1
|
Jiao H, Qiu Y, Chen Z, Zhang Y, Huang W, Yang Q, Kang L. Multiple metabolic analysis of [ 18F]FDG PET/CT in patients with kidney disease. Heliyon 2025; 11:e42522. [PMID: 40028531 PMCID: PMC11870161 DOI: 10.1016/j.heliyon.2025.e42522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose This study aimed to evaluate the value of [18F]FDG PET/CT in patients with kidney disease by using multiple metabolic parameters. Materials and methods A retrospective review of 182 kidney disease patients and 32 controls was conducted. Patients were categorized into acute kidney disease (AKD), AKI on CKD (A/C), and chronic kidney disease (CKD) groups, further divided by CKD stage and disease etiology. Regions of interest (ROIs) were drawn in renal cortex, liver, aorta, and lesions. SUVmax and SUVmean were measured, and ratios of renal cortex SUVmax to liver and blood pool SUVmean were calculated. Results Abnormal FDG uptake was observed in 84.6 % of patients, with significantly higher SUVmax in malignant versus benign lesions. Common malignancies included multiple myeloma, lymphoma, and lung cancer. PET/CT had 89.5 % sensitivity and 100 % specificity for tumor detection. SUVs differed significantly among AKD, A/C, CKD, and normal groups. Significant differences in SUVmax and SUVmean were also found between CKD stages and primary versus secondary kidney diseases. In CKD, increased SUVmax and SUVmean correlated with lower serum creatinine and blood urea nitrogen, and increased eGFR. Conclusion For patients with kidney disease, [18F]FDG PET/CT can be used to systematically screen tumors and inflammatory lesions. And the [18F]FDG uptake of renal cortex may distinguish different types of kidney diseases and is correlated with renal function.
Collapse
Affiliation(s)
| | | | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Yongbai Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Wenpeng Huang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
2
|
Yuan H, Huang Q, Wen J, Gao Y. Ultrasound viscoelastic imaging in the noninvasive quantitative assessment of chronic kidney disease. Ren Fail 2024; 46:2407882. [PMID: 39344493 PMCID: PMC11443565 DOI: 10.1080/0886022x.2024.2407882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND This study aims to evaluate the clinical application value of ultrasound viscoelastic imaging in noninvasive quantitative assessment of chronic kidney disease (CKD). METHODS A total of 332 patients with CKD and 190 healthy adults as a control group were prospectively enrolled. Before kidney biopsy, ultrasound viscoelastic imaging was performed to measure the mean stiffness value (Emean), mean viscosity coefficient (Vmean), and mean dispersion coefficient (Dmean) of the renal. CKD patients were divided into three groups based on estimated glomerular filtration rate. The differences in clinic, pathology, ultrasound image parameters between the control and patient groups, or among different CKD groups were compared. The correlation between viscoelastic parameters and pathology were analyzed. RESULTS Emean, Vmean, and Dmean in the control group were less than the CKD group (p < 0.05). In the identification of CKD from control groups, the area under curve of Vmean, Dmean, Emean, and combining the three parameters is 0.90, 0.79, 0.69, 0.91, respectively. Dmean and Vmean were increased with the decline of renal function (p < 0.05). Vmean and Dmean were positively correlated with white blood cell, urea, serum creatinine, and uric acid (p < 0.05). Vmean is positively correlated with interstitial fibrosis and inflammatory cell infiltration grades (p < 0.001). CONCLUSIONS Ultrasound viscoelastic imaging has advantages in noninvasive quantitative identification and evaluating renal function of CKD. Emean > 6.61 kPa, Vmean > 1.86 Pa·s, or Dmean > 7.51 m/s/kHz may suggest renal dysfunction. Combining Vmean, Dmean, and Emean can improve the efficiency of identifying CKD.
