1
|
Gheybi E, Hosseinzadeh P, Tayebi-Khorrami V, Rostami M, Soukhtanloo M. Proteomics in decoding cancer: A review. Clin Chim Acta 2025; 574:120302. [PMID: 40220985 DOI: 10.1016/j.cca.2025.120302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Cancer remains the second leading cause of death worldwide, posing a significant global health challenge. Extensive research has revealed common biological characteristics across cancer cells, forming the foundation for developing innovative diagnostic and therapeutic strategies. To better understand these shared traits, advanced measurement technologies are critical. Proteomics, the large-scale study of proteins and their functions, has emerged as a transformative tool for uncovering the complexities of cancer biology. This approach provides an in-depth view of cellular activities and protein interactions, offering unprecedented insights into cancer progression and treatment. Unlike traditional methods that investigate specific pathways in isolation, proteomics enables simultaneous analysis of thousands of proteins, generating a comprehensive understanding of cancer biology. This review explores the mechanisms underlying proteomics, its application to understanding cancer hallmarks, and its potential to transform clinical approaches. By examining proteomics' role in metastasis, angiogenesis, proliferation, and resistance mechanisms, this study highlights its contributions to cancer diagnosis, treatment, and personalized medicine. Additionally, prospects in integrating proteomics with other -omics fields and advancements in computational analysis will be discussed. This work aims to illuminate the path toward more effective, precise, and individualized cancer care through proteomics innovations.
Collapse
Affiliation(s)
- Elaheh Gheybi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pejman Hosseinzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Tayebi-Khorrami
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Wang L, Shi F, Cao Y, Xie L. Multiple roles of branched-chain amino acid metabolism in tumour progression. J Biomed Sci 2025; 32:41. [PMID: 40205401 PMCID: PMC11983764 DOI: 10.1186/s12929-025-01132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025] Open
Abstract
Metabolic reprogramming enables tumour cells to sustain their continuous proliferation and adapt to the ever-changing microenvironment. Branched-chain amino acids (BCAAs) and their metabolites are involved in intracellular protein synthesis and catabolism, signal transduction, epigenetic modifications, and the maintenance of oxidative homeostasis. Alterations in BCAA metabolism can influence the progression of various tumours. However, how BCAA metabolism is dysregulated differs among depending on tumour type; for example, it can manifest as decreased BCAA metabolism leading to BCAA accumulation, or as enhanced BCAA uptake and increased catabolism. In this review, we describe the role of BCAA metabolism in the progression of different tumours. As well as discuss how BCAA metabolic reprogramming drives tumour therapy resistance and evasion of the antitumour immune response, and how these pro-cancer effects are achieved in part by activating the mTORC signalling pathway. In-depth investigations into the potential mechanisms by which BCAA metabolic reprogramming affects tumorigenesis and tumour progression can enhance our understanding of the relationship between metabolism and cancer and provide new strategies for cancer therapy.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Longlong Xie
- Department of Radiology, The Affiliated Children's Hospital of Xiangya School of Medicine (Hunan Children's Hospital), Central South University, Changsha, 410078, China.
| |
Collapse
|
3
|
Xu J, Wang Y, Zhang J, Tang J, Zhou Z. The role of branched-chain amino acids in cardio-oncology: A review. Life Sci 2025; 372:123614. [PMID: 40189196 DOI: 10.1016/j.lfs.2025.123614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
Cancer and cardiovascular diseases (CVDs) are global health challenges. In cancer patients, CVD is the second leading cause of death following disease progression. There are few specialized services for cardio-oncology patients worldwide currently. Branched-chain amino acids (BCAAs) are essential amino acids that promote protein synthesis and energy homeostasis. The disruption of BCAAs metabolism facilitates the development of cancer and CVDs while the benefit of BCAA supplement is full of controversy. In this review, we summarized BCAA-related studies in cardiometabolism, cancer and chemotherapy-induced cardiotoxicity, and provided our perspectives on the roles of BCAAs in cardio-oncology. We find that supplementation of BCAAs presents protective effects in cardiometabolic diseases, while the influence on cancer is intricate and varies across different types of cancers. Large-scale clinical studies are needed to understand the long-term effects of BCAA intake and its impact on different stages of the disease. BCAAs have potential to mitigate chemotherapy-induced cardiotoxicity. Continued research is still essential to understand the precise mechanisms, determine optimal dosage and timing, and assess the effectiveness of BCAA supplement in cardio-oncology, in particular clinical research.
Collapse
Affiliation(s)
- Jiaqi Xu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Cardiology, The First Hospital of Hebei Medical University, Hebei, China
| | - Jing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Jingyi Tang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zhongyan Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong; Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong.
| |
Collapse
|
4
|
Luo W, Pan Z, Zhu X, Li Y, Li Y, Zhang Y, Pan J, Ding J, Xie H, Zhao G. Design, Synthesis and Biological Activity Study of γ-Aminobutyric Acid (GABA) Derivatives Containing Bridged Bicyclic Skeletons as BCAT1 Inhibitors. Molecules 2025; 30:904. [PMID: 40005214 PMCID: PMC11858294 DOI: 10.3390/molecules30040904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Branched-chain amino acid aminotransferases (BCATs), existing as the two isoforms BCAT1 and BCAT2, are responsible for the catabolism of branched-chain amino acids (BCAAs) and are highly upregulated and implicated in a diverse range of cancers. BCAT1 inhibitors represent a potential class of therapeutic agents for cancers; however, none have yet progressed to clinical development. Our earlier research identified WQQ-345 as a novel BCAT1 inhibitor featuring a unique bridged bicyclic skeleton and demonstrating both in vitro and in vivo antitumor activity against tyrosine kinase inhibitor (TKI)-resistant lung cancer with high BCAT1 expression. In the present study, we proceeded to modify the structure of WQQ-345 by two-round structure-activity relationship (SAR) exploration, leading to the discovery of a bicyclo[3.2.1]octene-bearing GABA derivative 7. Compound 7 exhibited a 6-fold enhancement in BCAT1 enzymatic inhibitory activity compared to the parent compound WQQ-345 and could effectively suppress the growth of 67R cells that highly expressed BCAT1 and was resistant to third-generation TKIs. GABA derivatives are an important chemical class of BCAT1 inhibitors, and therefore, the findings in the present study represent great progress both in the discovery of potent BCAT1 inhibitors with new chemical structures and in the treatment of cancer resistance.
