1
|
Sam G, Chen S, Rehm BHA. Functionalisation of polyhydroxybutyrate for diagnostic uses. N Biotechnol 2025; 85:9-15. [PMID: 39549939 DOI: 10.1016/j.nbt.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024]
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable and biocompatible biopolyester, naturally produced and self-assembled as spherical inclusions inside bacteria. These PHB particles contain a hydrophobic PHB core covalently coated with PHB synthase (PhaC), which serves as an anchoring linker for foreign proteins of interest. Protein engineering of PhaC enables the display of biologically active protein functions on the surface of PHB particles suitable for different applications. Many biomolecules, such as e.g. antigens, enzymes, fluorescent proteins were immobilized to PHB particles and exhibited superior functionalities when compared to their respective soluble counterparts. Recently, PHB particles have been successfully applied for various diagnostics applications. This mini review provides an overview of the unique design space of PHB particles towards the development of safe and cost-effective diagnostic tools, and highlights the important research progresses of manufacturing PHB particles-based diagnostics.
Collapse
Affiliation(s)
- Gayathri Sam
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia.
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Institute for Biomedicine and Glycomics, Griffith University (Nathan Campus), QLD 4111, Australia; Menzies Health Institute Queensland (MHIQ), Griffith University (Gold Coast Campus), QLD 4215, Australia.
| |
Collapse
|
2
|
Chen Z, Hu L, Xu B, Liu Z, Zeng L, Zhang M, Tian H, Song H. In situ generation of Copper sulfide within Poly(lactic-co-glycolic acid): A strategy for Safer photothermal therapy in Triple-Negative breast cancer. Int J Pharm 2025; 671:125287. [PMID: 39875031 DOI: 10.1016/j.ijpharm.2025.125287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/05/2025] [Accepted: 01/25/2025] [Indexed: 01/30/2025]
Abstract
Copper sulfide nanoparticles (CuS NPs) have garnered significant attention in photothermal therapy (PTT) owing to their facile synthesis, biodegradability, stability, and excellent photothermal conversion efficiency. Nonetheless, their potential toxic effects have restricted their application. This research focuses on the encapsulation of CuS NPs with the biocompatible polymer poly(lactic-co-glycolic acid) (PLGA) to enhance their biocompatibility, thereby improving the efficacy and safety of PTT in the treatment of triple-negative breast cancer (TNBC). Three distinct methods, namely aqueous phase loading method, oil phase loading method, and "in situ reduction" method were employed to synthesize PLGA-coated CuS (CuS@PLGA) NPs to optimize the encapsulation rate of CuS. Among these, the CuS@PLGA NPs fabricated via the "in situ reduction" method demonstrated the highest encapsulation efficiency for CuS, achieving a rate of (90.4 ± 3.3)%. The resulting CuS@PLGA NPs exhibited high stability, excellent photothermal effect, and good tumor-targeting ability. Moreover, CuS@PLGA NPs demonstrated enhanced anti-tumor efficacy and biocompatibility compared to CuS NPs in both in vitro and in vivo experiments. Consequently, this study offers an effective and safety strategy for PTT treatment of TNBC.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou 350025, China; Department of Clinical Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou 350025, China
| | - Lingyan Hu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Bingbing Xu
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou 350025, China
| | - Zhihong Liu
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou 350025, China
| | - Lingjun Zeng
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou 350025, China
| | - Minxin Zhang
- Department of Clinical Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou 350025, China
| | - Haihong Tian
- Drugs and Instruments Supervision and Control Station of Shenyang Joint Logistics Support Center, Shenyang 110000, China.
| | - Hongtao Song
- Department of Pharmacy, 900TH Hospital of Joint Logistics Support Force, Fuzhou 350025, China.
