1
|
Wang X, Zhao D, Zhao E, Ge Y, Cai F, Xi Y, Li J, Liu X, Zheng Z. Multiple roles of S100P in pan carcinoma: Biological functions and mechanisms (Review). Oncol Rep 2025; 53:62. [PMID: 40211698 PMCID: PMC12012437 DOI: 10.3892/or.2025.8895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/26/2025] [Indexed: 04/16/2025] Open
Abstract
This article examines the multifaceted roles of the S100P gene in pan‑cancer, with the aim of exploring its biological functions and related mechanisms in depth. S100P is a small calcium‑binding protein that recent studies have identified as playing a significant role in the occurrence and progression of various cancers. As research on cancer biomarkers advances, the relationship between S100P expression levels and cancer prognosis, metastasis and invasiveness has garnered increasing attention. However, the specific mechanisms underlying the role of S100P in different cancer types remain elusive and related research is still in the exploratory phase. Therefore, this review systematically summarizes the biological functions of S100P, clarifying its signaling pathways and regulatory mechanisms. This work provides new insights and strategies for targeted therapy and establishes a theoretical basis for subsequent clinical applications. Through this summary, the present review aims to enhance personalized treatment approaches for S100P‑related cancers and strengthen future explorations of S100P.
Collapse
Affiliation(s)
- Xinlong Wang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110000, P.R. China
| | - Dong Zhao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110000, P.R. China
| | - Ershu Zhao
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110000, P.R. China
| | - Yanan Ge
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110000, P.R. China
| | - Fei Cai
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110000, P.R. China
| | - Yidan Xi
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110000, P.R. China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Xuefei Liu
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110000, P.R. China
| | - Zhendong Zheng
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
2
|
Glushko T, Costello J, Chima R, McGettigan M, Kim R, Jeong D, Qayyum A. Molecular signatures of intrahepatic cholangiocarcinoma: role in targeted therapy selection. Eur J Radiol 2025; 187:112056. [PMID: 40222184 DOI: 10.1016/j.ejrad.2025.112056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/08/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025]
Abstract
Cholangiocarcinoma is a highly lethal disease with a 5-year overall survival rate of 7-20%. A minority of patients present with resectable disease, and relapse rates remain high. Emerging data from next generation sequencing analysis have identified various actionable mutations which drive the different disease courses opening door to precision medicine and targeted therapies. This review focuses on the clinical significance of genetic alterations as well as the role of systemic therapies, immunotherapy and targeted therapies for intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Tetiana Glushko
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States.
| | - James Costello
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| | - Ranjit Chima
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| | - Melissa McGettigan
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| | - Richard Kim
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| | - Daniel Jeong
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| | - Aliya Qayyum
- Moffitt Cancer Center, Department of Radiology, 2902 USF Magnolia Drive, Tampa, FL 33612, United States
| |
Collapse
|
3
|
Liao C, Zhang Y, Yang J, Wang S, Li Z, Chen S, Xie Y, Xu L, Peng S, Zeng X, Kuang M, Xiang B, Sun K, Zhao X. Single-Cell Transcriptomic Analysis Reveals an Aggressive Basal-Like Tumor Cell Subpopulation Associated With Poor Prognosis in Intrahepatic Cholangiocarcinoma. J Gastroenterol Hepatol 2025; 40:1263-1273. [PMID: 39993788 DOI: 10.1111/jgh.16915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND AND AIM Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer whose incidence is increasing globally. However, the high tumor heterogeneity of ICC restricts the efficacy of available systematic therapies. We aim to dissect the tumor heterogeneity of ICC utilizing high-resolution single-cell RNA sequencing to identify novel therapeutic targets. METHODS We performed single-cell RNA sequencing (scRNA-seq) of 26 tumor samples from 23 ICC patients and spatial transcriptomic sequencing of six tumor sections from six ICC patients. Bulk RNA-seq data from two public datasets were used for validation. Additionally, immunohistochemical staining and multiplex immunofluorescence staining were conducted to validate the infiltration and distribution of cells in the tumor microenvironment. RESULTS We discovered that malignant cells in ICC samples exhibited a remarkably high degree of tumor heterogeneity. We identified a basal-like tumor cell subpopulation characterized by the expression of basal epithelial related genes including KRT5, KRT6A, and KRT17. The basal-like tumor subpopulation was characterized by activation of MET signaling and extracellular matrix organization associated with tumor invasion and correlated with poor prognosis. Cell-cell communication analysis further showed significant HGF-MET interaction between inflammatory cancer-associated fibroblasts (iCAFs) and basal-like tumor cells. We found that iCAFs were the major source of HGF in tumor environment and contributed to the basal-like phenotype formation of tumor cells by HGF-MET axis. CONCLUSIONS We identified an aggressive basal-like tumor cell subpopulation, which correlated with poor prognosis in ICC. The MET pathway contributes to the aggressiveness of basal-like tumor cells and serves as a novel therapeutic target for ICC.
Collapse
Affiliation(s)
- Changyi Liao
- Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuting Zhang
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Yang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuo Wang
- Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhijuan Li
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuling Chen
- Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lixia Xu
- Cancer Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sui Peng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuezhen Zeng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guang xi, China
| | - Kaiyu Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Zhao
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Pirozzi A, Hoyek C, Okano N, Abidoye O, Rimassa L, Sonbol MB, Uson Junior PLS, Bekaii-Saab T, Borad MJ. Pharmacologic features, clinical applications, and drug safety evaluation of futibatinib in the treatment of biliary tract cancer (BTC). Expert Opin Drug Saf 2025:1-8. [PMID: 40307985 DOI: 10.1080/14740338.2025.2495178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Futibatinib is a small, potent, covalent, irreversible fibroblast growth factor receptor (FGFR) 1-4 inhibitor that has been added as a new standard of care for previously treated unresectable and/or advanced FGFR2 fusion/rearrangement-positive BTC. FGFR2 fusions/rearrangements play a key role in BTC survival, proliferation, invasion, and development of distant metastasis. The inhibition of this pathway is an important target in the treatment of BTC. AREAS COVERED The article covers the development of futibatinib for the treatment of refractory unresectable/advanced BTC, its mechanism of action, and key pharmacodynamic/pharmacokinetic data with a focus on the safety profile. Data are based on published clinical trials, pooled analysis, and retrospective studies indexed in PubMed (2010-2024). EXPERT OPINION Futibatinib is an FDA and EMA approved FGFR2 inhibitor for the treatment of patients with refractory BTC with FGFR2 fusions/rearrangements. Ongoing drug development strategies are centered on designing new FGFR2 fusion inhibitors able to overcome on-target and off-target resistances coupled with a high target selectivity to spare the most common treatment-related adverse events (hyperphosphatemia, stomatitis, alopecia, nail toxicity, skin reactions, eye toxicity).
Collapse
Affiliation(s)
- Angelo Pirozzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | - Celine Hoyek
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | - Naohiro Okano
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Oluseyi Abidoye
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Mohamad Bassam Sonbol
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | | | - Tanios Bekaii-Saab
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
| | - Mitesh J Borad
- Division of Hematology and Medical Oncology, Mayo Clinic in Arizona, Phoenix, AZ, USA
| |
Collapse
|
5
|
Liu SV, Nagasaka M, Atz J, Solca F, Müllauer L. Oncogenic gene fusions in cancer: from biology to therapy. Signal Transduct Target Ther 2025; 10:111. [PMID: 40223139 PMCID: PMC11994825 DOI: 10.1038/s41392-025-02161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/06/2024] [Accepted: 01/16/2025] [Indexed: 04/15/2025] Open
Abstract
Oncogenic gene fusions occur across a broad range of cancers and are a defining feature of some cancer types. Cancers driven by gene fusion products tend to respond well to targeted therapies, where available; thus, detection of potentially targetable oncogenic fusions is necessary to select optimal treatment. Detection methods include non-sequencing methods, such as fluorescence in situ hybridization and immunohistochemistry, and sequencing methods, such as DNA- and RNA-based next-generation sequencing (NGS). While NGS is an efficient way to analyze multiple genes of interest at once, economic and technical factors may preclude its use in routine care globally, despite several guideline recommendations. The aim of this review is to present a summary of oncogenic gene fusions, with a focus on fusions that affect tyrosine kinase signaling, and to highlight the importance of testing for oncogenic fusions. We present an overview of the identification of oncogenic gene fusions and therapies approved for the treatment of cancers harboring gene fusions, and summarize data regarding treating fusion-positive cancers with no current targeted therapies and clinical studies of fusion-positive cancers. Although treatment options may be limited for patients with rare alterations, healthcare professionals should identify patients most likely to benefit from oncogenic gene fusion testing and initiate the appropriate targeted therapy to achieve optimal treatment outcomes.
Collapse
Affiliation(s)
- Stephen V Liu
- Division of Hematology and Oncology, Georgetown University, Washington, DC, USA.
| | - Misako Nagasaka
- Division of Hematology Oncology, Department of Medicine, University of California Irvine School of Medicine, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, Orange, CA, USA
| | - Judith Atz
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co.KG, Vienna, Austria
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
6
|
Zhang B, Wang XY, Yang LY, Shen XT, Zhu Y, Zhu WW, Fan J, Lu L, Chen JH. Genetic predictors of postoperative recurrence in node-negative intrahepatic cholangiocarcinoma. Updates Surg 2025:10.1007/s13304-025-02189-y. [PMID: 40175696 DOI: 10.1007/s13304-025-02189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Recent studies have revealed the prognostic value of genetic alterations in intrahepatic cholangiocarcinoma (ICC). However, the influence of individual mutations on postoperative recurrence has not been comprehensively evaluated, especially for lymph node-negative cases. A total of 589 localized ICCs with clinically or pathologically negative lymph node (cN0M0 or pN0M0) from 3 independent cohorts were included. The impact of clinicopathological and mutational parameters on recurrence-free survival (RFS) and post-recurrence survival (PRS) was analyzed using the Cox proportional hazards model. The effect of prognostic mutations on RFS and PRS was estimated by Kaplan-Meier analysis. Extremes of survivorship analysis was used to reveal distinct genomic profiles between cases with very early recurrence (VER) and long-term no recurrence (LNR). Among the recurrent mutations, only TP53 and KRAS showed significant association with RFS in both of the two screening cohorts. In the validation cohort, TP53 and KRAS mutations were both independent predictors for shorter RFS. Compared with wild-type patients, TP53 and KRAS mutations were more frequently observed in VER group than in LNR group, and were more enriched in patients with intrahepatic and extra-hepatic recurrence (IER). Furthermore, TP53 mutation was significantly associated with worse survival and lower probability of repeated hepatectomy in patients suffered from recurrence. TP53 and KRAS mutations were important genetic predictors that correlated with earlier and more aggressive recurrence in node-negative ICC patients after surgery. Effective peri-operative therapies for these high-risk tumor biology are needed to improve the clinical outcome for related patients.