Collapse
Affiliation(s)
- Han Yuan
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Qun Huang
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Jing Wen
- Department of Hematology and Rheumatology, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Yong Gao
- Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| |
Collapse
|
3
|
St-Pierre V, Richard G, Croteau E, Fortier M, Vandenberghe C, Carpentier AC, Cuenoud B, Cunnane SC. Cardiorenal ketone metabolism in healthy humans assessed by 11C-acetoacetate PET: effect of D-β-hydroxybutyrate, a meal, and age. Front Physiol 2024; 15:1443781. [PMID: 39497705 PMCID: PMC11532582 DOI: 10.3389/fphys.2024.1443781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 11/07/2024] Open
Abstract
The heart and kidney have a high energy requirement, but relatively little is known about their utilization of ketones as a potential energy source. We assessed the metabolism of the ketone tracer, carbon-11 acetoacetate (11C-AcAc), by the left and right ventricles of the heart and by the kidney using positron emission tomography (PET) in n = 10 healthy adults under four experimental conditions: a 4-h fast (fasted) ± a single 12 g oral dose of D-beta-hydroxybutyrate (D-BHB), and a single complete, liquid replacement meal (hereafter referred to as the "fed" condition) ± a single 12 g oral dose of D-BHB. Under these experimental conditions, the kinetics of 11C-AcAc metabolism fitted a two-compartment model in the heart and a three-compartment model in the kidney. Plasma ketones were about 10-fold higher with the oral dose of D-BHB. During the four conditions, tracer kinetics were broadly similar in the myocardium and kidney cortex. 11C-AcAc metabolism by the kidney pelvis was similar in three of the four study conditions but, later, peaked significantly higher than that in the cortex; the exception was that the tracer uptake was significantly lower in the fed condition without D-BHB. 11C-AcAc uptake was significantly inversely correlated with age in the kidney cortex, and its oxidative metabolism was significantly positively correlated with age in the left ventricle. D-BHB blunted the insulin, gastric inhibitory peptide, and C-peptide response to the meal. This PET methodology and these acute metabolic perturbations would be suitable for future studies assessing cardiorenal ketone metabolism in conditions in which heart and kidney functions are experimentally modified or compromised by disease.
Collapse
Affiliation(s)
| | | | | | | | | | - André C. Carpentier
- Centre de recherche du CHUS, Sherbrooke, QC, Canada
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Bernard Cuenoud
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Nestlé Health Science, Vers chez les blancs, Vevey, Switzerland
| | - Stephen C. Cunnane
- Research Centre on Aging, Sherbrooke, QC, Canada
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
4
|
Klimek K, Groener D, Chen X, Rowe SP, Speer T, Higuchi T, Werner RA. Molecular imaging along the heart-kidney axis. Theranostics 2024; 14:7111-7121. [PMID: 39629123 PMCID: PMC11610144 DOI: 10.7150/thno.102552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/22/2024] [Indexed: 12/06/2024] Open
Abstract
Cardiorenal syndrome (CRS) involves bidirectional crosstalk between the failing heart and the kidneys. Depending on the primum movens (primary cardiac or renal injury), systems-based interactions in the secondary affected organ may include pro-fibrotic signaling, overzealous inflammation, impaired nerve integrity or overactivity of specific renal transporters mediating glucose absorption. Those pathophysiological pillars can be investigated by molecular imaging using SPECT or PET agents. Targeted whole-body molecular imaging may allow for a) systems-based analysis along the heart-kidney axis, b) may provide prognostic information on longitudinal organ-based functional decline or c) may be used for guidance of reparative intervention based on peak activation identified on PET (paradigm of cardiorenal theranostics). We will discuss the current state of translational molecular imaging for CRS, along with future clinical aspects in the field.
Collapse
Affiliation(s)
- Konrad Klimek
- Goethe University Frankfurt, University Hospital, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Frankfurt, Germany
| | - Daniel Groener
- Goethe University Frankfurt, University Hospital, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Frankfurt, Germany
| | - Xinyu Chen
- Nuclear Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Bavaria 86156, Germany
| | - Steven P. Rowe
- Molecular Imaging and Therapeutics, Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
| | - Thimoteus Speer
- Department of Internal Medicine 4 - Nephrology, Goethe University Frankfurt, Frankfurt am Main, Germany
- Else Kroener-Fresenius-Zentrum for Nephrological Research, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Rudolf A. Werner
- Goethe University Frankfurt, University Hospital, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Frankfurt, Germany
- Division of Nuclear Medicine and Molecular Imaging, The Russell H Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- DZHK (German Centre for Cardiovascular Research), Partner Site Frankfurt Rhine-Main, Frankfurt, Germany
| |
Collapse
|
5
|
Higuchi T, Serfling SE, Leistner DM, Speer T, Werner RA. FAPI-PET in Cardiovascular Disease. Semin Nucl Med 2024; 54:747-752. [PMID: 38519308 DOI: 10.1053/j.semnuclmed.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
PET probes targeting fibroblasts are frequently used for varying applications in oncology. In recent years, the clinical spectrum has been expanded towards cardiovascular medicine, e.g., after myocardial infarction, in aortic stenosis or as a non-invasive read-out of atherosclerosis. We herein provide a brief overview of the current status of this PET radiotracer in the context of cardiovascular disease, including translational and clinical evidence. In addition, we will also briefly discuss future applications, e.g., the use of fibroblast-targeting PET to investigate bilateral organ function along the cardiorenal axis.
