1
|
Nelson N, Relógio A. Molecular mechanisms of tumour development in glioblastoma: an emerging role for the circadian clock. NPJ Precis Oncol 2024; 8:40. [PMID: 38378853 PMCID: PMC10879494 DOI: 10.1038/s41698-024-00530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
Glioblastoma is one of the most lethal cancers with current therapeutic options lacking major successes. This underlines the necessity to understand glioblastoma biology on other levels and use these learnings for the development of new therapeutic concepts. Mounting evidence in the field of circadian medicine points to a tight interplay between disturbances of the circadian system and glioblastoma progression. The circadian clock, an internal biological mechanism governing numerous physiological processes across a 24-h cycle, also plays a pivotal role in regulationg key cellular functions, including DNA repair, cell cycle progression, and apoptosis. These processes are integral to tumour development and response to therapy. Disruptions in circadian rhythms can influence tumour growth, invasion, and response to treatment in glioblastoma patients. In this review, we explore the robust association between the circadian clock, and cancer hallmarks within the context of glioblastoma. We further discuss the impact of the circadian clock on eight cancer hallmarks shown previously to link the molecular clock to different cancers, and summarize the putative role of clock proteins in circadian rhythm disturbances and chronotherapy in glioblastoma. By unravelling the molecular mechanisms behind the intricate connections between the circadian clock and glioblastoma progression, researchers can pave the way for the identification of potential therapeutic targets, the development of innovative treatment strategies and personalized medicine approaches. In conclusion, this review underscores the significant influence of the circadian clock on the advancement and understanding of future therapies in glioblastoma, ultimately leading to enhanced outcomes for glioblastoma patients.
Collapse
Affiliation(s)
- Nina Nelson
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany
| | - Angela Relógio
- Institute for Systems Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg, 20457, Germany.
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Haematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, 10117, Germany.
| |
Collapse
|
2
|
Nettnin EA, Nguyen T, Arana S, Barros Guinle MI, Garcia CA, Gibson EM, Prolo LM. Review: therapeutic approaches for circadian modulation of the glioma microenvironment. Front Oncol 2023; 13:1295030. [PMID: 38173841 PMCID: PMC10762863 DOI: 10.3389/fonc.2023.1295030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
High-grade gliomas are malignant brain tumors that are characteristically hard to treat because of their nature; they grow quickly and invasively through the brain tissue and develop chemoradiation resistance in adults. There is also a distinct lack of targeted treatment options in the pediatric population for this tumor type to date. Several approaches to overcome therapeutic resistance have been explored, including targeted therapy to growth pathways (ie. EGFR and VEGF inhibitors), epigenetic modulators, and immunotherapies such as Chimeric Antigen Receptor T-cell and vaccine therapies. One new promising approach relies on the timing of chemotherapy administration based on intrinsic circadian rhythms. Recent work in glioblastoma has demonstrated temporal variations in chemosensitivity and, thus, improved survival based on treatment time of day. This may be due to intrinsic rhythms of the glioma cells, permeability of the blood brain barrier to chemotherapy agents, the tumor immune microenvironment, or another unknown mechanism. We review the literature to discuss chronotherapeutic approaches to high-grade glioma treatment, circadian regulation of the immune system and tumor microenvironment in gliomas. We further discuss how these two areas may be combined to temporally regulate and/or improve the effectiveness of immunotherapies.
Collapse
Affiliation(s)
- Ella A. Nettnin
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Thien Nguyen
- Division of Pediatric Hematology/Oncology, Lucile Packard Children’s Hospital, Palo Alto, CA, United States
| | - Sophia Arana
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | | | - Cesar A. Garcia
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Erin M. Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Laura M. Prolo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
- Division of Pediatric Neurosurgery, Lucile Packard Children’s Hospital, Palo Alto, CA, United States
| |
Collapse
|
3
|
Abstract
Glioblastoma (GBM) is the most prevalent malignant primary brain tumor, accounting for 14.2% of all diagnosed tumors and 50.1% of all malignant tumors, and the median survival time is approximately 8 months irrespective of whether a patient receives treatment without significant improvement despite expansive research (Ostrom QT, Price M, Neff C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019. Neurooncology. 2022; 24(suppl 5):v1-v95.). Recently, important roles for the circadian clock in GBM tumorigenesis have been reported. Positive regulators of circadian-controlled transcription, brain and muscle ARNT-like 1 (BMAL1), and circadian locomotor output cycles kaput (CLOCK), are highly expressed also in GBM and correlated with poor patient prognosis. BMAL1 and CLOCK promote the maintenance of GBM stem cells (GSCs) and the establishment of a pro-tumorigenic tumor microenvironment (TME), suggesting that targeting the core clock proteins may augment GBM treatment. Here, we review findings that highlight the critical role the circadian clock plays in GBM biology and the strategies by which the circadian clock can be leveraged for GBM treatment in the clinic moving forward.