Collapse
Affiliation(s)
- Bo Zhang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiang-Yu Wang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Lu-Yu Yang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Xiao-Tian Shen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Ying Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Wen-Wei Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Jie Fan
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Lu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China.
| | - Jin-Hong Chen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Putatunda V, Jusakul A, Roberts L, Wang XW. Genetic, Epigenetic, and Microenvironmental Drivers of Cholangiocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:362-377. [PMID: 39532242 PMCID: PMC11841490 DOI: 10.1016/j.ajpath.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Cholangiocarcinoma (CCA) is an aggressive and heterogeneous malignancy of the biliary tree that carries a poor prognosis. Multiple features at the genetic, epigenetic, and microenvironmental levels have been identified to better characterize CCA carcinogenesis. Genetic alterations, such as mutations in IDH1/2, BAP1, ARID1A, and FGFR2, play significant roles in CCA pathogenesis, with variations across different subtypes, races/ethnicities, and causes. Epigenetic dysregulation, characterized by DNA methylation and histone modifications, further contributes to the complexity of CCA, influencing gene expression and tumor behavior. Furthermore, CCA cells exchange autocrine and paracrine signals with other cancer cells and the infiltrating cell types that populate the microenvironment, including cancer-associated fibroblasts and tumor-associated macrophages, further contributing to an immunosuppressive niche that supports tumorigenesis. This review explores the multifaceted genetic, epigenetic, and microenvironmental drivers of CCA. Understanding these diverse mechanisms is essential for characterizing the complex pathways of CCA carcinogenesis and developing targeted therapies to improve patient outcomes.
Collapse
Affiliation(s)
- Vijay Putatunda
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand; Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Lewis Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Xin Wei Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland; Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
8
|
Rimassa L, Khan S, Groot Koerkamp B, Roessler S, Andersen JB, Raggi C, Lleo A, Nault JC, Calderaro J, Gabbi C, Kather JN, Banales JM, Bargellini I, Morement H, Krawczyk M, Farazi PA, Carpino G, Avila MA, Saborowski A, Cardinale V, Braconi C, Macias RI. Mapping the landscape of biliary tract cancer in Europe: challenges and controversies. THE LANCET REGIONAL HEALTH. EUROPE 2025; 50:101171. [PMID: 40093398 PMCID: PMC11910794 DOI: 10.1016/j.lanepe.2024.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 03/19/2025]
Abstract
Biliary tract cancer (BTC) is becoming more common worldwide, with geographic differences in incidence and risk factors. In Europe, BTC may be associated with primary sclerosing cholangitis, lithiasis, and liver cirrhosis, but is more frequently observed as a sporadic disease. BTC increasingly affects patients under 60 years, resulting in a significant social and economic burden. Early diagnosis remains challenging due to vague symptoms in 50% of patients with BTC, and lack of specific biomarkers, resulting in late presentation and poor prognosis. The identification of patients at increased risk and reliable biomarkers require collaborative efforts to make faster progress. This Series paper highlights the disparities in access to diagnostic tools and multidisciplinary care in Europe, particularly in economically disadvantaged regions, while identifying priority areas for improvement. Addressing these inequities requires harmonised guidelines, accelerated pathways to curative treatments, and improved awareness among healthcare professionals and the public. Multidisciplinary teams (MDTs) are crucial for the diagnosis of BTC and for improving patient outcomes, yet inconsistencies exist in their implementation not only between different countries, but also between different centres within a country. Collaboration and standardisation of diagnostic and treatment protocols across Europe are essential to effectively address the management of patients with BTC.
Collapse
Affiliation(s)
- Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via A. Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Shahid Khan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Liver Unit, St Mary's Hospital Campus, South Wharf Road, W2 1NY, London, UK
| | - Bas Groot Koerkamp
- Department of Surgery, Erasmus MC Cancer Institute, Doctor Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Stephanie Roessler
- Heidelberg University, Medical Faculty, Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Jesper B. Andersen
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK-2200, Denmark
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Cubo Centro Polivalente 2, Viale Pieraccini 6, 50139, Florence, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
- Internal Medicine and Hepatology Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Jean-Charles Nault
- Cordeliers Research Center, Sorbonne University, Inserm, Paris Cité University, “Functional Genomics of Solid Tumors” Team, Ligue Nationale Contre le Cancer Accredited Team, Labex OncoImmunology, 16 rue de l'École de Médecine, 75006, Paris, France
- Liver Unit, Avicenne Hospital, APHP, University Sorbonne Paris Nord, 125 Avenue de Stalingrad, 93000, Bobigny, France
| | - Julien Calderaro
- Université Paris Est Créteil, INSERM, IMRB, 61 Av. du Général de Gaulle, 94000, Créteil, France
- Department of Pathology, Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, 1 Rue Gustave Eiffel, 94010, Créteil, France
- MINT-Hep, Mondor Integrative Hepatology, 1 Rue Gustave Eiffel, 94010, Créteil, France
| | - Chiara Gabbi
- Humanitas Medical Care, Via Domodossola 9/a, 20145, Milan, Italy
| | - Jakob N. Kather
- Else Kroener Fresenius Center for Digital Health, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, 01307, Dresden, Germany
- Department of Medicine I, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, 01307, Dresden, Germany
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute – Donostia University Hospital, CIBERehd, Paseo Dr. Begiristain, s/n, 20014, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Euskadi Pl., 5, Abando, 48009, Bilbao, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena, s/n, 48940, Leioa, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Calle Irunlarrea 1, 31008, Pamplona, Spain
| | - Irene Bargellini
- Department of Surgical Sciences, University of Turin, Corso Dogliotti 14, 10126, Turin, Italy
- Division of Diagnostic and Interventional Radiology, Candiolo Cancer Institute FPO-IRCCS, Strada Provinciale 142, 10060, Candiolo (TO), Italy
| | - Helen Morement
- AMMF – The Cholangiocarcinoma Charity, Enterprise House, Bassingbourn Road, Stansted, CM24 1QW, Essex, UK
| | - Marcin Krawczyk
- Department of Gastroenterology, Hepatology and Transplant Medicine, Medical Faculty, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Laboratory of Metabolic Liver Diseases, Medical University of Warsaw, Banacha Street 1B, 02-097, Warsaw, Poland
| | - Paraskevi A. Farazi
- School of Medicine, European University Cyprus, 6 Diogenes Street, 2404, Engomi, Nicosia, Cyprus
| | - Guido Carpino
- Department of Anatomical, Histological, Legal Medicine and Orthopedic Sciences, Sapienza University of Rome, Via Alfonso Borelli 50, 00161, Rome, Italy
| | - Matias A. Avila
- Hepatology Laboratory, Solid Tumors Program, CIMA, IdiSNA, CIBERehd, University of Navarra, Calle Irunlarrea 1, 31008, Pamplona, Spain
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, Sapienza University of Rome, Via Alfonso Borelli 50, 00161, Rome, Italy
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Switchback rd, G61 1QH, Glasgow, UK
- Beatson West of Scotland Cancer Centre, 1053 Great Western rd, G12 0YN, Glasgow, UK
- CRUK Scotland Cancer Centre, G61 1BD, Glasgow, UK
| | - Rocio I.R. Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, CIBERehd, Campus M. Unamuno s/n, 37007, Salamanca, Spain
| |
Collapse
|
9
|
Sueca-Comes M, Rusu EC, Ashworth JC, Collier P, Probert C, Ritchie A, Meakin M, Mongan NP, Egbuniwe IU, Andersen JB, Bates DO, Grabowska AM. The role of mesenchymal cells in cholangiocarcinoma. Dis Model Mech 2024; 17:dmm050716. [PMID: 39492622 DOI: 10.1242/dmm.050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024] Open
Abstract
The tumour microenvironment (TME) significantly influences tumour formation and progression through dynamic interactions. Cholangiocarcinoma (CCA), a highly desmoplastic tumour, lacks early diagnostic biomarkers and has limited effective treatments owing to incomplete understanding of its molecular pathogenesis. Investigating the role of the TME in CCA progression could lead to better therapies. RNA sequencing was performed on seven CCA patient-derived xenografts (PDXs) and their corresponding patient samples. Differential expression analysis was conducted, and Qiagen Ingenuity Pathway Analysis was used to predict dysregulated pathways and upstream regulators. PDX- and cell line-derived spheroids, with and without immortalised mesenchymal stem cells, were grown and analysed for morphology, growth and viability. Histological analysis confirmed biliary phenotypes. RNA sequencing indicated upregulation of extracellular matrix-receptor interaction and PI3K-AKT pathways in the presence of mesenchymal cells, with several genes linked to poor survival. Mesenchymal cells restored the activity of inhibited cancer-associated kinases. Thus, adding mesenchymal cells to CCA spheroid models restored key paracrine signalling pathways lost in PDXs, enhancing tumour growth and viability. These findings highlight the importance of including stromal components in cancer models to improve pre-clinical studies.
