1
|
Nguyen AL, Facey COB, Boman BM. The Significance of Aldehyde Dehydrogenase 1 in Cancers. Int J Mol Sci 2024; 26:251. [PMID: 39796106 PMCID: PMC11720537 DOI: 10.3390/ijms26010251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
The goal of this paper is to discuss the role of ALDH isozymes in different cancers, review advances in ALDH1-targeting cancer therapies, and explore a mechanism that explains how ALDH expression becomes elevated during cancer development. ALDH is often overexpressed in cancer, and each isoform has a unique expression pattern and a distinct role in different cancers. The abnormal expression of ALDHs in different cancer types (breast, colorectal, lung, gastric, cervical, melanoma, prostate, and renal) is presented and correlated with patient prognosis. ALDH plays a significant role in various cellular functions, such as metabolism, oxidative stress response, detoxification, and cellular differentiation. Among the ALDH families, ALDH1 has gained considerable attention as a cancer stem cell (CSC) marker due to its significant role in the maintenance of stemness and the differentiation of stem cells (SCs), along with its involvement in tumorigenesis. A description of the cellular mechanisms and physiology of ALDH1 that underlies cancer development is provided. Moreover, current advances in ALDH1-targeting cancer therapies are discussed.
Collapse
Affiliation(s)
- Anh L. Nguyen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA;
| | - Caroline O. B. Facey
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA;
| | - Bruce M. Boman
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA;
- Center for Translational Cancer Research, Helen F. Graham Cancer Center and Research Institute, 4701 Ogletown-Stanton Road, Newark, DE 19713, USA;
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Fanfarillo F, Caronti B, Lucarelli M, Francati S, Tarani L, Ceccanti M, Piccioni MG, Verdone L, Caserta M, Venditti S, Ferraguti G, Fiore M. Alcohol Consumption and Breast and Ovarian Cancer Development: Molecular Pathways and Mechanisms. Curr Issues Mol Biol 2024; 46:14438-14452. [PMID: 39727994 DOI: 10.3390/cimb46120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Alcohol consumption has been consistently linked to an increased risk of several cancers, including breast and ovarian cancer. Despite substantial evidence supporting this association, the precise mechanisms underlying alcohol's contribution to cancer pathogenesis remain incompletely understood. This narrative review focuses on the key current literature on the biological pathways through which alcohol may influence the development of breast and ovarian cancer. Key mechanisms discussed include the modulation of estrogen levels, the generation of reactive oxygen species, the production of acetaldehyde, the promotion of chronic inflammation, and the induction of epigenetic changes. Alcohol's impact on estrogenic signaling, particularly in the regulation of estrogen and progesterone, is explored in the context of hormone-dependent cancers. Additionally, the role of alcohol-induced DNA damage, mutagenesis, and immune system modulation in tumor initiation and progression is examined. Overall, this review emphasizes the importance of alcohol as a modifiable risk factor for breast and ovarian cancer and highlights the need for further research to clarify its role in cancer biology.
Collapse
Affiliation(s)
- Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Brunella Caronti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell'Alcolismo e le sue Complicanze, 00185 Rome, Italy
| | - Maria Grazia Piccioni
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Loredana Verdone
- Institute of Molecular Biology and Pathology (IBPM-CNR), 00161 Rome, Italy
| | - Micaela Caserta
- Institute of Molecular Biology and Pathology (IBPM-CNR), 00161 Rome, Italy
| | - Sabrina Venditti
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, 00161 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
3
|
Lavudi K, Nuguri SM, Pandey P, Kokkanti RR, Wang QE. ALDH and cancer stem cells: Pathways, challenges, and future directions in targeted therapy. Life Sci 2024; 356:123033. [PMID: 39222837 DOI: 10.1016/j.lfs.2024.123033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Human ALDH comprise 19 subfamilies in which ALDH1A1, ALDH1A3, ALDH3A1, ALDH5A1, ALDH7A1, and ALDH18A1 are implicated in CSC. Studies have shown that ALDH can also be involved in drug resistance and standard chemotherapy regimens are ineffective in treating patients at the stage of disease recurrence. Existing chemotherapeutic drugs eliminate the bulk of tumors but are usually not effective against CSC which express ALDH+ population. Henceforth, targeting ALDH is convincing to treat the patient's post-relapse. Combination therapies that interlink signaling mechanisms seem promising to increase the overall disease-free survival rate. Therefore, targeting ALDH through ALDH inhibitors along with immunotherapies may create a novel platform for translational research. This review aims to fill in the gap between ALDH1 family members in relation to its cell signaling mechanisms, highlighting their potential as molecular targets to sensitize recurrent tumors and bring forward the future development concerning the current progress and draw backs. This review summarizes the role of cancer stem cells and their upregulation by maintaining the tumor microenvironment in which ALDH is specifically highlighted. It discusses the regulation of ALDH family proteins and the crosstalk between ALDH and CSC in relation to cancer metabolism. Furthermore, it establishes the correlation between ALDH involved signaling mechanisms and their specific targeted inhibitors, as well as their functional modularity, bioavailability, and mechanistic role in various cancers.