Collapse
Affiliation(s)
- Wen Luo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (W.L.); (Y.L.); (J.P.)
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China;
| | - Zilu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Z.P.); (Y.L.); (Y.Z.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyuan Zhu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China;
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Z.P.); (Y.L.); (Y.Z.); (J.D.)
| | - Yong Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (W.L.); (Y.L.); (J.P.)
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China;
| | - Yudi Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Z.P.); (Y.L.); (Y.Z.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiamin Pan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (W.L.); (Y.L.); (J.P.)
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China;
| | - Jian Ding
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Z.P.); (Y.L.); (Y.Z.); (J.D.)
| | - Hua Xie
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (W.L.); (Y.L.); (J.P.)
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China;
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Z.P.); (Y.L.); (Y.Z.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guilong Zhao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (W.L.); (Y.L.); (J.P.)
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China;
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Z.P.); (Y.L.); (Y.Z.); (J.D.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
5
|
Ma Q, Li H, Song Z, Deng Z, Huang W, Liu Q. Fueling the fight against cancer: Exploring the impact of branched-chain amino acid catalyzation on cancer and cancer immune microenvironment. Metabolism 2024; 161:156016. [PMID: 39222743 DOI: 10.1016/j.metabol.2024.156016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Metabolism of Branched-chain amino acids (BCAAs) is essential for the nutrient necessities in mammals. Catalytic enzymes serve to direct the whole-body BCAAs oxidation which involve in the development of various metabolic disorders. The reprogrammed metabolic elements are also responsible for malignant oncogenic processes, and favor the formation of distinctive immunosuppressive microenvironment surrounding different cancers. The impotent immune surveillance related to BCAAs dysfunction is a novel topic to investigate. Here we focus on the BCAA catalysts that contribute to metabolic changes and dysregulated immune reactions in cancer progression. We summarize the current knowledge of BCAA catalyzation, highlighting the interesting roles of BCAA metabolism in the treatment of cancers.
Collapse
Affiliation(s)
- Qianquan Ma
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Haoyu Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center For Skull Base Surgery and Neurooncology In Hunan Province
| | - Zhihao Song
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center For Skull Base Surgery and Neurooncology In Hunan Province
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center For Skull Base Surgery and Neurooncology In Hunan Province.
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center For Skull Base Surgery and Neurooncology In Hunan Province.
| |
Collapse
|
6
|
Li S, Guo Y, Zhu G, Sun L, Zhou F. Identify BCAT1 plays an oncogenic role and promotes EMT in KIRC via single cell RNA-seq and experiment. Front Oncol 2024; 14:1446324. [PMID: 39324007 PMCID: PMC11422235 DOI: 10.3389/fonc.2024.1446324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is a major subtype of renal cell carcinoma with poor prognosis due to its invasive and metastatic nature. Despite advances in understanding the molecular underpinnings of various cancers, the role of branched-chain amino acid transferase 1 (BCAT1) in KIRC remains underexplored. This study aims to fill this gap by investigating the oncogenic role of BCAT1 in KIRC using single-cell RNA-seq data and experimental validation. Methods Single-cell transcriptomic data GSE159115 was utilized to investigate potential biomarkers in KIRC. After screening, we used BCAT1 as a target gene and investigated its function and mechanism in KIRC through databases such as TCGA-GTEx, using genome enrichment analysis (GSEA), genome variation analysis (GSVA), gene ontology (GO) and Kyoto Encyclopedia of the Genome (KEGG). BCAT1 expression was detected in clinical tissue samples using Western Blotting (WB) and immunohistochemical (IHC) staining techniques. We established cell lines stably overexpressing and knocking down BCAT1 and performed WB, qRT-PCR, cell scratch assay and transwell assay. Results BCAT1 was highly expressed in KIRC and was associated with disease prognosis and TME. Patients with mutations in the BCAT1 gene had shorter overall survival (OS) and disease-free survival (DFS). patients with high BCAT1 expression had shorter OS, progression-free interval (PFI), and disease-specific survival (DSS). GSEA showed that BCAT1 was significantly enriched in epithelial mesenchymal transition (EMT). Bioinformatics analysis and WB and IHC staining showed that BCAT1 expression was higher in KIRC than in paracancerous tissues. In vitro experiments confirmed that BCAT1 in KIRC cells may promote EMT affecting its invasion, migration. We constructed a protein interaction network (PPI) to hypothesize proteins that may interact with BCAT1. Single-sample gene set enrichment analysis (ssGSEA) revealed the immune infiltration environment of BCAT1. Furthermore, hypomethylation of the BCAT1 promoter region in KIRC may contribute to disease progression by promoting BCAT1 expression. Conclusion BCAT1 promotes KIRC invasion and metastasis through EMT and has prognostic predictive value and potential as a biomarker. It may become a novel biomarker.
Collapse
Affiliation(s)
- Shiqing Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yinsheng Guo
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guanhua Zhu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Sun
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Li K, Yang B, Du Y, Ding Y, Shen S, Sun Z, Liu Y, Wang Y, Cao S, Ren W, Wang X, Li M, Zhang Y, Wu J, Zheng W, Yan W, Li L. The HOXC10/NOD1/ERK axis drives osteolytic bone metastasis of pan-KRAS-mutant lung cancer. Bone Res 2024; 12:47. [PMID: 39191757 PMCID: PMC11349752 DOI: 10.1038/s41413-024-00350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/09/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024] Open
Abstract
While KRAS mutation is the leading cause of low survival rates in lung cancer bone metastasis patients, effective treatments are still lacking. Here, we identified homeobox C10 (HOXC10) as a lynchpin in pan-KRAS-mutant lung cancer bone metastasis. Through RNA-seq approach and patient tissue studies, we demonstrated that HOXC10 expression was dramatically increased. Genetic depletion of HOXC10 preferentially impeded cell proliferation and migration in vitro. The bioluminescence imaging and micro-CT results demonstrated that inhibition of HOXC10 significantly reduced bone metastasis of KRAS-mutant lung cancer in vivo. Mechanistically, the transcription factor HOXC10 activated NOD1/ERK signaling pathway to reprogram epithelial-mesenchymal transition (EMT) and bone microenvironment by activating the NOD1 promoter. Strikingly, inhibition of HOXC10 in combination with STAT3 inhibitor was effective against KRAS-mutant lung cancer bone metastasis by triggering ferroptosis. Taken together, these findings reveal that HOXC10 effectively alleviates pan-KRAS-mutant lung cancer with bone metastasis in the NOD1/ERK axis-dependent manner, and support further development of an effective combinatorial strategy for this kind of disease.
