1
|
Ma Y, Colic I, Muwaffak M, Rahim AA, Brocchini S, Williams GR. In-situ hyaluronic acid-tyramine hydrogels prolong the release of extracellular vesicles and enhance stability. Int J Pharm 2025:125650. [PMID: 40311824 DOI: 10.1016/j.ijpharm.2025.125650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Hydrogels can provide a hydrated environment to encapsulate extracellular vesicles (EVs) while offering promising solutions to some of the challenges that limit their therapeutic potential, e.g. rapid clearance and propensity for enzymatic degradation and aggregation. This study explores the use of a hyaluronic acid-tyramine (HA-TA) hydrogel to prolong the delivery and enhance the stability of EVs. EVs were obtained from lentiviral-transduced HEK293T cells expressing luciferase and eGFP to enable easy quantification. Two encapsulation strategies were evaluated: (1) pre-loading, where EVs were mixed with HA-TA (2.58 % degree of substitution) precursor solution and subsequently crosslinked with 2 U/mL horseradish peroxidase (HRP) and 0.05 mM H2O2; and (2) post-loading, where EVs were soaked into pre-formed dehydrated hydrogels. Both methods improved EV stability over 7 days at 37 °C compared to free EVs. The pre-loading approach was ultimately selected due to its ability to give rapid in situ gelation within one minute. Controlled in vitro release of EVs from the pre-loaded hydrogels was observed to extend beyond 7 days, as determined by CD9 ELISA. The released EVs maintained their bioactivity, as evidenced by effective internalisation into ARPE-19 and H9c2 cell lines, with performance comparable to fresh EVs. The EV release profile could be varied by modifying the hydrogel concentration. These findings underscore the potential of HA-TA hydrogels for localised, sustained, EV delivery with preserved functionality.
Collapse
Affiliation(s)
- Yingchang Ma
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ines Colic
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Maha Muwaffak
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
2
|
Tiwari PK, Chaudhary AA, Gupta S, Chouhan M, Singh HN, Rustagi S, Khan SUD, Kumar S. Extracellular vesicles in triple-negative breast cancer: current updates, challenges and future prospects. Front Mol Biosci 2025; 12:1561464. [PMID: 40297849 PMCID: PMC12034555 DOI: 10.3389/fmolb.2025.1561464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/25/2025] [Indexed: 04/30/2025] Open
Abstract
Breast cancer (BC) remains a complex and widespread problem, affecting millions of women worldwide, Among the various subtypes of BC, triple-negative breast cancer (TNBC) is particularly challenging, representing approximately 20% of all BC cases, and the survival rate of TNBC patients is generally worse than other subtypes of BC. TNBC is a heterogeneous disease characterized by lack of expression of three receptors: estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER2), resulting conventional hormonal therapies are ineffective for its management. Despite various therapeutic approaches have been explored, but no definitive solution has been found yet for TNBC. Current treatments options are chemotherapy, immunotherapy, radiotherapy and surgery, although, these therapies have some limitations, such as the development of resistance to anti-cancer drugs, and off-target toxicity, which remain primary obstacles and significant challenges for TNBC. Several findings have shown that EVs exhibit significant therapeutic promise in many diseases, and a similar important role has been observed in various types of tumor. Studies suggest that EVs may offer a potential solution for the management of TNBC. This review highlights the multifaceted roles of EVs in TNBC, emphasizing their involvement in disease progression, diagnosis and therapeutic approach, as well as their potential as biomarkers and drug delivery.
Collapse
Affiliation(s)
- Prashant Kumar Tiwari
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Mandeep Chouhan
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Himanshu Narayan Singh
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, United States
| | - Sarvesh Rustagi
- Department of Food Technology, School of Applied and Life science, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Sanjay Kumar
- Biological and Bio-Computational Lab, Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Fan R, Liu H, Liang Q. Roles and Therapeutic Targeting of Exosomes in Sepsis-Induced Cardiomyopathy. J Cell Mol Med 2025; 29:e70559. [PMID: 40264381 PMCID: PMC12015131 DOI: 10.1111/jcmm.70559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/24/2025] Open
Abstract
Sepsis-induced cardiomyopathy (SICM) is a complex and fatal manifestation of sepsis, characterised by myocardial dysfunction that exacerbates the clinical prognosis in septic patients. While the pathophysiology of SICM remains incompletely understood, emerging evidence highlights the multifaceted functions of exosomes, small membrane-bound extracellular vesicles, in mediating the inflammatory responses and cardiac dysfunction involved in this condition. During sepsis, exosomes are secreted by various cells, such as cardiomyocytes, endothelial cells and macrophages, which serve as critical messengers, transferring proteins, lipids and RNA molecules that influence recipient cells, thus affecting cellular functions and disease progression. This review summarises the pathophysiology of SICM and the basics of exosomes and focuses on exosome-mediated mechanisms in SICM, including their role in inflammation, oxidative stress, mitochondrial dysfunction and myocardial injury, offering novel insights into the exosome-based therapeutic strategies in SICM.
Collapse
Affiliation(s)
- Rui Fan
- Graduate SchoolHeilongjiang University of Chinese MedicineHarbinChina
| | - Han Liu
- Graduate SchoolUniversity College LondonLondonUK
| | - Qun Liang
- Department of Critical Care MedicineFirst Affiliated Hospital of Heilongjiang University of Chinese MedicineHarbinChina
| |
Collapse
|
4
|
Xie X, Huang M, Ma S, Xin Q, Wang Y, Hu L, Zhao H, Li P, Liu M, Yuan R, Miao Y, Zhu Y, Cong W. The role of long non-coding RNAs in cardiovascular diseases: A comprehensive review. Noncoding RNA Res 2025; 11:158-187. [PMID: 39896344 PMCID: PMC11783329 DOI: 10.1016/j.ncrna.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide, posing significant challenges to healthcare systems. Despite advances in medical interventions, the molecular mechanisms underlying CVDs are not yet fully understood. For decades, protein-coding genes have been the focus of CVD research. However, recent advances in genomics have highlighted the importance of long non-coding RNAs (lncRNAs) in cardiovascular health and disease. Changes in lncRNA expression specific to tissues may result from various internal or external factors, leading to tissue damage, organ dysfunction, and disease. In this review, we provide a comprehensive discussion of the regulatory mechanisms underlying lncRNAs and their roles in the pathogenesis and progression of CVDs, such as coronary heart disease, atherosclerosis, heart failure, arrhythmias, cardiomyopathies, and diabetic cardiomyopathy, to explore their potential as therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Xuena Xie
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiwen Huang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shudong Ma
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yuying Wang
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lantian Hu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Pengqi Li
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mei Liu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Weihong Cong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
5
|
McMullan E, Joladarashi D, Kishore R. Unpacking Exosomes: A Therapeutic Frontier for Cardiac Repair. Curr Cardiol Rep 2025; 27:73. [PMID: 40111702 PMCID: PMC11925971 DOI: 10.1007/s11886-025-02225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE OF REVIEW The rising global prevalence of cardiovascular disease is driving the need for innovative biotherapeutics. Recently, exosomes-extracellular vesicles involved in paracrine signaling have shown promise in aiding heart repair associated with cardiovascular conditions. Their therapeutic potential encompasses several beneficial mechanisms, including anti-fibrosis, anti-inflammation, pro-angiogenesis, anti-oxidation, and anti-apoptosis, all contributing to improved cardiac function. This review provides a comprehensive overview of exosomes and highlights the latest research on their effectiveness in addressing current challenges in regenerative cardiac medicine. RECENT FINDINGS Current approaches revolve around elucidating and enhancing how different cell types, cargo, and delivery methods impact healing in a pathological cardiovascular environment. The emerging field of therapeutic exosome research is promising for cardiac regeneration due to the beneficial effects of exosomal cargo. The expansion of mechanistic knowledge and the optimization of techniques are required before standard clinical application.
Collapse
Affiliation(s)
- Elena McMullan
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
6
|
Huang F, Chen Z, Tan B, He R, Zhang X, Chen Y, Gao J, Sun B. An exploratory study of high-throughput transcriptomic analysis reveals novel mRNA biomarkers for acute myocardial infarction using integrated methods. Sci Rep 2025; 15:8436. [PMID: 40069305 PMCID: PMC11897311 DOI: 10.1038/s41598-025-92757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
Acute myocardial infarction (AMI) is a major contributor to cardiovascular-related mortality, and early diagnosis is crucial for effective treatment and better outcomes. While several biomarkers have been explored for AMI, there remains a need for reliable, non-invasive biomarkers that can accurately differentiate AMI patients from healthy individuals. This study aims to identify potential mRNA biomarkers in peripheral blood that could aid in the diagnosis and monitoring of AMI. We performed transcriptomic analysis of blood samples from 81 individuals, including 16 healthy controls, 58 AMI patients, and 7 post-treated AMI individuals. Through a combination of Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA), random forest (RF), Weighted Gene Co-expression Network Analysis (WGCNA), and LASSO regression, we identified mRNA markers that are significantly correlated with AMI. Specifically, the mRNA expressions of ANKRD52, ART1, NRP2, and PPP1R15A were elevated in AMI patients, whereas BAIAP2L1 and CCNE1 were downregulated. However, while these mRNA biomarkers show potential for distinguishing AMI patients from healthy individuals, further studies are needed to confirm their clinical applicability.
Collapse
Affiliation(s)
- Fei Huang
- Medical School, People's Hospital of Lijiang, Kunming University of Science and Technology, Kunming, China
| | - Zongning Chen
- Medical School, People's Hospital of Lijiang, Kunming University of Science and Technology, Kunming, China
| | - Binjie Tan
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Rong He
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoyu Zhang
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Yali Chen
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Jinsong Gao
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Bo Sun
- Medical School, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
7
|
Zhou H, Huang W, Li J, Chen P, Shen L, Huang W, Mai K, Zou H, Shi X, Weng Y, Liu Y, Yang Z, Ou C. Oral probiotic extracellular vesicle therapy mitigates Influenza A Virus infection via blunting IL-17 signaling. Bioact Mater 2025; 45:401-416. [PMID: 39697241 PMCID: PMC11652895 DOI: 10.1016/j.bioactmat.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
The influenza A virus (IAV) damages intestinal mucosal tissues beyond the respiratory tract. Probiotics play a crucial role in maintaining the balance and stability of the intestinal microecosystem. Extracellular vesicles (EVs) derived from probiotics have emerged as potential mediators of host immune response and anti-inflammatory effect. However, the specific anti-inflammatory effects and underlying mechanisms of probiotics-derived EVs on IAV remain unclear. In the present study, we investigated the therapeutic efficacy of Lactobacillus reuteri EHA2-derived EVs (LrEVs) in a mouse model of IAV infection. Oral LrEVs were distributed in the liver, lungs, and gastrointestinal tract. In mice infected with IAV, oral LrEVs administration alleviated IAV-induced damages in the lungs and intestines, modified the microbiota compositions, and increased the levels of short-chain fatty acids in those organs. Mechanistically, LrEVs exerted their protective effects against IAV infection by blunting the pro-inflammatory IL-17 signaling. Furthermore, FISH analysis detected miR-4239, one of the most abundant miRNAs in LrEVs, in both lung and intestinal tissues. We confirmed that miR-4239 directly targets IL-17a. Our findings paved the ground for future application of LrEVs in influenza treatment and offered new mechanistic insights regarding the anti-inflammatory role of miR-4239.