Collapse
Affiliation(s)
- Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Shreya Madhav Nuguri
- Department of Food science and Technology, The Ohio State University, Columbus, OH, United States
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, U.P., India; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | - Qi-En Wang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
4
|
Jiménez R, Constantinescu A, Yazir M, Alfonso-Triguero P, Pequerul R, Parés X, Pérez-Alea M, Candiota AP, Farrés J, Lorenzo J. Targeting Retinaldehyde Dehydrogenases to Enhance Temozolomide Therapy in Glioblastoma. Int J Mol Sci 2024; 25:11512. [PMID: 39519068 PMCID: PMC11546810 DOI: 10.3390/ijms252111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma (GB) is an aggressive malignant central nervous system tumor that is currently incurable. One of the main pitfalls of GB treatment is resistance to the chemotherapeutic standard of care, temozolomide (TMZ). The role of aldehyde dehydrogenases (ALDHs) in the glioma stem cell (GSC) subpopulation has been related to chemoresistance. ALDHs take part in processes such as cell proliferation, differentiation, invasiveness or metastasis and have been studied as pharmacological targets in cancer treatment. In the present work, three novel α,β-acetylenic amino thiolester compounds, with demonstrated efficacy as ALDH inhibitors, were tested in vitro on a panel of six human GB cell lines and one murine GB cell line. Firstly, the expression of the ALDH1A isoforms was assessed, and then inhibitors were tested for their cytotoxicity and their ability to inhibit cellular ALDH activity. Drug combination assays with TMZ were performed, as well as an assessment of the cell death mechanism and generation of ROS. A knockout of several ALDH genes was carried out in one of the human GB cell lines, allowing us to discuss their role in cell proliferation, migration capacity and resistance to treatment. Our results strongly suggest that ALDH inhibitors could be an interesting approach in the treatment of GB, with EC50 values in the order of micromolar, decreasing ALDH activity in GB cell lines to 40-50%.
Collapse
Affiliation(s)
- Rafael Jiménez
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Andrada Constantinescu
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Muhube Yazir
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Paula Alfonso-Triguero
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, E-08193 Bellaterra, Spain
| | - Raquel Pequerul
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
| | - Mileidys Pérez-Alea
- Unit of Research in Cellular and Molecular Biology, Advanced BioDesign, Saint-Priest, 69800 Lyon, France; (A.C.); (M.Y.); (M.P.-A.)
| | - Ana Paula Candiota
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, E-08913 Bellaterra, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
| | - Julia Lorenzo
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain; (R.J.); (P.A.-T.); (R.P.); (X.P.); (A.P.C.)
- Institute for Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, E-08913 Bellaterra, Spain
| |
Collapse
|
5
|
Liu ZY, Lin XH, Guo HY, Shi X, Zhang DY, Sun JL, Zhang GC, Xu RC, Wang F, Yu XN, Wang D, Weng SQ, Shen XZ, Liu TT, Dong L, Zhu JM. Multi-Omics profiling identifies aldehyde dehydrogenase 2 as a critical mediator in the crosstalk between Treg-mediated immunosuppression microenvironment and hepatocellular carcinoma. Int J Biol Sci 2024; 20:2763-2778. [PMID: 38725845 PMCID: PMC11077362 DOI: 10.7150/ijbs.93075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Dysregulation of the aldehyde dehydrogenase (ALDH) family has been implicated in various pathological conditions, including cancer. However, a systematic evaluation of ALDH alterations and their therapeutic relevance in hepatocellular carcinoma (HCC) remains lacking. Herein, we found that 15 of 19 ALDHs were transcriptionally dysregulated in HCC tissues compared to normal liver tissues. A four gene signature, including ALDH2, ALDH5A1, ALDH6A1, and ALDH8A1, robustly predicted prognosis and defined a high-risk subgroup exhibiting immunosuppressive features like regulatory T cell (Tregs) infiltration. Single-cell profiling revealed selective overexpression of tumor necrosis factor receptor superfamily member 18 (TNFRSF18) on Tregs, upregulated in high-risk HCC patients. We identified ALDH2 as a tumor suppressor in HCC, with three novel phosphorylation sites mediated by protein kinase C zeta that enhanced enzymatic activity. Mechanistically, ALDH2 suppressed Tregs differentiation by inhibiting β-catenin/TGF-β1 signaling in HCC. Collectively, our integrated multi-omics analysis defines an ALDH-Tregs-TNFRSF18 axis that contributes to HCC pathogenesis and represents potential therapeutic targets for this aggressive malignancy.