Collapse
Affiliation(s)
- Takahiro Higuchi
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | | - David M Leistner
- Department of Cardiology/Angiology, University Heart Center Frankfurt, Goethe University Hospital, Frankfurt, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Frankfurt Rhine-Main, Frankfurt, Germany
| | - Thimoteus Speer
- Department of Internal Medicine 4 - Nephrology, Goethe University Frankfurt, Frankfurt am Main, Germany; Else Kröner-Fresenius-Zentrum for Nephrological Research, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Rudolf A Werner
- Goethe University Frankfurt, University Hospital, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Germany; Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
6
|
Cuenoud B, Croteau E, St-Pierre V, Richard G, Fortier M, Vandenberghe C, Carpentier AC, Cunnane SC. Cardiorenal ketone metabolism: a positron emission tomography study in healthy humans. Front Physiol 2023; 14:1280191. [PMID: 37869718 PMCID: PMC10587428 DOI: 10.3389/fphys.2023.1280191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Ketones are alternative energy substrates for the heart and kidney but no studies have investigated their metabolism simultaneously in both organs in humans. The present double tracer positron emission tomography (PET) study evaluated the organ distribution and basal kinetic rates of the radiolabeled ketone, 11C-acetoacetate (11C-AcAc), in the heart and kidney compared to 11C-acetate (11C-Ac), which is a well-validated metabolic radiotracer. Both tracers were highly metabolized by the left ventricle and the renal cortex. In the heart, kinetic rates were similar for both tracers. But in the renal cortex, uptake of 11C-Ac was higher compared to 11C-AcAc, while the reverse was observed for the clearance. Interestingly, infusion of 11C-AcAc led to a significantly delayed release of radioactivity in the renal medulla and pelvis, a phenomenon not observed with 11C-Ac. This suggests an equilibrium of 11C-AcAc with the other ketone, 11C-D-beta-hydroxybutyrate, and a different clearance profile. Overall, this suggests that in the kidney, the absorption and metabolism of 11C-AcAc is different compared to 11C-Ac. This dual tracer PET protocol provides the opportunity to explore the relative importance of ketone metabolism in cardiac and renal diseases, and to improve our mechanistic understanding of new metabolic interventions targeting these two organs.
Collapse
Affiliation(s)
- Bernard Cuenoud
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Centre D’imagerie Moléculaire de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche Du CHUS, Sherbrooke, Canada
- Nestlé Health Science, Lausanne, Switzerland
| | - Etienne Croteau
- Centre D’imagerie Moléculaire de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche Du CHUS, Sherbrooke, Canada
| | | | - Gabriel Richard
- Centre D’imagerie Moléculaire de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche Du CHUS, Sherbrooke, Canada
| | - Mélanie Fortier
- Centre de Recherche sur le Vieillissement, Sherbrooke, Canada
| | | | - André C. Carpentier
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche Du CHUS, Sherbrooke, Canada
| | - Stephen C. Cunnane
- Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
- Centre de Recherche sur le Vieillissement, Sherbrooke, Canada
| |
Collapse
|
7
|
Posada Calderon L, Eismann L, Reese SW, Reznik E, Hakimi AA. Advances in Imaging-Based Biomarkers in Renal Cell Carcinoma: A Critical Analysis of the Current Literature. Cancers (Basel) 2023; 15:cancers15020354. [PMID: 36672304 PMCID: PMC9856305 DOI: 10.3390/cancers15020354] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Cross-sectional imaging is the standard diagnostic tool to determine underlying biology in renal masses, which is crucial for subsequent treatment. Currently, standard CT imaging is limited in its ability to differentiate benign from malignant disease. Therefore, various modalities have been investigated to identify imaging-based parameters to improve the noninvasive diagnosis of renal masses and renal cell carcinoma (RCC) subtypes. MRI was reported to predict grading of RCC and to identify RCC subtypes, and has been shown in a small cohort to predict the response to targeted therapy. Dynamic imaging is promising for the staging and diagnosis of RCC. PET/CT radiotracers, such as 18F-fluorodeoxyglucose (FDG), 124I-cG250, radiolabeled prostate-specific membrane antigen (PSMA), and 11C-acetate, have been reported to improve the identification of histology, grading, detection of metastasis, and assessment of response to systemic therapy, and to predict oncological outcomes. Moreover, 99Tc-sestamibi and SPECT scans have shown promising results in distinguishing low-grade RCC from benign lesions. Radiomics has been used to further characterize renal masses based on semantic and textural analyses. In preliminary studies, integrated machine learning algorithms using radiomics proved to be more accurate in distinguishing benign from malignant renal masses compared to radiologists' interpretations. Radiomics and radiogenomics are used to complement risk classification models to predict oncological outcomes. Imaging-based biomarkers hold strong potential in RCC, but require standardization and external validation before integration into clinical routines.