Collapse
Affiliation(s)
- Mireia Sueca-Comes
- Translational Medical Science, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Elena Cristina Rusu
- Institute of Integrative Systems Biology (I2Sysbio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), 46980 Valencia, Spain
| | - Jennifer C Ashworth
- Translational Medical Science, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Pamela Collier
- Translational Medical Science, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Catherine Probert
- Translational Medical Science, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alison Ritchie
- Translational Medical Science, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Marian Meakin
- Translational Medical Science, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Nigel P Mongan
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire LE12 5RD, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Isioma U Egbuniwe
- Translational Medical Science, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jesper Bøje Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - David O Bates
- Translational Medical Science, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Anna M Grabowska
- Translational Medical Science, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
10
|
Wagh H, Bhattacharya S. Targeted therapy with polymeric nanoparticles in PBRM1-mutant biliary tract cancers: Harnessing DNA damage repair mechanisms. Crit Rev Oncol Hematol 2024; 204:104505. [PMID: 39255911 DOI: 10.1016/j.critrevonc.2024.104505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Biliary tract cancers (BTCs) are aggressive malignancies with a dismal prognosis that require intensive targeted therapy. Approximately 10 % of BTCs have PBRM1 mutations, which impede DNA damage repair pathways and make cancer cells more susceptible to DNA-damaging chemicals. This review focus on development of poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles targeting delivery system to selectively deliver chemotherapy into PBRM1-deficient BTC cells. These nanoparticles improve therapy efficacy by increasing medication targeting and retention at tumour locations. In preclinical studies, pharmacokinetic profile of this nanoparticle was encouraging and supported its ability to achieve extended circulation time with high drug accumulation in tumor. The review also highlights potential of Pou3F3:I54N to expedite bioassays for patient selection in BTC targeted therapies.
Collapse
Affiliation(s)
- Hrushikesh Wagh
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India.
| |
Collapse
|
11
|
Zhou J, Yu H, Zeng H, Shen Q, Wang X, Xia Q. Intrahepatic cholangiocarcinoma with FGFR alterations: A series of Chinese cases with an emphasis on their clinicopathologic and genetic features. Dig Liver Dis 2024; 56:2125-2132. [PMID: 38734568 DOI: 10.1016/j.dld.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/24/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Intrahepatic Cholangiocarcinoma (iCCA) with FGFR alterations is relatively rare, and its identification is important in the era of targeted therapy. We collected a large series of FGFR-altered cases in the Chinese population and characterized their clinicopathological and genetic features. Among the 18 FGFR-altered cases out of 260 iCCAs, 10 were males and 8 were females, ranging in age from 35 to 74 years (mean, 57.3 years; median, 58 years). Pathologically, they include 9 cases of large duct (LD, 50 %) and small duct (SD, 50 %) types each. All of them (100 %, 18/18) showed microsatellite stable (MSS) and low tumor mutation burden (TMB). Genetically, FGFR alterations involved FGFR1 (20 %), FGFR2 (70 %), and FGFR3 (10 %), with FGFR2 rearrangement accounting for the most (11/18). The most frequently altered genes/biological processes were development/proliferation-related pathways (44 %), chromatin organization (20 %), and tumor suppressors (32 %). Our study further revealed the clinicopathological and genetic features of FGFR-altered iCCA and demonstrated that its occurrence may show regional or ethnic variability and is less common in the Chinese population. A significant number of LD-type iCCA cases also have FGFR alterations rather than the SD type.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Pathology, Zigong Fourth People's Hospital, Sichuan Province, Zigong, 643099, China.
| | - Haoran Yu
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China
| | - Hong Zeng
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, China
| | - Qin Shen
- Nanjing Hospital of Traditional Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, China
| | - Xuewen Wang
- Department of Hepatobiliary Surgery, Zigong Fourth People's Hospital, Sichuan Province, Zigong, 643099, China
| | - Qinxin Xia
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, China.
| |
Collapse
|
12
|
Wang S, Chao J, Wang H, Li S, Wang Y, Zhu C, Zhang N, Piao M, Yang X, Liu K, Xun Z, Sang X, Yang X, Duan W, Zhao H. Effectiveness, safety, and biomarker analysis of lenvatinib plus toripalimab as chemo-free therapy in advanced intrahepatic cholangiocarcinoma: a real-world study. Cancer Immunol Immunother 2024; 73:249. [PMID: 39358645 PMCID: PMC11447168 DOI: 10.1007/s00262-024-03841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Treatment options for advanced intrahepatic cholangiocarcinoma (ICC) are currently limited. Chemo-containing regimens are the mainstay treatments but associated with notable toxicity, poor tolerance, and reduced compliance, necessitating exploration of alternative therapies. Lenvatinib plus PD-1 inhibitors has shown substantial clinical activity in preliminary studies. This study aimed to assess the effectiveness and safety of lenvatinib plus toripalimab (a novel PD-1 antibody) as chemo-free therapy in advanced ICC. METHODS This retrospective study included consecutive advanced ICC patients receiving lenvatinib plus toripalimab between February 2019 and December 2023. The main outcomes were overall survival (OS), progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), and safety. Prognostic factors and exploratory analyses for genetic alternations were also conducted. RESULTS A total of 78 patients were included, with a median follow-up of 25.9 months. Median OS and PFS were 11.3 (95% CI: 9.5-13.1) and 5.4 (95% CI: 3.8-7.0) months, respectively. ORR was 19.2% and DCR was 75.6%. The incidence of grade 3 or 4 adverse events (AEs) was 50.0%, with no grade 5 AEs reported. Patients with normal baseline CA19-9 levels exhibited a higher ORR (p = 0.011), longer PFS (11.5 versus 4.6 months; HR 0.47; p=0.005), and OS (21.0 versus 9.7 months; HR 0.43; p=0.003). The presence of IDH1 mutations correlated with increased ORR (60.0% versus 8.9%, p=0.016). CONCLUSION Lenvatinib plus toripalimab represents an effective and well-tolerated chemo-free therapeutic option for advanced ICC. Baseline CA19-9 levels and IDH1 mutations may serve as predictive treatment-related biomarkers.
Collapse
Affiliation(s)
- Shanshan Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| | - Jiashuo Chao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| | - Hao Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| | - Shuofeng Li
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| | - Yunchao Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
- Organ Transplantation Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Chengpei Zhu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
- Department of General Surgery Center, Beijing Youan Hospital, Clinical Center for Liver Cancer, Capital Medical University, Beijing, China
| | - Nan Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| | - Mingjian Piao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| | - Xu Yang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| | - Kai Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| | - Ziyu Xun
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| | - Xinting Sang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| | - Xiaobo Yang
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China.
| | - Weidong Duan
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing, China.
| | - Haitao Zhao
- State Key Laboratory of Complex Severe and Rare Diseases, Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China.
| |
Collapse
|
13
|
Deiana C, Ricci C, Vahabi M, Ali M, Brandi G, Giovannetti E. Advances in target drugs and immunotherapy for biliary tract cancer. Expert Rev Gastroenterol Hepatol 2024; 18:605-630. [PMID: 39544174 DOI: 10.1080/17474124.2024.2416230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION After years of treatment stagnation in biliary tract cancers (BTC), there has been a notable shift with the emergence of targeted therapies and immunotherapy, leading to substantial progress in tackling this aggressive disease. AREAS COVERED We provide a comprehensive overview of the target therapies that are already part of the treatment algorithm for BTC, such as FGFR, IDH, and HER2 inhibitors. Additionally, we delve into some less known targets that are being explored, such as KRAS proto-oncogene, MAPK cascade, PI3K/AKT/mTOR pathway and novel molecules directed against P53, claudin, histones, and mitochondrial metabolism. Furthermore, we discuss agnostic drugs and analyze the efficacy data available for BTC specifically. We also examine the expanding world of immunotherapy, with an eye on predictive factors of response for immune checkpoint inhibitors, and on novel immune drugs such as chimeric antigen receptor (CAR)-T and vaccines. EXPERT OPINION In the expert opinion, we discuss the problem of the scarcity of patients eligible for target therapies and how can clinical trials be designed to overcome this challenge. We also summarize the most promising trials that have the potential to change clinical practice both for immunotherapies and target drugs.
Collapse
Affiliation(s)
- Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Chiara Ricci
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mahrou Vahabi
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Mahsoem Ali
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC) Start-Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| |
Collapse
|
14
|
Yang L, Niu K, Wang J, Shen W, Jiang R, Liu L, Song W, Wang X, Zhang X, Zhang R, Wei D, Fan M, Jia L, Tao K. Nucleolin lactylation contributes to intrahepatic cholangiocarcinoma pathogenesis via RNA splicing regulation of MADD. J Hepatol 2024; 81:651-666. [PMID: 38679071 DOI: 10.1016/j.jhep.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/03/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND & AIMS Intrahepatic cholangiocarcinoma (iCCA) is a fatal malignancy of the biliary system. The lack of a detailed understanding of oncogenic signaling or global gene expression alterations has impeded clinical iCCA diagnosis and therapy. The role of protein lactylation, a newly unraveled post-translational modification that orchestrates gene expression, remains largely elusive in the pathogenesis of iCCA. METHODS Proteomics analysis of clinical iCCA specimens and adjacent tissues was performed to screen for proteins aberrantly lactylated in iCCA. Mass spectrometry, macromolecule interaction and cell behavioral studies were employed to identify the specific lactylation sites on the candidate protein(s) and to decipher the downstream mechanisms responsible for iCCA development, which were subsequently validated using a xenograft tumor model and clinical samples. RESULTS Nucleolin (NCL), the most abundant RNA-binding protein in the nucleolus, was identified as a functional lactylation target that correlates with iCCA occurrence and progression. NCL was lactylated predominantly at lysine 477 by the acyltransferase P300 in response to a hyperactivity of glycolysis, and promoted the proliferation and invasion of iCCA cells. Mechanistically, lactylated NCL bound to the primary transcript of MAP kinase-activating death domain protein (MADD) and led to efficient translation of MADD by circumventing alternative splicing that generates a premature termination codon. NCL lactylation, MADD translation and subsequent ERK activation promoted xenograft tumor growth and were associated with overall survival in patients with iCCA. CONCLUSION NCL is lactylated to upregulate MADD through an RNA splicing-dependent mechanism, which potentiates iCCA pathogenesis via the MAPK pathway. Our findings reveal a novel link between metabolic reprogramming and canonical tumor-initiating events, and uncover biomarkers that can potentially be used for prognostic evaluation or targeted treatment of iCCA. IMPACT AND IMPLICATIONS Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive liver malignancy with largely uncharacterized pathogenetic mechanisms. Herein, we demonstrated that glycolysis promotes P300-catalyzed lactylation of nucleolin, which upregulates MAP kinase-activating death domain protein (MADD) through precise mRNA splicing and activates ERK signaling to drive iCCA development. These findings unravel a novel link between metabolic rewiring and canonical oncogenic pathways, and reveal new biomarkers for prognostic assessment and targeting of clinical iCCA.