Collapse
Affiliation(s)
- Kun Li
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Health Science Center, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| | - Bo Yang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Du
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Ding
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Shihui Shen
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200240, China
| | - Zhengwang Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yun Liu
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuhan Wang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Siyuan Cao
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Wenjie Ren
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiangyu Wang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mengjuan Li
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yunpeng Zhang
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Juan Wu
- Department of Pharmacy The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Wei Zheng
- Orthopaedic Department of Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
- Department of Orthopedics, General Hospital of Western Theater Command, Chengdu, 610000, China.
- College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China.
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Lei Li
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China.
- School of Life Sciences, East China Normal University, Shanghai, 200241, China.
- Joint Center for Translational Medicine, Shanghai Fifth People's Hospital, Fudan University and School of Life Science, East China Normal University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Zhang T, Pan Z, Gao J, Wu Q, Bai G, Li Y, Tong L, Feng F, Lai M, Liu Y, Song P, Ning Y, Tang H, Luo W, Chen Y, Fang Y, Zhang H, Liu Q, Zhang Y, Wang H, Chen Z, Chen Y, Geng M, Ji H, Zhao G, Zhou H, Ding J, Xie H. Branched-chain amino acid transaminase 1 confers EGFR-TKI resistance through epigenetic glycolytic activation. Signal Transduct Target Ther 2024; 9:216. [PMID: 39143065 PMCID: PMC11324870 DOI: 10.1038/s41392-024-01928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/26/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Third-generation EGFR tyrosine kinase inhibitors (TKIs), exemplified by osimertinib, have demonstrated promising clinical efficacy in the treatment of non-small cell lung cancer (NSCLC). Our previous work has identified ASK120067 as a novel third-generation EGFR TKI with remarkable antitumor effects that has undergone New Drug Application (NDA) submission in China. Despite substantial progress, acquired resistance to EGFR-TKIs remains a significant challenge, impeding the long-term effectiveness of therapeutic approaches. In this study, we conducted a comprehensive investigation utilizing high-throughput proteomics analysis on established TKI-resistant tumor models, and found a notable upregulation of branched-chain amino acid transaminase 1 (BCAT1) expression in both osimertinib- and ASK120067-resistant tumors compared with the parental TKI-sensitive NSCLC tumors. Genetic depletion or pharmacological inhibition of BCAT1 impaired the growth of resistant cells and partially re-sensitized tumor cells to EGFR TKIs. Mechanistically, upregulated BCAT1 in resistant cells reprogrammed branched-chain amino acid (BCAA) metabolism and promoted alpha ketoglutarate (α-KG)-dependent demethylation of lysine 27 on histone H3 (H3K27) and subsequent transcriptional derepression of glycolysis-related genes, thereby enhancing glycolysis and promoting tumor progression. Moreover, we identified WQQ-345 as a novel BCAT1 inhibitor exhibiting antitumor activity both in vitro and in vivo against TKI-resistant lung cancer with high BCAT1 expression. In summary, our study highlighted the crucial role of BCAT1 in mediating resistance to third-generation EGFR-TKIs through epigenetic activation of glycolysis in NSCLC, thereby supporting BCAT1 as a promising therapeutic target for the treatment of TKI-resistant NSCLC.
Collapse
MESH Headings
- Humans
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Transaminases/genetics
- Transaminases/metabolism
- Protein Kinase Inhibitors/pharmacology
- Glycolysis/drug effects
- Glycolysis/genetics
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Epigenesis, Genetic/drug effects
- Epigenesis, Genetic/genetics
- Mice
- Lung Neoplasms/genetics
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Acrylamides/pharmacology
- Animals
- Aniline Compounds/pharmacology
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic/drug effects
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Indoles
- Pyrimidines
Collapse
Affiliation(s)
- Tao Zhang
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zilu Pan
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Gao
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qingqing Wu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Gang Bai
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Li
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Linjiang Tong
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fang Feng
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mengzhen Lai
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yingqiang Liu
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Peiran Song
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Yi Ning
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haotian Tang
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wen Luo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Chen
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Fang
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Zhang
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiupei Liu
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Department of Chemical and Environmental Engineering, University of Nottingham, Ningbo, China
| | - Yudi Zhang
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Hua Wang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Zhiwei Chen
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Chen
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Meiyu Geng
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongbin Ji
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Guilong Zhao
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Hu Zhou
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Jian Ding
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Hua Xie
- Division of Antitumor Pharmacology & Analytical Research Center for Organic and Biological Molecules & State Key Laboratory of Drug Research & Small-Molecule Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China.
