1
|
Li Y, Cai J, Xu Y, Zou Y, Xu S, Zheng X, Fu L, Zhang J, Ma X, He Y, Wang X, Deng K, Guo J. Macrophage-myofibroblast transition contributes to the macrophage elimination and functional regeneration in the late stage of nerve injury. Exp Neurol 2025; 387:115194. [PMID: 39993460 DOI: 10.1016/j.expneurol.2025.115194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Massive of macrophages are recruited to the injured nerve to remove the axonal and myelin debris for creating a conducive micro-environment for nerve regeneration. However, the fate of macrophages after the debris clearing remains unclear. In this study, we demonstrated that the number of macrophages in the crush injured sciatic nerve of mice peaked at 7 days post injury (dpi) and then decreased significantly in the late stage of nerve injury. Mechanismly, the macrophage elimination was primarily attributed to TGF-β/Smad3 signaling dependent macrophage-myofibroblast transition (MMT), rather than apoptosis or out-migration. Furthermore, MMT caused collagen deposition is conducive to nerve regeneration. Both macrophage depletion via clodronate liposomes and MMT blockade using TGF-β/Smad3 inhibitor significantly reduced collagen deposition and impaired functional nerve regeneration. In summary, the present study indicates that TGF-β/Smad3 regulated MMT contributes to macrophage elimination and functional recovery in the injury nerve.
Collapse
Affiliation(s)
- Yunlun Li
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong Province, China
| | - Jiale Cai
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong Province, China
| | - Yizhou Xu
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China; Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ying Zou
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shuyi Xu
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong Province, China
| | - Xinya Zheng
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lanya Fu
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinrui Ma
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ye He
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xianghai Wang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong Province, China
| | - Kaixian Deng
- Department of Gynecology, Shunde Hospital of Southern Medical University, Foshan, China
| | - Jiasong Guo
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, National Demonstration Center for Experimental Education, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Chen DX, Feng YY, Wang HY, Lu CH, Liu DZ, Gong C, Xue Y, Na N, Huang F. Metrnl ameliorates myocardial ischemia-reperfusion injury by activating AMPK-mediated M2 macrophage polarization. Mol Med 2025; 31:98. [PMID: 40082768 PMCID: PMC11907862 DOI: 10.1186/s10020-025-01150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Meteorin-like hormone (Metrnl) is prominently expressed in activated M2 macrophages and has demonstrated potential therapeutic effects in a range of cardiovascular diseases by modulating inflammatory responses. Nevertheless, its precise role and the underlying mechanisms in myocardial ischemia/reperfusion injury (MI/RI) are not fully understood. This study examined whether Metrnl can mitigate MI/RI through the AMPK-mediated polarization of M2 macrophages. METHODS In vivo, adeno-associated virus 9 containing the F4/80 promoter (AAV9-F4/80) was utilized to overexpress Metrnl in mouse cardiac macrophages before MI/RI surgery. In vitro, mouse bone marrow-derived macrophages (BMDMs) were treated with recombinant protein Metrnl, and the human cardiomyocyte cell line AC16 was subjected to hypoxia/reoxygenation (H/R) after co-culture with the supernatant of these macrophages. Cardiac function was assessed via echocardiography, H&E staining, and Evans blue-TTC staining. Inflammatory infiltration was evaluated by RT-qPCR and ELISA, apoptosis by Western blotting and TUNEL staining, and macrophage polarization by immunofluorescence staining and flow cytometry. RESULTS In vivo, Metrnl overexpression in cardiac macrophages significantly attenuated MI/RI, as evidenced by reduced myocardial infarct size, enhancement of cardiac function, diminished inflammatory cell infiltration, and decreased cardiomyocyte apoptosis. Furthermore, Metrnl overexpression promoted M1 to M2 macrophage polarization. In vitro, BMDMs treated with Metrnl shifted towards M2 polarization, characterized by decreased expression of inflammatory cytokines (IL-1β, MCP-1, TNF-α) and increased expression of the anti-inflammatory cytokine IL-10. Additionally, supernatant from Metrnl-treated macrophages protected AC16 cells from apoptosis under H/R conditions, as evidenced by decreased BAX expression and increased BCL-2 expression. However, these effects of Metrnl were inhibited by the AMPK inhibitor Compound C. CONCLUSIONS Metrnl alleviates MI/RI by activating AMPK-mediated M2 macrophage polarization to attenuate inflammatory response and cardiomyocyte apoptosis. This study highlights the therapeutic potential of Metrnl in MI/RI, and identifies it as a promising target for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- De-Xin Chen