| |
Collapse
|
3
|
Zhang C, Luo Y, Deng Z, Du R, Han M, Wu J, Zhao W, Guo R, Hou Y, Wang S. Recent advances in cold plasma technology for enhancing the safety and quality of meat and meat products: A comprehensive review. Food Res Int 2025; 202:115701. [PMID: 39967157 DOI: 10.1016/j.foodres.2025.115701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/30/2024] [Accepted: 01/05/2025] [Indexed: 02/20/2025]
Abstract
Meat and meat products constitute an important component of the diet for several populations around the world and fulfill various nutritional requirements of the human body. However, owing to the inherent characteristics of meat - including its susceptibility to oxidation and contamination with foodborne pathogens - meat and meat products perish easily. In recent years, with improvements in living standards and increased focus on nutrition and health among consumers, non-thermal food processing technologies have received increasing attention. Among these strategies, cold plasma (CP) technology has emerged as a promising and novel processing technique with substantial potential in preserving meat and meat products. In this review, we discussed and analyzed the effects of CP on the nutritional value, sensory quality, and safety of meat and meat products, particularly, the potential toxicological hazards. Furthermore, we provided a detailed introduction to the mechanisms about how CP affects microorganisms, highlighting its role in inducing apoptosis and inhibiting quorum sensing. In the base of these theoretical foundations, this paper proposed several practical recommendations in order to optimize CP technology. Finally, we summarized the potential applications of CP in meat preservation, aiming to establish a theoretical framework for further research and application of this technology.
Collapse
Affiliation(s)
- Changyan Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Yulong Luo
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China.
| | - Ziyao Deng
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Rui Du
- Yinchuan Agricultural Product Quality Testing Center, Yinchuan Agriculture and Rural Bureau, Yinchuan 750021 PR China
| | - Mei Han
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Junqin Wu
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Wenxiu Zhao
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Rong Guo
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Yanru Hou
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| | - Songlei Wang
- School of Food Science and Engineering, Ningxia University, Yinchuan 750021 PR China
| |
Collapse
|
4
|
Sun Y, Chen Y, Zhang Y. Interaction Mechanisms of Cold Atmospheric Plasmas with HIV Capsid Protein by Reactive Molecular Dynamics Simulation. Molecules 2024; 30:101. [PMID: 39795158 PMCID: PMC11722045 DOI: 10.3390/molecules30010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
In recent years, plasma medicine has developed rapidly as a new interdisciplinary discipline. However, the key mechanisms of interactions between cold atmospheric plasma (CAP) and biological tissue are still in the exploration stage. In this study, by introducing the reactive molecular dynamics (MD) simulation, the capsid protein (CA) molecule of HIV was selected as the model to investigate the reaction process upon impact by reactive oxygen species (ROS) from CAP and protein molecules at the atomic level. The simulation results show that ground-state oxygen atoms can abstract hydrogen atoms from protein chains and break hydrogen bonds, leading to the destruction of the disulfide bonds, C-C bonds, and C-N bonds. Furthermore, the generation of alcohol-based groups resulting from the impact of ROS can alter the hydrophobicity of molecules and induce damage to the primary, secondary, and tertiary structures of proteins. The dosage effects on the reaction processes and products induced by CAP are also explored with varying numbers of ROS in the simulation box, and the influences on the broken C-H, N-H, and C-N bonds are discussed. In this study, the computational data suggest that severe damage can be caused to CA upon the impact of ROS by revealing the reaction processes and products.
Collapse
Affiliation(s)
| | | | - Yuantao Zhang
- School of Electrical Engineering, Shandong University, Jinan 250061, China; (Y.S.)
| |
Collapse
|
5
|
Zhao H, Meng W, Lv X, Li J, Cai Z, Guo X, Wang Z, Guo L, Rong M, Shen C, Liu D, Song L. Nebulized inhalation of plasma-activated water in the treatment of progressive moderate COVID-19 patients with antiviral treatment failure: a randomized controlled pilot trial. BMC Infect Dis 2024; 24:960. [PMID: 39266946 PMCID: PMC11391605 DOI: 10.1186/s12879-024-09886-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Antiviral drugs show significant efficacy in non-severe COVID-19 cases, yet there remains a subset of moderate COVID-19 patients whose pneumonia continues to progress post a complete course of treatment. Plasma-activated water (PAW) possesses anti-SARS-CoV-2 properties. To explore the potential of PAW in improving pneumonia in COVID-19 patients following antiviral treatment failure, we conducted this study. METHODS This was a randomized, controlled trial. Moderate COVID-19 patients with antiviral treatment failure were randomly assigned to the experimental group or the control group. They inhaled nebulized PAW or saline respectively. This was done twice daily for four consecutive days. We assessed improvement in chest CT on day 5, the rate of symptom resolution within 10 days, and safety. RESULTS A total of 23 participants were included, with 11 receiving PAW and 12 receiving saline. The baseline characteristics of both groups were comparable. The experimental group showed a higher improvement rate in chest CT on day 5 (81.8% vs. 33.3%, p = 0.036). The cumulative disappearance rate of cough within 10 days was higher in the experimental group. Within 28 days, 4 patients in each group progressed to severe illness, and no patients died. No adverse reactions were reported from inhaling nebulized PAW. CONCLUSION This pilot trial preliminarily confirmed that nebulized inhalation of PAW can alleviate pneumonia in moderate COVID-19 patients with antiviral treatment failure, with no adverse reactions observed. This still needs to be verified by large-scale studies. TRIAL REGISTRATION Chinese Clinical Trial Registry; No.: ChiCTR2300078706 (retrospectively registered, 12/15/2023); URL: www.chictr.org.cn .