Collapse
Affiliation(s)
- Hongxia Zhou
- Dongguan Institute of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| | - Wenbo Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jieting Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Peier Chen
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| | - Lihan Shen
- Dongguan Institute of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| | - Wenjing Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Kailin Mai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Heyan Zou
- Dongguan Institute of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| | - Xueqin Shi
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| | - Yunceng Weng
- Becton Dickinson Medical Devices (Shanghai) Co., Ltd., Guangzhou, 510180, China
| | - Yuhua Liu
- Department of General Practice, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou National Laboratory, Guangzhou, 510000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, 519020, China
| | - Caiwen Ou
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| |
Collapse
|
8
|
Sepehri M, Rabbani S, Ai J, Bahrami N, Ghanbari H, Namini MS, Sharifi M, Kouchakzadeh F, Esfahlani MA, Ebrahimi-Barough S. Therapeutic potential of exosomes derived from human endometrial mesenchymal stem cells for heart tissue regeneration after myocardial infarction. Regen Ther 2025; 28:451-461. [PMID: 39974600 PMCID: PMC11836543 DOI: 10.1016/j.reth.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
Myocardial infarction (MI) is the most common cardiovascular disease (CVD) and the leading cause of mortality worldwide. Recent advancements have identified human endometrial mesenchymal stem cells (hEnMSCs) as a promising candidate for heart regeneration, however, challenges associated with cell-based therapies have shifted focus toward cell-free treatments (CFTs), such as exosome therapy, which show considerable promise for myocardial tissue regeneration. MI was induced in male Wistar rats by occluding the left anterior descending (LAD) coronary artery. The hEnMSCs-derived exosomes (hEnMSCs-EXOs) were encapsulated in injectable fibrin gel inside the cardiac tissue. The encapsulated hEnMSC-EXOs were administered, and their effects on myocardial regeneration, angiogenesis, and heart function were monitored for 30 days post-MI. The treatments were evaluated through histological analysis, echocardiographic parameters of left ventricular internal dimension at end-diastole (LVIDD) and end-systole (LVID), left ventricular end-diastole volume (LVEDV), left ventricular end-systole volume (LVESV), and left ventricular ejection fraction (LVEF) and molecular studies. Histological findings demonstrated significant fibrosis and left ventricular remodeling following MI. Treatment with fibrin gel-encapsulated hEnMSCs-EXOs substantially reduced fibrosis, enhanced angiogenesis, and prevented heart remodeling, leading to improved cardiac function. Notably, 30 days after encapsulated hEnMSCs-EXOs were delivered corresponded with a less inflammatory microenvironment, supporting cardiomyocyte retention in ischemic tissue. This study highlights the potential of encapsulated hEnMSCs-EXOs in fibrin gel as a novel therapeutic strategy for ischemic myocardium repair post-MI. The findings underscore the importance of biomaterials in advancing stem cell-based therapies and lay a foundation for clinical applications to mitigate heart injury following MI.
Collapse
Affiliation(s)
- Masoumeh Sepehri
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Naghmeh Bahrami
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, University of Medical Sciences, Tehran, Iran
| | - Mojdeh Salehi Namini
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Sharifi
- Department of Tissue Engineering, School of Medicine, Shahrood University of Medical Sciences, Shahroud, Iran
| | - Fatemeh Kouchakzadeh
- Department of Histology, School of Paramedical, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohsen Abedini Esfahlani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Li H, Zhang P, Lin M, Li K, Zhang C, He X, Gao K. Pyroptosis: candidate key targets for mesenchymal stem cell-derived exosomes for the treatment of bone-related diseases. Stem Cell Res Ther 2025; 16:68. [PMID: 39940049 DOI: 10.1186/s13287-025-04167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Bone-related diseases impact a large portion of the global population and, due to their high disability rates and limited treatment options, pose significant medical and economic challenges. Mesenchymal stem cells (MSCs) can differentiate into multiple cell types and offer strong regenerative potential, making them promising for treating various diseases. However, issues with the immune response and cell survival limit the effectiveness of cell transplantation. This has led to increased interest in cell-free stem cell therapy, particularly the use of exosomes, which is the most studied form of this approach. Exosomes are extracellular vesicles that contain proteins, lipids, and nucleic acids and play a key role in cell communication and material exchange. Pyroptosis, a form of cell death involved in innate immunity, is also associated with many diseases. Studies have shown that MSC-derived exosomes have therapeutic potential for treating a range of conditions by regulating inflammation and pyroptosis. This study explored the role of MSC-derived exosomes in modulating pyroptosis to improve the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Haiming Li
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China
| | - Peng Zhang
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China
| | - Minghui Lin
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China
| | - Kang Li
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China
| | - Cunxin Zhang
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| | - Xiao He
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| | - Kai Gao
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China.
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| |
Collapse
|
10
|
Gan X, Chi B, Zhang X, Ren M, Bie H, Jia Q, Fu Y, Li C, Zhou H, He S, Wang Y, Chen Y, Zhang S, Zhang Q, Zhao Z, Sun W, Yangzong Q, Zhongga C, Pan R, Chen X, Jia E. CircBTBD7-420aa Encoded by hsa_circ_0000563 Regulates the Progression of Atherosclerosis and Construction of circBTBD7-420aa Engineered Exosomes. JACC Basic Transl Sci 2025; 10:131-147. [PMID: 40131148 PMCID: PMC11897471 DOI: 10.1016/j.jacbts.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 03/26/2025]
Abstract
Circular RNAs are associated with cardiovascular disease, including coronary artery disease, but the mechanisms have not been completely elucidated. We found a new protein, circBTBD7-420aa, encoded by hsa_circ_0000563. Our results suggest that circBTBD7-420aa may inhibit the abnormal proliferation and migration of human coronary artery smooth muscle cells by promoting SLC3A2 degradation through the ubiquitin-proteasome pathway. In addition, we constructed engineered exosomes loaded with circBTBD7-420aa that can target vascular smooth muscle cells by modifying peptide fragments targeting osteopontin. This study suggests that circBTBD7-420aa may inhibit the progression of atherosclerosis and serve as a new target for the diagnosis and treatment of coronary artery disease.
Collapse
Affiliation(s)
- Xiongkang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Boyu Chi
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xin Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mengmeng Ren
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hengjie Bie
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yahong Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chengcheng Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hanxiao Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shu He
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yanjun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yuli Chen
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Sheng Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Qian Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhenyu Zhao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weixin Sun
- Department of Cardiovascular Medicine, Yancheng Traditional Chinese Medicine Hospital affiliated with Nanjing University of Chinese Medicine, Yancheng, Jiangsu Province, China
| | - Qiangba Yangzong
- Department of Cardiovascular Medicine, Lhasa People's Hospital, Chengguan District, Lhasa, Tibet Autonomous Region, China
| | - Ciren Zhongga
- Department of Cardiovascular Medicine, Lhasa People's Hospital, Chengguan District, Lhasa, Tibet Autonomous Region, China
| | - Renyou Pan
- Department of Cardiovascular Medicine, Yancheng Traditional Chinese Medicine Hospital affiliated with Nanjing University of Chinese Medicine, Yancheng, Jiangsu Province, China
| | - Xiumei Chen
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
11
|
Okuyan HM, Coşkun A, Begen MA. Current status, opportunities, and challenges of exosomes in diagnosis and treatment of osteoarthritis. Life Sci 2025; 362:123365. [PMID: 39761740 DOI: 10.1016/j.lfs.2024.123365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/22/2024] [Accepted: 12/31/2024] [Indexed: 01/19/2025]
Abstract
Osteoarthritis (OA) is a progressive joint disease that is a frequent reason for pain and physical dysfunction in adults, with enormous social and economic burden. Although ongoing scientific efforts in recent years have made considerable progress towards understanding of the disease's molecular mechanism, the pathogenesis of OA is still not fully known, and its clinical challenge remains. Thus, elucidating molecular events underlying the initiation and progression of OA is crucial for developing novel diagnostic and therapeutic approaches that could facilitate effective clinical management of the illness. Exosomes, extracellular vesicles containing various cellular components with approximately a diameter of 100 nm, act as essential mediators in physiological and pathological processes by modulating cell-to-cell communications. Exosomes have crucial roles in biological events such as intercellular communication, regulation of gene expression, apoptosis, inflammation, immunity, maturation and differentiation due to their inner composition, which includes nucleic acids, proteins, and lipids. We focus on the roles of exosomes in OA pathogenesis and discuss how they might be used in clinical practice for OA diagnosis and treatment. Our paper not only provides a comprehensive review of exosomes in OA but also contributes to the development efforts of diagnostic and therapeutic tools for OA.
Collapse
Affiliation(s)
- Hamza Malik Okuyan
- Department of Physiotherapy and Rehabilitation - Faculty of Health Sciences, Biomedical Technologies Application and Research Center, Physiotherapy and Rehabilitation Application and Research Center, Sakarya University of Applied Sciences, Sakarya, Türkiye.
| | - Ayça Coşkun
- Department of Physiotherapy and Rehabilitation - Faculty of Health Sciences, Physiotherapy and Rehabilitation Application and Research Center, Sakarya University of Applied Sciences, Sakarya, Türkiye
| | - Mehmet A Begen
- Department of Epidemiology and Biostatistics-Schulich School of Medicine and Dentistry, Ivey Business School, University of Western Ontario, London, ON, Canada
| |
Collapse
|
12
|
Gangadaran P, Onkar A, Rajendran RL, Goenka A, Oh JM, Khan F, Nagarajan AK, Muthu S, Krishnan A, Hong CM, Ahn BC. Noninvasive in vivo imaging of macrophages: understanding tumor microenvironments and delivery of therapeutics. Biomark Res 2025; 13:20. [PMID: 39865337 PMCID: PMC11770947 DOI: 10.1186/s40364-025-00735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Macrophages are pivotal in the body's defense and response to inflammation. They are present in significant numbers and are widely implicated in various diseases, including cancer. While molecular and histological techniques have advanced our understanding of macrophage biology, their precise function within the cancerous microenvironments remains underexplored. Enhancing our knowledge of macrophages and the dynamics of their extracellular vesicles (EVs) in cancer development can potentially improve therapeutic management. Notably, macrophages have also been harnessed to deliver drugs. Noninvasive in vivo molecular imaging of macrophages is crucial for investigating intricate cellular processes, comprehending the underlying mechanisms of diseases, tracking cells and EVs' migration, and devising macrophage-dependent drug-delivery systems in living organisms. Thus, in vivo imaging of macrophages has become an indispensable tool in biomedical research. The integration of multimodal imaging approaches and the continued development of novel contrast agents hold promise for overcoming current limitations and expanding the applications of macrophage imaging. This study comprehensively reviews several methods for labeling macrophages and various imaging modalities, assessing the merits and drawbacks of each approach. The review concludes by offering insights into the applicability of molecular imaging techniques for real time monitoring of macrophages in preclinical and clinical scenarios.
Collapse
Affiliation(s)
- Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ramya Lakshmi Rajendran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Fatima Khan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - ArulJothi Kandasamy Nagarajan
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamilnadu, India
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College, Tamil Nadu, 639004, Karur, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Tamil Nadu, 641021, Coimbatore, India
| | - Anand Krishnan
- Precision Medicine and Integrated Nano-Diagnostics (P-MIND) Research Group, Office of the Dean, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Korea.
| | - Byeong-Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Sciences, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Korea.
- Cardiovascular Research Institute, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, 41944, Korea.
| |
Collapse
|
13
|
Hu H, Wang X, Yu H, Wang Z. Extracellular vesicular microRNAs and cardiac hypertrophy. Front Endocrinol (Lausanne) 2025; 15:1444940. [PMID: 39850481 PMCID: PMC11753959 DOI: 10.3389/fendo.2024.1444940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Cardiac hypertrophy is an adaptive response to pressure or volume overload such as hypertension and ischemic heart diseases. Sustained cardiac hypertrophy eventually leads to heart failure. The pathophysiological alterations of hypertrophy are complex, involving both cellular and molecular systems. Understanding the molecular events that inhibit or repress cardiac hypertrophy may help identify novel therapeutic strategies. Increasing evidence has indicated that extracellular vesicle (EV)-derived microRNAs (miRNAs) play a significant role in the development and progression of cardiac hypertrophy. In this review, we briefly review recent advancements in EV research, especially on biogenesis, cargoes and its role in cardiac hypertrophy. We then describe the latest findings regarding EV-derived miRNAs, highlighting their functions and regulatory mechanisms in cardiac hypertrophy. Finally, the potential role of EV-derived miRNAs as targets in the diagnosis and treatment of cardiac hypertrophy will be discussed.