Collapse
Affiliation(s)
- Long Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kunwei Niu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianlin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weiwei Shen
- Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Rui Jiang
- Department of Anesthesiology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lu Liu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xudan Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ruohan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dan Wei
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ming Fan
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lintao Jia
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, China.
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
15
|
Sun X, Zhao X, Wang S, Liu Q, Wei W, Xu J, Wang H, Yang W. The pathological significance and potential mechanism of ACLY in cholangiocarcinoma. Front Immunol 2024; 15:1477267. [PMID: 39399493 PMCID: PMC11466796 DOI: 10.3389/fimmu.2024.1477267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Background and aim Cholangiocarcinoma (CCA) is a rare cancer, yet its incidence and mortality rates have been steadily increasing globally over the past few decades. Currently, there are no effective targeted treatment strategies available for patients. ACLY (ATP Citrate Lyase), a key enzyme in de novo lipogenesis, is aberrantly expressed in several tumors and is associated with malignant progression. However, its role and mechanisms in CCA have not yet been elucidated. Methods The expression of ACLY in CCA was assessed using transcriptomic profiles and tissue microarrays. Kaplan-Meier curves were employed to evaluate the prognostic significance of ACLY in CCA. Functional enrichment analysis was used to explore the potential mechanisms of ACLY in CCA. A series of assays were conducted to examine the effects of ACLY on the proliferation and migration of CCA cells. Ferroptosis inducers and inhibitors, along with lipid peroxide probes and MDA assay kits, were utilized to explore the role of ACLY in ferroptosis within CCA. Additionally, lipid-depleted fetal bovine serum and several fatty acids were used to evaluate the impact of fatty acids on ferroptosis induced by ACLY inhibition. Correlation analyses were performed to elucidate the relationship between ACLY and tumor stemness as well as tumor microenvironment. Results The expression of ACLY was found to be higher in CCA tissues compared to adjacent normal tissues. Patients with elevated ACLY expression demonstrated poorer overall survival outcomes. ACLY were closed associated with fatty acid metabolism and tumor-initiating cells. Knockdown of ACLY did not significantly impact the proliferation and migration of CCA cells. However, ACLY inhibition led to increased accumulation of lipid peroxides and enhanced sensitivity of CCA cells to ferroptosis inducers. Polyunsaturated fatty acids were observed to inhibit the proliferation of ACLY-knockdown cells; nonetheless, this inhibitory effect was diminished when the cells were cultured in medium supplemented with lipid-depleted fetal bovine serum. Additionally, ACLY expression was negatively correlated with immune cell infiltration and immune scores in CCA. Conclusion ACLY promotes ferroptosis by disrupting the balance of saturated and unsaturated fatty acids. ACLY may therefore serve as a potential diagnostic and therapeutic target for CCA.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaofang Zhao
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Senyan Wang
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Liu
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjuan Wei
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Xu
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Wang
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wen Yang
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
16
|
Porreca V, Barbagallo C, Corbella E, Peres M, Stella M, Mignogna G, Maras B, Ragusa M, Mancone C. Unveil Intrahepatic Cholangiocarcinoma Heterogeneity through the Lens of Omics and Multi-Omics Approaches. Cancers (Basel) 2024; 16:2889. [PMID: 39199659 PMCID: PMC11352949 DOI: 10.3390/cancers16162889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is recognized worldwide as the second leading cause of morbidity and mortality among primary liver cancers, showing a continuously increasing incidence rate in recent years. iCCA aggressiveness is revealed through its rapid and silent intrahepatic expansion and spread through the lymphatic system leading to late diagnosis and poor prognoses. Multi-omics studies have aggregated information derived from single-omics data, providing a more comprehensive understanding of the phenomena being studied. These approaches are gradually becoming powerful tools for investigating the intricate pathobiology of iCCA, facilitating the correlation between molecular signature and phenotypic manifestation. Consequently, preliminary stratifications of iCCA patients have been proposed according to their "omics" features opening the possibility of identifying potential biomarkers for early diagnosis and developing new therapies based on personalized medicine (PM). The focus of this review is to provide new and advanced insight into the molecular pathobiology of the iCCA, starting from single- to the latest multi-omics approaches, paving the way for translating new basic research into therapeutic practices.
Collapse
Affiliation(s)
- Veronica Porreca
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Eleonora Corbella
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Marco Peres
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| | - Michele Stella
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Giuseppina Mignogna
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Bruno Maras
- Department of Biochemistry Science, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (B.M.)
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (C.B.); (M.S.); (M.R.)
| | - Carmine Mancone
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.C.); (M.P.)
| |
Collapse
|
17
|
Xu S, Cao L, Chen R, Ye C, Li Q, Jiang Q, Yan F, Wan M, Zhang X, Ruan J. Differential isocitrate dehydrogenase 1 and isocitrate dehydrogenase 2 mutation-related landscape in intrahepatic cholangiocarcinoma. Oncologist 2024; 29:e1061-e1072. [PMID: 38842680 PMCID: PMC11299938 DOI: 10.1093/oncolo/oyae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Patients with intrahepatic cholangiocarcinoma (ICC) are prone to recurrence and poor survival. Targeted therapy related to isocitrate dehydrogenase (IDH) is an extremely important treatment. IDH1 and IDH2 mutations are generally thought to have similar effects on the tumor landscape. However, it is doubtful whether these 2 mutations have exactly the same effects on tumor cells and the tumor microenvironment. METHODS All collected tumor samples were subjected to simultaneous whole-exon sequencing and proteome sequencing. RESULTS IDH1 mutations accounted for 12.2%, and IDH2 mutations accounted for 5.5%, all missense mutations. Tumors with IDH mutations had lower proportions of KRAS and TP53 mutations. Mutated genes were obviously enriched in the kinase pathway in the tumors with IDH2 mutations. The signaling pathways were mainly enriched in the activation of cellular metabolic activities and an increase of inhibitory immune cells in the tumors with IDH mutations. Moreover, tumors had unique enrichment in DNA repair in IDH1 mutants and secretion of biological molecules in IDH2 mutants. Inhibitory immune cells might be more prominent in IDH2 mutants, and the expression of immune checkpoints PVR and HLA-DQB1 was more prominent in IDH1 mutants. IDH mutants were more related to metabolism-related and inflammation-immune response clusters, and some belonged to the DNA replication and repair cluster. CONCLUSIONS These results revealed the differential IDH1 and IDH2 mutation-related landscapes, and we have provided an important reference database to guide ICC treatment.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, People’s Republic of China
| | - Ruyin Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Chanqi Ye
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Qiong Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Qi Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Feifei Yan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Mingyu Wan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, Hangzhou, People’s Republic of China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
18
|
Jayakrishnan T, Baca Y, Xiu J, Patel M, Weinberg BA, Lou E, Datta J, Khushman M, Gulhati P, Goel S, Biachi de Castria T, Florou V, Nair KG, Kamath SD, Khorana AA. Molecular Differences With Therapeutic Implications in Early-Onset Compared With Average-Onset Biliary Tract Cancers. JCO Precis Oncol 2024; 8:e2400138. [PMID: 39102632 DOI: 10.1200/po.24.00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/04/2024] [Accepted: 06/13/2024] [Indexed: 08/07/2024] Open
Abstract
PURPOSE Early-onset biliary tract cancer (eoBTC) is among the fast-growing subset of early-onset cancers, yet little is known about its biology. We sought to identify novel molecular characteristics of eoBTC in relation to average-onset BTC (aoBTC) using a real-world multiomics data set. METHODS The study comprised patients with BTC whose tumors underwent molecular analyses at Caris Life Sciences and were categorized by age (<50 years for eoBTC, ≥50 years for aoBTC). P values were adjusted for multiple testing and considered significant at Q < 0.05 (molecular comparisons) or Q < 0.25 (Gene Set Enrichment Analysis [GSEA]). Insurance claims data were used for survival analysis. RESULTS The study included 5,587 patients with BTC (453 eoBTC, median age = 44 years and 5,134 aoBTC, median age = 68 years). FGFR2 fusion (15.7% in eoBTC v 5.9% in aoBTC) and NIPBL fusion (1.1% v 0%) were significantly more prevalent in eoBTC (both Q < 0.001). The interferon gamma-IFG score (fold change [FC], 1.1; Q = 0.01) and T-cell inflammation score (FC, 17.3; Q = 0.03) were significantly higher in aoBTC. On GSEA, angiogenesis was enriched in eoBTC (normalized enrichment score [NES] = 1.51; Q = 0.16), whereas IFG (NES = -1.58; Q = 0.06) and inflammatory response (NES = -1.46; Q = 0.18) were enriched in aoBTC. The median overall survival (OS) was 16.5 (eoBTC) versus 13.3 months (aoBTC), hazard ratio = 0.86, P = .004. The median OS by FGFR2 fusion (with fusion v without) was 21.7 versus 15.0 months (P = .47) for eoBTC and 18.6 versus 12.2 months (P < .001) for aoBTC. CONCLUSION We identified crucial differences including higher prevalence of FGFR2 fusions in eoBTC and variations in immunotherapy-related markers. Better outcomes in eoBTC were affected by the FGFR2 fusion status. Our findings underscore the need for ensuring access to next-generation sequencing testing, including prompt identification of actionable targets.