- Department of Cardiology, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yang-Yi Feng
- Department of Cardiology, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Hai-Yan Wang
- Department of Cardiology, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chuang-Hong Lu
- Department of Cardiology, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - De-Zhao Liu
- Department of Cardiology, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chen Gong
- Department of Cardiology, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yan Xue
- Department of Cardiology, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Na Na
- Department of Cardiology, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China
- Department of Neuroscience, Scripps Research Institute, No.10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Feng Huang
- Department of Cardiology, Guangxi Key Laboratory of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
3
|
Liu Y, Sheng X, Zhao Z, Li H, Lu J, Xie L, Zheng G, Jiang T. Identification of regulator gene and pathway in myocardial ischemia-reperfusion injury: a bioinformatics and biological validation study. Hereditas 2025; 162:35. [PMID: 40069854 PMCID: PMC11895329 DOI: 10.1186/s41065-025-00397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/23/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND Acute myocardial infarction (AMI) is the primary cause of cardiac mortality worldwide. However, myocardial ischemia-reperfusion injury (MIRI) following reperfusion therapy is common in AMI, causing myocardial damage and affecting the patient's prognosis. Presently, there are no effective treatments available for MIRI. METHODS We performed a comprehensive bioinformatics analysis using three GEO datasets on differentially expressed genes, including gene ontology (GO), pathway enrichment analyses, and protein-protein interaction (PPI) network analysis. Cytoscape and LASSO methods were employed to identify novel regulator genes for ischemia-reperfusion (I/R). Notably, gene S100A9 was identified as a potential regulator of I/R. Additionally, clinical sample datasets were analyzed to prove the expression and mechanism of S100A9 and its down genes in I/R. The correlation of S100A9 with cardiac events was also examined to enhance the reliability of our results. RESULTS We identified 135 differential genes between the peripheral blood of 47 controls and 92 I/R patients. S100A9 was distinguished as a novel regulator gene of I/R with diagnostic potential. RT-qPCR test demonstrated significant upregulation of S100A9 in I/R. We also verified that S100A9 expression strongly correlates with left ventricular ejection fraction (LVEF) and MIRI. CONCLUSION This study confirms that S100A9 is a key regulator of I/R progression and may participate in ischemia-reperfusion injury by upregulating RAGE /NFKB-NLRP3 activation. Elevated S100A9 levels may serve as a marker for identifying high-risk MIRI patients, especially those with coronary artery no-reflow (CNR), who might benefit from targeted therapeutic interventions. Furthermore, Peripheral blood S100A9 in AMI represents a new therapeutic target for preventing MIRI.
Collapse
Affiliation(s)
- Yanqi Liu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaodong Sheng
- Department of Cardiology, The Second People's Hospital of Changshu, Affiliated Changshu Hospital of Nantong University, Changshu, Suzhou, Jiangsu, China
| | - Zhenghong Zhao
- Department of Cardiology, The Second People's Hospital of Changshu, Affiliated Changshu Hospital of Nantong University, Changshu, Suzhou, Jiangsu, China
| | - Hongxia Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jiahui Lu
- Department of Cardiology, The Second People's Hospital of Changshu, Affiliated Changshu Hospital of Nantong University, Changshu, Suzhou, Jiangsu, China
| | - Lihuan Xie
- Department of Cardiology, The Second People's Hospital of Changshu, Affiliated Changshu Hospital of Nantong University, Changshu, Suzhou, Jiangsu, China
| | - Guanqun Zheng
- Department of Cardiology, The Second People's Hospital of Changshu, Affiliated Changshu Hospital of Nantong University, Changshu, Suzhou, Jiangsu, China.
