|
The Role of Melatonin on NLRP3 Inflammasome Activation in Diseases. Antioxidants (Basel) 2021; 10:antiox10071020. [PMID: 34202842 PMCID: PMC8300798 DOI: 10.3390/antiox10071020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
NLRP3 inflammasome is a part of the innate immune system and responsible for the rapid identification and eradication of pathogenic microbes, metabolic stress products, reactive oxygen species, and other exogenous agents. NLRP3 inflammasome is overactivated in several neurodegenerative, cardiac, pulmonary, and metabolic diseases. Therefore, suppression of inflammasome activation is of utmost clinical importance. Melatonin is a ubiquitous hormone mainly produced in the pineal gland with circadian rhythm regulatory, antioxidant, and immunomodulatory functions. Melatonin is a natural product and safer than most chemicals to use for medicinal purposes. Many in vitro and in vivo studies have proved that melatonin alleviates NLRP3 inflammasome activity via various intracellular signaling pathways. In this review, the effect of melatonin on the NLRP3 inflammasome in the context of diseases will be discussed.
Collapse
|
30
|
Noonin C, Thongboonkerd V. Exosome-inflammasome crosstalk and their roles in inflammatory responses. Am J Cancer Res 2021; 11:4436-4451. [PMID: 33754070 PMCID: PMC7977448 DOI: 10.7150/thno.54004] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammasome is a complex of multiple proteins found in cytoplasm of the cells activated by infectious and/or non-infectious stimuli. This complex involves caspase-1 activation, leading to unconventional secretion of interleukin-1β (IL-1β) and IL-18 and inflammatory cascade. Exosome is the nanoscale membrane-bound extracellular vesicle that plays significant roles in intercellular communications by carrying bioactive molecules, e.g., proteins, RNAs, microRNAs (miRNAs), DNAs, from one cell to the others. In this review, we provide the update information on the crosstalk between exosome and inflammasome and their roles in inflammatory responses. The effects of inflammasome activation on exosomal secretion are summarized. On the other hand, the (dual) effects of exosomes on inhibiting and promoting inflammasome activation are discussed. Finally, perspectives on therapeutic roles of exosomes in human diseases and future direction of the research on exosome-inflammasome crosstalk are provided.
Collapse
|