Collapse
Affiliation(s)
- Thejus Jayakrishnan
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Mehrie Patel
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Benjamin A Weinberg
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Emil Lou
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN
| | - Jashodeep Datta
- University of Miami-Sylvester Comprehensive Cancer Center, Miami, FL
| | - Moh'd Khushman
- Siteman Cancer Center, Washington University in St Louis, St Louis, MO
| | - Pat Gulhati
- Department of Medical Oncology, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Sanjay Goel
- Department of Medical Oncology, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | - Tiago Biachi de Castria
- Moffitt Cancer Center, Tampa, FL
- Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Vaia Florou
- Huntsman Cancer Institute, University of Utah Health, Salt Lake City, UT
| | - Kanika G Nair
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Case Comprehensive Cancer Center, Cleveland, OH
| | - Suneel D Kamath
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Case Comprehensive Cancer Center, Cleveland, OH
| | - Alok A Khorana
- Department of Hematology-Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
- Case Comprehensive Cancer Center, Cleveland, OH
| |
Collapse
|
19
|
Alaimo L, Boggio S, Catalano G, Calderone G, Poletto E, De Bellis M, Campagnaro T, Pedrazzani C, Conci S, Ruzzenente A. Multi-Omics Classification of Intrahepatic Cholangiocarcinoma: A Systematic Review and Meta-Analysis. Cancers (Basel) 2024; 16:2596. [PMID: 39061233 PMCID: PMC11275091 DOI: 10.3390/cancers16142596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a heterogeneous disease characterized by a dismal prognosis. Various attempts have been made to classify ICC subtypes with varying prognoses, but a consensus has yet to be reached. This systematic review aims to gather relevant data on the multi-omics-based ICC classification. The PubMed, Embase, and Cochrane databases were searched for terms related to ICC and multi-omics analysis. Studies that identified multi-omics-derived ICC subtypes and investigated clinicopathological predictors of long-term outcomes were included. Nine studies, which included 910 patients, were considered eligible. Mean 3- and 5-year overall survival were 25.7% and 19.6%, respectively, for the multi-omics subtypes related to poor prognosis, while they were 70.2% and 63.3%, respectively, for the subtypes linked to a better prognosis. Several negative prognostic factors were identified, such as genes' expression profile promoting inflammation, mutations in the KRAS gene, advanced tumor stage, and elevated levels of oncological markers. The subtype with worse clinicopathological characteristics was associated with worse survival (Ref.: good prognosis subtype; pooled hazard ratio 2.06, 95%CI 1.67-2.53). Several attempts have been made to classify molecular ICC subtypes, but they have yielded heterogeneous results and need a clear clinical definition. More efforts are required to build a comprehensive classification system that includes both molecular and clinical characteristics before implementation in clinical practice to facilitate decision-making and select patients who may benefit the most from comprehensive molecular profiling in the disease's earlier stages.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andrea Ruzzenente
- Department of Surgery, Dentistry, Gynecology, and Pediatrics, Division of General and Hepato-Biliary Surgery, University of Verona, University Hospital G.B. Rossi, 37134 Verona, Italy; (L.A.)
| |
Collapse
|
20
|
Zhu Y, Koleilat MKI, Roszik J, Kwong MK, Wang Z, Maru DM, Kopetz S, Kwong LN. A Gold Standard-Derived Modular Barcoding Approach to Cancer Transcriptomics. Cancers (Basel) 2024; 16:1886. [PMID: 38791964 PMCID: PMC11120226 DOI: 10.3390/cancers16101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
A challenge with studying cancer transcriptomes is in distilling the wealth of information down into manageable portions of information. In this resource, we develop an approach that creates and assembles cancer type-specific gene expression modules into flexible barcodes, allowing for adaptation to a wide variety of uses. Specifically, we propose that modules derived organically from high-quality gold standards such as The Cancer Genome Atlas (TCGA) can accurately capture and describe functionally related genes that are relevant to specific cancer types. We show that such modules can: (1) uncover novel gene relationships and nominate new functional memberships, (2) improve and speed up analysis of smaller or lower-resolution datasets, (3) re-create and expand known cancer subtyping schemes, (4) act as a "decoder" to bridge seemingly disparate established gene signatures, and (5) efficiently apply single-cell RNA sequencing information to other datasets. Moreover, such modules can be used in conjunction with native spreadsheet program commands to create a powerful and rapid approach to hypothesis generation and testing that is readily accessible to non-bioinformaticians. Finally, we provide tools for users to create and interpret their own modules. Overall, the flexible modular nature of the proposed barcoding provides a user-friendly approach to rapidly decoding transcriptome-wide data for research or, potentially, clinical uses.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.K.I.K.)
| | - Mohamad Karim I. Koleilat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.K.I.K.)
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Man Kam Kwong
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China;
| | - Zhonglin Wang
- Social Science Research Institute, Duke University, Durham, NC 27708, USA;
| | - Dipen M. Maru
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Lawrence N. Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.K.I.K.)
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
21
|
Hong JH, Yong CH, Heng HL, Chan JY, Lau MC, Chen J, Lee JY, Lim AH, Li Z, Guan P, Chu PL, Boot A, Ng SR, Yao X, Wee FYT, Lim JCT, Liu W, Wang P, Xiao R, Zeng X, Sun Y, Koh J, Kwek XY, Ng CCY, Klanrit P, Zhang Y, Lai J, Tai DWM, Pairojkul C, Dima S, Popescu I, Hsieh SY, Yu MC, Yeong J, Kongpetch S, Jusakul A, Loilome W, Tan P, Tan J, Teh BT. Integrative multiomics enhancer activity profiling identifies therapeutic vulnerabilities in cholangiocarcinoma of different etiologies. Gut 2024; 73:966-984. [PMID: 38050079 DOI: 10.1136/gutjnl-2023-330483] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVES Cholangiocarcinoma (CCA) is a heterogeneous malignancy with high mortality and dismal prognosis, and an urgent clinical need for new therapies. Knowledge of the CCA epigenome is largely limited to aberrant DNA methylation. Dysregulation of enhancer activities has been identified to affect carcinogenesis and leveraged for new therapies but is uninvestigated in CCA. Our aim is to identify potential therapeutic targets in different subtypes of CCA through enhancer profiling. DESIGN Integrative multiomics enhancer activity profiling of diverse CCA was performed. A panel of diverse CCA cell lines, patient-derived and cell line-derived xenografts were used to study identified enriched pathways and vulnerabilities. NanoString, multiplex immunohistochemistry staining and single-cell spatial transcriptomics were used to explore the immunogenicity of diverse CCA. RESULTS We identified three distinct groups, associated with different etiologies and unique pathways. Drug inhibitors of identified pathways reduced tumour growth in in vitro and in vivo models. The first group (ESTRO), with mostly fluke-positive CCAs, displayed activation in estrogen signalling and were sensitive to MTOR inhibitors. Another group (OXPHO), with mostly BAP1 and IDH-mutant CCAs, displayed activated oxidative phosphorylation pathways, and were sensitive to oxidative phosphorylation inhibitors. Immune-related pathways were activated in the final group (IMMUN), made up of an immunogenic CCA subtype and CCA with aristolochic acid (AA) mutational signatures. Intratumour differences in AA mutation load were correlated to intratumour variation of different immune cell populations. CONCLUSION Our study elucidates the mechanisms underlying enhancer dysregulation and deepens understanding of different tumourigenesis processes in distinct CCA subtypes, with potential significant therapeutics and clinical benefits.
Collapse
Affiliation(s)
- Jing Han Hong
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
| | - Chern Han Yong
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Department of Computer Science, National University of Singapore, Singapore
| | - Hong Lee Heng
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
| | - Jason Yongsheng Chan
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Mai Chan Lau
- Singapore Immunology Network, Agency for Science Technology and Research (A*STAR), Singapore
- Bioinformatics Institute (BII), Agency for Science Technology and Research (A*STAR), Singapore
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Yi Lee
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Abner Herbert Lim
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Zhimei Li
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Peiyong Guan
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore
| | - Pek Lim Chu
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
| | - Arnoud Boot
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
- Centre for Computational Biology, Duke-NUS Medical School, Singapore
| | - Sheng Rong Ng
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
| | - Xiaosai Yao
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
| | - Felicia Yu Ting Wee
- Institute of Molecular and Cell Biology, Integrative Biology for Theranostics Lab, Agency for Science Technology and Research (A*STAR), Singapore
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular and Cell Biology, Integrative Biology for Theranostics Lab, Agency for Science Technology and Research (A*STAR), Singapore
| | - Wei Liu
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
| | - Peili Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rong Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xian Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yichen Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Joanna Koh
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
| | - Xiu Yi Kwek
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
| | - Cedric Chuan Young Ng
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Poramate Klanrit
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Yaojun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong
| | - Jiaming Lai
- Department of Pancreaticobiliary Surgery, Sun Yat-sen University, Guangzhou, China
| | - David Wai Meng Tai
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Chawalit Pairojkul
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Simona Dima
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucuresti, Romania
| | - Irinel Popescu
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucuresti, Romania
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Joe Yeong
- Institute of Molecular and Cell Biology, Integrative Biology for Theranostics Lab, Agency for Science Technology and Research (A*STAR), Singapore
- Department of Anatomical Pathology, Singapore General Hospital, Singapore
- Pathology Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Sarinya Kongpetch
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Patrick Tan
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jing Tan
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- State Key Laboratory of Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore
- Laboratory of Cancer Epigenome, National Cancer Centre Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
| |
Collapse
|
22
|
Wang H, Wang R, Shen K, Huang R, Wang Z. Biological Roles and Clinical Applications of Exosomes in Breast Cancer: A Brief Review. Int J Mol Sci 2024; 25:4620. [PMID: 38731840 PMCID: PMC11083446 DOI: 10.3390/ijms25094620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Breast cancer (BC) is a global health risk for women and has a high prevalence rate. The drug resistance, recurrence, and metastasis of BC affect patient prognosis, thus posing a challenge to scientists. Exosomes are extracellular vesicles (EVs) that originate from various cells; they have a double-layered lipid membrane structure and contain rich biological information. They mediate intercellular communication and have pivotal roles in tumor development, progression, and metastasis and drug resistance. Exosomes are important cell communication mediators in the tumor microenvironment (TME). Exosomes are utilized as diagnostic and prognostic biomarkers for estimating the treatment efficacy of BC and have the potential to function as tools to enable the targeted delivery of antitumor drugs. This review introduces recent progress in research on how exosomes influence tumor development and the TME. We also present the research progress on the application of exosomes as prognostic and diagnostic biomarkers and drug delivery tools.
