1
|
Khan NA, López-Maldonado EA, Majumder A, Singh S, Varshney R, López JR, Méndez PF, Ramamurthy PC, Khan MA, Khan AH, Mubarak NM, Amhad W, Shamshuddin SZM, Aljundi IH. A state-of-art-review on emerging contaminants: Environmental chemistry, health effect, and modern treatment methods. CHEMOSPHERE 2023; 344:140264. [PMID: 37758081 DOI: 10.1016/j.chemosphere.2023.140264] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Pollution problems are increasingly becoming e a priority issue from both scientific and technological points of view. The dispersion and frequency of pollutants in the environment are on the rise, leading to the emergence have been increasing, including of a new class of contaminants that not only impact the environment but also pose risks to people's health. Therefore, developing new methods for identifying and quantifying these pollutants classified as emerging contaminants is imperative. These methods enable regulatory actions that effectively minimize their adverse effects to take steps to regulate and reduce their impact. On the other hand, these new contaminants represent a challenge for current technologies to be adapted to control and remove emerging contaminants and involve innovative, eco-friendly, and sustainable remediation technologies. There is a vast amount of information collected in this review on emerging pollutants, comparing the identification and quantification methods, the technologies applied for their control and remediation, and the policies and regulations necessary for their operation and application. In addition, This review will deal with different aspects of emerging contaminants, their origin, nature, detection, and treatment concerning water and wastewater.
Collapse
Affiliation(s)
- Nadeem A Khan
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP 22390, Tijuana, Baja California, México.
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Radhika Varshney
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - J R López
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - P F Méndez
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Av. Las Américas S/N, C.P. 80000, Culiacán, Sinaloa, México
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR), Indian Institute of Science, Bangalore, 560012, India
| | - Mohammad Amir Khan
- Department of Civil Engineering, Galgotias College of Engineering and Technology, Knowledge Park I, Greater Noida, 201310, Uttar Pradesh, India
| | - Afzal Husain Khan
- Department of Civil Engineering, College of Engineering, Jazan University, P.O. Box. 706, Jazan, 45142, Saudi Arabia
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam; Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Waqas Amhad
- Institute of Fundamental and Frontier Sciences, University of Electonic Science and Technology of China, Chengdu, 610054 China
| | - S Z M Shamshuddin
- Chemistry Research Laboratory, HMS Institute of Technology, Tumakuru, 572104, Karnataka, India
| | - Isam H Aljundi
- Interdisciplinary Research Center for Membranes and Water Security (IRC-MWS), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia; Chemical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
2
|
Tsenang M, Pheko T, Mokgadi J, Phokedi GN. A Validated Liquid–Liquid Extraction Method for the Quantitative Analysis of Ethanol in the Different Types of Home-Brewed Alcoholic Beverages of Botswana Using Gas Chromatography Flame Ionization Detector. CHEMISTRY AFRICA 2022. [PMCID: PMC9593979 DOI: 10.1007/s42250-022-00520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Purpose Home-made alcohol-related deaths are a significant public health issue which is often overlooked. To date, approximately 30 people have died following the consumption of home brewed alcoholic beverages in Botswana. The process of brewing such alcoholic beverages remains unmonitored and makes it difficult to pinpoint the cause of these deaths. Ethanol content in these beverages is thought to be high and therefore contributing towards the deaths. The aim of this research was to develop and validate a method for the quantification of ethanol in the different types of home-brewed alcoholic drinks of Botswana. Methods Twenty-six different samples of home-brewed alcoholic drinks were collected from local brewers in different districts of Botswana. A Liquid–Liquid Extraction-Gas Chromatography-Flame Ionization Detector method was optimized for extraction of ethanol using ethyl acetate and validated for accuracy, precision, repeatability, selectivity, linearity, limit of detection, limit of quantification, stability. Following this, the method used to measure the concentration of ethanol in the different home brewed beverages. Results The method demonstrated linearity in the concentration range of 2.5–60% v/v with correlation coefficient (R2) of 0.996 and, was found to be precise with %RSD values ≤ 5%. Repeatability was acceptable with %RSD values ≤ 5%. Percentage recoveries were within 100%. No interference was observed from likely excipients commonly found in home brewed alcoholic beverages, demonstrating good selectivity. Limits of detection and quantification were found to be 0.37% v/v and 1.12% v/v respectively. The analysed samples were discovered to contain ethanol with concentrations ranging from 2.56 to 36% v/v. Conclusion A method for the quantification of ethanol in home-made alcoholic beverages of Botswana was developed and validated. It is simple, cheap, rapid and does not require sophisticated instruments.