Collapse
Affiliation(s)
- Zhi-Yong Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Xia-Hui Lin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Hong-Ying Guo
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Xuan Shi
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Dan-Ying Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Jia-Lei Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Guang-Cong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Ru-Chen Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Fu Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Xiang-Nan Yu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Dou Wang
- Department of Gastroenterology, Shigatse People's Hospital, Shigatse, Tibet 857000, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai 200030, China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| |
Collapse
|
6
|
Huang J, Tang Y, Li Y, Wei W, Kang F, Tan S, Lin L, Lu X, Wei H, Wang N. ALDH1A3 contributes to tumorigenesis in high-grade serous ovarian cancer by epigenetic modification. Cell Signal 2024; 116:111044. [PMID: 38211842 DOI: 10.1016/j.cellsig.2024.111044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
High-grade serous ovarian cancer (HGSOC) is the most lethal histotype of ovarian cancer due to its unspecific symptoms in part. ALDH1A3 (aldehyde dehydrogenase 1 family member A3) is a key enzyme for acetyl-CoA production involving aggressive behaviors of cancers. However, ALDH1A3's effects and molecular mechanisms in HGSOC remain to be clarified. Using RNA-seq and publicly available datasets, ALDH1A3 was found to be highly expressed in HGSOC, and associated with poor survival. Knockdown of ALDH1A3 prevented HGSOC tumorigenesis and enhanced cell sensitivity to paclitaxel or cisplatin. ALDH1A3 expression in HGSOC cells was found to be increased by hypoxia, but decreased by HIF-1α inhibitor KC7F2. The dual-luciferase reporter assay showed that the increased transcriptional activity of ALDH1A3 induced by HIF-1α overexpression was reduced by KC7F2. In addition, PITX1 (paired like homeodomain 1) was identified to be inhibited by ALDH1A3 knockdown, and PITX1 depletion inhibited cell proliferation. The mechanistic studies showed that ALDH1A3 knockdown reduced the acetylation of histone 3 lysine 27 (H3K27ac). Treatment of exogenous acetate with NaOAc or inhibition of histone deacetylase with Pracinostat increased H3K27ac and PITX1 levels. CHIP assay demonstrated a significant enrichment of H3K27ac at the PITX1 promoter, and ALDH1A3 knockdown reduced the binding between H3K27ac and PITX1. Taken together, our data suggest that ALDH1A3, transcriptional activated by HIF-1α, promotes tumorigenesis and decreases chemosensitivity by increasing H3K27ac of PITX1 promoter in HGSOC.
Collapse
Affiliation(s)
- Jiazhen Huang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Ying Tang
- Department of Pathology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Yibing Li
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Wei Wei
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Fuli Kang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Shuang Tan
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Lin Lin
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Xiaohang Lu
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China
| | - Heng Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, PR China
| | - Ning Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
7
|
Takahashi C, Chtcherbinine M, Huddle BC, Wilson MW, Emmel T, Hohlman RM, McGonigal S, Buckanovich RJ, Larsen SD, Hurley TD. Development of substituted benzimidazoles as inhibitors of human aldehyde dehydrogenase 1A isoenzymes. Chem Biol Interact 2024; 391:110910. [PMID: 38364885 PMCID: PMC11062403 DOI: 10.1016/j.cbi.2024.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Aldehyde dehydrogenase 1A (ALDH1A) isoforms may be a useful target for overcoming chemotherapy resistance in high-grade serous ovarian cancer (HGSOC) and other solid tumor cancers. However, as different cancers express different ALDH1A isoforms, isoform selective inhibitors may have a limited therapeutic scope. Furthermore, resistance to an ALDH1A isoform selective inhibitor could arise via induction of expression of other ALDH1A isoforms. As such, we have focused on the development of pan-ALDH1A inhibitors, rather than on ALDH1A isoform selective compounds. Herein, we report the development of a new group of pan-ALDH1A inhibitors to assess whether broad spectrum ALDH1A inhibition is an effective adjunct to chemotherapy in HGSOC. Optimization of the CM10 scaffold, aided by ALDH1A1 crystal structures, led to improved biochemical potencies, improved cellular efficacy as demonstrated by reduction in ALDEFLUOR signal in HGSOC cells, and substantial improvements in liver microsomal stability. Based on this work we identified two compounds 17 and 25 suitable for future in vivo proof of concept experiments.
Collapse
Affiliation(s)
- Cyrus Takahashi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mikhail Chtcherbinine
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brandt C Huddle
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael W Wilson
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Timothy Emmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert M Hohlman
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stacy McGonigal
- Department of Obstetrics, Gynecology, and Reproductive Sciences, the Magee-Women's Research Institute, Pittsburgh, PA 15213, USA
| | - Ronald J Buckanovich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, the Magee-Women's Research Institute, Pittsburgh, PA 15213, USA; Division of Hematology-Oncology, Departments of Internal Medicine and Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh Medical Center and the Magee-Women's Research Institute, Pittsburgh, PA, 15213, USA
| | - Scott D Larsen
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Thomas D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
8
|
Frąszczak K, Barczyński B. The Role of Cancer Stem Cell Markers in Ovarian Cancer. Cancers (Basel) 2023; 16:40. [PMID: 38201468 PMCID: PMC10778113 DOI: 10.3390/cancers16010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Ovarian cancer is the most lethal gynaecological cancer and the eighth most common female cancer. The early diagnosis of ovarian cancer remains a clinical problem despite the significant development of technology. Nearly 70% of patients with ovarian cancer are diagnosed with stages III-IV metastatic disease. Reliable diagnostic and prognostic biomarkers are currently lacking. Ovarian cancer recurrence and resistance to chemotherapy pose vital problems and translate into poor outcomes. Cancer stem cells appear to be responsible for tumour recurrence resulting from chemotherapeutic resistance. These cells are also crucial for tumour initiation due to the ability to self-renew, differentiate, avoid immune destruction, and promote inflammation and angiogenesis. Studies have confirmed an association between CSC occurrence and resistance to chemotherapy, subsequent metastases, and cancer relapses. Therefore, the elimination of CSCs appears important for overcoming drug resistance and improving prognoses. This review focuses on the expression of selected ovarian CSC markers, including CD133, CD44, CD24, CD117, and aldehyde dehydrogenase 1, which show potential prognostic significance. Some markers expressed on the surface of CSCs correlate with clinical features and can be used for the diagnosis and prognosis of ovarian cancer. However, due to the heterogeneity and plasticity of CSCs, the determination of specific CSC phenotypes is difficult.