Collapse
Affiliation(s)
- Hai Hu
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Xiulian Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| | - Hui Yu
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| |
Collapse
|
14
|
Tang B, Bi Y, Zheng X, Yang Y, Huang X, Yang K, Zhong H, Han L, Lu C, Chen H. The Role of Extracellular Vesicles in the Development and Treatment of Psoriasis: Narrative Review. Pharmaceutics 2024; 16:1586. [PMID: 39771564 PMCID: PMC11677080 DOI: 10.3390/pharmaceutics16121586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Psoriasis is a chronic inflammatory polygenic disease with significant impacts on skin and joints, leading to substantial treatment challenges and healthcare costs. The quest for novel therapeutic avenues has recently highlighted extracellular vesicles (EVs) due to their potential as biomarkers and therapeutic agents in autoimmune diseases, including psoriasis. EVs are nano-sized, lipid membrane-bound particles secreted by cells that have emerged as promising tools for targeted drug delivery, owing to their unique structure. This review delves into how EVs, either as mediators of cell communication or via their cargo (such as miRNA), directly participate in the pathology of psoriasis, influencing processes such as immune regulation, cell proliferation, and differentiation. Furthermore, this review explores the innovative application of EVs in psoriasis treatment, both as direct therapeutic agents and as vehicles for drug delivery, offering a novel approach to overcoming the current treatment limitations.
Collapse
Affiliation(s)
- Bin Tang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Yang Bi
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xuwei Zheng
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen 518000, China
| | - Yujie Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Xiaobing Huang
- Hospital of Osteopathy The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510378, China
| | - Kexin Yang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Haixin Zhong
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Ling Han
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Chuanjian Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Haiming Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510120, China
- Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou 510120, China
- Guangdong-Hongkong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
15
|
Zhang Z, Zou Y, Song C, Cao K, Cai K, Chen S, Wu Y, Geng D, Sun G, Zhang N, Zhang X, Zhang Y, Sun Y, Zhang Y. Advances in the study of exosomes in cardiovascular diseases. J Adv Res 2024; 66:133-153. [PMID: 38123019 PMCID: PMC11674797 DOI: 10.1016/j.jare.2023.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) has been the leading cause of death worldwide for many years. In recent years, exosomes have gained extensive attention in the cardiovascular system due to their excellent biocompatibility. Studies have extensively researched miRNAs in exosomes and found that they play critical roles in various physiological and pathological processes in the cardiovascular system. These processes include promoting or inhibiting inflammatory responses, promoting angiogenesis, participating in cell proliferation and migration, and promoting pathological progression such as fibrosis. AIM OF REVIEW This systematic review examines the role of exosomes in various cardiovascular diseases such as atherosclerosis, myocardial infarction, ischemia-reperfusion injury, heart failure and cardiomyopathy. It also presents the latest treatment and prevention methods utilizing exosomes. The study aims to provide new insights and approaches for preventing and treating cardiovascular diseases by exploring the relationship between exosomes and these conditions. Furthermore, the review emphasizes the potential clinical use of exosomes as biomarkers for diagnosing cardiovascular diseases. KEY SCIENTIFIC CONCEPTS OF REVIEW Exosomes are nanoscale vesicles surrounded by lipid bilayers that are secreted by most cells in the body. They are heterogeneous, varying in size and composition, with a diameter typically ranging from 40 to 160 nm. Exosomes serve as a means of information communication between cells, carrying various biologically active substances, including lipids, proteins, and small RNAs such as miRNAs and lncRNAs. As a result, they participate in both physiological and pathological processes within the body.
Collapse
Affiliation(s)
- Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Xingang Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
16
|
Zhang Z, Du H, Gao W, Zhang D. Engineered macrophages: an "Intelligent Repair" cellular machine for heart injury. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:25. [PMID: 39592532 PMCID: PMC11599506 DOI: 10.1186/s13619-024-00209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Macrophages are crucial in the heart's development, function, and injury. As part of the innate immune system, they act as the first line of defense during cardiac injury and repair. After events such as myocardial infarction or myocarditis, numerous macrophages are recruited to the affected areas of the heart to clear dead cells and facilitate tissue repair. This review summarizes the roles of resident and recruited macrophages in developing cardiovascular diseases. We also describe how macrophage phenotypes dynamically change within the cardiovascular disease microenvironment, exhibiting distinct pro-inflammatory and anti-inflammatory functions. Recent studies reveal the values of targeting macrophages in cardiovascular diseases treatment and the novel bioengineering technologies facilitate engineered macrophages as a promising therapeutic strategy. Engineered macrophages have strong natural tropism and infiltration for cardiovascular diseases aiming to reduce inflammatory response, inhibit excessive fibrosis, restore heart function and promote heart regeneration. We also discuss recent studies highlighting therapeutic strategies and new approaches targeting engineered macrophages, which can aid in heart injury recovery.
Collapse
Affiliation(s)
- Zhuo Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hetian Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Weijie Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
17
|
Li J, Yuan Y, Fu Q, Chen M, Liang H, Chen X, Long X, Zhang B, Zhao J, Chen Q. Novel insights into the role of immunomodulatory extracellular vesicles in the pathogenesis of liver fibrosis. Biomark Res 2024; 12:119. [PMID: 39396032 PMCID: PMC11470730 DOI: 10.1186/s40364-024-00669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024] Open
Abstract
Liver fibrosis, a chronic and long-term disease, can develop into hepatocellular carcinoma (HCC) and ultimately lead to liver failure. Early diagnosis and effective treatment still face significant challenges. Liver inflammation leads to liver fibrosis through continuous activation of hepatic stellate cells (HSCs) and the accumulation of immune cells. Intracellular communication among various immune cells is important for mediating the inflammatory response during fibrogenesis. Extracellular vesicles (EVs), which are lipid bilayer membrane-enclosed particles naturally secreted by cells, make great contributions to cell-cell communication and the transport of bioactive molecules. Nearly all the cells that participate in liver fibrosis release EVs loaded with lipids, proteins, and nucleic acids. EVs from hepatocytes, immune cells and stem cells are involved in mediating the inflammatory microenvironment of liver fibrosis. Recently, an increasing number of extracellular vesicle-based clinical applications have emerged, providing promising cell-free diagnostic and therapeutic tools for liver fibrosis because of their crucial role in immunomodulation during pathogenesis. The advantages of extracellular vesicle-based therapies include stability, biocompatibility, low cytotoxicity, and minimal immunogenicity, which highlight their great potential for drug delivery and specific treatments for liver fibrosis. In this review, we summarize the complex biological functions of EVs in the inflammatory response in the pathogenesis of liver fibrosis and evaluate the potential of EVs in the diagnosis and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qinggang Fu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Xin Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Zhen K, Wei X, Zhi Z, Shang S, Zhang S, Xu Y, Fu X, Cheng L, Yao J, Li Y, Chen X, Liu P, Zhang H. Circulating Extracellular Vesicles from Heart Failure Patients Inhibit Human Cardiomyocyte Activities. J Cardiovasc Transl Res 2024:10.1007/s12265-024-10571-1. [PMID: 39384702 DOI: 10.1007/s12265-024-10571-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Extracellular vesicles (EVs) have been implicated in cardiac remodeling during heart failure (HF). However, the role of circulating EVs (CEVs) in the process of HF is poorly understood. To elucidate the molecular mechanism associated with CEVs in the context of HF, the proteome of 4D label-free EVs from plasma samples was identified. Among the identified proteins, 6 exhibited upregulation while 9 demonstrated downregulation in CEVs derived from HF patients (HCEVs) compared to healthy controls (NCEVs). Our results showed that up-regulated proteins mainly participate in the primary metabolic, glycerolipid metabolic processes, oxidation-reduction process, and inflammatory amplification. In contrast, the down-regulated proteins influenced cell development, differentiation, and proliferation. Compared to NCEVs, HCEVs significantly induced inflammation and triacylglycerol (TAG) accumulation in human cardiomyocytes (HCMs) in vitro. They also compromised their regenerative capacities, triggered endoplasmic reticulum (ER) stress and increased autophagy in HCMs. Further, HCEVs induced differentiation of human cardiac fibroblasts (HCFs), amplifying pro-inflammatory, and pro-fibrotic factors, and enhancing extracellular matrix deposition. Notably, HCEVs are also associated with an increase in the HF biomarker MMP9 within HCFs and demonstrate a negative correlation with autophagic flux. In conclusion, HCEVs appear pivotal in advancing HF via pathological cardiac remodeling.
Collapse
Affiliation(s)
- Ke Zhen
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100011, China
| | - Xiaojuan Wei
- Department of Cardiovascular Surgery, Air Force Medical Center, PLA, Beijing, 100048, China
| | - Zelun Zhi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shiyu Shang
- The First Clinical Medical College, Hebei North University, Zhangjiakou, 075132, China
| | - Shuyan Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yilu Xu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Xiaochuan Fu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Linjia Cheng
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Jing Yao
- Department of Cardiovascular Surgery, Air Force Medical Center, PLA, Beijing, 100048, China
| | - Yue Li
- Department of Cardiovascular Surgery, Air Force Medical Center, PLA, Beijing, 100048, China
| | - Xia Chen
- Department of Cardiovascular Surgery, Air Force Medical Center, PLA, Beijing, 100048, China
| | - Pingsheng Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongchao Zhang
- Department of Cardiovascular Surgery, Air Force Medical Center, PLA, Beijing, 100048, China.
| |
Collapse
|
19
|
Zhu Y, Zhao J, Ding H, Qiu M, Xue L, Ge D, Wen G, Ren H, Li P, Wang J. Applications of plant-derived extracellular vesicles in medicine. MedComm (Beijing) 2024; 5:e741. [PMID: 39309692 PMCID: PMC11413507 DOI: 10.1002/mco2.741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Plant-derived extracellular vesicles (EVs) are promising therapeutic agents owing to their natural abundance, accessibility, and unique biological properties. This review provides a comprehensive exploration of the therapeutic potential of plant-derived EVs and emphasizes their anti-inflammatory, antimicrobial, and tumor-inhibitory effects. Here, we discussed the advancements in isolation and purification techniques, such as ultracentrifugation and size-exclusion chromatography, which are critical for maintaining the functional integrity of these nanovesicles. Next, we investigated the diverse administration routes of EVs and carefully weighed their respective advantages and challenges related to bioavailability and patient compliance. Moreover, we elucidated the multifaceted mechanisms of action of plant-derived EVs, including their roles in anti-inflammation, antioxidation, antitumor activity, and modulation of gut microbiota. We also discussed the impact of EVs on specific diseases such as cancer and inflammatory bowel disease, highlighting the importance of addressing current challenges related to production scalability, regulatory compliance, and immunogenicity. Finally, we proposed future research directions for optimizing EV extraction and developing targeted delivery systems. Through these efforts, we envision the seamless integration of plant-derived EVs into mainstream medicine, offering safe and potent therapeutic alternatives across various medical disciplines.