| | - Tingbo Jiang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
4
|
Tong C, Zhou B. Cardioprotective strategies in myocardial ischemia-reperfusion injury: Implications for improving clinical translation. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2025; 11:100278. [PMID: 40182153 PMCID: PMC11967023 DOI: 10.1016/j.jmccpl.2024.100278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/11/2024] [Accepted: 12/13/2024] [Indexed: 04/05/2025]
Abstract
Ischemic heart disease is the most common cause of death and disability globally which is caused by reduced or complete cessation of blood flow to a portion of the myocardium. One of its clinical manifestations is myocardial infarction, which is commonly treated by restoring of blood flow through reperfusion therapies. However, serious ischemia-reperfusion injury (IRI) can occur, significantly undermining clinical outcomes, for which there is currently no effective therapy. This review revisits several potential pharmacological IRI intervention strategies that have entered preclinical or clinical research phases. Here, we discuss what we have learned through translational failures over the years, and propose possible ways to enhance translation efficiency.
Collapse
Affiliation(s)
- Chao Tong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518063, China
| |
Collapse
|
5
|
Li R, Li X, Zhang X, Yu J, Li Y, Ran S, Wang S, Luo Z, Zhao J, Hao Y, Zong J, Zheng K, Lai L, Zhang H, Huang P, Zhou C, Wu J, Ye W, Xia J. Macrophages in Cardiovascular Fibrosis: Novel Subpopulations, Molecular Mechanisms, and Therapeutic Targets. Can J Cardiol 2025; 41:309-322. [PMID: 39580052 DOI: 10.1016/j.cjca.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024] Open
Abstract
Cardiovascular fibrosis is a common pathological process that contributes to the development and progression of various cardiovascular diseases. Despite being widely believed to be an irreversible and relentless process, preclinical models and clinical trials have shown that cardiovascular fibrosis is an extremely dynamic process. Additionally, as part of the innate immune system, macrophages are heterogeneous cells that are pivotal in tissue regeneration and fibrosis. They participate in fibroblast activation, extracellular matrix remodelling, and the regression of fibrosis. Although we have made some advances in understanding macrophages in cardiovascular fibrosis, a gap still remains between their identification and conversion into effective treatments. Moreover, the traditional M1-M2 paradigm faces many challenges because it does not sufficiently clarify macrophage diversity and their functions. Exploring novel macrophage-based therapies is urgent for cardiovascular fibrosis treatment. Single-cell techniques have shed light on identifying novel subpopulations that differ in function and molecular signature under steady-state and pathological conditions. In this review, we outline the developmental origins of macrophages, which underlie their functions; and recent technology development in the single-cell era. In addition, we describe the markers and mediators of the newly defined macrophage subpopulations and the molecular mechanisms involved to elucidate potential approaches for targeting macrophages in cardiovascular fibrosis.