Collapse
Affiliation(s)
- Priscilla Chan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jeremy N Rich
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
4
|
Petkovic M, Yalçin M, Heese O, Relógio A. Differential expression of the circadian clock network correlates with tumour progression in gliomas. BMC Med Genomics 2023; 16:154. [PMID: 37400829 DOI: 10.1186/s12920-023-01585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Gliomas are tumours arising mostly from astrocytic or oligodendrocytic precursor cells. These tumours are classified according to the updated WHO classification from 2021 in 4 grades depending on molecular and histopathological criteria. Despite novel multimodal therapeutic approaches, the vast majority of gliomas (WHO grade III and IV) are not curable. The circadian clock is an important regulator of numerous cellular processes and its dysregulation had been found during the progression of many cancers, including gliomas. RESULTS In this study, we explore expression patterns of clock-controlled genes in low-grade glioma (LGG) and glioblastoma multiforme (GBM) and show that a set of 45 clock-controlled genes can be used to distinguish GBM from normal tissue. Subsequent analysis identified 17 clock-controlled genes with a significant association with survival. The results point to a loss of correlation strength within elements of the circadian clock network in GBM compared to LGG. We further explored the progression patterns of mutations in LGG and GBM, and showed that tumour suppressor APC is lost late both in LGG and GBM. Moreover, HIF1A, involved in cellular response to hypoxia, exhibits subclonal losses in LGG, and TERT, involved in the formation of telomerase, is lost late in the GBM progression. By examining multi-sample LGG data, we find that the clock-controlled driver genes APC, HIF1A, TERT and TP53 experience frequent subclonal gains and losses. CONCLUSIONS Our results show a higher level of disrgulation at the gene expression level in GBM compared to LGG, and indicate an association between the differentially expressed clock-regulated genes and patient survival in both LGG and GBM. By reconstructing the patterns of progression in LGG and GBM, our data reveals the relatively late gains and losses of clock-regulated glioma drivers. Our analysis emphasizes the role of clock-regulated genes in glioma development and progression. Yet, further research is needed to asses their value in the development of new treatments.
Collapse
Affiliation(s)
- Marina Petkovic
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany
| | - Müge Yalçin
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, 20457, Hamburg, Germany
| | - Oliver Heese
- Department of Neurosurgery and Spinal Surgery, HELIOS Medical Center Schwerin, University Campus of MSH Medical School Hamburg, 20457, Hamburg, Germany
| | - Angela Relógio
- Institute for Theoretical Biology (ITB), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany.
- Molecular Cancer Research Center (MKFZ), Medical Department of Hematology, Oncology, and Tumour Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117, Berlin, Germany.
- Institute for Systems Medicine, Faculty of Human Medicine, MSH Medical School Hamburg, 20457, Hamburg, Germany.
| |
Collapse
|
5
|
Niu Y, Tang S. Circadian clock-mediated nuclear receptors in cancer. J Cell Physiol 2022; 237:4428-4442. [PMID: 36250982 DOI: 10.1002/jcp.30905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/25/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
Circadian system coordinates the daily periodicity of physiological and biochemical functions to adapt to environmental changes. Circadian disruption has been identified to increase the risk of cancer and promote cancer progression, but the underlying mechanism remains unclear. And further mechanistic understanding of the crosstalk between clock components and cancer is urgent to achieve clinical anticancer benefits from chronochemotherapy. Recent studies discover that several nuclear receptors regulating circadian clock, also play crucial roles in mediating multiple cancer processes. In this review, we aim to summarize the latest developments of clock-related nuclear receptors in cancer biology and dissect mechanistic insights into how nuclear receptors coordinate with circadian clock to regulate tumorigenesis and cancer treatment. A better understanding of circadian clock-related nuclear receptors in cancer could help prevent tumorigenesis and improve anticancer efficacy.
Collapse
Affiliation(s)
- Ya Niu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shuang Tang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
6
|
Effects and Prognostic Values of Circadian Genes CSNK1E/GNA11/KLF9/THRAP3 in Kidney Renal Clear Cell Carcinoma via a Comprehensive Analysis. Bioengineering (Basel) 2022; 9:bioengineering9070306. [PMID: 35877357 PMCID: PMC9311602 DOI: 10.3390/bioengineering9070306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is one of the most prevalent and deadly types of renal cancer in adults. Recent research has identified circadian genes as being involved in the development and progression of KIRC by altering their expression. This study aimed to identify circadian genes that are differentially expressed in KIRC and assess their role in KIRC progression. In KIRC, there were 553 differentially expressed rhythm genes (DERGs), with 300 up-regulated and 253 down-regulated DERGs. Functional enrichment analyses showed that DERGs were greatly enriched in the circadian rhythm and immune response pathways. Survival analyses indicated that higher expression levels of CSNK1E were related to shorter overall survival of KIRC patients, whereas lower expression levels of GNA11, KLF9, and THRAP3 were associated with shorter overall survival of KIRC patients. Through cell assay verification, the mRNA level of CSNK1E was significantly up-regulated, whereas the mRNA levels of GNA11, KLF9, and THRAP3 were dramatically down-regulated in KIRC cells, which were consistent with the bioinformatics analysis of KIRC patient samples. Age, grade, stage, TM classification, and CSNK1E expression were all shown to be high-risk variables, whereas GNA11, KLF9, and THRAP3 expression were found to be low-risk factors in univariate Cox analyses. Multivariate Cox analyses showed that CSNK1E and KLF9 were also independently related to overall survival. Immune infiltration analysis indicated that the proportion of immune cells varied greatly between KIRC tissues and normal tissue, whereas CSNK1E, GNA11, KLF9, and THRAP3 expression levels were substantially linked with the infiltration abundance of immune cells and immunological biomarkers. Moreover, interaction networks between CSNK1E/GNA11/KLF9/THRAP3 and immune genes were constructed to explore the stream connections. The findings could help us better understand the molecular mechanisms of KIRC progression, and CSNK1E/GNA11/KLF9/THRAP3 might be used as molecular targets for chronotherapy in KIRC patients in the near future.