Collapse
Affiliation(s)
- Yawen Zhu
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Junqi Zhao
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Haoran Ding
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Mengdi Qiu
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Lingling Xue
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Dongxue Ge
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Gaolin Wen
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Peng Li
- Department of CardiologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation SurgeryDepartment of General SurgeryNanjing Drum Tower HospitalClinical College of Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
20
|
Zhao J, Huang H. Extracellular Vesicle-Derived Non-Coding RNAs: Key Mediators in Remodelling Heart Failure. Curr Issues Mol Biol 2024; 46:9430-9448. [PMID: 39329911 PMCID: PMC11430706 DOI: 10.3390/cimb46090559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 09/28/2024] Open
Abstract
Heart failure (HF), a syndrome of persistent development of cardiac insufficiency due to various heart diseases, is a serious and lethal disease for which specific curative therapies are lacking and poses a severe burden on all aspects of global public health. Extracellular vesicles (EVs) are essential mediators of intercellular and interorgan communication, and are enclosed nanoscale vesicles carrying biomolecules such as RNA, DNA, and proteins. Recent studies have showed, among other things, that non-coding RNAs (ncRNAs), especially microRNAs (miRNAs), long ncRNAs (lncRNA), and circular RNAs (circRNAs) can be selectively sorted into EVs and modulate the pathophysiological processes of HF in recipient cells, acting on both healthy and diseased hearts, which makes them promising targets for the diagnosis and therapy of HF. This review aims to explore the mechanism of action of EV-ncRNAs in heart failure, with emphasis on the potential use of differentially expressed miRNAs and circRNAs as biomarkers of cardiovascular disease, and recent research advances in the diagnosis and treatment of heart failure. Finally, we focus on summarising the latest advances and challenges in engineering EVs for HF, providing novel concepts for the diagnosis and treatment of heart failure.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China;
- Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| | - Huang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China;
- Jiangxi Medical College, Nanchang University, Nanchang 330031, China
| |
Collapse
|
21
|
Cai W, Lian L, Li A, Zhang Q, Li M, Zhang J, Xie Y. Cardiac resident macrophages: The core of cardiac immune homeostasis. Cell Signal 2024; 119:111169. [PMID: 38599440 DOI: 10.1016/j.cellsig.2024.111169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/24/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
Cardiac resident macrophages (CRMs) are essential in maintaining the balance of the immune homeostasis in the heart. One of the main factors in the progression of cardiovascular diseases, such as myocarditis, myocardial infarction(MI), and heart failure(HF), is the imbalance in the regulatory mechanisms of CRMs. Recent studies have reported novel heterogeneity and spatiotemporal complexity of CRMs, and their role in maintaining cardiac immune homeostasis and treating cardiovascular diseases. In this review, we focus on the functions of CRMs, including immune surveillance, immune phagocytosis, and immune metabolism, and explore the impact of CRM's homeostasis imbalance on cardiac injury and cardiac repair. We also discuss the therapeutic approaches linked to CRMs. The immunomodulatory strategies targeting CRMs may be a therapeutic approach for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Wenhui Cai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Lu Lian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Aolin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Qianqian Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Mengmeng Li
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300183, China.
| | - YingYu Xie
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
22
|
Mobarak H, Mahdipour M, Ghaffari-Nasab A, Rahbarghazi R. Xenogeneic Transplantation Promoted Human Exosome Sequestration in Rat Specific Organs. Adv Pharm Bull 2024; 14:426-433. [PMID: 39206404 PMCID: PMC11347747 DOI: 10.34172/apb.2024.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 09/04/2024] Open
Abstract
Purpose Here, we aimed to study the distribution pattern of normal and cancer xenogeneic exosomes (Exos) and possible interspecies reactions in a rat model. Methods Exos were isolated from normal Human umbilical vein endothelial cells (HUVECs) and MDA-MB-231 breast cancer cells. Diameter size and zeta potential distribution were studied using dynamic light scattering (DLS). The morphology of isolated Exos was monitored by scanning electron microscopy (SEM) images. Using western blotting, protein levels of exosomal tetraspanins were detected. For the in vivo study, Dil-labeled normal and cancer Exos were injected into the tail vein (100 µg exosomal protein/rat) three times at 1-hour intervals. After 24 hours, rats were euthanized and the cellular uptake of Exos was monitored in different organs using immunofluorescence staining (IF). Results The size distribution and mean zeta potential of HUVEC and MDA-MB-231 cells Exos were 80±29.94 and 64.77±25.49 nm, and -7.58 and -11.8 mV, respectively. Western blotting revealed CD9, CD81, and CD63 in normal and cancer Exos. The SEM images exhibited typical nano-sized round-shape Exo particles. IF staining indicated sequestration of administrated Exos in splenic tissue and lungs. The distribution of Exo in kidneys, aorta, and hepatic tissue was less. These features were more evident in the group that received cancer Exos. We found no obvious adverse effects in rats that received normal or cancer Exos. Conclusion Normal and cancerous xenogeneic human Exos can be sequestrated prominently in splenic tissue and lungs. Novel delivery approaches and engineering tools are helpful in the target delivery of administrated Exos to the injured sites.
Collapse
Affiliation(s)
- Halimeh Mobarak
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Das S, Tinguely JC, Obuobi SAO, Škalko-Basnet N, Saxena K, Ahluwalia BS, Mehta DS. Plasmonic nano-bowls for monitoring intra-membrane changes in liposomes, and DNA-based nanocarriers in suspension. BIOMEDICAL OPTICS EXPRESS 2024; 15:2293-2307. [PMID: 38633091 PMCID: PMC11019686 DOI: 10.1364/boe.517471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/10/2024] [Indexed: 04/19/2024]
Abstract
Programmable nanoscale carriers, such as liposomes and DNA, are readily being explored for personalized medicine or disease prediction and diagnostics. The characterization of these nanocarriers is limited and challenging due to their complex chemical composition. Here, we demonstrate the utilization of surface-enhanced Raman spectroscopy (SERS), which provides a unique molecular fingerprint of the analytes while reducing the detection limit. In this paper, we utilize a silver coated nano-bowl shaped polydimethylsiloxane (PDMS) SERS substrate. The utilization of nano-bowl surface topology enabled the passive trapping of particles by reducing mobility, which results in reproducible SERS signal enhancement. The biological nanoparticles' dwell time in the nano-trap was in the order of minutes, thus allowing SERS spectra to remain in their natural aqueous medium without the need for drying. First, the geometry of the nano-traps was designed considering nanosized bioparticles of 50-150 nm diameter. Further, the systematic investigation of maximum SERS activity was performed using rhodamine 6 G as a probe molecule. The potential of the optimized SERS nano-bowl is shown through distinct spectral features following surface- (polyethylene glycol) and bilayer- (cholesterol) modification of empty liposomes of around 140 nm diameter. Apart from liposomes, the characterization of the highly crosslinked DNA specimens of only 60 nm in diameter was performed. The modification of DNA gel by liposome coating exhibited unique signatures for nitrogenous bases, sugar, and phosphate groups. Further, the unique sensitivity of the proposed SERS substrate displayed distinct spectral signatures for DNA micelles and drug-loaded DNA micelles, carrying valuable information to monitor drug release. In conclusion, the findings of the spectral signatures of a wide range of molecular complexes and chemical morphology of intra-membranes in their natural state highlight the possibilities of using SERS as a sensitive and instantaneous characterization alternative.
Collapse
Affiliation(s)
- Sathi Das
- Bio-photonics and Green Photonics Laboratory, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi 110016, India
| | - Jean-Claude Tinguely
- Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Sybil Akua Okyerewa Obuobi
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - Kanchan Saxena
- Amity Institute of Renewable and Alternative Energy, Amity University Uttar Pradesh, Sector 125 Noida, U.P., India
| | - Balpreet Singh Ahluwalia
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - Dalip Singh Mehta
- Bio-photonics and Green Photonics Laboratory, Indian Institute of Technology Delhi, Hauz-Khas, New Delhi 110016, India
| |
Collapse
|
24
|
Peng C, Yan J, Jiang Y, Wu L, Li M, Fan X. Exploring Cutting-Edge Approaches to Potentiate Mesenchymal Stem Cell and Exosome Therapy for Myocardial Infarction. J Cardiovasc Transl Res 2024; 17:356-375. [PMID: 37819538 DOI: 10.1007/s12265-023-10438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant global health concern. Many studies have reported promising outcomes from using MSCs and their secreted exosomes in managing various cardiovascular-related diseases like myocardial infarction (MI). MSCs and exosomes have demonstrated considerable potential in promoting regeneration and neovascularization, as well as exerting beneficial effects against apoptosis, remodeling, and inflammation in cases of myocardial infarction. Nonetheless, ensuring the durability and effectiveness of MSCs and exosomes following in vivo transplantation remains a significant concern. Recently, novel methods have emerged to improve their effectiveness and robustness, such as employing preconditioning statuses, modifying MSC and their exosomes, targeted drug delivery with exosomes, biomaterials, and combination therapy. Herein, we summarize the novel approaches that intensify the therapeutic application of MSC and their derived exosomes in treating MI.
Collapse
Affiliation(s)
- Chendong Peng
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Yan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yu'ang Jiang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Cardiology, Peking University First Hospital, Beijing, 100000, China
| | - Miaoling Li
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
25
|
Chen H, Liu H, Liu D, Fu Y, Yao Y, Cao Z, Peng Z, Yang M, Zhao Q. M2 macrophage‑derived exosomes alleviate KCa3.1 channel expression in rapidly paced HL‑1 myocytes via the NF‑κB (p65)/STAT3 signaling pathway. Mol Med Rep 2024; 29:55. [PMID: 38334149 PMCID: PMC10877089 DOI: 10.3892/mmr.2024.13179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
The present study was designed to explore the role of M2 macrophage‑derived exosomes (M2‑exos) on the KCa3.1 channel in a cellular atrial fibrillation (AF) model using rapidly paced HL‑1 myocytes. M2 macrophages and M2‑exos were isolated and identified. MicroRNA (miR)‑146a‑5p levels in M2 macrophages and M2‑exos were quantified using reverse transcription‑quantitative PCR (RT‑qPCR). HL‑1 myocytes were randomly divided into six groups: Control group, pacing group, pacing + coculture group (pacing HL‑1 cells cocultured with M2‑exos), pacing + mimic‑miR‑146a‑5p group, pacing + NC‑miR‑146a‑5p group and pacing + pyrrolidine dithiocarbamate (PDTC; a special blocker of the NF‑κB signaling pathway) group. Transmission electron microscopy, nanoparticle tracking analysis, western blotting, RT‑qPCR and immunohistochemistry were performed in the present study. A whole‑cell clamp was also applied to record the current density of KCa3.1 and action potential duration (APD) in each group. The results revealed that miR‑146a‑5p was highly expressed in both M2 macrophages and M2‑exos. Pacing HL‑1 cells led to a shorter APD, an increased KCa3.1 current density and higher protein levels of KCa3.1, phosphorylated (p‑)NF‑κB p65, p‑STAT3 and IL‑1β compared with the control group. M2‑exos, miR‑146a‑5p‑mimic and PDTC both reduced the protein expression of KCa3.1, p‑NF‑κB p65, p‑STAT3 and IL‑1β and the current density of KCa3.1, resulting in a longer APD in the pacing HL‑1 cells. In conclusion, M2‑exos and their cargo, which comprised miR‑146a‑5p, decreased KCa3.1 expression and IL‑1β secretion in pacing HL‑1 cells via the NF‑κB/STAT3 signaling pathway, limiting the shorter APD caused by rapid pacing.