| |
Collapse
|
9
|
Mohamed FR, Rose A, Sheehan-Hennessy L, Pedersen SK, Cornthwaite K, Laven-Law G, Young GP, Symonds EL, Winter JM. A blood test measuring DNA methylation of BCAT1 and IKZF1 for detection of lung adenocarcinoma. Cancer Treat Res Commun 2024; 40:100838. [PMID: 39154541 DOI: 10.1016/j.ctarc.2024.100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Colorectal (CRC) and lung adenocarcinoma share many genetic and pathological similarities. A circulating tumor DNA (ctDNA) test for CRC may also be useful for detection of lung adenocarcinoma. This study determined if a methylated BCAT1/IKZF1 ctDNA test for CRC can be used for detection of lung adenocarcinoma. PATIENTS AND METHODS Circulating cell free DNA (ccfDNA) was extracted from plasma collected prospectively from healthy controls, patients in remission from CRC, patients with lung adenocarcinoma, and patients with isolated metastatic CRC lung lesions. Plasma ccfDNA was bisulfite converted and assessed for methylated BCAT1/IKZF1 by quantitative real-time PCR. Comparisons between the different patient groups for a positive ctDNA test (BCAT1 and/or IKZF1) and ctDNA levels (% of total ccfDNA), as well as any associations with clinicopathological and demographic features, were assessed. RESULTS Methylated BCAT1/IKZF1 ctDNA was detected in 18/39 (46.2 %) patients with lung adenocarcinoma, which was significantly (p < 0.001) higher compared to healthy controls (49/606; 8.1 %) and patients in remission from CRC (22/171, 12.9 %). Patients with stage III/IV lung adenocarcinoma had higher BCAT1/IKZF1 ctDNA positivity compared to stage I/II cases (68.2 % vs 17.7 %, p < 0.01), where a significantly higher proportion tested positive for methylated IKZF1 ctDNA alone (54.6 % vs 5.9 %, p < 0.001). There was no difference in BCAT1/IKZF1 ctDNA test positivity between patients with stage IV primary lung adenocarcinoma (n = 17) compared to lung-metastasising CRC cases (n = 17; 70.6 % v 64.3 %). CONCLUSION A ctDNA test measuring methylated BCAT1/IKZF1 can sensitively detect lung adenocarcinoma and may be a promising aid for detection of advanced disease. CLINICAL TRIAL REGISTRATIONS Australian and New Zealand Clinical Trials Registry, www.anzctr.org.au, ACTRN12616001138471, ACTRN12611000318987.
Collapse
Affiliation(s)
- Faridh Raja Mohamed
- Department of Respiratory Sleep Medicine and Ventilation, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Anand Rose
- Department of Respiratory Sleep Medicine and Ventilation, Flinders Medical Centre, Bedford Park, SA, Australia
| | - Lorraine Sheehan-Hennessy
- Cancer Impact Program, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Susanne K Pedersen
- Cancer Impact Program, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Kathryn Cornthwaite
- Cancer Impact Program, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Geraldine Laven-Law
- Cancer Impact Program, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Graeme P Young
- Cancer Impact Program, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Erin L Symonds
- Cancer Impact Program, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia; Department of Gastroenterology and Hepatology, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, SA, Australia
| | - Jean M Winter
- Cancer Impact Program, Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
10
|
Mao L, Wang L, Lyu Y, Zhuang Q, Li Z, Zhang J, Gu Z, Lu S, Wang X, Guan Y, Xiong J, Wang Y, Mao Y, Yang H, Liu Y. Branch Chain Amino Acid Metabolism Promotes Brain Metastasis of NSCLC through EMT Occurrence by Regulating ALKBH5 activity. Int J Biol Sci 2024; 20:3285-3301. [PMID: 38993559 PMCID: PMC11234221 DOI: 10.7150/ijbs.85672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Metabolic reprogramming is one of the essential features of tumors that may dramatically contribute to cancer metastasis. Employing liquid chromatography-tandem mass spectrometry-based metabolomics, we analyzed the metabolic profile from 12 pairwise serum samples of NSCLC brain metastasis patients before and after CyberKnife Stereotactic Radiotherapy. We evaluated the histopathological architecture of 144 surgically resected NSCLC brain metastases. Differential metabolites were screened and conducted for functional clustering and annotation. Metabolomic profiling identified a pathway that was enriched in the metabolism of branched-chain amino acids (BCAAs). Pathologically, adenocarcinoma with a solid growth pattern has a higher propensity for brain metastasis. Patients with high BCAT1 protein levels in lung adenocarcinoma tissues were associated with a poor prognosis. We found that brain NSCLC cells had elevated catabolism of BCAAs, which led to a depletion of α-KG. This depletion, in turn, reduced the expression and activity of the m6A demethylase ALKBH5. Thus, ALKBH5 inhibition participated in maintaining the m6A methylation of mesenchymal genes and promoted the occurrence of epithelial-mesenchymal transition (EMT) in NSCLC cells and the proliferation of NSCLC cells in the brain. BCAA catabolism plays an essential role in the metastasis of NSCLC cells.
Collapse
Affiliation(s)
- Luning Mao
- Department of Pathology, School of Basic Medical Sciences, Huashan Hospital, Fudan University
| | - Lan Wang
- Department of Pathology, School of Basic Medical Sciences, Huashan Hospital, Fudan University
| | - Yingying Lyu
- Department of Neurosurgery, Huashan Hospital, Fudan University
- National Centre for Neurological Disorders, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and MOE Frontiers Centremete for Brain Science, Fudan University, Shanghai
| | - Qiyuan Zhuang
- Department of Neurosurgery, Huashan Hospital, Fudan University
- National Centre for Neurological Disorders, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and MOE Frontiers Centremete for Brain Science, Fudan University, Shanghai
| | - Zhujun Li
- Department of Pathology, School of Basic Medical Sciences, Huashan Hospital, Fudan University
| | - Jialong Zhang
- Department of Pathology, School of Basic Medical Sciences, Huashan Hospital, Fudan University
| | - Zhiyan Gu
- Department of Pathology, School of Basic Medical Sciences, Huashan Hospital, Fudan University
| | - Shaohua Lu
- Department of Pathology, Zhongshan Hospital, Shanghai Medical College, Fudan University
| | - Xin Wang
- Cyberknife Centre, Department of Neurosurgery, Huashan Hospital, Fudan University
| | - Yun Guan
- Cyberknife Centre, Department of Neurosurgery, Huashan Hospital, Fudan University
| | - Ji Xiong
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University
| | - Yin Wang
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University
- National Centre for Neurological Disorders, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and MOE Frontiers Centremete for Brain Science, Fudan University, Shanghai
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University
- National Centre for Neurological Disorders, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and MOE Frontiers Centremete for Brain Science, Fudan University, Shanghai
| | - Ying Liu
- Department of Pathology, School of Basic Medical Sciences, Huashan Hospital, Fudan University
| |
Collapse
|
11
|
Yi G, Luo H, Zheng Y, Liu W, Wang D, Zhang Y. Exosomal Proteomics: Unveiling Novel Insights into Lung Cancer. Aging Dis 2024; 16:876-900. [PMID: 38607736 PMCID: PMC11964432 DOI: 10.14336/ad.2024.0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Although significant progress has been made in early lung cancer screening over the past decade, it remains one of the most prevalent and deadliest forms of cancer worldwide. Exosomal proteomics has emerged as a transformative field in lung cancer research, with the potential to redefine diagnostics, prognostic assessments, and therapeutic strategies through the lens of precision medicine. This review discusses recent advances in exosome-related proteomic and glycoproteomic technologies, highlighting their potential to revolutionise lung cancer treatment by addressing issues of heterogeneity, integrating multiomics data, and utilising advanced analytical methods. While these technologies show promise, there are obstacles to overcome before they can be widely implemented, such as the need for standardization, gaps in clinical application, and the importance of dynamic monitoring. Future directions should aim to overcome the challenges to fully utilize the potential of exosomal proteomics in lung cancer. This promises a new era of personalized medicine that leverages the molecular complexity of exosomes for groundbreaking advancements in detection, prognosis, and treatment.