Collapse
|
7
|
Malik S, Stokes Iii J, Manne U, Singh R, Mishra MK. Understanding the significance of biological clock and its impact on cancer incidence. Cancer Lett 2022; 527:80-94. [PMID: 34906624 PMCID: PMC8816870 DOI: 10.1016/j.canlet.2021.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022]
Abstract
The circadian clock is an essential timekeeper that controls, for humans, the daily rhythm of biochemical, physiological, and behavioral functions. Irregular performance or disruption in circadian rhythms results in various diseases, including cancer. As a factor in cancer development, perturbations in circadian rhythms can affect circadian homeostasis in energy balance, lead to alterations in the cell cycle, and cause dysregulation of chromatin remodeling. However, knowledge gaps remain in our understanding of the relationship between the circadian clock and cancer. Therefore, a mechanistic understanding by which circadian disruption enhances cancer risk is needed. This review article outlines the importance of the circadian clock in tumorigenesis and summarizes underlying mechanisms in the clock and its carcinogenic mechanisms, highlighting advances in chronotherapy for cancer treatment.
Collapse
Affiliation(s)
- Shalie Malik
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA; Department of Zoology and Dr. Giri Lal Gupta Institute of Public Health and Public Affairs, University of Lucknow, Lucknow, UP, India
| | - James Stokes Iii
- Department of Biological and Environmental Sciences, Auburn University, Montgomery, AL, USA
| | - Upender Manne
- Departments of Pathology, Surgery and Epidemiology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL, USA.
| |
Collapse
|
8
|
Jarabo P, de Pablo C, González-Blanco A, Casas-Tintó S. Circadian Gene cry Controls Tumorigenesis through Modulation of Myc Accumulation in Glioblastoma Cells. Int J Mol Sci 2022; 23:ijms23042043. [PMID: 35216153 PMCID: PMC8874709 DOI: 10.3390/ijms23042043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/04/2022] Open
Abstract
Glioblastoma (GB) is the most frequent malignant brain tumor among adults and currently there is no effective treatment. This aggressive tumor grows fast and spreads through the brain causing death in 15 months. GB cells display a high mutation rate and generate a heterogeneous population of tumoral cells that are genetically distinct. Thus, the contribution of genes and signaling pathways relevant for GB progression is of great relevance. We used a Drosophila model of GB that reproduces the features of human GB and describe the upregulation of the circadian gene cry in GB patients and in a Drosophila GB model. We studied the contribution of cry to the expansion of GB cells and the neurodegeneration and premature death caused by GB, and we determined that cry is required for GB progression. Moreover, we determined that the PI3K pathway regulates cry expression in GB cells, and in turn, cry is necessary and sufficient to promote Myc accumulation in GB. These results contribute to understanding the mechanisms underlying GB malignancy and lethality, and describe a novel role of Cry in GB cells.
Collapse
|
9
|
Wagner PM, Prucca CG, Caputto BL, Guido ME. Adjusting the Molecular Clock: The Importance of Circadian Rhythms in the Development of Glioblastomas and Its Intervention as a Therapeutic Strategy. Int J Mol Sci 2021; 22:8289. [PMID: 34361055 PMCID: PMC8348990 DOI: 10.3390/ijms22158289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Gliomas are solid tumors of the central nervous system (CNS) that originated from different glial cells. The World Health Organization (WHO) classifies these tumors into four groups (I-IV) with increasing malignancy. Glioblastoma (GBM) is the most common and aggressive type of brain tumor classified as grade IV. GBMs are resistant to conventional therapies with poor prognosis after diagnosis even when the Stupp protocol that combines surgery and radiochemotherapy is applied. Nowadays, few novel therapeutic strategies have been used to improve GBM treatment, looking for higher efficiency and lower side effects, but with relatively modest results. The circadian timing system temporally organizes the physiology and behavior of most organisms and daily regulates several cellular processes in organs, tissues, and even in individual cells, including tumor cells. The potentiality of the function of the circadian clock on cancer cells modulation as a new target for novel treatments with a chronobiological basis offers a different challenge that needs to be considered in further detail. The present review will discuss state of the art regarding GBM biology, the role of the circadian clock in tumor progression, and new chrono-chemotherapeutic strategies applied for GBM treatment.