Collapse
Affiliation(s)
- Ran Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexiao Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longyong Lai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinyan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
6
|
Geng F, Xu J, Ren X, Zhao Y, Cai Y, Li Y, Jin F, Li T, Gao X, Cai W, Xu H, Wei Z, Mao N, Sun Y, Yang F. Effect of macrophage-to-myofibroblast transition on silicosis. Animal Model Exp Med 2025; 8:363-371. [PMID: 38979656 PMCID: PMC11871087 DOI: 10.1002/ame2.12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/23/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The aim was to explore the effect of macrophage polarization and macrophage-to-myofibroblast transition (MMT) in silicosis. METHODS Male Wistar rats were divided into a control group and a silicosis group developed using a HOPE MED 8050 dynamic automatic dusting system. Murine macrophage MH-S cells were randomly divided into a control group and an SiO2 group. The pathological changes in lung tissue were observed using hematoxylin and eosin (HE) and Van Gieson (VG) staining. The distribution and location of macrophage marker (F4/80), M1 macrophage marker (iNOS), M2 macrophage marker (CD206), and myofibroblast marker (α-smooth muscle actin [α-SMA]) were detected using immunohistochemical and immunofluorescent staining. The expression changes in iNOS, Arg, α-SMA, vimentin, and type I collagen (Col I) were measured using Western blot. RESULTS The results of HE and VG staining showed obvious silicon nodule formation and the distribution of thick collagen fibers in the lung tissue of the silicosis group. Macrophage marker F4/80 increased gradually from 8 to 32 weeks after exposure to silica. Immunohistochemical and immunofluorescent staining results revealed that there were more iNOS-positive cells and some CD206-positive cells in the lung tissue of the silicosis group at 8 weeks. More CD206-positive cells were found in the silicon nodules of the lung tissues in the silicosis group at 32 weeks. Western blot analysis showed that the expressions of Inducible nitric oxide synthase and Arg protein in the lung tissues of the silicosis group were upregulated compared with those of the control group. The results of immunofluorescence staining showed the co-expression of F4/80, α-SMA, and Col I, and CD206 and α-SMA were co-expressed in the lung tissue of the silicosis group. The extracted rat alveolar lavage fluid revealed F4/80+α-SMA+, CD206+α-SMA+, and F4/80+α-SMA+Col I+ cells using immunofluorescence staining. Similar results were also found in MH-S cells induced by SiO2. CONCLUSIONS The development of silicosis is accompanied by macrophage polarization and MMT.
Collapse
Affiliation(s)
- Fei Geng
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public HealthNorth China University of Science and TechnologyTangshanChina
- Department of Pathology, Hebei Key Laboratory for Chronic Diseases, School of Basic Medical SciencesNorth China University of Science and TechnologyTangshanChina
| | - Jingrou Xu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public HealthNorth China University of Science and TechnologyTangshanChina
| | - Xichen Ren
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public HealthNorth China University of Science and TechnologyTangshanChina
| | - Ying Zhao
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public HealthNorth China University of Science and TechnologyTangshanChina
| | - Yuhao Cai
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public HealthNorth China University of Science and TechnologyTangshanChina
| | - Yaqian Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public HealthNorth China University of Science and TechnologyTangshanChina
| | - Fuyu Jin
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public HealthNorth China University of Science and TechnologyTangshanChina
| | - Tian Li
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public HealthNorth China University of Science and TechnologyTangshanChina
| | - Xuemin Gao
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public HealthNorth China University of Science and TechnologyTangshanChina
| | - Wenchen Cai
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public HealthNorth China University of Science and TechnologyTangshanChina
| | - Hong Xu
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public HealthNorth China University of Science and TechnologyTangshanChina
| | - Zhongqiu Wei
- Department of Pathology, Hebei Key Laboratory for Chronic Diseases, School of Basic Medical SciencesNorth China University of Science and TechnologyTangshanChina
| | - Na Mao
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public HealthNorth China University of Science and TechnologyTangshanChina
| | - Ying Sun
- Department of Pathology, Hebei Key Laboratory for Chronic Diseases, School of Basic Medical SciencesNorth China University of Science and TechnologyTangshanChina
| | - Fang Yang
- Hebei Key Laboratory for Organ Fibrosis Research, School of Public HealthNorth China University of Science and TechnologyTangshanChina
| |
Collapse
|
7
|
Shen S, Wang L, Liu Q, Wang X, Yuan Q, Zhao Y, Hu H, Ma L. Macrophage-to-myofibroblast transition and its role in cardiac fibrosis. Int Immunopharmacol 2025; 146:113873. [PMID: 39693954 DOI: 10.1016/j.intimp.2024.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
After acute myocardial infarction, the heart mainly relies on fibrosis remodeling repair to maintain the structural and functional integrity of the heart, however, excessive fibrosis is an important cause of heart failure. Macrophages play an important regulatory role in cardiac fibrosis and have been found to transform into myofibroblasts through their own phenotype. Based on the existing evidence and previous research results, we summarizes the potential and mechanism of macrophage-to-myofibroblast transition (MMT) in cardiac fibrosis. Notwithstanding the burgeoning interest in MMT within the context of cardiac tissue, research in this domain remains nascent. A deeper comprehension of this phenomenon, alongside its molecular substratum, stands as a quintessential prerequisite for the demarcation of molecular targets conducive to the amelioration of cardiac fibrosis.