Collapse
Affiliation(s)
- Guanhua Yi
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haixin Luo
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yalin Zheng
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wenjing Liu
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Denian Wang
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yong Zhang
- Department of Pulmonary and Critical Care Medicine and Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Pan J, Wang Y, Huang S, Mao S, Ling Q, Li C, Li F, Yu M, Huang X, Huang J, Lv Y, Li X, Ye W, Wang H, Wang J, Jin J. High expression of BCAT1 sensitizes AML cells to PARP inhibitor by suppressing DNA damage response. J Mol Med (Berl) 2024; 102:415-433. [PMID: 38340163 DOI: 10.1007/s00109-023-02409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024]
Abstract
Previous evidence has confirmed that branched-chain aminotransferase-1 (BCAT1), a key enzyme governing branched-chain amino acid (BCAA) metabolism, has a role in cancer aggression partly by restricting αKG levels and inhibiting the activities of the αKG-dependent enzyme family. The oncogenic role of BCAT1, however, was not fully elucidated in acute myeloid leukemia (AML). In this study, we investigated the clinical significance and biological insight of BCAT1 in AML. Using q-PCR, we analyzed BCAT1 mRNAs in bone marrow samples from 332 patients with newly diagnosed AML. High BCAT1 expression independently predicts poor prognosis in patients with AML. We also established BCAT1 knockout (KO)/over-expressing (OE) AML cell lines to explore the underlying mechanisms. We found that BCAT1 affects cell proliferation and modulates cell cycle, cell apoptosis, and DNA damage/repair process. Additionally, we demonstrated that BCAT1 regulates histone methylation by reducing intracellular αKG levels in AML cells. Moreover, high expression of BCAT1 enhances the sensitivity of AML cells to the Poly (ADP-ribose) polymerase (PARP) inhibitor both in vivo and in vitro. Our study has demonstrated that BCAT1 expression can serve as a reliable predictor for AML patients, and PARP inhibitor BMN673 can be used as an effective treatment strategy for patients with high BCAT1 expression. KEY MESSAGES: High expression of BCAT1 is an independent risk factor for poor prognosis in patients with CN-AML. High BCAT1 expression in AML limits intracellular αKG levels, impairs αKG-dependent histone demethylase activity, and upregulates H3K9me3 levels. H3K9me3 inhibits ATM expression and blocks cellular DNA damage repair process. Increased sensitivity of BCAT1 high expression AML to PARP inhibitors may be used as an effective treatment strategy in AML patients.
Collapse
Affiliation(s)
- Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Yungui Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Shujuan Huang
- Department of Hematology, the First Affiliated Hospital of University of Science and Technology of China, Anhui, Hefei, China
| | - Shihui Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Qing Ling
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Chenying Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Fenglin Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Mengxia Yu
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Yunfei Lv
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang, People's Republic of China.
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
You H, Song G, Xu Z, Chen S, Shen W, Liu H, Deng B, Li J, Huang G. HuR promotes castration-resistant prostate cancer progression by altering ERK5 activation via posttranscriptional regulation of BCAT1. J Transl Med 2024; 22:178. [PMID: 38369471 PMCID: PMC10874581 DOI: 10.1186/s12967-024-04970-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is refractory to hormone treatment, and the underlying mechanism has not been fully elucidated. This study aimed to clarify the role and mechanism of Human antigen R (HuR) as a therapeutic target for CRPC progression. METHODS HuR was knocked out by Cas9 or inhibited by the HuR-specific inhibitor KH-3 in CRPC cell lines and in a mouse xenograft model. The effects of HuR inhibition on tumour cell behaviors and signal transduction were examined by proliferation, transwell, and tumour xenograft assays. Posttranscriptional regulation of BCAT1 by HuR was determined by half-life and RIP assays. RESULTS HuR knockout attenuated the proliferation, migration, and invasion of PC3 and DU145 cells in vitro and inhibited tumour progression in vivo. Moreover, BCAT1 was a direct target gene of HuR and mediated the oncogenic effect of HuR on CRPC. Mechanistically, HuR directly interacted with BCAT1 mRNA and upregulated BCAT1 expression by increasing the stability and translation of BCAT1, which activated ERK5 signalling. Additionally, the HuR-specific inhibitor KH-3 attenuated CRPC progression by disrupting the HuR-BCAT1 interaction. CONCLUSIONS We confirmed that the HuR/BCAT1 axis plays a crucial role in CRPC progression and suggest that inhibiting the HuR/BCAT1 axis is a promising therapeutic approach for suppressing CRPC progression.