Collapse
Affiliation(s)
- Paula M. Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - César G. Prucca
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Beatriz L. Caputto
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Mario E. Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (P.M.W.); (C.G.P.); (B.L.C.)
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| |
Collapse
|
10
|
Adjusting the Molecular Clock: The Importance of Circadian Rhythms in the Development of Glioblastomas and Its Intervention as a Therapeutic Strategy. Int J Mol Sci 2021; 22:8289. [PMID: 34361055 PMCID: PMC8348990 DOI: 10.3390/ijms22158289;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Gliomas are solid tumors of the central nervous system (CNS) that originated from different glial cells. The World Health Organization (WHO) classifies these tumors into four groups (I-IV) with increasing malignancy. Glioblastoma (GBM) is the most common and aggressive type of brain tumor classified as grade IV. GBMs are resistant to conventional therapies with poor prognosis after diagnosis even when the Stupp protocol that combines surgery and radiochemotherapy is applied. Nowadays, few novel therapeutic strategies have been used to improve GBM treatment, looking for higher efficiency and lower side effects, but with relatively modest results. The circadian timing system temporally organizes the physiology and behavior of most organisms and daily regulates several cellular processes in organs, tissues, and even in individual cells, including tumor cells. The potentiality of the function of the circadian clock on cancer cells modulation as a new target for novel treatments with a chronobiological basis offers a different challenge that needs to be considered in further detail. The present review will discuss state of the art regarding GBM biology, the role of the circadian clock in tumor progression, and new chrono-chemotherapeutic strategies applied for GBM treatment.
Collapse
|
11
|
Gao Y, Wu Y, Zhang N, Yuan H, Wang F, Xu H, Yu J, Ma J, Hou S, Cao X. IDH1 gene mutation activates Smad signaling molecules to regulate the expression levels of cell cycle and biological rhythm genes in human glioma U87‑MG cells. Mol Med Rep 2021; 23:354. [PMID: 33760141 PMCID: PMC7974315 DOI: 10.3892/mmr.2021.11993] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Isocitrate dehydrogenase1 (IDH1) mutation is the most important genetic change in glioma. The most common IDH1 mutation results in the amino acid substitution of arginine 132 (Arg/R132), which is located at the active site of the enzyme. IDH1 Arg132His (R132H) mutation can reduce the proliferative rate of glioma cells. Numerous diseases follow circadian rhythms, and there is growing evidence that circadian disruption may be a risk factor for cancer in humans. Dysregulation of the circadian clock serves an important role in the development of malignant tumors, including glioma. Brain-Muscle Arnt-Like protein 1 (BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK) are the main biological rhythm genes. The present study aimed to further study whether there is an association between IDH1 R132H mutation and biological rhythm in glioma, and whether this affects the occurrence of glioma. The Cancer Genome Atlas (TCGA) database was used to detect the expression levels of the biological rhythm genes BMAL1 and CLOCK in various types of tumor. Additionally, U87-MG cells were infected with wild-type and mutant IDH1 lentiviruses. Colony formation experiments were used to detect cell proliferation in each group, cell cycle distribution was detected by flow cytometry and western blotting was used to detect the expression levels of wild-type and mutant IDH1, cyclins, biological rhythm genes and Smad signaling pathway-associated genes in U87-MG cells. TCGA database results suggested that BMAL1 and CLOCK were abnormally expressed in glioma. Cells were successfully infected with wild-type and mutant IDH1 lentiviruses. Colony formation assay revealed decreased cell proliferation in the IDH1 R132H mutant group. The cell cycle distribution detected by flow cytometry indicated that IDH1 gene mutation increased the G1 phase ratio and decreased the S phase ratio in U87-MG cells. The western blotting results demonstrated that IDH1 R132H mutation decreased the expression levels of the S phase-associated proteins Cyclin A and CDK2, and increased the expression levels of the G1 phase-associated proteins Cyclin D3 and CDK4, but did not significantly change the expression levels of the G2/M phase-associated protein Cyclin B1. The expression levels of the positive and negative rhythm regulation genes BMAL1, CLOCK, period (PER s (PER1, 2 and 3) and cryptochrom (CRY)s (CRY1 and 2) were significantly decreased, those of the Smad signaling pathway-associated genes Smad2, Smad3 and Smad2-3 were decreased, and those of phosphorylated (p)-Smad2, p-Smad3 and Smad4 were increased. Therefore, the present results suggested that the IDH1 R132H mutation may alter the cell cycle and biological rhythm genes in U87-MG cells through the TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Yongying Gao
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Yanwei Wu
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ningmei Zhang
- Department of Pathology, Tumor Hospital, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hongmei Yuan
- Functional Department, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia 750021, P.R. China
| | - Fei Wang
- Department of Pathology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia 750001, P.R. China
| | - Hui Xu
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jiaxiang Yu
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Jie Ma
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Shaozhang Hou
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xiangmei Cao
- Department of Pathology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
12
|
Abstract
Circadian clocks are cell-autonomous self-sustaining oscillators that allow organisms to anticipate environmental changes throughout the solar day and persist in nearly every cell examined. Environmental or genetic disruption of circadian rhythms increases the risk of several types of cancer, but the underlying mechanisms are not well understood. Here, we discuss evidence connecting circadian rhythms-with emphasis on the cryptochrome proteins (CRY1/2)-to cancer through in vivo models, mechanisms involving known tumor suppressors and oncogenes, chemotherapeutic efficacy, and human cancer risk.