Collapse
Affiliation(s)
- Heng Zhao
- Department of Respiratory and Critical Care Medicine, Xijing Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Wanting Meng
- Department of Respiratory and Critical Care Medicine, Xijing Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Xing Lv
- Department of Respiratory and Critical Care Medicine, Xijing Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Jing Li
- Department of Respiratory and Critical Care Medicine, Xijing Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Zhigui Cai
- Department of Respiratory and Critical Care Medicine, Xijing Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Xingxing Guo
- Department of Respiratory and Critical Care Medicine, Xijing Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Cong Shen
- Department of PET-CT, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Liqiang Song
- Department of Respiratory and Critical Care Medicine, Xijing Hospital of Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
6
|
Bekeschus S. Gas plasmas technology: from biomolecule redox research to medical therapy. Biochem Soc Trans 2023; 51:2071-2083. [PMID: 38088441 DOI: 10.1042/bst20230014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Physical plasma is one consequence of gas ionization, i.e. its dissociation of electrons and ions. If operated in ambient air containing oxygen and nitrogen, its high reactivity produces various reactive oxygen and nitrogen species (RONS) simultaneously. Technology leap innovations in the early 2010s facilitated the generation of gas plasmas aimed at clinics and operated at body temperature, enabling their potential use in medicine. In parallel, their high potency as antimicrobial agents was systematically discovered. In combination with first successful clinical trials, this led in 2013 to the clinical approval of first medical gas plasma devices in Europe for promoting the healing of chronic and infected wounds and ulcers in dermatology. While since then, thousands of patients have benefited from medical gas plasma therapy, only the appreciation of the critical role of gas plasma-derived RONS led to unraveling first fragments of the mechanistic basics of gas plasma-mediated biomedical effects. However, drawing the complete picture of effectors and effects is still challenging. This is because gas plasma-produced RONS not only show a great variety of dozens of types but also each of them having distinct spatio-temporal concentration profiles due to their specific half-lives and reactivity with other types of RONS as well as different types of (bio) molecules they can react with. However, this makes gas plasmas fascinating and highly versatile tools for biomolecular redox research, especially considering that the technical capacity of increasing and decreasing individual RONS types holds excellent potential for tailoring gas plasmas toward specific applications and disease therapies.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic of Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| |
Collapse
|
7
|
Wang S, Wang P, Thompson R, Ostrikov K, Xiao Y, Zhou Y. Plasma-activated medium triggers immunomodulation and autophagic activity for periodontal regeneration. Bioeng Transl Med 2023; 8:e10528. [PMID: 37476066 PMCID: PMC10354773 DOI: 10.1002/btm2.10528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/29/2023] [Accepted: 04/16/2023] [Indexed: 07/22/2023] Open
Abstract
Periodontitis is an infection-induced inflammation, evidenced by an increase in inflammatory macrophage infiltration. Recent research has highlighted the role of plasma-activated medium (PAM) as a regulator of the innate immune system, where macrophages are the main effector cells. This study therefore aims to investigate the immunomodulatory effects of PAM on macrophages and its potential applications for periodontitis management. PAM was generated using an argon jet and applied to culture macrophages. Proinflammatory macrophage markers were significantly reduced after PAM stimulation, and this was correlated with the activation of autophagy via the Akt signaling pathway. Further investigations on the proregenerative effects of PAM-treated macrophages on periodontal ligament cells (PDLCs) revealed a significant increase in the expression of osteogeneis/cementogenesis-associated markers as well as mineralization nodule formation. Our findings suggest that PAM is an excellent candidate for periodontal therapeutic applications.