Collapse
Affiliation(s)
- Mmaabo Tsenang
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, BIUST, Plot 10071, Boseja-Khurumela, Private Bag 16, Palapye, Botswana
| | - Tshepo Pheko
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, BIUST, Plot 10071, Boseja-Khurumela, Private Bag 16, Palapye, Botswana
| | - Janes Mokgadi
- Chemical, Biological Nuclear and Radiological Weapons Management Authority, Ministry of Defence, Justice and Security, Private Bag 00384, Gaborone, Botswana
| | - Gothatamang Norma Phokedi
- Department of Chemical and Forensic Sciences, Botswana International University of Science and Technology, BIUST, Plot 10071, Boseja-Khurumela, Private Bag 16, Palapye, Botswana
| |
Collapse
|
3
|
Rappold BA. Review of the Use of Liquid Chromatography-Tandem Mass Spectrometry in Clinical Laboratories: Part II-Operations. Ann Lab Med 2022; 42:531-557. [PMID: 35470272 PMCID: PMC9057814 DOI: 10.3343/alm.2022.42.5.531] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/08/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is increasingly utilized in clinical laboratories because it has advantages in terms of specificity and sensitivity over other analytical technologies. These advantages come with additional responsibilities and challenges given that many assays and platforms are not provided to laboratories as a single kit or device. The skills, staff, and assays used in LC-MS/MS are internally developed by the laboratory, with relatively few exceptions. Hence, a laboratory that deploys LC-MS/MS assays must be conscientious of the practices and procedures adopted to overcome the challenges associated with the technology. This review discusses the post-development landscape of LC-MS/MS assays, including validation, quality assurance, operations, and troubleshooting. The content knowledge of LC-MS/MS users is quite broad and deep and spans multiple scientific fields, including biology, clinical chemistry, chromatography, engineering, and MS. However, there are no formal academic programs or specific literature to train laboratory staff on the fundamentals of LC-MS/MS beyond the reports on method development. Therefore, depending on their experience level, some readers may be familiar with aspects of the laboratory practices described herein, while others may be not. This review endeavors to assemble aspects of LC-MS/MS operations in the clinical laboratory to provide a framework for the thoughtful development and execution of LC-MS/MS applications.
Collapse
Affiliation(s)
- Brian A. Rappold
- Laboratory Corporation of America Holdings, Research Triangle Park, NC, USA
| |
Collapse
|
4
|
Thomas SN, French D, Jannetto PJ, Rappold BA, Clarke WA. Liquid chromatography–tandem mass spectrometry for clinical diagnostics. NATURE REVIEWS. METHODS PRIMERS 2022; 2:96. [PMCID: PMC9735147 DOI: 10.1038/s43586-022-00175-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/07/2022] [Indexed: 12/13/2022]
Abstract
Mass spectrometry is a powerful analytical tool used for the analysis of a wide range of substances and matrices; it is increasingly utilized for clinical applications in laboratory medicine. This Primer includes an overview of basic mass spectrometry concepts, focusing primarily on tandem mass spectrometry. We discuss experimental considerations and quality management, and provide an overview of some key applications in the clinic. Lastly, the Primer discusses significant challenges for implementation of mass spectrometry in clinical laboratories and provides an outlook of where there are emerging clinical applications for this technology. Tandem mass spectrometry is increasingly utilized for clinical applications in laboratory medicine. In this Primer, Thomas et al. discuss experimental considerations and quality management for implementing clinical tandem mass spectrometry in the clinic with an overview of some key applications.