Collapse
Affiliation(s)
- Alanna B Chan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Katja A Lamia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
13
|
Yang C, Wu J, Liu X, Wang Y, Liu B, Chen X, Wu X, Yan D, Han L, Liu S, Shan L, Shang Y. Circadian Rhythm Is Disrupted by ZNF704 in Breast Carcinogenesis. Cancer Res 2020; 80:4114-4128. [PMID: 32651256 DOI: 10.1158/0008-5472.can-20-0493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 11/16/2022]
Abstract
Copy number gain in chromosome 8q21 is frequently detected in breast cancer, yet the oncogenic potential underlying this amplicon in breast carcinogenesis remains to be delineated. We report here that ZNF704, a gene mapped to 8q21, is recurrently amplified in various malignancies including breast cancer. ZNF704 acted as a transcriptional repressor and interacted with the transcriptional corepressor SIN3A complex. Genome-wide interrogation of transcriptional targets revealed that the ZNF704/SIN3A complex represses a panel of genes including PER2 that are critically involved in the function of the circadian clock. Overexpression of ZNF704 prolonged the period and dampened the amplitude of the circadian clock. ZNF704 promoted the proliferation and invasion of breast cancer cells in vitro and accelerated the growth and metastasis of breast cancer in vivo. Consistently, the level of ZNF704 expression inversely correlated with that of PER2 in breast carcinomas, and high level of ZNF704 correlated with advanced histologic grades, lymph node positivity, and poor prognosis of patients with breast cancer, especially those with HER2+ and basal-like subtypes. These results indicate that ZNF704 is an important regulator of the circadian clock and a potential driver for breast carcinogenesis. SIGNIFICANCE: This study indicates that ZNF704 could be a potential oncogenic factor, disrupting circadian rhythm of breast cancer cells and contributing to breast carcinogenesis.
Collapse
Affiliation(s)
- Chao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Beibei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xing Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lulu Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Shumeng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing, China.,Laboratory of Cancer Epigenetics, Chinese Academy of Medical Sciences Beijing, China
| |
Collapse
|
14
|
Shen H, Cook K, Gee HE, Hau E. Hypoxia, metabolism, and the circadian clock: new links to overcome radiation resistance in high-grade gliomas. J Exp Clin Cancer Res 2020; 39:129. [PMID: 32631383 PMCID: PMC7339573 DOI: 10.1186/s13046-020-01639-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is the cornerstone of treatment of high-grade gliomas (HGGs). It eradicates tumor cells by inducing oxidative stress and subsequent DNA damage. Unfortunately, almost all HGGs recur locally within several months secondary to radioresistance with intricate molecular mechanisms. Therefore, unravelling specific underlying mechanisms of radioresistance is critical to elucidating novel strategies to improve the radiosensitivity of tumor cells, and enhance the efficacy of radiotherapy. This review addresses our current understanding of how hypoxia and the hypoxia-inducible factor 1 (HIF-1) signaling pathway have a profound impact on the response of HGGs to radiotherapy. In addition, intriguing links between hypoxic signaling, circadian rhythms and cell metabolism have been recently discovered, which may provide insights into our fundamental understanding of radioresistance. Cellular pathways involved in the hypoxic response, DNA repair and metabolism can fluctuate over 24-h periods due to circadian regulation. These oscillatory patterns may have consequences for tumor radioresistance. Timing radiotherapy for specific times of the day (chronoradiotherapy) could be beneficial in patients with HGGs and will be discussed.
Collapse
Affiliation(s)
- Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia.