Collapse
Affiliation(s)
- Huiyu Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Huafen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yuntao Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yajun Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhen Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhibin Peng
- Department of Cardiology, Yidu People's Hospital, Yidu, Hubei 443000, P.R. China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Cardiovascular Research Institute, Wuhan University, Wuhan, Hubei 430060, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
26
|
Li J, Lin A, Jiang R, Chen P, Xu C, Hou Y. Exosomes-mediated drug delivery for the treatment of myocardial injury. Ann Med Surg (Lond) 2024; 86:292-299. [PMID: 38222684 PMCID: PMC10783224 DOI: 10.1097/ms9.0000000000001473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 01/16/2024] Open
Abstract
Cardiovascular disease has become a major cause of death worldwide. Myocardial injury (MI) caused by myocardial infarction, myocarditis, and drug overdose can lead to impaired cardiac function, culminating in serious consequences such as angina pectoris, arrhythmias, and heart failure. Exosomes exhibit high biocompatibility and target specificity, rendering them an important non-cellular therapy for improving MI. Exosomes are diminutive vesicles that encapsulate nucleic acids and proteins. Exosomes derived from cardiac stem cells themselves have therapeutic effects, and they can also serve as carriers to deliver therapeutic drugs to recipient cells, thereby exerting a therapeutic effect. The molecules within exosomes are encapsulated in a lipid bilayer, allowing them to stably exist in body fluids without being affected by nucleases. Therefore, the utilization of exosomes as drug delivery systems (DDS) for disease treatment has been extensively investigated and is currently undergoing clinical trials. This review summarizes the therapeutic effects of exosomes on MI and provides an overview of current research progress on their use as DDS in MI.
Collapse
Affiliation(s)
- Jiang Li
- Zhengzhou Railway Vocational and Technical College
| | - Aiqin Lin
- Zhengzhou Railway Vocational and Technical College
| | - Rui Jiang
- Zhengzhou Railway Vocational and Technical College
| | | | - Chengyang Xu
- Henan Provincial People's Hospital, Zhengzhou, P.R. China
| | - Yuanyuan Hou
- Zhengzhou Railway Vocational and Technical College
| |
Collapse
|
27
|
Bai W, Zhu T, Zuo J, Li Y, Huang X, Li G. Delivery of SAV-siRNA via Exosomes from Adipose-Derived Stem Cells for the Treatment of Myocardial Infarction. Tissue Eng Regen Med 2023; 20:1063-1077. [PMID: 37801227 PMCID: PMC10645647 DOI: 10.1007/s13770-023-00588-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Myocardial infarction (MI) leads to cardiomyocyte death, poor cardiac remodeling, and heart failure, making it a major cause of mortality and morbidity. To restore cardiac pumping function, induction of cardiomyocyte regeneration has become a focus of academic interest. The Hippo pathway is known to regulate cardiomyocyte proliferation and heart size, and its inactivation allows adult cardiomyocytes to re-enter the cell cycle. METHODS In this study, we investigated whether exosomes from adipose-derived stem cells (ADSCs) could effectively transfer siRNA for the Hippo pathway regulator Salvador (SAV) into cardiomyocytes to induce cardiomyocyte regeneration in a mouse model of MI. RESULTS Our results showed that exosomes loaded with SAV-siRNA effectively transferred siRNA into cardiomyocytes and induced cardiomyocyte re-entry into the cell cycle, while retaining the previously demonstrated therapeutic efficacy of ADSC-derived exosomes to improve post-infarction cardiac function through anti-fibrotic, pro-angiogenic, and other effects. CONCLUSIONS Our findings suggest that siRNA delivery via ADSC-derived exosomes may be a promising approach for the treatment of MI.
Collapse
Affiliation(s)
- Weizhe Bai
- Department of Cardiac Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Tianchuan Zhu
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Jiebin Zuo
- Department of Cardiac Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Yang Li
- Department of Cardiac Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China
| | - Xi Huang
- Center for Infection and Immunity, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China.
| | - Gang Li
- Department of Cardiac Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, No. 52, Meihua East Road, Zhuhai, Guangdong, People's Republic of China.
| |
Collapse
|
28
|
Du Y, Wu L, Wang L, Reiter RJ, Lip GYH, Ren J. Extracellular vesicles in cardiovascular diseases: From pathophysiology to diagnosis and therapy. Cytokine Growth Factor Rev 2023; 74:40-55. [PMID: 37798169 DOI: 10.1016/j.cytogfr.2023.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Extracellular vesicles (EVs), encompassing exosomes, microvesicles (MVs), and apoptotic bodies (ABs), are cell-derived heterogeneous nanoparticles with a pivotal role in intercellular communication. EVs are enclosed by a lipid-bilayer membrane to escape enzymatic degradation. EVs contain various functional molecules (e.g., nucleic acids, proteins, lipids and metabolites) which can be transferred from donor cells to recipient cells. EVs provide many advantages including accessibility, modifiability and easy storage, stability, biocompatibility, heterogeneity and they readily penetrate through biological barriers, making EVs ideal and promising candidates for diagnosis/prognosis biomarkers and therapeutic tools. Recently, EVs were implicated in both physiological and pathophysiological settings of cardiovascular system through regulation of cell-cell communication. Numerous studies have reported a role for EVs in the pathophysiological progression of cardiovascular diseases (CVDs) and have evaluated the utility of EVs for the diagnosis/prognosis and therapeutics of CVDs. In this review, we summarize the biology of EVs, evaluate the perceived biological function of EVs in different CVDs along with a consideration of recent progress for the application of EVs in diagnosis/prognosis and therapies of CVDs.
Collapse
Affiliation(s)
- Yuxin Du
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Lin Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Litao Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, TX, USA
| | - Gregory Y H Lip
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, United Kingdom
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA98195, USA.
| |
Collapse
|
29
|
Zhang C, Zhou X, Wang D, Hao L, Zeng Z, Su L. Hydrogel-Loaded Exosomes: A Promising Therapeutic Strategy for Musculoskeletal Disorders. J Clin Pharm Ther 2023; 2023:1-36. [DOI: 10.1155/2023/1105664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Clinical treatment strategies for musculoskeletal disorders have been a hot research topic. Accumulating evidence suggests that hydrogels loaded with MSC-derived EVs show great potential in improving musculoskeletal injuries. The ideal hydrogels should be capable of promoting the development of new tissues and simulating the characteristics of target tissues, with the properties matching the cell-matrix constituents of autologous tissues. Although there have been numerous reports of hydrogels loaded with MSC-derived EVs for the repair of musculoskeletal injuries, such as intervertebral disc injury, tendinopathy, bone fractures, and cartilage injuries, there are still many hurdles to overcome before the clinical application of modified hydrogels. In this review, we focus on the advantages of the isolation technique of EVs in combination with different types of hydrogels. In this context, the efficacy of hydrogels loaded with MSC-derived EVs in different musculoskeletal injuries is discussed in detail to provide a reference for the future application of hydrogels loaded with MSC-derived EVs in the clinical treatment of musculoskeletal injuries.
Collapse
Affiliation(s)
- Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li Hao
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Shougang Technician College, Nursing School, Beijing 100043, China
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| | - Lei Su
- Department of Rehabilitation, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510000, China
| |
Collapse
|
30
|
Wang C, Li W, Shao L, Zhou A, Zhao M, Li P, Zhang Z, Wu J. Both extracellular vesicles from helicobacter pylori-infected cells and helicobacter pylori outer membrane vesicles are involved in gastric/extragastric diseases. Eur J Med Res 2023; 28:484. [PMID: 37932800 PMCID: PMC10626716 DOI: 10.1186/s40001-023-01458-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023] Open
Abstract
Bacterial-derived extracellular vesicles (EVs) have emerged as crucial mediators in the cross-talk between hosts and pathogens, playing a significant role in infectious diseases and cancers. Among these pathogens, Helicobacter pylori (H. pylori) is a particularly important bacterium implicated in various gastrointestinal disorders, gastric cancers, and systemic illnesses. H. pylori achieves these effects by stimulating host cells to secrete EVs and generating internal outer membrane vesicles (OMVs). The EVs derived from H. pylori-infected host cells modulate inflammatory signaling pathways, thereby affecting cell proliferation, apoptosis, cytokine release, immune cell modification, and endothelial dysfunction, as well as disrupting cellular junctional structures and inducing cytoskeletal reorganization. In addition, OMVs isolated from H. pylori play a pivotal role in shaping subsequent immunopathological responses. These vesicles incite both inflammatory and immunosuppressive reactions within the host environment, facilitating pathogen evasion of host defenses and invasion of host cells. Despite this growing understanding, research involving H. pylori-derived EVs remains in its early stages across different domains. In this comprehensive review, we present recent advancements elucidating the contributions of EV components, such as non-coding RNAs (ncRNAs) and proteins, to the pathogenesis of gastric and extragastric diseases. Furthermore, we highlight their potential utility as biomarkers, therapeutic targets, and vehicles for targeted delivery.
Collapse
Affiliation(s)
- Chengyao Wang
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Wenkun Li
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Linlin Shao
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Anni Zhou
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Mengran Zhao
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Peng Li
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China
| | - Zheng Zhang
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| | - Jing Wu
- Department of Gastroenterology National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, BeijingKey Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People's Republic of China.
| |
Collapse
|
31
|
Ranjan P, Colin K, Dutta RK, Verma SK. Challenges and future scope of exosomes in the treatment of cardiovascular diseases. J Physiol 2023; 601:4873-4893. [PMID: 36398654 PMCID: PMC10192497 DOI: 10.1113/jp282053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/21/2022] [Indexed: 07/28/2023] Open
Abstract
Exosomes are nanosized vesicles that carry biologically diverse molecules for intercellular communication. Researchers have been trying to engineer exosomes for therapeutic purposes by using different approaches to deliver biologically active molecules to the various target cells efficiently. Recent technological advances may allow the biodistribution and pharmacokinetics of exosomes to be modified to meet scientific needs with respect to specific diseases. However, it is essential to determine an exosome's optimal dosage and potential side effects before its clinical use. Significant breakthroughs have been made in recent decades concerning exosome labelling and imaging techniques. These tools provide in situ monitoring of exosome biodistribution and pharmacokinetics and pinpoint targetability. However, because exosomes are nanometres in size and vary significantly in contents, a deeper understanding is required to ensure accurate monitoring before they can be applied in clinical settings. Different research groups have established different approaches to elucidate the roles of exosomes and visualize their spatial properties. This review covers current and emerging strategies for in vivo and in vitro exosome imaging and tracking for potential studies.
Collapse
Affiliation(s)
- Prabhat Ranjan
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Karen Colin
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- UAB School of Health Professions, The University of Alabama at Birmingham, Birmingham, AL
| | - Roshan Kumar Dutta
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
| | - Suresh Kumar Verma
- Department of Medicine, Division of Cardiovascular Disease, The University of Alabama at Birmingham, Birmingham, AL-35233
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
32
|
Xiong Z, An Q, Chen L, Xiang Y, Li L, Zheng Y. Cell or cell derivative-laden hydrogels for myocardial infarction therapy: from the perspective of cell types. J Mater Chem B 2023; 11:9867-9888. [PMID: 37751281 DOI: 10.1039/d3tb01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Myocardial infarction (MI) is a global cardiovascular disease with high mortality and morbidity. To treat acute MI, various therapeutic approaches have been developed, including cells, extracellular vesicles, and biomimetic nanoparticles. However, the clinical application of these therapies is limited due to low cell viability, inadequate targetability, and rapid elimination from cardiac sites. Injectable hydrogels, with their three-dimensional porous structure, can maintain the biomechanical stabilization of hearts and the transplantation activity of cells. However, they cannot regenerate cardiomyocytes or repair broken hearts. A better understanding of the collaborative relationship between hydrogel delivery systems and cell or cell-inspired therapy will facilitate advancing innovative therapeutic strategies against MI. Following that, from the perspective of cell types, MI progression and recent studies on using hydrogel to deliver cell or cell-derived preparations for MI treatment are discussed. Finally, current challenges and future prospects of cell or cell derivative-laden hydrogels for MI therapy are proposed.