Collapse
Affiliation(s)
| | | | | | - Renhong Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.W.); (R.W.); (K.S.)
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.W.); (R.W.); (K.S.)
| |
Collapse
|
23
|
Katoh M, Loriot Y, Brandi G, Tavolari S, Wainberg ZA, Katoh M. FGFR-targeted therapeutics: clinical activity, mechanisms of resistance and new directions. Nat Rev Clin Oncol 2024; 21:312-329. [PMID: 38424198 DOI: 10.1038/s41571-024-00869-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Fibroblast growth factor (FGF) signalling via FGF receptors (FGFR1-4) orchestrates fetal development and contributes to tissue and whole-body homeostasis, but can also promote tumorigenesis. Various agents, including pan-FGFR inhibitors (erdafitinib and futibatinib), FGFR1/2/3 inhibitors (infigratinib and pemigatinib), as well as a range of more-specific agents, have been developed and several have entered clinical use. Erdafitinib is approved for patients with urothelial carcinoma harbouring FGFR2/3 alterations, and futibatinib and pemigatinib are approved for patients with cholangiocarcinoma harbouring FGFR2 fusions and/or rearrangements. Clinical benefit from these agents is in part limited by hyperphosphataemia owing to off-target inhibition of FGFR1 as well as the emergence of resistance mutations in FGFR genes, activation of bypass signalling pathways, concurrent TP53 alterations and possibly epithelial-mesenchymal transition-related isoform switching. The next generation of small-molecule inhibitors, such as lirafugratinib and LOXO-435, and the FGFR2-specific antibody bemarituzumab are expected to have a reduced risk of hyperphosphataemia and the ability to overcome certain resistance mutations. In this Review, we describe the development and current clinical role of FGFR inhibitors and provide perspective on future research directions including expansion of the therapeutic indications for use of FGFR inhibitors, combination of these agents with immune-checkpoint inhibitors and the application of novel technologies, such as artificial intelligence.
Collapse
Affiliation(s)
| | - Yohann Loriot
- Drug Development Department (DITEP), Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
- INSERM U981, Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simona Tavolari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Zev A Wainberg
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Masaru Katoh
- M & M Precision Medicine, Tokyo, Japan.
- Department of Omics Network, National Cancer Center, Tokyo, Japan.
| |
Collapse
|
24
|
Cardinale V, Paradiso S, Alvaro D. Biliary stem cells in health and cholangiopathies and cholangiocarcinoma. Curr Opin Gastroenterol 2024; 40:92-98. [PMID: 38320197 DOI: 10.1097/mog.0000000000001005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
PURPOSE OF REVIEW This review discusses evidence regarding progenitor populations of the biliary tree in the tissue regeneration and homeostasis, and the pathobiology of cholangiopathies and malignancies. RECENT FINDINGS In embryogenesis biliary multipotent progenitor subpopulation contributes cells not only to the pancreas and gall bladder but also to the liver. Cells equipped with a constellation of markers suggestive of the primitive endodermal phenotype exist in the peribiliary glands, the bile duct glands, of the intra- and extrahepatic bile ducts. These cells are able to be isolated and cultured easily, which demonstrates the persistence of a stable phenotype during in vitro expansion, the ability to self-renew in vitro, and the ability to differentiate between hepatocyte and biliary and pancreatic islet fates. SUMMARY In normal human livers, stem/progenitors cells are mostly restricted in two distinct niches, which are the bile ductules/canals of Hering and the peribiliary glands (PBGs) present inside the wall of large intrahepatic bile ducts. The existence of a network of stem/progenitor cell niches within the liver and along the entire biliary tree inform a patho-biological-based translational approach to biliary diseases and cholangiocarcinoma since it poses the basis to understand biliary regeneration after extensive or chronic injuries and progression to fibrosis and cancer.
Collapse
Affiliation(s)
| | - Savino Paradiso
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
25
|
Ying B, Tang T, Zhang LX, Xiong JW, Zhao KF, Li JW, Wu G. Precision therapy for intrahepatic cholangiocarcinoma: A case report on adjuvant treatment in a recurrent patient after surgery and literature review. Oncol Lett 2024; 27:56. [PMID: 38192668 PMCID: PMC10773204 DOI: 10.3892/ol.2023.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/23/2023] [Indexed: 01/10/2024] Open
Abstract
A 37-year-old female patient was diagnosed with intrahepatic cholangiocarcinoma (ICC), with the lesion located in the right lobe of the liver. Despite radical resection, postoperative adjuvant chemotherapy and a combination of adjuvant chemotherapy and immunotherapy, the patient continued to experience multiple instances of intrahepatic tumor metastases. Furthermore, the patient exhibited significant adverse reactions to systemic chemotherapy and had poor treatment tolerance. Guidance from paraffin section fluorescence in situ hybridization gene sequencing was used to select a combination of immunotherapy and targeted therapy treatments with programmed cell death 1 (PD-1)/PD-1 ligand 1 antibody durvalumab and the targeted drug pemigatinib. The patient tolerated the treatment and has continued to survive for 28 months. According to imaging evaluations, the lesions continued to decrease, with some disappearing completely. The tumor marker carbohydrate antigen 19-9 remained normal for >9 weeks during the treatment. This report described the patient's treatment process in detail and briefly reviewed relevant literature on the treatment progress of postoperative patients with ICC.
Collapse
Affiliation(s)
- Bao Ying
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Tao Tang
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Li-Xing Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jian-Wei Xiong
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Kai-Feng Zhao
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jia-Wei Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Guo Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
26
|
Wang XY, Zhu WW, Lu L, Li YT, Zhu Y, Yang LY, Sun HT, Wang CQ, Lin J, Huang C, Yang X, Fan J, Jia HL, Zhang JB, Yin BB, Chen JH, Qin LX. Development and validation of a mutation-annotated prognostic score for intrahepatic cholangiocarcinoma after resection: a retrospective cohort study. Int J Surg 2023; 109:3506-3518. [PMID: 37578492 PMCID: PMC10651289 DOI: 10.1097/js9.0000000000000636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND The value of existing prognostic models for intrahepatic cholangiocarcinoma is limited. The inclusion of prognostic gene mutations would enhance the predictive efficacy. METHODS In the screening cohorts, univariable Cox regression analysis was applied to investigate the effect of individual mutant genes on overall survival (OS). In the training set, multivariable analysis was performed to evaluate the independent prognostic roles of the clinicopathological and mutational parameters, and a prognostic model was constructed. Internal and external validations were conducted to evaluate the performance of this model. RESULTS Among the recurrent mutations, only TP53 and KRASG12 were significantly associated with OS across all three screening cohorts. In the training cohort, TP53 and KRASG12 mutations in combination with seven other clinical parameters (tumor size, tumor number, vascular invasion, lymph node metastasis, adjacent invasion, CA19-9, and CEA), were independent prognostic factors for OS. A mutation-annotated prognostic score (MAPS) was established based on the nine prognosticators. The C-indices of MAPS (0.782 and 0.731 in the internal and external validation cohorts, respectively) were statistically higher than those of other existing models ( P <0.05). Furthermore, the MAPS model also demonstrated significant value in predicting the possible benefits of upfront surgery and adjuvant therapy. CONCLUSIONS The MAPS model demonstrated good performance in predicting the OS of intrahepatic cholangiocarcinoma patients. It may also help predict the possible benefits of upfront surgery and adjuvant therapy.
Collapse
Affiliation(s)
- Xiang-Yu Wang
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute
| | - Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute
| | - Lu Lu
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute
| | - Yi-Tong Li
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute
| | - Ying Zhu
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute
| | - Lu-Yu Yang
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute
| | - Hao-Ting Sun
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute
| | - Chao-Qun Wang
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute
| | - Jing Lin
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute
| | | | - Xin Yang
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute
| | | | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute
| | | | - Bao-Bing Yin
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute
- Department of General Surgery, Fujian Campus of National Regional Medical Center, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Jin-Hong Chen
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital and Cancer Metastasis Institute
- Department of General Surgery, Fujian Campus of National Regional Medical Center, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
27
|
Peng J, Fang S, Li M, Liu Y, Liang X, Li Z, Chen G, Peng L, Chen N, Liu L, Xu X, Dai W. Genetic alterations of KRAS and TP53 in intrahepatic cholangiocarcinoma associated with poor prognosis. Open Life Sci 2023; 18:20220652. [PMID: 37483430 PMCID: PMC10358752 DOI: 10.1515/biol-2022-0652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/13/2023] [Accepted: 06/05/2023] [Indexed: 07/25/2023] Open
Abstract
The aim of this study is to investigate certain genetic features of intrahepatic cholangiocarcinoma (ICCA). A total of 12 eligible ICCA patients were enrolled, and tumor tissues from the patients were subjected to next-generation sequencing of a multi-genes panel. Tumor mutation burden (TMB), mutated genes, copy number variants (CNVs), and pathway enrichment analysis were performed. The median TMB was 2.76 Mutation/Mb (range, 0-36.62 Mutation/Mb) in ICCA patients. The top two most commonly mutated genes in ICCA were KRAS (33%) and TP53 (25%). The co-mutations of KRAS and TP53 were 16.7% (2/12) in ICCA patients. Notably, patient P6 with the highest TMB did not have KRAS and TP53 mutations. Additionally, TP53 and/or KRAS alterations were significantly associated with poor progression-free survival than those with wild type (1.4 months vs 18 months). DNA damage repair and homologs recombinant repair deficiencies were significantly associated with high TMB in ICCA cases. In conclusion, we found that certain genetic mutations of TP53 and KRAS could predict poor prognosis in ICCA patients.