Collapse
Affiliation(s)
- Shichun Shen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Luonan Wang
- Faculty of Business, Economics and Law, The University of Queensland, Saint Lucia, Queensland, Australia
| | - Qiaoling Liu
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom
| | - Xiaohe Wang
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Yuan
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yiting Zhao
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hao Hu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Likun Ma
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
8
|
Guo Q, Li P, Chen M, Yu Y, Wan Y, Zhang Z, Ren C, Shen L, Liu X, He D, Zhang Y, Wei G, Zhang D. Exosomes From Human Umbilical Cord Stem Cells Suppress Macrophage-to-myofibroblast Transition, Alleviating Renal Fibrosis. Inflammation 2024; 47:2094-2107. [PMID: 38662165 DOI: 10.1007/s10753-024-02027-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Renal fibrosis, a progressive scarring of the kidney, lacks effective treatment. Human umbilical cord mesenchymal stem cell-derived exosomes (HucMSC-Exos) hold promise for treating kidney diseases due to their anti-inflammatory properties. This study investigates their potential to lessen renal fibrosis by targeting macrophage-to-myofibroblast transformation (MMT), a key driver of fibrosis. We employed a mouse model of unilateral ureteral obstruction (UUO) and cultured cells exposed to transforming growth factor-β (TGF-β) to mimic MMT. HucMSC-Exos were administered to UUO mice, and their effects on kidney function and fibrosis were assessed. Additionally, RNA sequencing and cellular analysis were performed to elucidate the mechanisms by which HucMSC-Exos inhibit MMT. HucMSC-Exos treatment significantly reduced kidney damage and fibrosis in UUO mice. They downregulated markers of fibrosis (Collagen I, vimentin, alpha-smooth muscle actin) and suppressed MMT (α-SMA + F4/80 + cells). Furthermore, ARNTL, a specific molecule, emerged as a potential target of HucMSC-Exos in hindering MMT and consequently preventing fibrosis. HucMSC-Exos effectively lessen renal fibrosis by suppressing MMT, suggesting a novel therapeutic strategy for managing kidney damage and fibrosis.
Collapse
Affiliation(s)
- Qitong Guo
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Ping Li
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Meiling Chen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Yihang Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Yonghong Wan
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Zhaoxia Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Chunnian Ren
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Lianju Shen
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27101, USA
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China
| | - Deying Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing, 400014, China.
| |
Collapse
|
9
|
Psarras S. The Macrophage-Fibroblast Dipole in the Context of Cardiac Repair and Fibrosis. Biomolecules 2024; 14:1403. [PMID: 39595580 PMCID: PMC11591949 DOI: 10.3390/biom14111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Stromal and immune cells and their interactions have gained the attention of cardiology researchers and clinicians in recent years as their contribution in cardiac repair is increasingly recognized. The repair process in the heart is a particularly critical constellation of complex molecular and cellular events and interactions that characteristically fail to ensure adequate recovery following injury, insult, or exposure to stress conditions in this regeneration-hostile organ. The tremendous consequence of this pronounced inability to maintain homeostatic states is being translated in numerous ways promoting progress into heart failure, a deadly, irreversible condition requiring organ transplantation. Fibrosis is in fact a repair response eventually promoting cardiac dysfunction and cardiac fibroblasts are the major cellular players in this process, overproducing collagens and other extracellular matrix components when activated. On the other hand, macrophages may differentially affect fibroblasts and cardiac repair depending on their status and subsets. The opposite interaction is also probable. We discuss here the multifaceted aspects and crosstalk of this cell dipole and the opportunities it may offer for beneficial manipulation approaches that will hopefully lead to progress in heart disease interventions.