Collapse
Affiliation(s)
- Lina Posada Calderon
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lennert Eismann
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephen W. Reese
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ed Reznik
- Computational Oncology, Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Abraham Ari Hakimi
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
8
|
Werner RA, Higuchi T. Calcitonin gene-related peptide (CGRP)-induced recovery after myocardial infarction: Is there a role for CGRP-targeted molecular image-guided strategies in cardiology? J Nucl Cardiol 2022; 29:2100-2102. [PMID: 34089153 PMCID: PMC9553774 DOI: 10.1007/s12350-021-02686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany.
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany.
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacherstr. 6, 97080, Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
- OkayamaUniversity Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
9
|
Zogala D, Ptáčník V, Maříková I, Chroustová D, Šámal M. Letter to the editor. Eur J Nucl Med Mol Imaging 2022; 49:3334-3335. [PMID: 35624220 DOI: 10.1007/s00259-022-05850-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/21/2022] [Indexed: 01/11/2023]
Affiliation(s)
- David Zogala
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and the General University Hospital in Prague, Salmovská 3, Prague, 120 00, Czech Republic
| | - Václav Ptáčník
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and the General University Hospital in Prague, Salmovská 3, Prague, 120 00, Czech Republic
| | - Irena Maříková
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and the General University Hospital in Prague, Salmovská 3, Prague, 120 00, Czech Republic
| | - Daniela Chroustová
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and the General University Hospital in Prague, Salmovská 3, Prague, 120 00, Czech Republic
| | - Martin Šámal
- Institute of Nuclear Medicine, First Faculty of Medicine, Charles University and the General University Hospital in Prague, Salmovská 3, Prague, 120 00, Czech Republic.
| |
Collapse
|
10
|
Sathekge MM, Bouchelouche K. Letter from the Editors. Semin Nucl Med 2022; 52:403-405. [PMID: 35690428 DOI: 10.1053/j.semnuclmed.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Urso L, Castello A, Rocca GC, Lancia F, Panareo S, Cittanti C, Uccelli L, Florimonte L, Castellani M, Ippolito C, Frassoldati A, Bartolomei M. Role of PSMA-ligands imaging in Renal Cell Carcinoma management: current status and future perspectives. J Cancer Res Clin Oncol 2022; 148:1299-1311. [PMID: 35217902 PMCID: PMC9114025 DOI: 10.1007/s00432-022-03958-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022]
Abstract
Background Renal masses detection is continually increasing worldwide, with Renal Cell Carcinoma (RCC) accounting for approximately 90% of all renal cancers and remaining one of the most aggressive urological malignancies. Despite improvements in cancer management, accurate diagnosis and treatment strategy of RCC by computed tomography (CT) and magnetic resonance imaging (MRI) are still challenging. Prostate-Specific Membrane Antigen (PSMA) is known to be highly expressed on the endothelial cells of the neovasculature of several solid tumors other than prostate cancer, including RCC. In this context, recent preliminary studies reported a promising role for positron emission tomography (PET)/CT with radiolabeled molecules targeting PSMA, in alternative to fluorodeoxyglucose (FDG) in RCC patients. Purpose The aim of our review is to provide an updated overview of current evidences and major limitations regarding the use of PSMA PET/CT in RCC. Methods A literature search, up to 31 December 2021, was performed using the following electronic databases: PubMed, SCOPUS, Web of Science, and Google Scholar. Results The findings of this review suggest that PSMA PET/CT could represent a valid imaging option for diagnosis, staging, and therapy response evaluation in RCC, particularly in clear cell RCC. Conclusions Further studies are needed for this “relatively” new imaging modality to consolidate its indications, timing, and practical procedures.
Collapse
Affiliation(s)
- Luca Urso
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy.,Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, Ferrara, Italy
| | - Angelo Castello
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Federica Lancia
- Oncological Medical and Specialists Department, Oncology Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, Modena, Italy
| | - Corrado Cittanti
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy. .,Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, Ferrara, Italy.