Collapse
Affiliation(s)
- Ziqing Xiong
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yucheng Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yaxian Zheng
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
33
|
Ziegler JN, Tian C. Engineered Extracellular Vesicles: Emerging Therapeutic Strategies for Translational Applications. Int J Mol Sci 2023; 24:15206. [PMID: 37894887 PMCID: PMC10607082 DOI: 10.3390/ijms242015206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are small, membrane-bound vesicles used by cells to deliver biological cargo such as proteins, mRNA, and other biomolecules from one cell to another, thus inducing a specific response in the target cell and are a powerful method of cell to cell and organ to organ communication, especially during the pathogenesis of human disease. Thus, EVs may be utilized as prognostic and diagnostic biomarkers, but they also hold therapeutic potential just as mesenchymal stem cells have been used in therapeutics. However, unmodified EVs exhibit poor targeting efficacy, leading to the necessity of engineered EVS. To highlight the advantages and therapeutic promises of engineered EVs, in this review, we summarized the research progress on engineered EVs in the past ten years, especially in the past five years, and highlighted their potential applications in therapeutic development for human diseases. Compared to the existing stem cell-derived EV-based therapeutic strategies, engineered EVs show greater promise in clinical applications: First, engineered EVs mediate good targeting efficacy by exhibiting a targeting peptide that allows them to specifically target a specific organ or even cell type, thus avoiding accumulation in undesired locations and increasing the potency of the treatment. Second, engineered EVs can be artificially pre-loaded with any necessary biomolecular cargo or even therapeutic drugs to treat a variety of human diseases such as cancers, neurological diseases, and cardiovascular ailments. Further research is necessary to improve logistical challenges in large-scale engineered EV manufacturing, but current developments in engineered EVs prove promising to greatly improve therapeutic treatment for traditionally difficult to treat diseases.
Collapse
Affiliation(s)
| | - Changhai Tian
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| |
Collapse
|
34
|
Amini H, Namjoo AR, Narmi MT, Mardi N, Narimani S, Naturi O, Khosrowshahi ND, Rahbarghazi R, Saghebasl S, Hashemzadeh S, Nouri M. Exosome-bearing hydrogels and cardiac tissue regeneration. Biomater Res 2023; 27:99. [PMID: 37803483 PMCID: PMC10559618 DOI: 10.1186/s40824-023-00433-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND In recent years, cardiovascular disease in particular myocardial infarction (MI) has become the predominant cause of human disability and mortality in the clinical setting. The restricted capacity of adult cardiomyocytes to proliferate and restore the function of infarcted sites is a challenging issue after the occurrence of MI. The application of stem cells and byproducts such as exosomes (Exos) has paved the way for the alleviation of cardiac tissue injury along with conventional medications in clinics. However, the short lifespan and activation of alloreactive immune cells in response to Exos and stem cells are the main issues in patients with MI. Therefore, there is an urgent demand to develop therapeutic approaches with minimum invasion for the restoration of cardiac function. MAIN BODY Here, we focused on recent data associated with the application of Exo-loaded hydrogels in ischemic cardiac tissue. Whether and how the advances in tissue engineering modalities have increased the efficiency of whole-based and byproducts (Exos) therapies under ischemic conditions. The integration of nanotechnology and nanobiology for designing novel smart biomaterials with therapeutic outcomes was highlighted. CONCLUSION Hydrogels can provide suitable platforms for the transfer of Exos, small molecules, drugs, and other bioactive factors for direct injection into the damaged myocardium. Future studies should focus on the improvement of physicochemical properties of Exo-bearing hydrogel to translate for the standard treatment options.
Collapse
Affiliation(s)
- Hassan Amini
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran
| | - Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Taghavi Narmi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Mardi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Narimani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ozra Naturi
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Nafiseh Didar Khosrowshahi
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Shahriar Hashemzadeh
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, 51548/53431, Iran.
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
35
|
Chen P, Pan Y, Ning X, Shi X, Zhong J, Fan X, Li W, Teng Y, Liu X, Yu B, Yang Y, Li H, Ou C. Targeted heart repair by Tβ4-loaded cardiac-resident macrophage-derived extracellular vesicles modified with monocyte membranes. Acta Biomater 2023; 169:372-386. [PMID: 37597679 DOI: 10.1016/j.actbio.2023.08.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Recent studies have demonstrated the critical role of cardiac-resident macrophages (cMacs) in the maintenance of physiological homeostasis. However, recruitment of circulating monocyte-derived macrophages decreases cMac levels post-myocardial infarction (MI). Transplanting cMacs is not an ideal option due to their low survival rates and the risk of immunological rejection. However, extracellular vesicle therapy has the potential to provide a feasible and safe alternative for cardiac repair. In this study, cell membrane-modified extracellular vesicles (MmEVs) were developed for heart repair by modifying cMac-derived extracellular vesicles (mEVs) with monocyte membranes, resulting in immune evasion and sequential targeted localization to damaged regions through expression of CD47 on MmEVs and strong affinity between monocyte membrane proteins and CCL2. Additionally, to fully exploit the potential clinical application of MmEVs and achieve a better curative effect, thymosin β4 (Tβ4) was loaded into the nanoparticles, resulting in Tβ4-MmEVs. In vitro experiments indicated that both the MmEVs and Tβ4-MmEVs promoted cardiomyocyte proliferation and endothelial cell migration. Animal experiments suggested that MI mice treated with MmEVs and Tβ4-MmEVs exhibited reduced myocardial fibrosis and increased vascular density compared to the control group. Thus, we posit that these targeted nanoparticles hold significant potential for MI adjuvant therapy and may open new avenues for cardiac repair and regeneration. STATEMENT OF SIGNIFICANCE: Extracellular vesicles (EVs) derived from bioactive parent cell sources involved in pathological and repair processes for cardiovascular disease have emerged as a compelling strategy for regenerative therapy. In this study, we constructed monocyte membrane-modified extracellular vesicles loaded with a drug (Tβ4-MmEVs) for heart repair that exhibit extraordinary abilities of immune evasion and sequential localization to damaged regions owing to the presence of CD47 and the strong affinity between monocytes and damaged cardiomyocytes and endothelial cells. The bioactivities of Tβ4-MmEVs on enhancing cardiomyocyte and endothelial cell proliferation were validated both in vitro and in vivo. Effective development and implementation of therapeutically membrane-modified nanoparticles from homologous origins can provide a reference for adjuvant therapy in clinical MI management.
Collapse
Affiliation(s)
- Peier Chen
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China
| | - Yuxuan Pan
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China
| | - Xiaodong Ning
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China
| | - Xu Shi
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China
| | - Jianfeng Zhong
- Department of Cardiology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524003, China
| | - Xianglin Fan
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China
| | - Weirun Li
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China
| | - Yintong Teng
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China
| | - Xueting Liu
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China
| | - Bin Yu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanhua Yang
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China.
| | - Hekai Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Caiwen Ou
- Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Southern Medical University, Dongguan 523018, China.
| |
Collapse
|
36
|
Wang L, Chen P, Pan Y, Wang Z, Xu J, Wu X, Yang Q, Long M, Liu S, Huang W, Ou C, Wu Y. Injectable photocurable Janus hydrogel delivering hiPSC cardiomyocyte-derived exosome for post-heart surgery adhesion reduction. SCIENCE ADVANCES 2023; 9:eadh1753. [PMID: 37540739 PMCID: PMC10403204 DOI: 10.1126/sciadv.adh1753] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023]
Abstract
Postsurgical pericardial adhesions pose increased risks of sequelae, prolonged reoperation time, and reduced visibility in the surgical field. Here, we introduce an injectable Janus hydrogel, which exhibits asymmetric adhesiveness properties after photocrosslinking, sustained delivering induced pluripotent stem cell-derived cardiomyocyte exosomes (iCM-EXOs) for post-heart surgery adhesion reduction. Our findings reveal that iCM-EXOs effectively attenuate oxidative stress in hydrogen peroxide-treated primary cardiomyocytes by inhibiting the activation of the transcription factor nuclear factor erythroid 2-related factor 2. Notably, in rat cardiac postsurgery models, the Janus hydrogels loaded with iCM-EXOs demonstrate dual functionality, acting as antioxidants and antipericardial adhesion agents. These hydrogels effectively protect iCM-EXOs from GATA6+ cavity macrophage clearance by inhibiting the recruitment of macrophages from the thoracic cavity. These results highlight the promising potential of iCM-EXO-laden Janus hydrogels for clinical safety and efficacy validation in trials involving heart surgery patients, with the ultimate goal of routine administration during open-heart surgeries.
Collapse
Affiliation(s)
- Ling Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Peier Chen
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan 523058, China
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuxuan Pan
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan 523058, China
| | - Zihan Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jie Xu
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqi Wu
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Qiao Yang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Meng Long
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Sitian Liu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Caiwen Ou
- Affiliated Dongguan Hospital, Southern Medical University (Dongguan People’s Hospital), Dongguan 523058, China
| | - Yaobin Wu
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Department of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
37
|
Cieślik M, Bryniarski K, Nazimek K. Biodelivery of therapeutic extracellular vesicles: should mononuclear phagocytes always be feared? Front Cell Dev Biol 2023; 11:1211833. [PMID: 37476156 PMCID: PMC10354279 DOI: 10.3389/fcell.2023.1211833] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/26/2023] [Indexed: 07/22/2023] Open
Abstract
At present, extracellular vesicles (EVs) are considered key candidates for cell-free therapies, including treatment of allergic and autoimmune diseases. However, their therapeutic effectiveness, dependent on proper targeting to the desired cells, is significantly limited due to the reduced bioavailability resulting from their rapid clearance by the cells of the mononuclear phagocyte system (MPS). Thus, developing strategies to avoid EV elimination is essential when applying them in clinical practice. On the other hand, malfunctioning MPS contributes to various immune-related pathologies. Therapeutic reversal of these effects with EVs would be beneficial and could be achieved, for example, by modulating the macrophage phenotype or regulating antigen presentation by dendritic cells. Additionally, intended targeting of EVs to MPS macrophages for replication and repackaging of their molecules into new vesicle subtype can allow for their specific targeting to appropriate populations of acceptor cells. Herein, we briefly discuss the under-explored aspects of the MPS-EV interactions that undoubtedly require further research in order to accelerate the therapeutic use of EVs.
Collapse
Affiliation(s)
| | | | - Katarzyna Nazimek
- Department of Immunology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
38
|
Hong S, Huang W, Zhu X, Tang H, Krier JD, Xing L, Lu B, Gandhi D, Jordan KL, Saadiq IM, Lerman A, Eirin A, Lerman LO. Obesity blunts amelioration of cardiac hypertrophy and fibrosis by human mesenchymal stem/stromal cell-derived extracellular vesicles. Am J Physiol Heart Circ Physiol 2023; 325:H163-H171. [PMID: 37294895 PMCID: PMC10312317 DOI: 10.1152/ajpheart.00676.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/12/2023] [Accepted: 06/01/2023] [Indexed: 06/11/2023]
Abstract
Renovascular hypertension (RVH) can induce cardiac damage that is reversible using adipose tissue-derived mesenchymal stromal/stem cells (A-MSCs). However, A-MSCs isolated from patients with obesity are less effective than lean-A-MSC in blunting hypertensive cardiomyopathy in mice with RVH. We tested the hypothesis that this impairment extends to their obese A-MSC-extracellular vesicles (EVs) progeny. MSCs were harvested from the subcutaneous fat of obese and lean human subjects, and their EVs were collected and injected into the aorta of mice 2 wk after renal artery stenosis or sham surgery. Cardiac left ventricular (LV) function was studied with MRI 2 wk later, and myocardial tissue ex vivo. Blood pressure, LV myocardial wall thickness, mass, and fibrosis that were elevated in RVH mice were suppressed only by lean EVs. Hence, human A-MSC-derived lean EVs are more effective than obese EVs in blunting hypertensive cardiac injury in RVH mice. These observations highlight impaired paracrine repair potency of endogenous MSCs in patients with obesity.NEW & NOTEWORTHY Injection of A-MSC-derived EVs harvested from patients who are lean can resolve myocardial injury in mice with experimental renovascular hypertension more effectively than A-MSC-derived EVs from patients with obesity. These observations underscore and might have important ramifications for the self-healing capacity of patients with obesity and for the use of autologous EVs as a regenerative tool.
