1
|
Feng K, Li X, Bai Y, Zhang D, Tian L. Mechanisms of cancer cell death induction by triptolide: A comprehensive overview. Heliyon 2024; 10:e24335. [PMID: 38293343 PMCID: PMC10826740 DOI: 10.1016/j.heliyon.2024.e24335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The need for naturally occurring constituents is driven by the rise in the cancer prevalence and the unpleasant side effects associated with chemotherapeutics. Triptolide, the primary active component of "Tripterygium Wilfordii", has exploited for biological mechanisms and therapeutic potential against various tumors. Based on the recent pre-clinical investigations, triptolide is linked to the induction of death of cancerous cells by triggering cellular apoptosis via inhibiting heat shock protein expression (HSP70), and cyclin dependent kinase (CDKs) by up regulating expression of P21. MKP1, histone methyl transferases and RNA polymerases have all recently identified as potential targets of triptolide in cells. Autophagy, AKT signaling pathway and various pathways involving targeted proteins such as A-disintegrin & metalloprotease-10 (ADAM10), Polycystin-2 (PC-2), dCTP pyro-phosphatase 1 (DCTP1), peroxiredoxin-I (Prx-I), TAK1 binding protein (TAB1), kinase subunit (DNA-PKcs) and the xeroderma-pigmentosum B (XPB or ERCC3) have been exploited. Besides that, triptolide is responsible for enhancing the effectiveness of various chemotherapeutics. In addition, several triptolide moieties, including minnelide and LLDT8, have progressed in investigations on humans for the treatment of cancer. Targeted strategies, such as triptolide conjugation with ligands or triptolide loaded nano-carriers, are efficient techniques to confront toxicities associated with triptolide. We expect and anticipate that advances in near future, regarding combination therapies of triptolide, might be beneficial against cancerous cells.
Collapse
Affiliation(s)
- Ke Feng
- Department of General Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Xiaojiang Li
- Department of General Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Yuzhuo Bai
- Department of Breast and Thyroid Surgery Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Dawei Zhang
- Department of General Surgery Baishan Hospital of Traditional Chinese Medicine, Baishan, 134300, China
| | - Lin Tian
- Department of Lung Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| |
Collapse
|
2
|
Tian Q, Zhang P, Wang Y, Si Y, Yin D, Weber CR, Fishel ML, Pollok KE, Qiu B, Xiao F, Chong AS. A novel triptolide analog downregulates NF-κB and induces mitochondrial apoptosis pathways in human pancreatic cancer. eLife 2023; 12:e85862. [PMID: 37877568 PMCID: PMC10861173 DOI: 10.7554/elife.85862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 10/24/2023] [Indexed: 10/26/2023] Open
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related death worldwide, and despite advancements in disease management, the 5 -year survival rate stands at only 12%. Triptolides have potent anti-tumor activity against different types of cancers, including pancreatic cancer, however poor solubility and toxicity limit their translation into clinical use. We synthesized a novel pro-drug of triptolide, (E)-19-[(1'-benzoyloxy-1'-phenyl)-methylidene]-Triptolide (CK21), which was formulated into an emulsion for in vitro and in vivo testing in rats and mice, and used human pancreatic cancer cell lines and patient-derived pancreatic tumor organoids. A time-course transcriptomic profiling of tumor organoids treated with CK21 in vitro was conducted to define its mechanism of action, as well as transcriptomic profiling at a single time point post-CK21 administration in vivo. Intravenous administration of emulsified CK21 resulted in the stable release of triptolide, and potent anti-proliferative effects on human pancreatic cancer cell lines and patient-derived pancreatic tumor organoids in vitro, and with minimal toxicity in vivo. Time course transcriptomic profiling of tumor organoids treated with CK21 in vitro revealed <10 differentially expressed genes (DEGs) at 3 hr and ~8,000 DEGs at 12 hr. Overall inhibition of general RNA transcription was observed, and Ingenuity pathway analysis together with functional cellular assays confirmed inhibition of the NF-κB pathway, increased oxidative phosphorylation and mitochondrial dysfunction, leading ultimately to increased reactive oxygen species (ROS) production, reduced B-cell-lymphoma protein 2 (BCL2) expression, and mitochondrial-mediated tumor cell apoptosis. Thus, CK21 is a novel pro-drug of triptolide that exerts potent anti-proliferative effects on human pancreatic tumors by inhibiting the NF-κB pathway, leading ultimately to mitochondrial-mediated tumor cell apoptosis.