Collapse
Affiliation(s)
- Stefani N. Thomas
- grid.17635.360000000419368657Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN USA
| | - Deborah French
- grid.266102.10000 0001 2297 6811Laboratory Medicine, University of California San Francisco, San Francisco, CA USA
| | - Paul J. Jannetto
- grid.66875.3a0000 0004 0459 167XDepartment of Pathology & Laboratory Medicine, Mayo Clinic, Rochester, MN USA
| | - Brian A. Rappold
- grid.419316.80000 0004 0550 1859Research and Development, Labcorp, Burlington, NC USA
| | - William A. Clarke
- grid.21107.350000 0001 2171 9311Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
5
|
Lee S, Chintalapudi K, Badu-Tawiah AK. Clinical Chemistry for Developing Countries: Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:437-465. [PMID: 33979544 PMCID: PMC8932337 DOI: 10.1146/annurev-anchem-091520-085936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Early disease diagnosis is necessary to enable timely interventions. Implementation of this vital task in the developing world is challenging owing to limited resources. Diagnostic approaches developed for resource-limited settings have often involved colorimetric tests (based on immunoassays) due to their low cost. Unfortunately, the performance/sensitivity of such simplistic tests are often limited and significantly hinder opportunities for early disease detection. A new criterion for selecting diagnostic tests in low- and middle-income countries is proposed here that is based on performance-to-cost ratio. For example, modern mass spectrometry (MS) now involves analysis of the native sample in the open laboratory environment, enabling applications in many fields, including clinical research, forensic science, environmental analysis, and agriculture. In this critical review, we summarize recent developments in chemistry that enable MS to be applied effectively in developing countries. In particular, we argue that closed automated analytical systems may not offer the analytical flexibility needed in resource-limited settings. Alternative strategies proposed here have potential to be widely accepted in low- and middle-income countries through the utilization of the open-source ambient MS platform that enables microsampling techniques such as dried blood spot to be coupled with miniature mass spectrometers in a centralized analytical platform. Consequently, costs associated with sample handling and maintenance can be reduced by >50% of the total ownership cost, permitting analytical measurements to be operated at high performance-to-cost ratios in the developing world.
Collapse
Affiliation(s)
- Suji Lee
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA;
| | - Kavyasree Chintalapudi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA;
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA;
| |
Collapse
|
6
|
Ward C, Nallamshetty S, Watrous JD, Acres E, Long T, Mathews IT, Sharma S, Cheng S, Imam F, Jain M. Nontargeted mass spectrometry of dried blood spots for interrogation of the human circulating metabolome. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4772. [PMID: 34240506 PMCID: PMC8626523 DOI: 10.1002/jms.4772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/08/2021] [Accepted: 05/24/2021] [Indexed: 06/02/2023]
Abstract
Advances in high-resolution, nontargeted mass spectrometry allow for the simultaneous measure of thousands of metabolites in a single biosample. Application of these analytical approaches to population-scale human studies has been limited by the need for resource-intensive blood sample collection, preparation, and storage. Dried blood spotting, a technique developed decades ago for newborn screening, may offer a simple approach to overcome barriers in human blood acquisition and storage. In this study, we find that over 4,400 spectral features across diverse chemical classes may be efficiently and reproducibly extracted and relatively quantified from human dried blood spots using nontargeted metabolomic analysis employing HILIC and reversed-phase liquid chromatography coupled to Orbitrap mass spectrometry. Moreover, over 80% of metabolites were found to be chemically stable in dried blood spots stored at room temperature for up to a week. In direct relation to plasma samples, dried blood spots exhibited comparable representation of the human circulating metabolome, capturing both known and previously uncharacterized metabolites. Dried blood spot approaches provide an opportunity for rapid and facile human biosampling and storage and will enable widespread metabolomics study of populations, particularly in resource-limited areas.
Collapse
Affiliation(s)
- Casey Ward
- Departments of Medicine and Pharmacology, University of California, San Diego, California, USA
- Department of Pediatrics and Neonatology, University of California, San Diego, California, USA
| | - Shriram Nallamshetty
- Cardiology Section, Palo Alto VA hospital, Palo Alto, California, USA; Division of CV Medicine, Stanford School of Medicine, Stanford, California, USA
| | - Jeramie D. Watrous
- Departments of Medicine and Pharmacology, University of California, San Diego, California, USA
| | - Eowyn Acres
- Departments of Medicine and Pharmacology, University of California, San Diego, California, USA
| | - Tao Long
- Departments of Medicine and Pharmacology, University of California, San Diego, California, USA
| | - Ian T Mathews
- Departments of Medicine and Pharmacology, University of California, San Diego, California, USA
- La Jolla Institute, La Jolla, California, USA
| | | | - Susan Cheng
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Framingham Heart Study, Framingham, Massachusetts, USA
| | - Farhad Imam
- Department of Pediatrics and Neonatology, University of California, San Diego, California, USA
- Present address: Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | - Mohit Jain
- Departments of Medicine and Pharmacology, University of California, San Diego, California, USA
| |
Collapse
|
7
|
Rana S, Bharti A, Singh S, Bhatnagar A, Prabhakar N. Gold-silver core-shell nanoparticle–based impedimetric immunosensor for detection of iron homeostasis biomarker hepcidin. Mikrochim Acta 2020; 187:626. [DOI: 10.1007/s00604-020-04599-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/10/2020] [Indexed: 01/20/2023]
|