Collapse
Affiliation(s)
- Shengfang Wang
- Centre for Biomedical TechnologiesQueensland University of TechnologyBrisbaneQueenslandAustralia
- State Key Laboratory of Cellular Stress Biology, School of Life ScienceXiamen UniversityXiamenChina
| | - Peiyu Wang
- School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
- Translational Research InstituteWoolloongabbaQueenslandAustralia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Rik Thompson
- School of Biomedical SciencesQueensland University of TechnologyBrisbaneQueenslandAustralia
- Translational Research InstituteWoolloongabbaQueenslandAustralia
| | - Kostya Ostrikov
- Centre for Biomedical TechnologiesQueensland University of TechnologyBrisbaneQueenslandAustralia
- Centre for Materials ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
- School of Chemistry and Physics, Faculty of ScienceQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Yin Xiao
- School of Medicine and DentistryGriffith UniversityGold CoastQueenslandAustralia
| | - Yinghong Zhou
- School of Dentistry, Faculty of Health and Behavioural SciencesThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
8
|
von Woedtke T, Gabriel G, Schaible UE, Bekeschus S. Oral SARS-CoV-2 reduction by local treatment: A plasma technology application? PLASMA PROCESSES AND POLYMERS (PRINT) 2022; 20:e2200196. [PMID: 36721423 PMCID: PMC9880686 DOI: 10.1002/ppap.202200196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
The SARS-CoV-2 pandemic reemphasized the importance of and need for efficient hygiene and disinfection measures. The coronavirus' efficient spread capitalizes on its airborne transmission routes via virus aerosol release from human oral and nasopharyngeal cavities. Besides the upper respiratory tract, efficient viral replication has been described in the epithelium of these two body cavities. To this end, the idea emerged to employ plasma technology to locally reduce mucosal viral loads as an additional measure to reduce patient infectivity. We here outline conceptual ideas of such treatment concepts within what is known in the antiviral actions of plasma treatment so far.
Collapse
Affiliation(s)
- Thomas von Woedtke
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a Member of the Leibniz Health Technologies Research AllianceGreifswaldGermany
- Institute for Hygiene and Environmental MedicineGreifswald University Medical CenterGreifswaldGermany
| | - Gülsah Gabriel
- Department of Viral Zoonoses—One HealthLeibniz Institute of Virology (LIV), A Member of the Leibniz Infections Research AllianceHamburgGermany
- Institute of VirologyUniversity of Veterinary Medicine HannoverHannoverGermany
| | - Ulrich E. Schaible
- Department of Cellular MicrobiologyProgram Area Infections, Research Center Borstel, Leibniz Lung Center, A Member of the Leibniz Health Technologies and Leibniz Infections Research AlliancesParkalleeBorstelGermany
| | - Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), a Member of the Leibniz Health Technologies Research AllianceGreifswaldGermany
| |
Collapse
|
9
|
Mrochen DM, Miebach L, Skowski H, Bansemer R, Drechsler CA, Hofmanna U, Hein M, Mamat U, Gerling T, Schaible U, von Woedtke T, Bekeschus S. Toxicity and virucidal activity of a neon-driven micro plasma jet on eukaryotic cells and a coronavirus. Free Radic Biol Med 2022; 191:105-118. [PMID: 36041652 PMCID: PMC9420207 DOI: 10.1016/j.freeradbiomed.2022.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/06/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
Abstract
Plasma medicine is a developing field that utilizes the effects of cold physical plasma on biological substrates for therapeutic purposes. Approved plasma technology is frequently used in clinics to treat chronic wounds and skin infections. One mode of action responsible for beneficial effects in patients is the potent antimicrobial activity of cold plasma systems, which is linked to their unique generation of a plethora of reactive oxygen and nitrogen species (ROS). During the SARS-CoV-2 pandemic, it became increasingly clear that societies need novel ways of passive and active protection from viral airway infections. Plasma technology may be suitable for superficial virus inactivation. Employing an optimized neon-driven micro plasma jet, treatment time-dependent ROS production and cytotoxic effects to different degrees were found in four different human cell lines with respect to their metabolic activity and viability. Using the murine hepatitis virus (MHV), a taxonomic relative of human coronaviruses, plasma exposure drastically reduced the number of infected murine fibroblasts by up to 3000-fold. Direct plasma contact (conductive) with the target maximized ROS production, cytotoxicity, and antiviral activity compared to non-conductive treatment with the remote gas phase only. Strikingly, antioxidant pretreatment reduced but not abrogated conductive plasma exposure effects, pointing to potential non-ROS-related mechanisms of antiviral activity. In summary, an optimized micro plasma jet showed antiviral activity and cytotoxicity in human cells, which was in part ROS-dependent. Further studies using more complex tissue models are needed to identify a safe dose-effect window of antiviral activity at modest toxicity.