Collapse
Affiliation(s)
- Qiaomu Tian
- Department of Surgery, The University of ChicagoChicagoUnited States
| | - Peng Zhang
- Cinkate Pharmaceutical Corp, ZhangJiang DistrictShanghaiChina
| | - Yihan Wang
- Department of Surgery, The University of ChicagoChicagoUnited States
| | - Youhui Si
- Department of Surgery, The University of ChicagoChicagoUnited States
| | - Dengping Yin
- Department of Surgery, The University of ChicagoChicagoUnited States
| | | | - Melissa L Fishel
- Department of Pediatrics, Indiana UniversityIndianapolisUnited States
| | - Karen E Pollok
- Department of Pediatrics, Indiana UniversityIndianapolisUnited States
| | - Bo Qiu
- Cinkate Pharmaceutical Corp, ZhangJiang DistrictShanghaiChina
| | - Fei Xiao
- Cinkate Pharmaceutical Corp, ZhangJiang DistrictShanghaiChina
| | - Anita S Chong
- Department of Surgery, The University of ChicagoChicagoUnited States
| |
Collapse
|
3
|
Wang S, Guo Q, Xu R, Lin P, Deng G, Xia X. Combination of ferroptosis and pyroptosis dual induction by triptolide nano-MOFs for immunotherapy of Melanoma. J Nanobiotechnology 2023; 21:383. [PMID: 37858186 PMCID: PMC10585872 DOI: 10.1186/s12951-023-02146-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
Immunotherapy has good potential to eradicate tumors in the long term. However, due to the low immunogenicity of tumor cells, current cancer immunotherapies are not effective. To address this limitation, we constructed a BSA-FA functionalized iron-containing metal-organic framework (TPL@TFBF) that triggers a potent systemic anti-tumor immune response by inducing ferroptosis and pyroptosis in tumor cells and releasing large quantities of damage-associated molecular patterns (DAMPs) to induce immunogenicity, and showing excellent efficacy against melanoma lung metastases in vivo. This nanoplatform forms a metal-organic framework through the coordination between tannic acid (TA) and Fe3+ and is then loaded with triptolide (TPL), which is coated with FA-modified BSA. The nanoparticles target melanoma cells by FA modification, releasing TPL, Fe3+ and TA. Fe3+ is reduced to Fe2+ by TA, triggering the Fenton reaction and resulting in ROS production. Moreover, TPL increases the production of intracellular ROS by inhibiting the expression of nuclear factor erythroid-2 related factor (Nrf2). Such simultaneous amplification of intracellular ROS induces the cells to undergo ferroptosis and pyroptosis, releasing large amounts of DAMPs, which stimulate antigen presentation of dendritic cells (DCs) and the proliferation of cytotoxic T lymphocytes (CD4+/CD8 + T cells) to inhibit tumor and lung metastasis. In addition, combining nanoparticle treatment with immune checkpoint blockade (ICB) further inhibits melanoma growth. This work provides a new strategy for tumor immunotherapy based on various combinations of cell death mechanisms.
Collapse
Affiliation(s)
- Shengmei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Qiuyan Guo
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Rubing Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Peng Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Guoyan Deng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
4
|
Wang G, Guo H, Ren Y, Chen W, Wang Y, Li J, Liu H, Xing J, Zhang Y, Li N. Triptolide enhances carboplatin-induced apoptosis by inhibiting nucleotide excision repair (NER) activity in melanoma. Front Pharmacol 2023; 14:1157433. [PMID: 37324464 PMCID: PMC10267402 DOI: 10.3389/fphar.2023.1157433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Carboplatin (CBP) is a DNA damaging drug used to treat various cancers, including advanced melanoma. Yet we still face low response rates and short survival due to resistance. Triptolide (TPL) is considered to have multifunctional antitumor effects and has been confirmed to enhance the cytotoxic effects of chemotherapeutic drugs. Herein, we aimed to investigate the knowledge about the effects and mechanisms for the combined application of TPL and CBP against melanoma. Methods: Melanoma cell lines and xenograft mouse model were used to uncover the antitumor effects and the underlying molecular mechanisms of the alone or combined treatment of TPL and CBP in melanoma. Cell viability, migration, invasion, apoptosis, and DNA damage were detected by conventional methods. The rate-limiting proteins of the NER pathway were quantitated using PCR and Western blot. Fluorescent reporter plasmids were used to test the NER repair capacity. Results: Our results showed that the presence of TPL in CBP treatment could selectively inhibit NER pathway activity, and TPL exerts a synergistic effect with CBP to inhibit viability, migration, invasion, and induce apoptosis of A375 and B16 cells. Moreover, combined treatment with TPL and CBP significantly inhibited tumor progression in nude mice by suppressing cell proliferation and inducing apoptosis. Discussion: This study reveals the NER inhibitor TPL which has great potential in treating melanoma, either alone or in combination with CBP.