Collapse
Affiliation(s)
| | - Bartłomiej Barczyński
- 1st Chair and Department of Oncological Gynaecology and Gynaecology, Medical University in Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
9
|
Wei L, Bai Y, Na L, Sun Y, Zhao C, Wang W. E2F3 induces DNA damage repair, stem-like properties and therapy resistance in breast cancer. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166816. [PMID: 37499929 DOI: 10.1016/j.bbadis.2023.166816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023]
Abstract
Therapy resistance is a major hurdle to the treatment of human malignant tumors. Both DNA damage repair and stem-like properties contribute to chemoresistance and radioresistance. E2F transcription factor 3 (E2F3) is overexpressed in breast cancer tissues, and promotes proliferation of breast cancer cells. Higher E2F3 level is associated with shorter survival of breast cancer patients. Functional studies further showed that E2F3 promotes S-phage entry, DNA replication, DNA damage repair and stem-like properties. Accordingly, E2F3 knockdown sensitizes breast cancer cells to DNA-damaging agents Adriamycin, Cisplatin, Olaparib and X-ray. Forkhead box M1 (FOXM1) is a downstream molecule of E2F3 signaling, mediating the effects of E2F3 on breast cancer cells. In an m6A methyltransferase METTL14-dependent manner, YTH RNA binding protein F2 (YTHDF2) increase E2F3 mRNA stability and expression, promotes DNA damage repair and induces therapy resistance. These data demonstrate that YTHDF2-E2F3 pathway is a novel target to overcome chemoresistance and radioresistance in breast cancer.
Collapse
Affiliation(s)
- Linlin Wei
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China; Cancer Hospital of China Medical University, Shenyang, China
| | - Yu Bai
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China; Department of Nephrology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Lei Na
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yu Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
10
|
McGonigal S, Wu R, Grimley E, Turk EG, Zhai Y, Cho KR, Buckanovich RJ. A putative role for ALDH inhibitors and chemoprevention of BRCA-mutation-driven tumors. Gynecol Oncol 2023; 176:139-146. [PMID: 37535994 PMCID: PMC10653209 DOI: 10.1016/j.ygyno.2023.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Aldehyde dehydrogenase (ALDH) enzymatic activity is a marker of cancer-initiating cells (CIC) in many tumor types. Our group and others have found that ALDH1A family inhibitors (ALDHi) can preferentially induce death of ovarian CIC in established ovarian cancer. We sought to determine if ALDHi, by targeting CIC at the time of tumor initiation, could function as a chemopreventive for ovarian cancer. As BRCA1/2 mutation carriers represent a population who could benefit from an ovarian cancer chemopreventive, we focused on BRCA mutation-associated tumor cell lines and murine tumor models. We found that, compared to BRCA wild-type cells, BRCA mutant ovarian cancer cells are more sensitive to the ALDHi673A. Similarly, while 673A treatment of wild-type fallopian tube epithelial (FTE) cells is non-toxic, 673A induces death in FTE cells with BRCA1 knockdown. Using a murine fallopian tube organoid model of ovarian carcinogenesis, we show that 673A reduced organoid complexity and significantly reduce colony formation of BRCA-mutant cells. Organoids that persisted after 673A treatment were predominantly BRCA1wt, but NF1 mutant, suggesting a resistance mechanism. Finally, using the BPRN (Brca1, Trp53, Rb1, Nf1 inactivated) mouse model of tubo-ovarian cancer, we evaluated the impact of intermittent 673A therapy on carcinogenesis. 673A treatment resulted in a significant reduction in serous tubal intraepithelial carcinoma (STIC) lesions and carcinomas. Collectively, the findings suggest that ALDHi, such as 673A, could serve as chemopreventive agents for BRCA1/2 mutation carriers.