Collapse
Affiliation(s)
- Siting Hong
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Weijun Huang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xiangyang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - James D Krier
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Li Xing
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Bo Lu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Deep Gandhi
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Ishran M Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, United States
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
39
|
Ma Y, Cao Y, Gao H, Tong R, Yi J, Zhang Z, Chen R, Pan Z. Sevoflurane Improves Ventricular Conduction by Exosomes Derived from Rat Cardiac Fibroblasts After Hypothermic Global Ischemia-Reperfusion Injury. Drug Des Devel Ther 2023; 17:1719-1732. [PMID: 37333963 PMCID: PMC10275581 DOI: 10.2147/dddt.s408595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023] Open
Abstract
Purpose This study investigated the effect of exosomes derived from sevoflurane-treated cardiac fibroblasts (Sev-CFs-Exo) on reperfusion arrhythmias (RA), ventricular conduction, and myocardial ischemia-reperfusion injury (MIRI). Methods Primary cardiac fibroblasts (CFs) were isolated from the hearts of neonatal rats and identified by morphology and immunofluorescence. Exosomes were isolated from CFs at passages 2-3 after they had been treated with 2.5% sevoflurane for an hour and cultivated for 24-48 hours. The control group was CFs that did not receive any treatment. The hypothermic global ischemia-reperfusion injury model was established using the Langendorff perfusion technique following injection with exosomes through the caudal vein. Multi-electrode array (MEA) mapping was used to investigate the changes in RA and ventricular conduction in isolated hearts. Western blots and immunofluorescence were used to examine the relative expression and location of connexin 43 (Cx43). In addition, the MIRI was evaluated with triphenyl tetrazolium chloride and Hematoxylin-Eosin staining. Results The primary CFs had a variety of morphologies, no spontaneous pulsation, and were vimentin-positive, which confirmed their successful isolation. Sev-CFs-Exo increased the heart rate (HR) at reperfusion for 15 minutes (T2) and 30 minutes (T3) and lowered the score and duration of RA and the time for restoration of heartbeat in reperfusion. Meanwhile, Sev-CFs-Exo increased conduction velocity (CV), decreased absolute inhomogeneity (P5-95) and inhomogeneity index (P5-95/P50) at T2 and T3, as well as promoted the recovery of HR, CV, P5-95 and P5-95/P50 after hypothermic global ischemia-reperfusion injury. Furthermore, Sev-CFs-Exo raised expression and reduced lateralization of Cx43, and improved myocardial infarct sizes and cellular necrosis. However, while cardiac fibroblast-derived exosomes (CFs-Exo) showed similar cardioprotective effects, the outcomes were not as significant. Conclusion Sevoflurane reduces the risk of RA and improves ventricular conduction and MIRI by CFs-Exo, and this may be driven by the expression and location of Cx43.
Collapse
Affiliation(s)
- Yanyan Ma
- School of Anesthesia, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Ying Cao
- Department of Anesthesiology, The Second People’s Hospital of Guiyang, Guiyang, People’s Republic of China
| | - Hong Gao
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Rui Tong
- School of Anesthesia, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Jing Yi
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, People’s Republic of China
| | - Zhongwei Zhang
- School of Anesthesia, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Rui Chen
- School of Anesthesia, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Zhijun Pan
- School of Anesthesia, Guizhou Medical University, Guiyang, People’s Republic of China
| |
Collapse
|
40
|
Sun Y, Sun F, Xu W, Qian H. Engineered Extracellular Vesicles as a Targeted Delivery Platform for Precision Therapy. Tissue Eng Regen Med 2023; 20:157-175. [PMID: 36637750 PMCID: PMC10070595 DOI: 10.1007/s13770-022-00503-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 01/14/2023] Open
Abstract
Extracellular vesicles (EVs)-based cell-free strategy has shown therapeutic potential in tissue regeneration. Due to their important roles in intercellular communications and their natural ability to shield cargos from degradation, EVs are also emerged as novel delivery vehicles for various bioactive molecules and drugs. Accumulating studies have revealed that EVs can be modified to enhance their efficacy and specificity for the treatment of many diseases. Engineered EVs are poised as the next generation of targeted delivery platform in the field of precision therapy. In this review, the unique properties of EVs are overviewed in terms of their biogenesis, contents, surface features and biological functions, and the recent advances in the strategies of engineered EVs construction are summarized. Additionally, we also discuss the potential applications of engineered EVs in targeted therapy of cancer and damaged tissues, and evaluate the opportunities and challenges for translating them into clinical practice.
Collapse
Affiliation(s)
- Yuntong Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Fengtian Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
41
|
Xu CM, Sabe SA, Brinck‐Teixeira R, Sabra M, Sellke FW, Abid MR. Visualization of cardiac uptake of bone marrow mesenchymal stem cell-derived extracellular vesicles after intramyocardial or intravenous injection in murine myocardial infarction. Physiol Rep 2023; 11:e15568. [PMID: 36967241 PMCID: PMC10040402 DOI: 10.14814/phy2.15568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 03/29/2023] Open
Abstract
In animal models, human bone marrow mesenchymal stem cell-derived extracellular vesicles (MSC-EV) have been found to have beneficial effects in cardiovascular disease, but only when administered via intramyocardial injection. The biodistribution of either intravenous or intramyocardial injection of MSC-EV in the presence of myocardial injury is uncharacterized at this time. We hypothesized that intramyocardial injection will ensure delivery of MSC-EV to the ischemic myocardium, while intravenous injection will not. Human bone marrow mesenchymal stem cells were cultured and the MSC-EV were isolated and characterized. The MSC-EVs were then labeled with DiD lipid dye. FVB mice with normal cardiac function underwent left coronary artery ligation followed by either peri-infarct intramyocardial or tail vein injection of 3*106 or 2*109 particles of DiD-labeled MSC-EV or a DiD-saline control. The heart, lungs, liver, spleen and kidneys were harvested 2 h post-injection and were submitted for fluorescent molecular tomography imaging. Myocardial uptake of MSC-EV was only visualized after intramyocardial injection of 2*109 MSC-EV particles (p = 0.01) compared to control, and there were no differences in cardiac fluorescence after tail vein injection of MSC-EV (p = 0.5). There was no significantly detectable MSC-EV uptake in other organs after intramyocardial injection. After tail vein injection of 2*109 particles of MSC-EV, the liver (p = 0.02) and spleen (p = 0.04) appeared to have diffuse MSC-EV uptake compared to controls. Even in the presence of myocardial injury, only intramyocardial but not intravenous administration resulted in detectable levels of MSC-EV in the ischemic myocardium. This study confirms the role for intramyocardial injection in maximal and effective delivery of MSC-EV. Our ongoing studies aimed at developing bioengineered MSC-EV for targeted delivery to the heart may render MSC-EV clinically applicable for cardiovascular disease.
Collapse
Affiliation(s)
- Cynthia M. Xu
- Cardiovascular Research CenterRhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic Surgery Alpert Medical School of Brown University and Rhode Island Hospital ProvidenceProvidenceRhode IslandUSA
| | - Sharif A. Sabe
- Cardiovascular Research CenterRhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic Surgery Alpert Medical School of Brown University and Rhode Island Hospital ProvidenceProvidenceRhode IslandUSA
| | - Rayane Brinck‐Teixeira
- Cardiovascular Research CenterRhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic Surgery Alpert Medical School of Brown University and Rhode Island Hospital ProvidenceProvidenceRhode IslandUSA
| | - Mohamed Sabra
- Cardiovascular Research CenterRhode Island HospitalProvidenceRhode IslandUSA
| | - Frank W. Sellke
- Cardiovascular Research CenterRhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic Surgery Alpert Medical School of Brown University and Rhode Island Hospital ProvidenceProvidenceRhode IslandUSA
| | - M. Ruhul Abid
- Cardiovascular Research CenterRhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic Surgery Alpert Medical School of Brown University and Rhode Island Hospital ProvidenceProvidenceRhode IslandUSA
| |
Collapse
|
42
|
Zhao C, Li J, Cai H, Wu D, Tao S, Pi C, Zhu L, Xu N, Zhang T. An injectable hydrogel scaffold with IL-1β-activated MSC-derived exosomes for the treatment of endometritis. Biomater Sci 2023; 11:1422-1436. [PMID: 36602019 DOI: 10.1039/d2bm01586b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic endometritis is a common gynecological disease resulting from various long-term recurrent infections, and is closely related to myositis, miscarriage, and even infertility. There is still no satisfactory treatment method currently in clinical therapy. Mesenchymal stem cell (MSC)-derived exosomes, an important kind of paracrine product, have been used to treat inflammatory diseases due to their promising immunomodulatory function and tissue repair ability similar to MSCs. Considering that the exosome contents and functions are regulated by the MSC status and the MSC status is significantly influenced by its surrounding microenvironment, we propose a hypothesis that exosomes derived from inflammation-simulated MSCs will possess stronger inhibition ability for inflammation. Herein, we used IL-1β to activate rat bone MSCs for obtaining β-exo and constructed an injectable polypeptide hydrogel scaffold by loading β-exo (β-exo@pep) for an in situ slow release of β-exo. The results showed that the polypeptide hydrogel can provide a sustained release of exosomes in 14 days. The β-exo@pep composite hydrogel can more effectively inhibit the production of inflammatory factors such as TNF-α, IL-1β, and IFN-γ, while it can promote the production of anti-inflammatory factors such as Arg-1, IL-6, and IL-10. The β-exo@pep composite hydrogel significantly promoted cell migration, invasion, and vessel tube formation in vitro. The experiments in a rat model of endometritis proved that the β-exo@pep composite scaffold possessed excellent ability towards anti-inflammation and endometrial regeneration. The research studies on the molecular mechanism revealed that the protein expressions of HMGB1 and phosphorylated IKB-α and p65 are down-regulated in the cells treated with β-exo@pep, indicating the involvement of the NF-κB signaling pathway. This study provides an effective method for the treatment of chronic endometritis, which is promising for clinical use.
Collapse
Affiliation(s)
- Chenchen Zhao
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Jianping Li
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Huihua Cai
- Department of Obstetrics and Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Dingwei Wu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Suwan Tao
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Chaoran Pi
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lian Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Na Xu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Tongcun Zhang
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
43
|
Zhu Y, Wang S, Chen X. Extracellular Vesicles and Ischemic Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:57-68. [PMID: 37603272 DOI: 10.1007/978-981-99-1443-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Characterized by coronary artery obstruction or stenosis, ischemic cardiovascular diseases as advanced stages of coronary heart diseases commonly lead to left ventricular aneurysm, ventricular septal defect, and mitral insufficiency. Extracellular vesicles (EVs) secreted by diverse cells in the body exert roles in cell-cell interactions and intrinsic cellular regulations. With a lipid double-layer membrane and biological components such as DNA, protein, mRNA, microRNAs (miRNA), and siRNA inside, the EVs function as paracrine signaling for the pathophysiology of ischemic cardiovascular diseases and maintenance of the cardiac homeostasis. Unlike stem cell transplantation with the potential tumorigenicity and immunogenicity, the EV-based therapeutic strategy is proposed to satisfy the demand for cardiac repair and regeneration while the circulating EVs detected by a noninvasive approach can act as precious biomarkers. In this chapter, we extensively summarize the cardioprotective functions of native EVs and bioengineered EVs released from stem cells, cardiomyocytes, cardiac progenitor cells (CPCs), endothelial cells, fibroblast, smooth muscle cells, and immune cells. In addition, the potential of EVs as robust molecule biomarkers is discussed for clinical diagnosis of ischemic cardiovascular disease, attributed to the same pathology of EVs as that of their origin. Finally, we highlight EV-based therapy as a biocompatible alternative to direct cell-based therapy for ischemic cardiovascular diseases.