Collapse
Affiliation(s)
- Hang You
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, HanYu Road 181, Chongqing, 400030, China
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China
| | - Guojing Song
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China
- Department of Urology, Southwest Hospital, Amy Medical University, Chongqing, 400038, China
| | - Zhizhen Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China
| | - Saipeng Chen
- Department of Urology, Southwest Hospital, Amy Medical University, Chongqing, 400038, China
| | - Wenhao Shen
- Department of Urology, Southwest Hospital, Amy Medical University, Chongqing, 400038, China
| | - Heting Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China
| | - Bingqian Deng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China
| | - Jun Li
- Department of Urologic Oncology Surgery, Chongqing University Cancer Hospital, HanYu Road 181, Chongqing, 400030, China.
| | - Gang Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, GaoTanYan Main Street 30, Chongqing, 400038, China.
| |
Collapse
|
14
|
Zu L, He J, Zhou N, Tang Q, Liang M, Xu S. Identification of multiple organ metastasis-associated hub mRNA/miRNA signatures in non-small cell lung cancer. Cell Death Dis 2023; 14:798. [PMID: 38057344 PMCID: PMC10700602 DOI: 10.1038/s41419-023-06286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Metastasis remains major cause of treatment failure in non-small cell lung cancer (NSCLC). A comprehensive characterization of the transcriptomic landscape of NSCLC-cells with organ-specific metastatic potentials would advance our understanding of NSCLC metastasis process. In this study, we established NSCLC bone-metastatic (BoM), brain-metastatic (BrM), and lymph-metastatic (LnM) cells by an in vivo spontaneous metastatic model. Subsequently, by analyzing the entire transcriptomic profiles of BoM, BrM, LnM, LuM, in comparison with their parental cell line L9981, we identified miR-660-5p as a key driver that is associated with NSCLC progression and distant metastasis, potentially through its targeting of LIMCH1, SMARCA5 and TPP2. In addition, a six-gene signature (ADRB2, DPYSL2, IL7R, LIMCH1, PIK3R1, and SOX2) was subsequently established to predict NSCLC metastasis based on differentially expressed genes, three of which (DPYSL2, PIK3R1, LIMCH1) along with the transcriptional factors RB1 and TP63, were ultimately validated by experiments. Taken together, aberrant gene signature and miRNA can serve as biomarkers for predicting NSCLC distant metastasis, and targeting them could potentially contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Lingling Zu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
| | - Jinling He
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Zhou
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Quanying Tang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Maoli Liang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Song Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
15
|
Liu Y, Guo S, Xie W, Yang H, Li W, Zhou N, Yang J, Zhou G, Mao C, Zheng Y. Identification of microRNA editing sites in clear cell renal cell carcinoma. Sci Rep 2023; 13:15117. [PMID: 37704698 PMCID: PMC10499803 DOI: 10.1038/s41598-023-42302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a malignant tumor originating from the renal tubular epithelium. Although the microRNAs (miRNAs) transcriptome of ccRCC has been extensively studied, the role of miRNAs editing in ccRCC is largely unknown. By analyzing small RNA sequencing profiles of renal tissues of 154 ccRCC patients and 22 normal controls, we identified 1025 miRNA editing sites from 246 pre-miRNAs. There were 122 editing events with significantly different editing levels in ccRCC compared to normal samples, which include two A-to-I editing events in the seed regions of hsa-mir-376a-3p and hsa-mir-376c-3p, respectively, and one C-to-U editing event in the seed region of hsa-mir-29c-3p. After comparing the targets of the original and edited miRNAs, we found that hsa-mir-376a-1_49g, hsa-mir-376c_48g and hsa-mir-29c_59u had many new targets, respectively. Many of these new targets were deregulated in ccRCC, which might be related to the different editing levels of hsa-mir-376a-3p, hsa-mir-376c-3p, hsa-mir-29c-3p in ccRCC compared to normal controls. Our study sheds new light on miRNA editing events and their potential biological functions in ccRCC.
Collapse
Affiliation(s)
- Yulong Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Shiyong Guo
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Wenping Xie
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Huaide Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Wanran Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Nan Zhou
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jun Yang
- School of Criminal Investigation, Yunnan Police College, Kunming, 650223, Yunnan, China
| | - Guangchen Zhou
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Chunyi Mao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yun Zheng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
16
|
Xu E, Ji B, Jin K, Chen Y. Branched-chain amino acids catabolism and cancer progression: focus on therapeutic interventions. Front Oncol 2023; 13:1220638. [PMID: 37637065 PMCID: PMC10448767 DOI: 10.3389/fonc.2023.1220638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Branched-chain amino acids (BCAAs), including valine, leucine, and isoleucine, are crucial amino acids with significant implications in tumorigenesis across various human malignancies. Studies have demonstrated that altered BCAA metabolism can influence tumor growth and progression. Increased levels of BCAAs have been associated with tumor growth inhibition, indicating their potential as anti-cancer agents. Conversely, a deficiency in BCAAs can promote tumor metastasis to different organs due to the disruptive effects of high BCAA concentrations on tumor cell migration and invasion. This disruption is associated with tumor cell adhesion, angiogenesis, metastasis, and invasion. Furthermore, BCAAs serve as nitrogen donors, contributing to synthesizing macromolecules such as proteins and nucleotides crucial for cancer cell growth. Consequently, BCAAs exhibit a dual role in cancer, and their effects on tumor growth or inhibition are contingent upon various conditions and concentrations. This review discusses these contrasting findings, providing valuable insights into BCAA-related therapeutic interventions and ultimately contributing to a better understanding of their potential role in cancer treatment.
Collapse
Affiliation(s)
- Er Xu
- Department of Hospital Infection Management, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Bangju Ji
- Department of Colorectal Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yefeng Chen
- Department of Respiratory Medicine, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
17
|
Xu C, Yang K, Xuan Z, Li J, Liu Y, Zhao Y, Zheng Z, Bai Y, Shi Z, Shao C, Zhang L, Sun H. BCKDK regulates breast cancer cell adhesion and tumor metastasis by inhibiting TRIM21 ubiquitinate talin1. Cell Death Dis 2023; 14:445. [PMID: 37460470 PMCID: PMC10352378 DOI: 10.1038/s41419-023-05944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
Breast cancer is the most common malignant cancer in women worldwide. Cancer metastasis is the major cause of cancer-related deaths. BCKDK is associated with various diseases, including proliferation, migration, and invasion in multiple types of human cancers. However, the relevance of BCKDK to the development and progression of breast cancers and its function is unclear. This study found that BCKDK was overexpressed in breast cancer, associated with poor prognosis, and implicated in tumor metastasis. The downregulation of BCKDK expression inhibited the migration of human breast cancer cells in vitro and diminished lung metastasis in vivo. BCKDK perturbed the cadherin-catenin complex at the adherens junctions (AJs) and assembled focal adhesions (FAs) onto the extracellular matrix, thereby promoting the directed migration of breast cancer cells. We observed that BCKDK acted as a conserved regulator of the ubiquitination of cytoskeletal protein talin1 and the activation of the FAK/MAPK pathway. Further studies revealed that BCKDK inhibited the binding of talin1 to E3 ubiquitin ligase-TRIM21, leading to the decreased ubiquitination/degradation of talin1. In conclusion, identifying BCKDK as a biomarker for breast cancer metastasis facilitated further research on diagnostic biomarkers. Elucidating the mechanism by which BCKDK exerted its biological effect could provide a new theoretical basis for developing new markers for breast cancer metastasis and contribute to developing new therapies for the clinical treatment of breast cancer patients.