Collapse
Affiliation(s)
- Stacy McGonigal
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rong Wu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ed Grimley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ekrem G Turk
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yali Zhai
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kathleen R Cho
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ronald J Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA; Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
12
|
Al-Shamma SA, Zaher DM, Hersi F, Abu Jayab NN, Omar HA. Targeting aldehyde dehydrogenase enzymes in combination with chemotherapy and immunotherapy: An approach to tackle resistance in cancer cells. Life Sci 2023; 320:121541. [PMID: 36870386 DOI: 10.1016/j.lfs.2023.121541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/19/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023]
Abstract
Modern cancer chemotherapy originated in the 1940s, and since then, many chemotherapeutic agents have been developed. However, most of these agents show limited response in patients due to innate and acquired resistance to therapy, which leads to the development of multi-drug resistance to different treatment modalities, leading to cancer recurrence and, eventually, patient death. One of the crucial players in inducing chemotherapy resistance is the aldehyde dehydrogenase (ALDH) enzyme. ALDH is overexpressed in chemotherapy-resistant cancer cells, which detoxifies the generated toxic aldehydes from chemotherapy, preventing the formation of reactive oxygen species and, thus, inhibiting the induction of oxidative stress and the stimulation of DNA damage and cell death. This review discusses the mechanisms of chemotherapy resistance in cancer cells promoted by ALDH. In addition, we provide detailed insight into the role of ALDH in cancer stemness, metastasis, metabolism, and cell death. Several studies investigated targeting ALDH in combination with other treatments as a potential therapeutic regimen to overcome resistance. We also highlight novel approaches in ALDH inhibition, including the potential synergistic employment of ALDH inhibitors in combination with chemotherapy or immunotherapy against different cancers, including head and neck, colorectal, breast, lung, and liver.
Collapse
Affiliation(s)
- Salma A Al-Shamma
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Fatema Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nour N Abu Jayab
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
13
|
Ovejero-Sánchez M, González-Sarmiento R, Herrero AB. DNA Damage Response Alterations in Ovarian Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Cancers (Basel) 2023; 15:448. [PMID: 36672401 PMCID: PMC9856346 DOI: 10.3390/cancers15020448] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The DNA damage response (DDR), a set of signaling pathways for DNA damage detection and repair, maintains genomic stability when cells are exposed to endogenous or exogenous DNA-damaging agents. Alterations in these pathways are strongly associated with cancer development, including ovarian cancer (OC), the most lethal gynecologic malignancy. In OC, failures in the DDR have been related not only to the onset but also to progression and chemoresistance. It is known that approximately half of the most frequent subtype, high-grade serous carcinoma (HGSC), exhibit defects in DNA double-strand break (DSB) repair by homologous recombination (HR), and current evidence indicates that probably all HGSCs harbor a defect in at least one DDR pathway. These defects are not restricted to HGSCs; mutations in ARID1A, which are present in 30% of endometrioid OCs and 50% of clear cell (CC) carcinomas, have also been found to confer deficiencies in DNA repair. Moreover, DDR alterations have been described in a variable percentage of the different OC subtypes. Here, we overview the main DNA repair pathways involved in the maintenance of genome stability and their deregulation in OC. We also recapitulate the preclinical and clinical data supporting the potential of targeting the DDR to fight the disease.
Collapse
Affiliation(s)
- María Ovejero-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| |
Collapse
|
14
|
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, Wu H, Liu F, She T, Ning Z. ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol 2022; 12:1026278. [PMID: 36387165 PMCID: PMC9650078 DOI: 10.3389/fonc.2022.1026278] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 12/02/2022] Open
Abstract
Solid tumors can be divided into benign solid tumors and solid malignant tumors in the academic community, among which malignant solid tumors are called cancers. Cancer is the second leading cause of death in the world, and the global incidence of cancer is increasing yearly New cancer patients in China are always the first. After the concept of stem cells was introduced in the tumor community, the CSC markers represented by ALDH1 have been widely studied due to their strong CSC cell characteristics and potential to be the driving force of tumor metastasis. In the research results in the past five years, it has been found that ALDH1 is highly expressed in various solid cancers such as breast cancer, lung cancer, colorectal cancer, liver cancer, gastric cancer, cervical cancer, esophageal cancer, ovarian cancer, head,and neck cancer. ALDH1 can activate and transform various pathways (such as the USP28/MYC signaling pathway, ALDH1A1/HIF-1α/VEGF axis, wnt/β-catenin signaling pathway), as well as change the intracellular pH value to promote formation and maintenance, resulting in drug resistance in tumors. By targeting and inhibiting ALDH1 in tumor stem cells, it can enhance the sensitivity of drugs and inhibit the proliferation, differentiation, and metastasis of solid tumor stem cells to some extent. This review discusses the relationship and pathway of ALDH1 with various solid tumors. It proposes that ALDH1 may serve as a diagnosis and therapeutic target for CSC, providing new insights and new strategies for reliable tumor treatment.