Collapse
Affiliation(s)
- Jianbo Peng
- Foshan Traditional Chinese Medicine Hospital, Guangdong, 518000, China
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518000, China
| | - Meisheng Li
- Foshan First People’s Hospital, Guangdong, 518000, China
| | - Yuxin Liu
- Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Xiaolu Liang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Zuobiao Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Gaohui Chen
- Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Lijiao Peng
- Department of Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Nianping Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Lei Liu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Xiaohong Xu
- Department of Ultrasound, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| | - Wei Dai
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524000, China
| |
Collapse
|
28
|
Dragomir MP, Calina TG, Perez E, Schallenberg S, Chen M, Albrecht T, Koch I, Wolkenstein P, Goeppert B, Roessler S, Calin GA, Sers C, Horst D, Roßner F, Capper D. DNA methylation-based classifier differentiates intrahepatic pancreato-biliary tumours. EBioMedicine 2023; 93:104657. [PMID: 37348162 DOI: 10.1016/j.ebiom.2023.104657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Differentiating intrahepatic cholangiocarcinomas (iCCA) from hepatic metastases of pancreatic ductal adenocarcinoma (PAAD) is challenging. Both tumours have similar morphological and immunohistochemical pattern and share multiple driver mutations. We hypothesised that DNA methylation-based machine-learning algorithms may help perform this task. METHODS We assembled genome-wide DNA methylation data for iCCA (n = 259), PAAD (n = 431), and normal bile duct (n = 70) from publicly available sources. We split this cohort into a reference (n = 399) and a validation set (n = 361). Using the reference cohort, we trained three machine learning models to differentiate between these entities. Furthermore, we validated the classifiers on the technical validation set and used an internal cohort (n = 72) to test our classifier. FINDINGS On the validation cohort, the neural network, support vector machine, and the random forest classifiers reached accuracies of 97.68%, 95.62%, and 96.5%, respectively. Filtering by anomaly detection and thresholds improved the accuracy to 99.07% (37 samples excluded by filtering), 96.22% (17 samples excluded), and 100% (44 samples excluded) for the neural network, support vector machine and random forest, respectively. Because of best balance between accuracy and number of predictable cases we tested the neural network with applied filters on the in-house cohort, obtaining an accuracy of 95.45%. INTERPRETATION We developed a classifier that can differentiate between iCCAs, intrahepatic metastases of a PAAD, and normal bile duct tissue with high accuracy. This tool can be used for improving the diagnosis of pancreato-biliary cancers of the liver. FUNDING This work was supported by Berlin Institute of Health (JCS Program), DKTK Berlin (Young Investigator Grant 2022), German Research Foundation (493697503 and 314905040 - SFB/TRR 209 Liver Cancer B01), and German Cancer Aid (70113922).
Collapse
Affiliation(s)
- Mihnea P Dragomir
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Berlin Institute of Health, Berlin, Germany.
| | | | - Eilís Perez
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; Berlin School of Integrative Oncology (BSIO), Charite - Universitätsmedizin Berlin (CVK), Berlin, Germany
| | - Simon Schallenberg
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Meng Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas Albrecht
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ines Koch
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peggy Wolkenstein
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Institute of Pathology and Neuropathology, Hospital RKH Kliniken Ludwigsburg, 71640 Ludwigsburg, Germany
| | - Stephanie Roessler
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine Sers
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Horst
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany; German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Roßner
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Capper
- German Cancer Consortium (DKTK), Partner Site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
29
|
Holzapfel N, Zhang A, Choi WJ, Denroche R, Jang G, Dodd A, Bucur R, Wilson J, Sapisochin G, Notta F, Grant RC, Gallinger S, Knox JJ, O'Kane GM. Whole-genome sequencing of 20 cholangiocarcinoma cases reveals unique profiles in patients with cirrhosis and primary sclerosing cholangitis. J Gastrointest Oncol 2023; 14:379-389. [PMID: 36915452 PMCID: PMC10007933 DOI: 10.21037/jgo-22-676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/21/2022] [Indexed: 02/07/2023] Open
Abstract
Background Cholangiocarcinoma (CCA) is a molecularly heterogenous disease that is often fatal. Whole genome sequencing (WGS) can provide additional knowledge of mutational spectra compared with panel sequencing. We describe the molecular landscape of CCA using whole-genome sequencing and compare the mutational landscape between short-term and long-term survivors. Methods We explored molecular differences between short-term and long-term survivors by performing WGS on 20 patient samples from our biliary tract cancer database. Short-term survivors were enriched for cases with underlying primary sclerosing cholangitis (PSC) and patients with cirrhosis. All samples underwent tumour epithelial enrichment using laser capture microdissection (LCM). Results Dominant single base substitution (SBS) signatures across the cohort included SBS1 and SBS5, with the latter more prevalent in long-term survivors. SBS17 was evident in 3 cases, all of whom had underlying ulcerative colitis (UC) with PSC. Additional rare signatures included SBS3 in a patient treated for prior mantle cell lymphoma and SBS26/SBS6 in a patient with a tumor mutational burden of 33 mutations/Mb and a pathogenic MLH1 germline mutation. Somatic TP53 inactivating mutations were present in 8/10 (80%) short-term survivors and in none of the long-term survivors. Additional mutations occurred in KRAS, SMAD4, CDKN2A, and chromatin remodelling genes. The long-term survivor group harboured predicted fusions in FGFR (n=2) and pathogenic mutations in BRAF and IDH1 (n=2). Conclusions TP53 alterations are associated with poor outcomes in patients with CCA. Patients with underlying inflammatory/autoimmune conditions may be enriched for unique tumour mutational signatures.
Collapse
Affiliation(s)
- Nicholas Holzapfel
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Amy Zhang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Woo-Jin Choi
- Department of Surgery, University of Toronto, Ontario, Canada
| | - Robert Denroche
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Gunho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Anna Dodd
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Roxana Bucur
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Julie Wilson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Faiyaz Notta
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Robert C Grant
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Ontario, Canada
| | - Jennifer J Knox
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Grainne M O'Kane
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Deng M, Ran P, Chen L, Wang Y, Yu Z, Cai K, Feng J, Qin Z, Yin Y, Tan S, Liu Y, Xu C, Shi G, Ji Y, Zhao J, Zhou J, Fan J, Hou Y, Ding C. Proteogenomic characterization of cholangiocarcinoma. Hepatology 2023; 77:411-429. [PMID: 35716043 PMCID: PMC9869950 DOI: 10.1002/hep.32624] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is a highly heterogeneous cancer with limited understanding and few effective therapeutic approaches. We aimed at providing a proteogenomic CCA characterization to inform biological processes and treatment vulnerabilities. APPROACH AND RESULTS Integrative genomic analysis with functional validation uncovered biological perturbations downstream of driver events including DPCR1 , RBM47 mutations, SH3BGRL2 copy number alterations, and FGFR2 fusions in CCA. Proteomic clustering identified three subtypes with distinct clinical outcomes, molecular features, and potential therapeutics. Phosphoproteomics characterized targetable kinases in CCA, suggesting strategies for effective treatment with CDK and MAPK inhibitors. Patients with CCA with HBV infection showed increased antigen processing and presentation (APC) and T cell infiltration, conferring a favorable prognosis compared with those without HBV infection. The characterization of extrahepatic CCA recommended the feasible application of vascular endothelial-derived growth factor inhibitors. Multiomics profiling presented distinctive molecular characteristics of the large bile duct and the small bile duct of intrahepatic CCA. The immune landscape further revealed diverse tumor immune microenvironments, suggesting immune subtypes C1 and C5 might benefit from immune checkpoint therapy. TCN1 was identified as a potential CCA prognostic biomarker, promoting cell growth by enhancing vitamin B12 metabolism. CONCLUSIONS We characterized the proteogenomic landscape of 217 CCAs with 197 paired normal adjacent tissues and identified their subtypes and potential therapeutic targets. The multiomics analyses with other databases and some functional validations have indicated strategies regarding the clinical, biological, and therapeutic approaches to the management of CCA.