Collapse
Affiliation(s)
- Chunlan Xu
- School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Kunao Yang
- School of Medicine, Xiamen University, 361102, Xiamen, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Zuodong Xuan
- School of Medicine, Xiamen University, 361102, Xiamen, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Jinxin Li
- School of Medicine, Xiamen University, 361102, Xiamen, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Yankuo Liu
- School of Medicine, Xiamen University, 361102, Xiamen, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Yue Zhao
- School of Medicine, Xiamen University, 361102, Xiamen, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Zeyuan Zheng
- School of Medicine, Xiamen University, 361102, Xiamen, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Yang Bai
- School of Medicine, Xiamen University, 361102, Xiamen, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Zhiyuan Shi
- School of Medicine, Xiamen University, 361102, Xiamen, China
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Chen Shao
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen, China
| | - Lei Zhang
- School of Public Health, Xiamen University, Xiamen, China
| | - Huimin Sun
- Central Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361101, Xiamen, China.
| |
Collapse
|
18
|
Lai J, Lin X, Zheng H, Xie B, Fu D. Characterization of stemness features and construction of a stemness subtype classifier to predict survival and treatment responses in lung squamous cell carcinoma. BMC Cancer 2023; 23:525. [PMID: 37291533 DOI: 10.1186/s12885-023-10918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Cancer stemness has been proven to affect tumorigenesis, metastasis, and drug resistance in various cancers, including lung squamous cell carcinoma (LUSC). We intended to develop a clinically applicable stemness subtype classifier that could assist physicians in predicting patient prognosis and treatment response. METHODS This study collected RNA-seq data from TCGA and GEO databases to calculate transcriptional stemness indices (mRNAsi) using the one-class logistic regression machine learning algorithm. Unsupervised consensus clustering was conducted to identify a stemness-based classification. Immune infiltration analysis (ESTIMATE and ssGSEA algorithms) methods were used to investigate the immune infiltration status of different subtypes. Tumor Immune Dysfunction and Exclusion (TIDE) and Immunophenotype Score (IPS) were used to evaluate the immunotherapy response. The pRRophetic algorithm was used to estimate the efficiency of chemotherapeutic and targeted agents. Two machine learning algorithms (LASSO and RF) and multivariate logistic regression analysis were performed to construct a novel stemness-related classifier. RESULTS We observed that patients in the high-mRNAsi group had a better prognosis than those in the low-mRNAsi group. Next, we identified 190 stemness-related differentially expressed genes (DEGs) that could categorize LUSC patients into two stemness subtypes. Patients in the stemness subtype B group with higher mRNAsi scores exhibited better overall survival (OS) than those in the stemness subtype A group. Immunotherapy prediction demonstrated that stemness subtype A has a better response to immune checkpoint inhibitors (ICIs). Furthermore, the drug response prediction indicated that stemness subtype A had a better response to chemotherapy but was more resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Finally, we constructed a nine-gene-based classifier to predict patients' stemness subtype and validated it in independent GEO validation sets. The expression levels of these genes were also validated in clinical tumor specimens. CONCLUSION The stemness-related classifier could serve as a potential prognostic and treatment predictor and assist physicians in selecting effective treatment strategies for patients with LUSC in clinical practice.
Collapse
Affiliation(s)
- Jinzhi Lai
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Xinyi Lin
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Huangna Zheng
- Department of Hematology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Bilan Xie
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| | - Deqiang Fu
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
19
|
Wang Z, Wu X, Chen HN, Wang K. Amino acid metabolic reprogramming in tumor metastatic colonization. Front Oncol 2023; 13:1123192. [PMID: 36998464 PMCID: PMC10043324 DOI: 10.3389/fonc.2023.1123192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Metastasis is considered as the major cause of cancer death. Cancer cells can be released from primary tumors into the circulation and then colonize in distant organs. How cancer cells acquire the ability to colonize in distant organs has always been the focus of tumor biology. To enable survival and growth in the new environment, metastases commonly reprogram their metabolic states and therefore display different metabolic properties and preferences compared with the primary lesions. For different microenvironments in various colonization sites, cancer cells must transfer to specific metabolic states to colonize in different distant organs, which provides the possibility of evaluating metastasis tendency by tumor metabolic states. Amino acids provide crucial precursors for many biosynthesis and play an essential role in cancer metastasis. Evidence has proved the hyperactivation of several amino acid biosynthetic pathways in metastatic cancer cells, including glutamine, serine, glycine, branched chain amino acids (BCAAs), proline, and asparagine metabolism. The reprogramming of amino acid metabolism can orchestrate energy supply, redox homeostasis, and other metabolism-associated pathways during cancer metastasis. Here, we review the role and function of amino acid metabolic reprogramming in cancer cells colonizing in common metastatic organs, including lung, liver, brain, peritoneum, and bone. In addition, we summarize the current biomarker identification and drug development of cancer metastasis under the amino acid metabolism reprogramming, and discuss the possibility and prospect of targeting organ-specific metastasis for cancer treatment.