Collapse
Affiliation(s)
- Yujiao Zhu
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Siqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai, China
| | - Xuerui Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China.
| |
Collapse
|
44
|
Okamura A, Yoshioka Y, Saito Y, Ochiya T. Can Extracellular Vesicles as Drug Delivery Systems Be a Game Changer in Cardiac Disease? Pharm Res 2022; 40:889-908. [PMID: 36577860 PMCID: PMC10126064 DOI: 10.1007/s11095-022-03463-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
Cardiac diseases such as myocardial infarction and heart failure have been the leading cause of death worldwide for more than 20 years, and new treatments continue to be investigated. Heart transplantation, a curative treatment for severe cardiac dysfunction, is available to only a small number of patients due to the rarity of donors and high costs. Cardiac regenerative medicine using embryonic stem cells and induced pluripotent stem cells is expected to be a new alternative to heart transplantation, but it has problems such as induction of immune response, tumor formation, and low survival rate of transplanted cells. On the other hand, there has been a focus on cell-free therapy using extracellular vesicles (EVs) due to their high biocompatibility and target specificity. Exosomes, one type of EV, play a role in the molecular transport system in vivo and can be considered a drug delivery system (DDS) innate to all living things. Exosomes contain nucleic acids and proteins, which are transported from secretory cells to recipient cells. Molecules in exosomes are encapsulated in a lipid bilayer, which allows them to exist stably in body fluids without being affected by nuclease degradation enzymes. Therefore, the therapeutic use of exosomes as DDSs has been widely explored and is being used in clinical trials and other clinical settings. This review summarizes the current topics of EVs as DDSs in cardiac disease.
Collapse
Affiliation(s)
- Akihiko Okamura
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.,Department of Cardiovascular Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8522, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8522, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan.
| |
Collapse
|
45
|
Yue J, Chen ZS, Xu XX, Li S. Functions and therapeutic potentials of exosomes in osteosarcoma. ACTA MATERIA MEDICA 2022; 1:552-562. [PMID: 36710945 PMCID: PMC9879305 DOI: 10.15212/amm-2022-0024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteosarcoma is a primary malignant tumor of the skeleton with the morbidity of 2.5 in 1 million. The regularly on-set is in the epiphysis of the extremities with a high possibility of early metastasis, rapid progression, and poor prognosis. The survival rate of patients with metastatic or recurrent osteosarcoma remains low, and novel diagnostic and therapeutic methods are urgently needed. Exosomes are extracellular vesicles 30-150 nm in diameter secreted by various cells that are widely present in various body fluids. Exosomes are abundant in biologically active components such as proteins, nucleic acids, and lipids. Exosomes participate in numerous physiological and pathological processes via intercellular substance exchange and signaling. This review presents the novel findings of exosomes in osteosarcoma in diagnosis, prognosis, and therapeutic aspects.
Collapse
Affiliation(s)
- Jiaji Yue
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, PR China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY,United States
| | - Xiang-Xi Xu
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, PR China
| |
Collapse
|
46
|
Stępień EŁ, Rząca C, Moskal P. Radiovesicolomics-new approach in medical imaging. Front Physiol 2022; 13:996985. [DOI: 10.3389/fphys.2022.996985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
This review introduce extracellular vesicles (EVs) to a molecular imaging field. The idea of modern analyses based on the use of omics studies, using high-throughput methods to characterize the molecular content of a single biological system, vesicolomics seems to be the new approach to collect molecular data about EV content, to find novel biomarkers or therapeutic targets. The use of various imaging techniques, including those based on radionuclides as positron emission tomography (PET) or single photon emission computed tomography (SPECT), combining molecular data on EVs, opens up the new space for radiovesicolomics—a new approach to be used in theranostics.
Collapse
|
47
|
Mao L, Li YD, Chen RL, Li G, Zhou XX, Song F, Wu C, Hu Y, Hong YX, Dang X, Li GR, Wang Y. Heart-targeting exosomes from human cardiosphere-derived cells improve the therapeutic effect on cardiac hypertrophy. J Nanobiotechnology 2022; 20:435. [PMID: 36195937 PMCID: PMC9531502 DOI: 10.1186/s12951-022-01630-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/09/2022] [Indexed: 12/04/2022] Open
Abstract
Exosomes of human cardiosphere-derived cells (CDCs) are very promising for treating cardiovascular disorders. However, the current challenge is inconvenient delivery methods of exosomes for clinical application. The present study aims to explore the potential to enhance the therapeutic effect of exosome (EXO) from human CDCs to myocardial hypertrophy. A heart homing peptide (HHP) was displayed on the surface of exosomes derived from CDCs that were forced to express the HHP fused on the N-terminus of the lysosomal-associated membrane protein 2b (LAMP2b). The cardiomyocyte-targeting capability of exosomes were analyzed and their therapeutic effects were evaluated in a mouse model of myocardial hypertrophy induced by transverse aorta constriction (TAC). The molecular mechanisms of the therapeutic effects were dissected in angiotensin II-induced neonatal rat cardiomyocyte (NRCMs) hypertrophy model using a combination of biochemistry, immunohistochemistry and molecular biology techniques. We found that HHP-exosomes (HHP-EXO) accumulated more in mouse hearts after intravenous delivery and in cultured NRCMs than control exosomes (CON-EXO). Cardiac function of TAC mice was significantly improved with intravenous HHP-EXO administration. Left ventricular hypertrophy was reduced more by HHP-EXO than CON-EXO via inhibition of β-MHC, BNP, GP130, p-STAT3, p-ERK1/2, and p-AKT. Similar results were obtained in angiotensin II-induced hypertrophy of NRCMs, in which the beneficial effects of HHP-EXO were abolished by miRNA-148a inhibition. Our results indicate that HHP-EXO preferentially target the heart and improve the therapeutic effect of CDCs-exosomes on cardiac hypertrophy. The beneficial therapeutic effect is most likely attributed to miRNA-148a-mediated suppression of GP130, which in turn inhibits STAT3/ERK1/2/AKT signaling pathway, leading to improved cardiac function and remodeling.
Collapse
Affiliation(s)
- Liang Mao
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Yun-Da Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Ruo-Lan Chen
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Xiao-Xia Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Fei Song
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Chan Wu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Yu Hu
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Yi-Xiang Hong
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China
| | - Xitong Dang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.,Nanjing Amaigh Pharma Limited, Nanjing, 210032, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361000, China.
| |
Collapse
|
48
|
Ramasubramanian L, Du S, Gidda S, Bahatyrevich N, Hao D, Kumar P, Wang A. Bioengineering Extracellular Vesicles for the Treatment of Cardiovascular Diseases. Adv Biol (Weinh) 2022; 6:e2200087. [PMID: 35778828 PMCID: PMC9588622 DOI: 10.1002/adbi.202200087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Indexed: 01/28/2023]
Abstract
Cardiovascular diseases (CVD) remain one of the leading causes of mortality worldwide. Despite recent advances in diagnosis and interventions, there is still a crucial need for new multifaceted therapeutics that can address the complicated pathophysiological mechanisms driving CVD. Extracellular vesicles (EVs) are nanovesicles that are secreted by all types of cells to transport molecular cargo and regulate intracellular communication. EVs represent a growing field of nanotheranostics that can be leveraged as diagnostic biomarkers for the early detection of CVD and as targeted drug delivery vesicles to promote cardiovascular repair and recovery. Though a promising tool for CVD therapy, the clinical application of EVs is limited by the inherent challenges in EV isolation, standardization, and delivery. Hence, this review will present the therapeutic potential of EVs and introduce bioengineering strategies that augment their natural functions in CVD.
Collapse
Affiliation(s)
- Lalithasri Ramasubramanian
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616
| | - Shixian Du
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616
| | - Siraj Gidda
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
| | - Nataliya Bahatyrevich
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
| | - Dake Hao
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
| | - Priyadarsini Kumar
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California-Davis, Sacramento, CA, 95817
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, 95817
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, 95616
| |
Collapse
|
49
|
Gao X, Gao B, Li S. Extracellular vesicles: A new diagnostic biomarker and targeted drug in osteosarcoma. Front Immunol 2022; 13:1002742. [PMID: 36211364 PMCID: PMC9539319 DOI: 10.3389/fimmu.2022.1002742] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma (OS) is a primary bone cancer that is highly prevalent among adolescents and adults below the age of 20 years. The prognostic outcome of metastatic OS or relapse is extremely poor; thus, developing new diagnostic and therapeutic strategies for treating OS is necessary. Extracellular vesicles (EVs) ranging from 30–150 nm in diameter are commonly produced in different cells and are found in various types of body fluids. EVs are rich in biologically active components like proteins, lipids, and nucleic acids. They also strongly affect pathophysiological processes by modulating the intercellular signaling pathways and the exchange of biomolecules. Many studies have found that EVs influence the occurrence, development, and metastasis of osteosarcoma. The regulation of inflammatory communication pathways by EVs affects OS and other bone-related pathological conditions, such as osteoarthritis and rheumatoid arthritis. In this study, we reviewed the latest findings related to diagnosis, prognosis prediction, and the development of treatment strategies for OS from the perspective of EVs.
Collapse
Affiliation(s)
- Xiaozhuo Gao
- Department of Pathology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Bo Gao
- Department of Pathology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
- *Correspondence: Shenglong Li, ;
| |
Collapse
|
50
|
Zhai Y, Wang Q, Zhu Z, Hao Y, Han F, Hong J, Zheng W, Ma S, Yang L, Cheng G. High-efficiency brain-targeted intranasal delivery of BDNF mediated by engineered exosomes to promote remyelination. Biomater Sci 2022; 10:5707-5718. [PMID: 36039673 DOI: 10.1039/d2bm00518b] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regeneration of myelin sheaths is the ultimate goal of the treatment of demyelination disease, including multiple sclerosis (MS). However, current drugs for MS mainly target the immune system and can only slow down the disease development and do not promote the differentiation of oligodendrocyte precursor cells (OPCs) abundant in the myelin injury region into mature oligodendrocytes to form a new myelin sheath. Brain-derived neurotrophic factor (BDNF) plays an important role in the regulation of OPC proliferation and differentiation into mature oligodendrocytes. Exosomes, a kind of nanoscale membrane vesicle secreted by cells, can be used as potential therapeutic drug delivery vectors for central nervous system diseases. Here, brain-targeted modification and BDNF intracellular-loaded exosomes were produced through engineering HEK293T cells, which can promote the differentiation of OPCs into mature oligodendrocytes in vitro. The intranasal administration of the brain-targeted engineered exosome-mediated BDNF was a highly effective delivery route to the brain and had a significant therapeutic effect on remyelination and motor coordination ability improvement in demyelination model mice. The combination of intranasal administration with brain-targeted and BDNF-loaded designed exosomes provides a strategy for efficient drug delivery and treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Yuanxin Zhai
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei Anhui 230026, China. .,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou Jiangsu 215123, China
| | - Quanwei Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou Jiangsu 215123, China
| | - Zhanchi Zhu
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei Anhui 230026, China. .,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou Jiangsu 215123, China
| | - Ying Hao
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei Anhui 230026, China. .,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou Jiangsu 215123, China.,Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, China
| | - Fang Han
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei Anhui 230026, China. .,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou Jiangsu 215123, China
| | - Jing Hong
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei Anhui 230026, China. .,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou Jiangsu 215123, China
| | - Wenlong Zheng
- Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou Jiangsu 215123, China.
| | - Sancheng Ma
- Suzhou Kowloon Hospital, Shanghai Jiaotong University Medical School, Suzhou Jiangsu 215123, China.
| | - Lingyan Yang
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei Anhui 230026, China. .,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou Jiangsu 215123, China.,Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, China
| | - Guosheng Cheng
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei Anhui 230026, China. .,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou Jiangsu 215123, China.,Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Guangdong 528200, China
| |
Collapse
|