Collapse
Affiliation(s)
- Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 115 27 Athens, Greece
| |
Collapse
|
10
|
Zhang J, Li S, Kuang C, Shen Y, Yu H, Chen F, Tang R, Mao S, Lv L, Qi M, Zhang J, Yuan K. CD74 + fibroblasts proliferate upon mechanical stretching to promote angiogenesis in keloids. FASEB J 2024; 38:e70103. [PMID: 39400419 DOI: 10.1096/fj.202401302r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/07/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
The healing of human skin wounds is susceptible to perturbation caused by excessive mechanical stretching, resulting in enlarged scars, hypertrophic scars, or even keloids in predisposed individuals. Keloids are fibro-proliferative scar tissues that extend beyond the initial wound boundary, consisting of the actively progressing periphery and the quiescent center. The stretch-associated outgrowth and enhanced angiogenesis are two features of the periphery of keloids. However, which cell population is responsible for transducing the mechanical stimulation to the progression of keloids remains unclear. Herein, through integrative analysis of single-cell RNA sequencing of keloids, we identified CD74+ fibroblasts, a previously unappreciated subset of fibroblasts with pro-angiogenic and stretch-induced proliferative capacities, as a key player in stretch-induced progression of keloids. Immunostaining of keloid cryosections depicted a predominant distribution of CD74+ fibroblasts in the periphery, interacting with the vasculature. In vitro tube formation assays on purified CD74+ fibroblasts ascertained their pro-angiogenic function. BrdU assays revealed that these cells proliferate upon stretching, through PIEZO1-mediated calcium influx and the downstream ERK and AKT signaling. Collectively, our findings propose a model wherein CD74+ fibroblasts serve as pivotal drivers of stretch-induced keloid progression, fueled by their proliferative and pro-angiogenic activities. Targeting the attributes of CD74+ fibroblasts holds promise as a therapeutic strategy for the management of keloids.
Collapse
Affiliation(s)
- Jingheng Zhang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuyao Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunmei Kuang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yunfan Shen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Haibin Yu
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Chen
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruijun Tang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Song Mao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Lv
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Qi
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianglin Zhang
- Department of Dermatology, Shenzhen People's Hospital, Shenzhen, Guangdong, China
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Furong Laboratory, Central South University, Changsha, Hunan, China
- The Biobank of Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
11
|
Ban JQ, Ao LH, He X, Zhao H, Li J. Advances in macrophage-myofibroblast transformation in fibrotic diseases. Front Immunol 2024; 15:1461919. [PMID: 39445007 PMCID: PMC11496091 DOI: 10.3389/fimmu.2024.1461919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Macrophage-myofibroblast transformation (MMT) has emerged as a discovery in the field of fibrotic disease research. MMT is the process by which macrophages differentiate into myofibroblasts, leading to organ fibrosis following organ damage and playing an important role in fibrosis formation and progression. Recently, many new advances have been made in studying the mechanisms of MMT occurrence in fibrotic diseases. This article reviews some critical recent findings on MMT, including the origin of MMT in myofibroblasts, the specific mechanisms by which MMT develops, and the mechanisms and effects of MMT in the kidneys, lungs, heart, retina, and other fibrosis. By summarizing the latest research related to MMT, this paper provides a theoretical basis for elucidating the mechanisms of fibrosis in various organs and developing effective therapeutic targets for fibrotic diseases.
Collapse
Affiliation(s)
| | | | | | | | - Jun Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and
Disease Control, Ministry of Education, Guizhou Medical University,
Guiyang, China
| |
Collapse
|
12
|
Wang L, Jin B. Single-Cell RNA Sequencing and Combinatorial Approaches for Understanding Heart Biology and Disease. BIOLOGY 2024; 13:783. [PMID: 39452092 PMCID: PMC11504358 DOI: 10.3390/biology13100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
By directly measuring multiple molecular features in hundreds to millions of single cells, single-cell techniques allow for comprehensive characterization of the diversity of cells in the heart. These single-cell transcriptome and multi-omic studies are transforming our understanding of heart development and disease. Compared with single-dimensional inspections, the combination of transcriptomes with spatial dimensions and other omics can provide a comprehensive understanding of single-cell functions, microenvironment, dynamic processes, and their interrelationships. In this review, we will introduce the latest advances in cardiac health and disease at single-cell resolution; single-cell detection methods that can be used for transcriptome, genome, epigenome, and proteome analysis; single-cell multi-omics; as well as their future application prospects.