Collapse
Affiliation(s)
- Zihao Wang
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingyun Wu
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hai-Ning Chen
- Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kui Wang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Lin X, Wang C, Fang F, Zhou S. A simple integrated microfluidic platform for the research of hydrogels containing gradients in cell density induced breast cancer electrochemotherapy. Talanta 2023; 253:123920. [PMID: 36122433 DOI: 10.1016/j.talanta.2022.123920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
Cell density is important for tumour metastasis, treatment and prognosis. Characterizing changes in cell density for electrochemotherapy (ECT) can reveal sub-populations in pathological states, and adjust treatment program. In this work, a simple and convenient microfluidic platform was developed to study the effect cell density on ECT by integrating the improved cell gradient generator, cell culture chamber and indium tin oxide interdigital electrodes. Agarose, as extracellular matrix (ECM), was used to 3D cell culture to imitate in vivo microenvironment. The precision and reproducibility of cell density gradient with agarose solution were achieved because the hydrophobic modification of microchannels surface resulted in reducing cell adhesion and residue. ECT cytotoxicity assay with difference in cell densities was studied. The results showed that tumour cell density is one of the most factors for ECT treatment and ECT cytotoxicity has a certain of cell density-depended. But only electroporation on low cell density level, ECM would be one of the most key factors for ECT cytotoxicity, which would provide a new idea for chip-based cell assay in clinical diagnosis and drug screening in ordinary laboratories.
Collapse
Affiliation(s)
- Xuexia Lin
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, PR China.
| | - Chenjing Wang
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, PR China
| | - Feixiang Fang
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, PR China
| | - Shufeng Zhou
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, PR China
| |
Collapse
|
21
|
Ding Y, Wang X, Lu S, Lai A, Xie B, He X, Liu Q. BCAT1, as a prognostic factor for HCC, can promote the development of liver cancer through activation of the AKT signaling pathway and EMT. J Mol Histol 2023; 54:25-39. [PMID: 36344754 DOI: 10.1007/s10735-022-10108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
Abstract
More and more studies have shown that Branched chain amino acid transaminase 1 (BCAT1) is involved in the occurrence and development of a variety of tumors. However, the mechanism of its occurrence and development in hepatocellular carcinoma (HCC) remains unclear. Here, we demonstrated the relationship between BCAT1 and AKT signaling pathway, as well as EMT, and the clinical significance of BCAT1 by using BCAT1 expression in 5 cell lines and 113 liver cancer and non-liver cancer tissue samples. The results showed that the expression of AKT was positively correlated with BCAT1 in HCC tissues, and BCAT1 could promote the progression of HCC cells through the AKT signaling pathway. Clinical analysis and Bioinformatics technology analysis revealed that BCAT1 was correlated with poor prognosis, and BCAT1 expression in the HCC tissues was evidently correlated with tumor number, vascular invasion, Edmondson grade and TNM stage (P < 0.05). In vitro studies showed that BCAT1 increased the invasion and migration of in MHCC-97H cells a d Huh7 cells. By inhibiting the expression of the BCAT1 gene, we detected the corresponding changes in the expression levels of Twist, E-cadherin and Vimentin, confirming that BCAT1 may promote the invasion and migration of HCC cells through epithelial-mesenchymal transformation (EMT). Overall, BCAT1 can activate AKT signaling pathway and EMT to promote the development and metastasis of HCC cells. this study may provide new ideas and directions for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yifeng Ding
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xiaoqing Wang
- Department of Psychiatry, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Shaowei Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Aijun Lai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Binhui Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Xiao He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China
| | - Qingquan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
22
|
Nong X, Zhang C, Wang J, Ding P, Ji G, Wu T. The mechanism of branched-chain amino acid transferases in different diseases: Research progress and future prospects. Front Oncol 2022; 12:988290. [PMID: 36119495 PMCID: PMC9478667 DOI: 10.3389/fonc.2022.988290] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 12/16/2022] Open
Abstract
It is well known that the enzyme catalyzes the first step of branched-chain amino acid (BCAA) catabolism is branched-chain amino transferase (BCAT), which is involved in the synthesis and degradation of leucine, isoleucine and valine. There are two main subtypes of human branched chain amino transferase (hBCAT), including cytoplasmic BCAT (BCAT1) and mitochondrial BCAT (BCAT2). In recent years, the role of BCAT in tumors has attracted the attention of scientists, and there have been continuous research reports that BCAT plays a role in the tumor, Alzheimer’s disease, myeloid leukaemia and other diseases. It plays a significant role in the growth and development of diseases, and new discoveries about this gene in some diseases are made every year. BCAT usually promotes cancer proliferation and invasion by activating the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin pathway and activating Wnt/β-catenin signal transduction. This article reviews the role and mechanism of BCAT in different diseases, as well as the recent biomedical research progress. This review aims to make a comprehensive summary of the role and mechanism of BCAT in different diseases and to provide new research ideas for the treatment, prognosis and prevention of certain diseases.
Collapse
Affiliation(s)
- Xiazhen Nong
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Caiyun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guang Ji, ; ; Tao Wu, ;
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guang Ji, ; ; Tao Wu, ;
| |
Collapse
|
23
|
Guo L, Chen S, Ou L, Li S, Ye ZN, Liu HF. Disrupted Alpha-Ketoglutarate Homeostasis: Understanding Kidney Diseases from the View of Metabolism and Beyond. Diabetes Metab Syndr Obes 2022; 15:1961-1974. [PMID: 35783031 PMCID: PMC9248815 DOI: 10.2147/dmso.s369090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Alpha-ketoglutarate (AKG) is a key intermediate of various metabolic pathways including tricarboxylic acid (TCA) cycle, anabolic and catabolic reactions of amino acids, and collagen biosynthesis. Meanwhile, AKG also participates in multiple signaling pathways related to cellular redox regulation, epigenetic processes, and inflammation response. Emerging evidence has shown that kidney diseases like diabetic nephropathy and renal ischemia/reperfusion injury are associated with metabolic disorders. In consistence with metabolic role of AKG, further metabolomics study demonstrated a dysregulated AKG level in kidney diseases. Intriguingly, earlier studies during the years of 1980s and 1990s indicated that AKG may benefit wound healing and surgery recovery. Recently, interests on AKG are arising again due to its protective roles on healthy ageing, which may shed light on developing novel therapeutic strategies against age-related diseases including renal diseases. This review will summarize the physiological and pathological properties of AKG, as well as the underlying molecular mechanisms, with a special emphasis on kidney diseases.
Collapse
Affiliation(s)
- Lijing Guo
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shihua Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Liping Ou
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shangmei Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Zhen-Nan Ye
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Correspondence: Zhen-Nan Ye; Hua-Feng Liu, Email ;
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| |
Collapse
|