Collapse
Affiliation(s)
- Daniel M Mrochen
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of General, Visceral, Vascular, and Thoracic Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Henry Skowski
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Robert Bansemer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Chiara A Drechsler
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Department of Obstetrics and Gynecology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany
| | - Ulfilas Hofmanna
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Manuel Hein
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany
| | - Uwe Mamat
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany; Leibniz Research Alliance INFECTIONS, Germany
| | - Torsten Gerling
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - Ulrich Schaible
- Department of Cellular Microbiology, Program Area Infections, Research Center Borstel, Leibniz Lung Center, Parkallee, 23845, Borstel, Germany; Leibniz Research Alliance INFECTIONS, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany
| | - Thomas von Woedtke
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475, Greifswald, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Leibniz Research Alliance HEALTH TECHNOLOGIES, Germany.
| |
Collapse
|
10
|
Zhai SY, Kong MG, Xia YM. Cold Atmospheric Plasma Ameliorates Skin Diseases Involving Reactive Oxygen/Nitrogen Species-Mediated Functions. Front Immunol 2022; 13:868386. [PMID: 35720416 PMCID: PMC9204314 DOI: 10.3389/fimmu.2022.868386] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Skin diseases are mainly divided into infectious diseases, non-infectious inflammatory diseases, cancers, and wounds. The pathogenesis might include microbial infections, autoimmune responses, aberrant cellular proliferation or differentiation, and the overproduction of inflammatory factors. The traditional therapies for skin diseases, such as oral or topical drugs, have still been unsatisfactory, partly due to systematic side effects and reappearance. Cold atmospheric plasma (CAP), as an innovative and non-invasive therapeutic approach, has demonstrated its safe and effective functions in dermatology. With its generation of reactive oxygen species and reactive nitrogen species, CAP exhibits significant efficacies in inhibiting bacterial, viral, and fungal infections, facilitating wound healing, restraining the proliferation of cancers, and ameliorating psoriatic or vitiligous lesions. This review summarizes recent advances in CAP therapies for various skin diseases and implicates future strategies for increasing effectiveness or broadening clinical indications.
Collapse
Affiliation(s)
- Si-yue Zhai
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center of Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, China
| | - Michael G. Kong
- Center of Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, China
- School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Yu-min Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
De Santis D, Carbone K, Garzoli S, Laghezza Masci V, Turchetti G. Bioactivity and Chemical Profile of Rubus idaeus L. Leaves Steam-Distillation Extract. Foods 2022; 11:foods11101455. [PMID: 35627025 PMCID: PMC9140405 DOI: 10.3390/foods11101455] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The leaves of Rubus idaeus L., a by-product of the fruit food industry, are a known source of bioactive molecules, although the chemical composition has only been partially investigated. The main objective of this study was to examine the biological activities and the chemical composition of the extract of leaves of R. idaeus (RH), obtained by steam distillation (SD). The antioxidant capacity; the total phenolic content (TPC); the cytotoxic activity against tumor cell lines; and the antibacterial activity, in addition to the study of the chemical fingerprinting, carried out by Gas/Chromatography-Mass-Spectrometry (GC/MS) and Headspace (HS)-GC/MS, were established. The extract showed a strong antioxidant capacity and a modest antibacterial activity against two bacterial strains, as well as significant cytotoxic activity against tumor cell lines (Caco-2 and HL60) and being proliferative on healthy cells. Many of the GC-identified volatile molecules (1,8-cineol, β-linalool, geraniol, caryophyllene, τ-muurolol, citral, α-terpineol, 3- carene, α-terpinen-7-al, etc.) can explain most of the biological properties exhibited by the extract of R. idaeus L. The high biological activity of the RH and the high compatibility with the various matrices suggest good prospects for this extract, both in the food and cosmetic fields or in dietary supplements for improving human health.
Collapse
Affiliation(s)
- Diana De Santis
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia Via S. C. de Lellis, 01100 Viterbo, Italy; (V.L.M.); (G.T.)
- Correspondence:
| | - Katya Carbone
- CREA Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy;
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, Square Aldo Moro 5, 00185 Rome, Italy;
| | - Valentina Laghezza Masci
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia Via S. C. de Lellis, 01100 Viterbo, Italy; (V.L.M.); (G.T.)
| | - Giovanni Turchetti
- Department for Innovation in the Biological, Agrofood and Forestry Systems, University of Tuscia Via S. C. de Lellis, 01100 Viterbo, Italy; (V.L.M.); (G.T.)
| |
Collapse
|