Collapse
Affiliation(s)
- Mengjie Deng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Ran
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingli Chen
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunzhi Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zixiang Yu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ke Cai
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinwen Feng
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaoyu Qin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanan Yin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Subei Tan
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guoming Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian‐Yuan Zhao
- Institute for Development and Regenerative Cardiovascular Medicine, MOE‐Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China,Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China,Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Testa U, Pelosi E, Castelli G. The clinical value of identifying genetic abnormalities that can be targeted in cholangiocarcinomas. Expert Rev Anticancer Ther 2023; 23:147-162. [PMID: 36654529 DOI: 10.1080/14737140.2023.2170878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Cholangiocarcinomas (CCAs) are a heterogenous group of epithelial malignancies originating at any level of the biliary tree and are subdivided according to their location into intrahepatic (iCCA) and extrahepatic (eCCA). AREAS COVERED This review provides an updated analysis of studies of genetic characterization of CCA at the level of gene mutation profiling, copy number alterations and gene expression, with definition of molecular subgroups and identification of some molecular biomarkers and therapeutic targets. EXPERT OPINION With the development of genetic sequencing, several driver mutations have been identified and targeted as novel therapeutic approaches, including FGFR2, IDH1, BRAF, NTRK, HER2, ROS, and RET. Furthermore, identification of the cellular and molecular structure of the tumor microenvironment has contributed to the development of novel therapies, such as tumor immunotherapy. Combination therapies of chemotherapy plus targeted molecules or immunotherapy are under evaluation and offer the unique opportunity to improve the outcomes of CCA patients with advanced disease.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore Di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore Di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore Di Sanità, Rome, Italy
| |
Collapse
|
32
|
Testa U, Pelosi E, Castelli G. Cholangiocarcinoma: Molecular Abnormalities and Cells of Origin. Technol Cancer Res Treat 2023; 22:15330338221128689. [PMID: 36872875 PMCID: PMC9989414 DOI: 10.1177/15330338221128689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 03/07/2023] Open
Abstract
Cholangiocarcinomas (CCAs) are a group of heterogeneous epithelial malignancies that can originate at the level of any location of the biliary tree. These tumors are relatively rare but associated with a high rate of mortality. CCAs are morphologically and molecularly heterogeneous and for their location can be distinguished as intracellular and extracellular, subdivided into perihilar and distal. Recent epidemiological, molecular, and cellular studies have supported that the consistent heterogeneity observed for CCAs may result from the convergence of various key elements mainly represented by risk factors, heterogeneity of the associated molecular abnormalities at genetic and epigenetic levels and by different potential cells of origin. These studies have consistently contributed to better defining the pathogenesis of CCAs and to identify in some instances new therapeutic targets. Although the therapeutic progress were still limited, these observations suggest that a better understanding of the molecular mechanisms underlying CCA in the future will help to develop more efficacious treatment strategies.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Supeirore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Supeirore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Supeirore di Sanità, Rome, Italy
| |
Collapse
|
33
|
Rimini M, Loi E, Fabregat-Franco C, Burgio V, Lonardi S, Niger M, Scartozzi M, Raposelli IG, Aprile G, Ratti F, Pedica F, Verdaguer H, Rizzato M, Nichetti F, Lai E, Cappetta A, Macarulla T, Fassan M, De Braud F, Pretta A, Simionato F, De Cobelli F, Aldrighetti L, Fornaro L, Cascinu S, Zavattari P, Casadei-Gardini A. Next-generation sequencing analysis of cholangiocarcinoma identifies distinct IDH1-mutated clusters. Eur J Cancer 2022; 175:299-310. [PMID: 36182816 DOI: 10.1016/j.ejca.2022.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND IDH1-mutated intrahepatic cholangiocarcinomas (IDH1m iCCAs) could be treated with anti-IDH1 drugs, although the high heterogeneity in this class of tumours could limit treatment efficacy. METHODS We selected 125 IDH1m iCCAs that were treated as resectable, locally advanced, or metastatic and were screened by the NGS-based FoundationOne gene panel. We conducted a mutation-based clustering of tumours and survival analysis. RESULTS Three main clusters were identified. The most altered pathways in cluster 1 were cell cycle and apoptosis, RTK/RAS, PI3K, and chromatin modification. Of note, CDKN2A/2B were mutated in 41/44 patients of this cluster. In cluster 2, the most affected pathways were as follows: Chromatin modification, DNA damage control, PI3K, and RTK/RAS. In this cluster, the most frequently mutated genes were ARID1A and PBRM1. The most altered pathways in cluster 3 were as follows: Cell cycle and apoptosis, DNA damage control, TP53, and chromatin modification. Importantly, TP53 was mutated only in cluster 3 patients. In the cohort of patients treated with surgery, cluster 2 showed statistically significant better disease-free survival (DFS) and overall survival (OS) compared with patients in cluster 3 and cluster 1 (p = 0.0014 and p = 0.0003, respectively). In the advanced setting, cluster 2 experienced a statistically significant better PFS (p = 0.0012), a tendency toward a better OS from first-line treatment, and a better OS from first-line progression compared with patients in cluster 1 and cluster 3 (p = 0.0017). We proposed an easy-to-use algorithm able to stratify patients in the three clusters on the basis of the genomic profile. CONCLUSION We highlighted three different mutation-based clusters with prognostic significance in a cohort of IDH1m iCCAs.
Collapse
Affiliation(s)
- Margherita Rimini
- IRCCS San Raffaele Scientific Institute Hospital, Department of Oncology, Vita-Salute San Raffaele University, Milan, Italy.
| | - Eleonora Loi
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042, Cagliari, Italy
| | - Carles Fabregat-Franco
- Gastrointestinal Cancer Unit, Vall d'Hebron University Hospital & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Valentina Burgio
- IRCCS San Raffaele Scientific Institute Hospital, Department of Oncology, Vita-Salute San Raffaele University, Milan, Italy
| | - Sara Lonardi
- Oncology Unit 3, Veneto Institute of Oncology - IRCCS, Padua, Italy
| | - Monica Niger
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy
| | - Mario Scartozzi
- Medical Oncology, University and University Hospital, Cagliari, Italy
| | - Ilario G Raposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Giuseppe Aprile
- Department of Oncology, San Bortolo General Hospital, Azienda ULSS8 Berica, Vicenza, Italy
| | - Francesca Ratti
- Hepatobiliary Surgery Division, Liver Center, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Federica Pedica
- Department of Experimental Oncology, Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Helena Verdaguer
- Gastrointestinal Cancer Unit, Vall d'Hebron University Hospital & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Mario Rizzato
- Oncology Unit 1, Veneto Institute of Oncology - IRCCS, Padova, Italy
| | - Federico Nichetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Italy
| | - Eleonora Lai
- Medical Oncology, University and University Hospital, Cagliari, Italy
| | - Alessandro Cappetta
- Department of Oncology, San Bortolo General Hospital, Azienda ULSS8 Berica, Vicenza, Italy
| | - Teresa Macarulla
- Gastrointestinal Cancer Unit, Vall d'Hebron University Hospital & Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Matteo Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padova, Italy; Veneto Institute of Oncology - IRCCS, Padova, Italy
| | - Filippo De Braud
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Andrea Pretta
- Medical Oncology, University and University Hospital, Cagliari, Italy
| | - Francesca Simionato
- Department of Oncology, San Bortolo General Hospital, Azienda ULSS8 Berica, Vicenza, Italy
| | | | - Luca Aldrighetti
- Hepatobiliary Surgery Division, Liver Center, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Lorenzo Fornaro
- School of Medicine, Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Stefano Cascinu
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Department of Oncology, Milan, Italy
| | - Patrizia Zavattari
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042, Cagliari, Italy
| | - Andrea Casadei-Gardini
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Department of Oncology, Milan, Italy
| |
Collapse
|
34
|
Pemigatinib in Intrahepatic Cholangiocarcinoma: A Work in Progress. Curr Oncol 2022; 29:7925-7931. [PMID: 36290903 PMCID: PMC9600707 DOI: 10.3390/curroncol29100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the second most frequent primary liver cancer, following hepatocellular carcinoma (HCC). Progress in the molecular understanding of CCA has led to the development of several agents, including FGFR inhibitors, such as pemigatinib, whose approval has marked a new era in this hepatobiliary malignancy. However, a number of questions remain unanswered, including the development of secondary resistance and the role of combination therapies, including FGFR inhibitors. Herein, we specifically focus on the current challenges and future research directions of pemigatinib use in CCA patients.
Collapse
|
35
|
Molecular Profile and Prognostic Value of BAP1 Mutations in Intrahepatic Cholangiocarcinoma: A Genomic Database Analysis. J Pers Med 2022; 12:jpm12081247. [PMID: 36013199 PMCID: PMC9410256 DOI: 10.3390/jpm12081247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background. Recent years have witnessed the advent of molecular profiling for intrahepatic cholangiocarcinoma (iCCA), and new techniques have led to the identification of several molecular alterations. Precision oncology approaches have been widely evaluated and are currently under assessment, as shown by the recent development of a wide range of agents targeting Fibroblast Growth Factor Receptor (FGFR) 2, Isocitrate Dehydrogenase 1 (IDH-1), and BRAF. However, several knowledge gaps persist in the understanding of the genomic landscape of this hepatobiliary malignancy. Methods. In the current study, we aimed to comprehensively analyze clinicopathological features of BAP1-mutated iCCA patients in public datasets to increase the current knowledge on the molecular and biological profile of iCCA. Results. The current database study, including 772 iCCAs, identified BAP1 mutations in 120 cases (15.7%). According to our analysis, no differences in terms of overall survival and relapse-free survival were observed between BAP1-mutated and BAP1 wild-type patients receiving radical surgery. In addition, IDH1, PBRM1, and ARID1A mutations were the most commonly co-altered genes in BAP1-mutated iCCAs. Conclusions. The genomic characterization of iCCA is destined to become increasingly important, and more efforts aimed to implement iCCA genomics analysis are warranted.
Collapse
|
36
|
Cadamuro M, Strazzabosco M. Inflammatory pathways and cholangiocarcinoma risk mechanisms and prevention. Adv Cancer Res 2022; 156:39-73. [PMID: 35961707 PMCID: PMC10916841 DOI: 10.1016/bs.acr.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cholangiocarcinoma (CCA), a neoplasm burdened by a poor prognosis and currently lacking adequate therapeutic treatments, can originate at different levels of the biliary tree, in the intrahepatic, hilar, or extrahepatic area. The main risk factors for the development of CCA are the presence of chronic cholangiopathies of various etiology. To date, the most studied prodromal diseases of CCA are primary sclerosing cholangitis, Caroli's disease and fluke infestations, but other conditions, such as metabolic syndrome, nonalcoholic fatty liver disease and obesity, are emerging as associated with an increased risk of CCA development. In this review, we focused on the analysis of the pro-inflammatory mechanisms that induce the development of CCA and on the role of cells of the immune response in cholangiocarcinogenesis. In very recent times, these cellular mechanisms have been the subject of emerging studies aimed at verifying how the modulation of the inflammatory and immunological responses can have a therapeutic significance and how these can be used as therapeutic targets.
Collapse
Affiliation(s)
| | - Mario Strazzabosco
- Liver Center, Department of Internal Medicine, Yale University, New Haven, CT, United States.
| |
Collapse
|