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia.
| | - Kristina Cook
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health & Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Harriet E Gee
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, New South Wales, 2145, Australia
- Sydney Medical School, University of Sydney, Camperdown, New South Wales, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
- Blacktown Hematology and Cancer Centre, Blacktown Hospital, Blacktown, New South Wales, Australia
| |
Collapse
|
15
|
Arafa K, Emara M. Insights About Circadian Clock and Molecular Pathogenesis in Gliomas. Front Oncol 2020; 10:199. [PMID: 32195174 PMCID: PMC7061216 DOI: 10.3389/fonc.2020.00199] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/05/2020] [Indexed: 12/15/2022] Open
Abstract
The circadian clock is an endogenous time-keeping system that has been discovered across kingdoms of life. It controls and coordinates metabolism, physiology, and behavior to adapt to variations within the day and the seasonal environmental cycles driven by earth rotation. In mammals, although circadian rhythm is controlled by a set of core clock genes that are present in both in suprachiasmatic nucleus (SCN) of the hypothalamus and peripheral tissues, the generation and control of the circadian rhythm at the cellular, tissue, and organism levels occurs in a hierarchal fashion. The SCN is central pacemaker comprising the principal circadian clock that synchronizes peripheral circadian clocks to their appropriate phase. Different epidemiological studies have shown that disruption of normal circadian rhythm is implicated in increasing the risk of developing cancers. In addition, deregulated expression of clock genes has been demonstrated in various types of cancer. These findings indicate a close association between circadian clock and cancer development and progression. Here, we review different evidences of this association in relation to molecular pathogenesis in gliomas.
Collapse
Affiliation(s)
| | - Marwan Emara
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Cairo, Egypt
| |
Collapse
|
16
|
Zheng N, Zhou Q, Wang Z, Wei W. Recent advances in SCF ubiquitin ligase complex: Clinical implications. Biochim Biophys Acta Rev Cancer 2016; 1866:12-22. [PMID: 27156687 DOI: 10.1016/j.bbcan.2016.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/09/2022]
Abstract
F-box proteins, which are subunit recruiting modules of SCF (SKP1-Cullin 1-F-box protein) E3 ligase complexes, play critical roles in the development and progression of human malignancies through governing multiple cellular processes including cell proliferation, apoptosis, invasion and metastasis. Moreover, there are emerging studies that lead to the development of F-box proteins inhibitors with promising therapeutic potential. In this article, we describe how F-box proteins including but not restricted to well-established Fbw7, Skp2 and β-TRCP, are involved in tumorigenesis. However, in-depth investigation is required to further explore the mechanism and the physiological contribution of undetermined F-box proteins in carcinogenesis. Lastly, we suggest that targeting F-box proteins could possibly open new avenues for the treatment and prevention of human cancers.
Collapse
Affiliation(s)
- Nana Zheng
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Quansheng Zhou
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou 215123, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, MA 02215, USA.
| |
Collapse
|
17
|
Rana S, Shahid A, Ullah H, Mahmood S. Lack of association of the NPAS2 gene Ala394Thr polymorphism (rs2305160:G>A) with risk of chronic lymphocytic leukemia. Asian Pac J Cancer Prev 2015; 15:7169-74. [PMID: 25227809 DOI: 10.7314/apjcp.2014.15.17.7169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND NPAS2 is a product of the circadian clock gene. It acts as a putative tumor suppressor by playing an important role in DNA damage responses, cell cycle control and apoptosis. Chronic lymphocytic leukemia (CLL) appears to be an apoptosis related disorder and alteration in the NPAS2 gene might therefore be directly involved in the etiology of CLL. Here, the Ala394Thr polymorphism (rs2305160:G>A) in the NPAS2 gene was genotyped and melatonin concentrations were measured in a total of seventy-four individuals, including thirty-seven CLL cases and an equal number of age- and sex-matched healthy controls in order to examine the effect of NPAS2 polymorphism and melatonin concentrations on CLL risk in a Pakistani population. MATERIALS AND METHODS Genotyping of rs2305160:G>A polymorphism at NPAS2 locus was carried out by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). Melatonin concentrations were determined by enzyme linked immunosorbent assay (ELISA). Statistical analysis was performed using Statistical Package for Social Sciences software. RESULTS Our results demonstrated no association of the variant Thr genotypes (Ala/ Thr and Thr/Thr) with risk of CLL. Similarly, no association of rs2305160 with CLL was observed in either females or males after stratification of study population on a gender basis. Moreover, when the subjects with CLL were further stratified into shift-workers and non-shift-workers, no association of rs2305160 with CLL was seen in either case. However, significantly low serum melatonin levels were observed in CLL patients as compared to healthy subjects (p<0.05). Also, lower melatonin levels were seen in shift-workers as compared to non-shift-workers (p<0.05). There was no significant difference (p>0.05) in the melatonin levels across NPAS2 genotypes in all subjects, subjects with CLL who were either shift workers or non-shift-workers. General Linear Model (GLM) univariate analysis revealed no significant association (p>0.05) of the rs2305160 polymorphism of the NPAS2 gene with melatonin levels in any of the groups. CONCLUSIONS While low melatonin levels and shift-work can be considered as one of the risk factors for CLL, the NPAS2 rs2305160 polymorphism does not appear to have any association with risk of CLL in our Pakistani population.