Collapse
Affiliation(s)
- Yaolu Wei
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yan Li
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yenan Chen
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Pei Liu
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Sheng Huang
- Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yuping Zhang
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Yanling Sun
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zhe Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Meichun Hu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Qian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Hongnian Wu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Fuxing Liu
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Tonghui She
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| | - Zhifeng Ning
- School of Basic Medicine Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- *Correspondence: Fuxing Liu, ; Tonghui She, ; Zhifeng Ning,
| |
Collapse
|
15
|
Bai S, Taylor S, Jamalruddin MA, McGonigal S, Grimley E, Yang D, Bernstein KA, Buckanovich RJ. Targeting Therapeutic Resistance and Multinucleate Giant Cells in CCNE1-Amplified HR-Proficient Ovarian Cancer. Mol Cancer Ther 2022; 21:1473-1484. [PMID: 35732503 PMCID: PMC9452459 DOI: 10.1158/1535-7163.mct-21-0873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/30/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022]
Abstract
Approximately 20% of high-grade serous ovarian cancers (HGSOC) have CCNE1 amplification. CCNE1-amplified tumors are homologous recombination (HR) proficient and resistant to standard therapies. Therapy resistance is associated with increased numbers of polyploid giant cancer cells (PGCC). We sought to identify new therapeutic approaches for patients with CCNE1-amplified tumors. Using TCGA data, we find that the mTOR, HR, and DNA checkpoint pathways are enriched in CCNE1-amplified ovarian cancers. Furthermore, Interactome Mapping Analysis linked the mTOR activity with upregulation of HR and DNA checkpoint pathways. Indeed, we find that mTOR inhibitors (mTORi) downregulate HR/checkpoint genes in CCNE1-amplified tumors. As CCNE1-amplified tumors are dependent on the HR pathway for viability, mTORi proved selectively effective in CCNE1-amplified tumors. Similarly, via downregulation of HR genes, mTORi increased CCNE1-amplifed HGSOC response to PARPi. In contrast, overexpression of HR/checkpoint proteins (RAD51 or ATR), induced resistance to mTORi. In vivo, mTORi alone potently reduced CCNE1-amplified tumor growth and the combination of mTORi and PARPi increased response and tumor eradication. Tumors treated with mTORi demonstrated a significant reduction in ALDH+ PGCCs. Finally, as a proof of principle, we identified three patients with CCNE1 amplified tumors who were treated with an mTORi. All three obtained clinical benefits from the therapy. Our studies and clinical experience indicate mTORi are a potential therapeutic approach for patients with CCNE1-amplified tumors.
Collapse
Affiliation(s)
- Shoumei Bai
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah Taylor
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohd Azrin Jamalruddin
- Dept of Microbiology and Molecular. Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Stacy McGonigal
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward Grimley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dongli Yang
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kara A. Bernstein
- Dept of Microbiology and Molecular. Genetics, University of Pittsburgh School of Medicine, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ronald J. Buckanovich
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, UPMC Hillman Cancer Center and the Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Zhang X, Gui X, Zhang Y, Liu Q, Zhao L, Gao J, Ji J, Zhang Y. A Panel of Bile Volatile Organic Compounds Servers as a Potential Diagnostic Biomarker for Gallbladder Cancer. Front Oncol 2022; 12:858639. [PMID: 35433420 PMCID: PMC9006947 DOI: 10.3389/fonc.2022.858639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
As no reliable diagnostic methods are available, gallbladder cancer (GBC) is often diagnosed until advanced stages, resulting in a poor prognosis. In the present study, we assessed whether volatile organic compounds (VOCs) could be used as a diagnostic tool for GBC. The VOCs in bile samples collected from 32 GBC patients were detected by gas chromatography-ion mobility spectrometry (GC-IMS), and 54 patients with benign gallbladder diseases (BGD) were used as controls. Both principal component analysis and unsupervised hierarchical clustering analysis gave a clear separation of GBC and BGD based on the bile VOC data collected from GC-IMS. A total of 12 differentially expressed VOCs were identified, including four upregulated (cyclohexanone, 2-ethyl-1-hexanol, acetophenone, and methyl benzoate) and eight downregulated [methyl acetate, (E)-hept-2-enal, hexanal, (E)-2-hexenal, (E)-2-pentenal, pentan-1-ol, 1-octen-3-one, and (E)-2-octenal] in GBC compared with BGD. ROC analysis demonstrated a 12-VOC panel con-structed by four machine learning algorithms, which was superior to the traditional tumor marker, CA19-9. Among them, support vector machines and linear discriminant analysis provided the highest AUCs of 0.972, with a sensitivity of 100% and a specificity of 94.4% in the diagnosis of GBC. Collectively, VOCs might be used as a potential tool for the diagnosis of GBC.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Xinru Gui
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Jinan, China
| | - Qi Liu
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Liqiang Zhao
- Department of Research and Development, Hanon Advanced Technology Group Co., Ltd, Jinan, China
| | - Jingxian Gao
- Department of Research and Development, Hanon Advanced Technology Group Co., Ltd, Jinan, China
| | - Jian Ji
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Yi Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
17
|
Castellví A, Pequerul R, Barracco V, Juanhuix J, Parés X, Farrés J. Structural and biochemical evidence that ATP inhibits the cancer biomarker human aldehyde dehydrogenase 1A3. Commun Biol 2022; 5:354. [PMID: 35418200 PMCID: PMC9007972 DOI: 10.1038/s42003-022-03311-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/24/2022] [Indexed: 11/15/2022] Open
Abstract
Human aldehyde dehydrogenase (ALDH) participates in the oxidative stress response and retinoid metabolism, being involved in several diseases, including cancer, diabetes and obesity. The ALDH1A3 isoform has recently elicited wide interest because of its potential use as a cancer stem cell biomarker and drug target. We report high-resolution three-dimensional ALDH1A3 structures for the apo-enzyme, the NAD+ complex and a binary complex with ATP. Each subunit of the ALDH1A3-ATP complex contains one ATP molecule bound to the adenosine-binding pocket of the cofactor-binding site. The ATP complex also shows a molecule, putatively identified as a polyethylene glycol aldehyde, covalently bound to the active-site cysteine. This mimics the thioacyl-enzyme catalytic intermediate, which is trapped in a dead enzyme lacking an active cofactor. At physiological concentrations, ATP inhibits the dehydrogenase activity of ALDH1A3 and other isoforms, with a Ki value of 0.48 mM for ALDH1A3, showing a mixed inhibition type against NAD+. ATP also inhibits esterase activity in a concentration-dependent manner. The current ALDH1A3 structures at higher resolution will facilitate the rational design of potent and selective inhibitors. ATP binding to ALDH1A3 enables activity modulation by the energy status of the cell and metabolic reprogramming, which may be relevant in several disease conditions.