Collapse
Affiliation(s)
| | - Bo Jin
- Department of Clinical Laboratory, Peking University First Hospital, Beijing 100034, China;
| |
Collapse
|
13
|
Zheng M, Liu Z, He Y. Radiation-induced fibrosis: Mechanisms and therapeutic strategies from an immune microenvironment perspective. Immunology 2024; 172:533-546. [PMID: 38561001 DOI: 10.1111/imm.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Radiation-induced fibrosis (RIF) is a severe chronic complication of radiotherapy (RT) manifested by excessive extracellular matrix (ECM) components deposition within the irradiated area. The lung, heart, skin, jaw, pelvic organs and so on may be affected by RIF, which hampers body functions and quality of life. There is accumulating evidence suggesting that the immune microenvironment may play a key regulatory role in RIF. This article discussed the synergetic or antagonistic effects of immune cells and mediators in regulating RIF's development. Several potential preventative and therapeutic strategies for RIF were proposed based on the immunological mechanisms to provide clinicians with improved cognition and clinical treatment guidance.
Collapse
Affiliation(s)
- Mengting Zheng
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhonglong Liu
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yue He
- Department of Oral Maxillofacial & Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
14
|
Wang L, Gao J, Liu B, Fu Y, Yao Z, Guo S, Song Z, Zhang Z, He J, Wang C, Ma W, Wu F. The association between lymphocyte-to-monocyte ratio and all-cause mortality in obese hypertensive patients with diabetes and without diabetes: results from the cohort study of NHANES 2001-2018. Front Endocrinol (Lausanne) 2024; 15:1387272. [PMID: 38686205 PMCID: PMC11056572 DOI: 10.3389/fendo.2024.1387272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Objective Obesity, hypertension and diabetes are high prevalent that are often associated with poor outcomes. They have become major global health concern. Little research has been done on the impact of lymphocyte-to-monocyte ratio (LMR) on outcomes in these patients. Thus, we aimed to explore the association between LMR and all-cause mortality in obese hypertensive patients with diabetes and without diabetes. Methods The researchers analyzed data from the National Health and Nutrition Examination Survey (2001-2018), which included 4,706 participants. Kaplan-Meier analysis was employed to compare survival rate between different groups. Multivariate Cox proportional hazards regression models with trend tests and restricted cubic splines (RCS) analysis and were used to investigate the relationship between the LMR and all-cause mortality. Subgroup analysis was performed to assess whether there was an interaction between the variables. Results The study included a total of 4706 participants with obese hypertension (48.78% male), of whom 960 cases (20.40%) died during follow-up (median follow-up of 90 months). Kaplan-Meier curves suggested a remarkable decrease in all-cause mortality with increasing LMR value in patients with diabetes and non-diabetes (P for log-rank test < 0.001). Moreover, multivariable Cox models demonstrated that the risk of mortality was considerably higher in the lowest quartile of the LMR and no linear trend was observed (P > 0.05). Furthermore, the RCS analysis indicated a non-linear decline in the risk of death as LMR values increased (P for nonlinearity < 0.001). Conclusions Increased LMR is independently related with reduced all-cause mortality in patients with obese hypertension, regardless of whether they have combined diabetes.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Jie Gao
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Bing Liu
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Youliang Fu
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Zhihui Yao
- Department of Cardiology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shanshan Guo
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Ziwei Song
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Zhaoyuan Zhang
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Jiaojiao He
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Congxia Wang
- Department of Cardiology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Weidong Ma
- Department of Cardiology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Feng Wu
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| |
Collapse
|