Collapse
Affiliation(s)
- Sobia Rana
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan E-mail : ,
| | | | | | | |
Collapse
|
18
|
Nan YN, Zhu JY, Tan Y, Zhang Q, Jia W, Hua Q. Staurosporine induced apoptosis rapidly downregulates TDP- 43 in glioma cells. Asian Pac J Cancer Prev 2015; 15:3575-9. [PMID: 24870760 DOI: 10.7314/apjcp.2014.15.8.3575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
TDP-43 is a ubiquitously expressed DNA/RNA binding protein that has recently attracted attention for its involvement in neurodegenerative diseases. While TDP-43 has been found to participate in various important cellular activities including stress and apoptosis, little is known about its role in cancer cells. Here we report that staurosporine (STS) induced apoptosis in U87 glioma cells is associated with rapid downregulation of TDP-43 at both mRNA and protein levels. The latter is dependent on activation of caspase 3. More importantly, we have shown that knockdown of TDP-43 by specific siRNA dramatically enhanced cytotoxicity of STS. These results suggest that normal level of TDP-43 may be protective for cancer cells under apoptotic insult.
Collapse
Affiliation(s)
- Yi-Nan Nan
- School of Preclinical Medicine, Center Laboratory, Beijing University of Chinese Medicine, Beijing, China E-mail : ;
| | | | | | | | | | | |
Collapse
|
19
|
Brown SA. Circadian clock-mediated control of stem cell division and differentiation: beyond night and day. Development 2014; 141:3105-11. [DOI: 10.1242/dev.104851] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A biological ‘circadian’ clock conveys diurnal regulation upon nearly all aspects of behavior and physiology to optimize them within the framework of the solar day. From digestion to cardiac function and sleep, both cellular and systemic processes show circadian variations that coincide with diurnal need. However, recent research has shown that this same timekeeping mechanism might have been co-opted to optimize other aspects of development and physiology that have no obvious link to the 24 h day. For example, clocks have been suggested to underlie heterogeneity in stem cell populations, to optimize cycles of cell division during wound healing, and to alter immune progenitor differentiation and migration. Here, I review these circadian mechanisms and propose that they could serve as metronomes for a surprising variety of physiologically and medically important functions that far exceed the daily timekeeping roles for which they probably evolved.
Collapse
Affiliation(s)
- Steven A. Brown
- Institute of Pharmacology and Toxicology, University of Zürich, 190 Winterthurerstrasse, Zürich 8057, Switzerland
| |
Collapse
|
20
|
Abstract
Humans as diurnal beings are active during the day and rest at night. This daily oscillation of behavior and physiology is driven by an endogenous circadian clock not environmental cues. In modern societies, changes in lifestyle have led to a frequent disruption of the endogenous circadian homeostasis leading to increased risk of various diseases including cancer. The clock is operated by the feedback loops of circadian genes and controls daily physiology by coupling cell proliferation and metabolism, DNA damage repair, and apoptosis in peripheral tissues with physical activity, energy homeostasis, immune and neuroendocrine functions at the organismal level. Recent studies have revealed that defects in circadian genes due to targeted gene ablation in animal models or single nucleotide polymorphism, deletion, deregulation and/or epigenetic silencing in humans are closely associated with increased risk of cancer. In addition, disruption of circadian rhythm can disrupt the molecular clock in peripheral tissues in the absence of circadian gene mutations. Circadian disruption has recently been recognized as an independent cancer risk factor. Further study of the mechanism of clock-controlled tumor suppression will have a significant impact on human health by improving the efficiencies of cancer prevention and treatment.
Collapse
Affiliation(s)
- Nicole M Kettner
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/ Children's Nutrition Research Center, Baylor College of Medicine , Houston, TX , USA
| | | | | |
Collapse
|
21
|
Pluquet O, Dejeans N, Chevet E. Watching the clock: endoplasmic reticulum-mediated control of circadian rhythms in cancer. Ann Med 2014; 46:233-43. [PMID: 24491143 DOI: 10.3109/07853890.2013.874664] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the past 20 years both the circadian clock and endoplasmic reticulum (ER) stress signaling have emerged as major players in oncogenesis and cancer development. Although several lines of evidence have established functional links between these two molecular pathways, their interconnection and the subsequent functional implications in cancer development remain to be fully characterized. Herein, we provide an extensive review of the literature depicting the molecular connectivity linking ER stress signaling and the circadian clock and elaborate on the potential use of these functional interactions in cancer therapeutics.