Collapse
Affiliation(s)
- Albert Castellví
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
- Alba Synchrotron, carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Raquel Pequerul
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Vito Barracco
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Judith Juanhuix
- Alba Synchrotron, carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
18
|
Wang LW, Jiang S, Yuan YH, Duan J, Mao ND, Hui Z, Bai R, Xie T, Ye XY. Recent Advances in Synergistic Antitumor Effects Exploited from the Inhibition of Ataxia Telangiectasia and RAD3-Related Protein Kinase (ATR). Molecules 2022; 27:molecules27082491. [PMID: 35458687 PMCID: PMC9029554 DOI: 10.3390/molecules27082491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
As one of the key phosphatidylinositol 3-kinase-related kinases (PIKKs) family members, ataxia telangiectasia and RAD3-related protein kinase (ATR) is crucial in maintaining mammalian cell genomic integrity in DNA damage response (DDR) and repair pathways. Dysregulation of ATR has been found across different cancer types. In recent years, the inhibition of ATR has been proven to be effective in cancer therapy in preclinical and clinical studies. Importantly, tumor-specific alterations such as ATM loss and Cyclin E1 (CCNE1) amplification are more sensitive to ATR inhibition and are being exploited in synthetic lethality (SL) strategy. Besides SL, synergistic anticancer effects involving ATRi have been reported in an increasing number in recent years. This review focuses on the recent advances in different forms of synergistic antitumor effects, summarizes the pharmacological benefits and ongoing clinical trials behind the biological mechanism, and provides perspectives for future challenges and opportunities. The hope is to draw awareness to the community that targeting ATR should have great potential in developing effective anticancer medicines.
Collapse
Affiliation(s)
- Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Songwei Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Ying-Hui Yuan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jilong Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Nian-Dong Mao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Zi Hui
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (R.B.); (T.X.); (X.-Y.Y.); Tel.: +86-571-28860236 (X.-Y.Y.)
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (R.B.); (T.X.); (X.-Y.Y.); Tel.: +86-571-28860236 (X.-Y.Y.)
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; (L.-W.W.); (S.J.); (Y.-H.Y.); (J.D.); (N.-D.M.); (Z.H.)
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
- Correspondence: (R.B.); (T.X.); (X.-Y.Y.); Tel.: +86-571-28860236 (X.-Y.Y.)
| |
Collapse
|
19
|
Zanoni M, Bravaccini S, Fabbri F, Arienti C. Emerging Roles of Aldehyde Dehydrogenase Isoforms in Anti-cancer Therapy Resistance. Front Med (Lausanne) 2022; 9:795762. [PMID: 35299840 PMCID: PMC8920988 DOI: 10.3389/fmed.2022.795762] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/10/2022] [Indexed: 12/19/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) are a family of detoxifying enzymes often upregulated in cancer cells and associated with therapeutic resistance. In humans, the ALDH family comprises 19 isoenzymes active in the majority of mammalian tissues. Each ALDH isoform has a specific differential expression pattern and most of them have individual functional roles in cancer. ALDHs are overexpressed in subpopulations of cancer cells with stem-like features, where they are involved in several processes including cellular proliferation, differentiation, detoxification and survival, participating in lipids and amino acid metabolism and retinoic acid synthesis. In particular, ALDH enzymes protect cancer cells by metabolizing toxic aldehydes in less reactive and more soluble carboxylic acids. High metabolic activity as well as conventional anticancer therapies contribute to aldehyde accumulation, leading to DNA double strand breaks (DSB) through the generation of reactive oxygen species (ROS) and lipid peroxidation. ALDH overexpression is crucial not only for the survival of cancer stem cells but can also affect immune cells of the tumour microenvironment (TME). The reduction of ROS amount and the increase in retinoic acid signaling impairs immunogenic cell death (ICD) inducing the activation and stability of immunosuppressive regulatory T cells (Tregs). Dissecting the role of ALDH specific isoforms in the TME can open new scenarios in the cancer treatment. In this review, we summarize the current knowledge about the role of ALDH isoforms in solid tumors, in particular in association with therapy-resistance.