| | - Licia Uccelli
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124, Ferrara, Italy.,Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, Ferrara, Italy
| | - Luigia Florimonte
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Castellani
- Department of Nuclear Medicine, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Carmelo Ippolito
- Urology Unit, Surgical Department, University Hospital of Ferrara, Ferrara, Italy
| | - Antonio Frassoldati
- Oncological Medical and Specialists Department, Oncology Unit, University Hospital of Ferrara, Ferrara, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, Ferrara, Italy
| |
Collapse
|
12
|
Ordonez AA, Parker MF, Miller RJ, Plyku D, Ruiz-Bedoya CA, Tucker EW, Luu JM, Dikeman DA, Lesniak WG, Holt DP, Dannals RF, Miller LS, Rowe SP, Wilson DM, Jain SK. 11C-Para-aminobenzoic acid PET imaging of S. aureus and MRSA infection in preclinical models and humans. JCI Insight 2022; 7:154117. [PMID: 35014627 PMCID: PMC8765043 DOI: 10.1172/jci.insight.154117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tools for noninvasive detection of bacterial pathogens are needed but are not currently available for clinical use. We have previously shown that para-aminobenzoic acid (PABA) rapidly accumulates in a wide range of pathogenic bacteria, motivating the development of related PET radiotracers. In this study, 11C-PABA PET imaging was used to accurately detect and monitor infections due to pyogenic bacteria in multiple clinically relevant animal models. 11C-PABA PET imaging selectively detected infections in muscle, intervertebral discs, and methicillin-resistant Staphylococcus aureus–infected orthopedic implants. In what we believe to be first-in-human studies in healthy participants, 11C-PABA was safe, well-tolerated, and had a favorable biodistribution, with low background activity in the lungs, muscles, and brain. 11C-PABA has the potential for clinical translation to detect and localize a broad range of bacteria.
Collapse
Affiliation(s)
- Alvaro A Ordonez
- Center for Infection and Inflammation Imaging Research and.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew Fl Parker
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | | | - Donika Plyku
- Russell H. Morgan Department of Radiology and Radiological Sciences, and
| | - Camilo A Ruiz-Bedoya
- Center for Infection and Inflammation Imaging Research and.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth W Tucker
- Center for Infection and Inflammation Imaging Research and.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Justin M Luu
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | | | - Wojciech G Lesniak
- Russell H. Morgan Department of Radiology and Radiological Sciences, and
| | - Daniel P Holt
- Russell H. Morgan Department of Radiology and Radiological Sciences, and
| | - Robert F Dannals
- Russell H. Morgan Department of Radiology and Radiological Sciences, and
| | | | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Sciences, and
| | - David M Wilson
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research and.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Russell H. Morgan Department of Radiology and Radiological Sciences, and
| |
Collapse
|
13
|
Werner RA, Pomper MG, Buck AK, Rowe SP, Higuchi T. SPECT and PET Radiotracers in Renal Imaging. Semin Nucl Med 2022; 52:406-418. [DOI: 10.1053/j.semnuclmed.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
|
14
|
Mota F, De Jesus P, Jain SK. Kit-based synthesis of 2-deoxy-2-[ 18F]-fluoro-D-sorbitol for bacterial imaging. Nat Protoc 2021; 16:5274-5286. [PMID: 34686858 PMCID: PMC8611807 DOI: 10.1038/s41596-021-00613-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/09/2021] [Indexed: 02/08/2023]
Abstract
Clinically available imaging tools for diagnosing infections rely on structural changes in the affected tissues. They therefore lack specificity and cannot differentiate between oncologic, inflammatory and infectious processes. We have developed 2-deoxy-2-[18F]fluoro-D-sorbitol (18F-FDS) as an imaging agent to visualize infections caused by Enterobacterales, which represent the largest group of bacterial pathogens in humans and are responsible for severe infections, often resulting in sepsis or death. A clinical study in 26 prospectively enrolled patients demonstrated that 18F-FDS positron emission tomography (PET) was safe, and could detect and localize infections due to drug-susceptible or multi-drug-resistant Enterobacterales strains as well as differentiate them from other pathologies (sterile inflammation or cancer). 18F-FDS is cleared almost exclusively through renal filtration and has also shown potential as a PET agent for functional renal imaging. Since most PET radionuclides have a short half-life, maximal clinical impact will require fast, on-demand synthesis with limited infrastructure and personnel. To meet this demand, we developed a kit-based solid phase method that uses commercially and widely available 2-deoxy-2-[18F]fluoro-D-glucose as the precursor and allows 18F-FDS to be produced and purified in one step at room temperature. The 18F-FDS kit consists of a solid-phase extraction cartridge packed with solid supported borohydride (MP-borohydride), which can be attached to a second cartridge to reduce pH. We evaluated the effects of different solid supported borohydride reagents, cartridge size, starting radioactivity, volumes and flow rates in the radiochemical yield and purity. The optimized protocol can be completed in <30 min and allows the synthesis of 18F-FDS in >70% radiochemical yield and >90% radiochemical purity.
Collapse
Affiliation(s)
- Filipa Mota
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patricia De Jesus
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanjay K Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|