Collapse
Affiliation(s)
- Olivier Pluquet
- Institut de Biologie de Lille, CNRS UMR8161/Universités Lille 1 et Lille 2/Institut Pasteur de Lille , 1, rue du Pr. Calmette, BP 447, 59021 Lille , France
| | | | | |
Collapse
|
22
|
Madden MH, Anic GM, Thompson RC, Nabors LB, Olson JJ, Browning JE, Monteiro AN, Egan KM. Circadian pathway genes in relation to glioma risk and outcome. Cancer Causes Control 2014; 25:25-32. [PMID: 24135790 PMCID: PMC3947318 DOI: 10.1007/s10552-013-0305-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 10/08/2013] [Indexed: 12/11/2022]
Abstract
PURPOSE There is growing evidence that circadian disruption may alter risk and aggressiveness of cancer. We evaluated common genetic variants in the circadian gene pathway for associations with glioma risk and patient outcome in a US clinic-based case-control study. METHODS Subjects were genotyped for 17 candidate single nucleotide polymorphisms in ARNTL, CRY1, CRY2, CSNK1E, KLHL30, NPAS2, PER1, PER3, CLOCK, and MYRIP. Unconditional logistic regression was used to estimate age and gender-adjusted odds ratios (OR) and 95 % confidence intervals (CI) for glioma risk under three inheritance models (additive, dominant, and recessive). Proportional hazards regression was used to estimate hazard ratios for glioma-related death among 441 patients with high-grade tumors. Survival associations were validated using The Cancer Genome Atlas (TCGA) dataset. RESULTS A variant in PER1 (rs2289591) was significantly associated with overall glioma risk (per variant allele OR 0.80; 95 % CI 0.66-0.97; p trend = 0.027). The variant allele for CLOCK rs11133391 under a recessive model increased risk of oligodendroglioma (OR 2.41; 95 % CI 1.31-4.42; p = 0.005), though not other glioma subtypes (p for heterogeneity = 0.0033). The association remained significant after false discovery rate adjustment (p = 0.008). Differential associations by gender were observed for MYRIP rs6599077 and CSNK1E rs1534891 though differences were not significant after adjustment for multiple testing. No consistent mortality associations were identified. Several of the examined genes exhibited differential expression in glioblastoma multiforme versus normal brain in TCGA data (MYRIP, ARNTL, CRY1, KLHL30, PER1, CLOCK, and PER3), and expression of NPAS2 was significantly associated with a poor patient outcome in TCGA patients. CONCLUSION This exploratory analysis provides some evidence supporting a role for circadian genes in the onset of glioma and possibly the outcome of glioma.
Collapse
Affiliation(s)
- Melissa H. Madden
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa FL 33612, USA
| | - Gabriella M. Anic
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa FL 33612, USA
| | - Reid C. Thompson
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - L. Burton Nabors
- Neuro-oncology Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeffrey J. Olson
- Department of Neurosurgery, Emory School of Medicine, Atlanta, GA 30322, USA
| | - James E. Browning
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa FL 33612, USA
| | - Alvaro N. Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa FL 33612, USA
| | - Kathleen M. Egan
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa FL 33612, USA
| |
Collapse
|
23
|
Li A, Lin X, Tan X, Yin B, Han W, Zhao J, Yuan J, Qiang B, Peng X. Circadian gene Clock contributes to cell proliferation and migration of glioma and is directly regulated by tumor-suppressive miR-124. FEBS Lett 2013; 587:2455-60. [PMID: 23792158 DOI: 10.1016/j.febslet.2013.06.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Revised: 05/31/2013] [Accepted: 06/06/2013] [Indexed: 01/01/2023]
Abstract
Although the roles of circadian Clock genes and microRNAs in tumorigenesis have been profoundly studied, mechanisms of cross-talk between them in regulation of gliomagenesis are poorly understood. Here we show that the expression level of CLOCK is significantly increased in high-grade human glioma tissues and glioblastoma cell lines. In contrast miR-124 is attenuated in similar samples. Further studies show that Clock is a direct target of miR-124, and either restoration of miR-124 or silencing of CLOCK can reduce the activation of NF-κB. In conclusion, we suggest that as a target of glioma suppressor miR-124, CLOCK positively regulates glioma proliferation and migration by reinforcing NF-κB activity.
Collapse
Affiliation(s)
- Aihua Li
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fu L, Kettner NM. The circadian clock in cancer development and therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 119:221-82. [PMID: 23899600 PMCID: PMC4103166 DOI: 10.1016/b978-0-12-396971-2.00009-9] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most aspects of mammalian function display circadian rhythms driven by an endogenous clock. The circadian clock is operated by genes and comprises a central clock in the brain that responds to environmental cues and controls subordinate clocks in peripheral tissues via circadian output pathways. The central and peripheral clocks coordinately generate rhythmic gene expression in a tissue-specific manner in vivo to couple diverse physiological and behavioral processes to periodic changes in the environment. However, with the industrialization of the world, activities that disrupt endogenous homeostasis with external circadian cues have increased. This change in lifestyle has been linked to an increased risk of diseases in all aspects of human health, including cancer. Studies in humans and animal models have revealed that cancer development in vivo is closely associated with the loss of circadian homeostasis in energy balance, immune function, and aging, which are supported by cellular functions important for tumor suppression including cell proliferation, senescence, metabolism, and DNA damage response. The clock controls these cellular functions both locally in cells of peripheral tissues and at the organismal level via extracellular signaling. Thus, the hierarchical mammalian circadian clock provides a unique system to study carcinogenesis as a deregulated physiological process in vivo. The asynchrony between host and malignant tissues in cell proliferation and metabolism also provides new and exciting options for novel anticancer therapies.
Collapse
Affiliation(s)
- Loning Fu
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Nicole M. Kettner
- Department of Pediatrics/U.S. Department of Agriculture/Agricultural Research Service/Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|