Collapse
Affiliation(s)
- Michele Zanoni
- Biosciences Laboratory,IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | | | | | - Chiara Arienti
- Biosciences Laboratory,IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
20
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
21
|
Principe DR. Precision Medicine for BRCA/PALB2-Mutated Pancreatic Cancer and Emerging Strategies to Improve Therapeutic Responses to PARP Inhibition. Cancers (Basel) 2022; 14:cancers14040897. [PMID: 35205643 PMCID: PMC8869830 DOI: 10.3390/cancers14040897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary For the small subset of pancreatic ductal adenocarcinoma (PDAC) patients with loss-of-function mutations to BRCA1/2 or PALB2, both first-line and maintenance therapy differs significantly. These mutations confer a loss of double-strand break DNA homologous recombination (HR), substantially altering drug sensitivities. In this review, we discuss the current treatment guidelines for PDAC tumors deficient in HR, as well as newly emerging strategies to improve drug responses in this population. We also highlight additional patient populations in which these strategies may also be effective, and novel strategies aiming to confer similar drug sensitivity to tumors proficient in HR repair. Abstract Pancreatic cancer is projected to become the second leading cause of cancer-related death by 2030. As patients typically present with advanced disease and show poor responses to broad-spectrum chemotherapy, overall survival remains a dismal 10%. This underscores an urgent clinical need to identify new therapeutic approaches for PDAC patients. Precision medicine is now the standard of care for several difficult-to-treat cancer histologies. Such approaches involve the identification of a clinically actionable molecular feature, which is matched to an appropriate targeted therapy. Selective poly (ADP-ribose) polymerase (PARP) inhibitors such as Niraparib, Olaparib, Talazoparib, Rucaparib, and Veliparib are now approved for several cancers with loss of high-fidelity double-strand break homologous recombination (HR), namely those with deleterious mutations to BRCA1/2, PALB2, and other functionally related genes. Recent evidence suggests that the presence of such mutations in pancreatic ductal adenocarcinoma (PDAC), the most common and lethal pancreatic cancer histotype, significantly alters drug responses both with respect to first-line chemotherapy and maintenance therapy. In this review, we discuss the current treatment paradigm for PDAC tumors with confirmed deficits in double-strand break HR, as well as emerging strategies to both improve responses to PARP inhibition in HR-deficient PDAC and confer sensitivity to tumors proficient in HR repair.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
22
|
Li J, Garavaglia S, Ye Z, Moretti A, Belyaeva OV, Beiser A, Ibrahim M, Wilk A, McClellan S, Klyuyeva AV, Goggans KR, Kedishvili NY, Salter EA, Wierzbicki A, Migaud ME, Mullett SJ, Yates NA, Camacho CJ, Rizzi M, Sobol RW. A specific inhibitor of ALDH1A3 regulates retinoic acid biosynthesis in glioma stem cells. Commun Biol 2021; 4:1420. [PMID: 34934174 PMCID: PMC8692581 DOI: 10.1038/s42003-021-02949-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/07/2021] [Indexed: 01/31/2023] Open
Abstract
Elevated aldehyde dehydrogenase (ALDH) activity correlates with poor outcome for many solid tumors as ALDHs may regulate cell proliferation and chemoresistance of cancer stem cells (CSCs). Accordingly, potent, and selective inhibitors of key ALDH enzymes may represent a novel CSC-directed treatment paradigm for ALDH+ cancer types. Of the many ALDH isoforms, we and others have implicated the elevated expression of ALDH1A3 in mesenchymal glioma stem cells (MES GSCs) as a target for the development of novel therapeutics. To this end, our structure of human ALDH1A3 combined with in silico modeling identifies a selective, active-site inhibitor of ALDH1A3. The lead compound, MCI-INI-3, is a selective competitive inhibitor of human ALDH1A3 and shows poor inhibitory effect on the structurally related isoform ALDH1A1. Mass spectrometry-based cellular thermal shift analysis reveals that ALDH1A3 is the primary binding protein for MCI-INI-3 in MES GSC lysates. The inhibitory effect of MCI-INI-3 on retinoic acid biosynthesis is comparable with that of ALDH1A3 knockout, suggesting that effective inhibition of ALDH1A3 is achieved with MCI-INI-3. Further development is warranted to characterize the role of ALDH1A3 and retinoic acid biosynthesis in glioma stem cell growth and differentiation.
Collapse
Affiliation(s)
- Jianfeng Li
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Silvia Garavaglia
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Zhaofeng Ye
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Andrea Moretti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - Alison Beiser
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Md Ibrahim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Anna Wilk
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Steve McClellan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Alla V Klyuyeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - Kelli R Goggans
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - E Alan Salter
- Department of Chemistry, University of South Alabama, 6040 USA South Drive, Mobile, AL, 36688, USA
| | - Andrzej Wierzbicki
- Department of Chemistry, University of South Alabama, 6040 USA South Drive, Mobile, AL, 36688, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Steven J Mullett
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Nathan A Yates
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy.
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA.
| |
Collapse
|