Collapse
Affiliation(s)
- Geng Wang
- Health Science Center, Ningbo University, Ningbo, China
| | - Hongmin Guo
- People’s Hospital of Changshou Chongqing, Chongqing, China
| | - Yan Ren
- Health Science Center, Ningbo University, Ningbo, China
| | - Weiyi Chen
- Health Science Center, Ningbo University, Ningbo, China
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, China
| | - Jianing Li
- Health Science Center, Ningbo University, Ningbo, China
| | - Hua Liu
- Health Science Center, Ningbo University, Ningbo, China
| | - Jingjun Xing
- Health Science Center, Ningbo University, Ningbo, China
| | - Yanru Zhang
- Health Science Center, Ningbo University, Ningbo, China
| | - Na Li
- Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Plant-Derived Terpenoids: A Promising Tool in the Fight against Melanoma. Cancers (Basel) 2022; 14:cancers14030502. [PMID: 35158770 PMCID: PMC8833325 DOI: 10.3390/cancers14030502] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Despite the numerous therapies, melanoma remains the deadliest of all skin cancers; however, plant-derived terpenoids are defense molecules that have proven anti-cancer properties. In this review, we present the results of the search for anti-melanoma plant terpenoids. Additionally, we show the effects of combining terpenoids with standard drugs, radiation therapy, or other plant substances on melanoma cell lines and animal models. Finally, we present some examples of drug delivery systems that increase the uptake of terpenoids by melanoma tissue. Abstract Melanoma is responsible for the highest number of skin cancer-caused deaths worldwide. Despite the numerous melanoma-treating options, the fight against it remains challenging, mainly due to its great heterogeneity and plasticity, as well as the high toxicity of standard drugs. Plant-derived terpenoids are a group of plant defense molecules that have been proven effective in killing many different types of cancer cells, both in in vitro experiments and in vivo models. In this review, we focus on recent results in the search for plant terpenoids with anti-melanoma activity. We also report on the synergistic action of combining terpenoids with other plant-derived substances, MAP kinase inhibitors, or radiation. Additionally, we present examples of terpenoid-loaded nanoparticle carriers as anti-melanoma agents that have increased permeation through the cancer tissue.
Collapse
|
6
|
Jiang L, Gu Y, Du Y, Tang X, Wu X, Liu J. Engineering Exosomes Endowed with Targeted Delivery of Triptolide for Malignant Melanoma Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42411-42428. [PMID: 34464081 DOI: 10.1021/acsami.1c10325] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Malignant melanoma is considered the most aggressive skin carcinoma with invasive growth patterns. Triptolide (TPL) possesses various biological and pharmacological activities involved in cancer treatment. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce cancer cell apoptosis by binding to DR5 highly expressed on cancer cells. Exosomes are natural nanomaterials with low immunogenicity, nontoxicity, and excellent biocompatibility and have been extensively used as emerging delivery vectors for diverse therapeutic cargos. Herein, a delivery system based on TRAIL-engineered exosomes (TRAIL-Exo) for loading TPL for targeted therapy against malignant melanoma is proposed and systematically investigated. Our results showed that TRAIL-Exo/TPL could improve tumor targetability, enhance cellular uptake, inhibit proliferation, invasion, and migration, and induce apoptosis of A375 cells through activating the extrinsic TRAIL pathway and the intrinsic mitochondrial pathway in vitro. Moreover, intravenous injection of TRAIL-Exo/TPL significantly suppressed tumor progression and reduced the toxicity of TPL in the melanoma nude mouse model. Together, our research presents a novel strategy for high-efficiency exosome-based drug-delivery nanocarriers and provides an alternative dimension for developing a promising approach with synergistic therapeutic efficacy and targeting capacity for melanoma treatment.
Collapse
Affiliation(s)
- Liangdi Jiang
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yue Du
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Xiaomeng Tang
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Wu
- Shanghai Wei Er Biopharmaceutical Technology Co., Ltd., Shanghai 201799, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Monticolo F, Chiusano ML. Computational Approaches for Cancer-Fighting: From Gene Expression to Functional Foods. Cancers (Basel) 2021; 13:4207. [PMID: 34439361 PMCID: PMC8393935 DOI: 10.3390/cancers13164207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/22/2023] Open
Abstract
It is today widely accepted that a healthy diet is very useful to prevent the risk for cancer or its deleterious effects. Nutrigenomics studies are therefore taking place with the aim to test the effects of nutrients at molecular level and contribute to the search for anti-cancer treatments. These efforts are expanding the precious source of information necessary for the selection of natural compounds useful for the design of novel drugs or functional foods. Here we present a computational study to select new candidate compounds that could play a role in cancer prevention and care. Starting from a dataset of genes that are co-expressed in programmed cell death experiments, we investigated on nutrigenomics treatments inducing apoptosis, and searched for compounds that determine the same expression pattern. Subsequently, we selected cancer types where the genes showed an opposite expression pattern and we confirmed that the apoptotic/nutrigenomics expression trend had a significant positive survival in cancer-affected patients. Furthermore, we considered the functional interactors of the genes as defined by public protein-protein interaction data, and inferred on their involvement in cancers and/or in programmed cell death. We identified 7 genes and, from available nutrigenomics experiments, 6 compounds effective on their expression. These 6 compounds were exploited to identify, by ligand-based virtual screening, additional molecules with similar structure. We checked for ADME criteria and selected 23 natural compounds representing suitable candidates for further testing their efficacy in apoptosis induction. Due to their presence in natural resources, novel drugs and/or the design of functional foods are conceivable from the presented results.
Collapse
Affiliation(s)
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy;
| |
Collapse
|
8
|
Yin M, Su Z, Cui B, Han Y, Dai H, Yu X. A New Type of Nanogel Carrier based on Mixed Pluronic Loaded with Low-Dose Antitumor Drugs. JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATER. SCI. ED. 2019; 34:960-967. [DOI: 10.1007/s11595-019-2144-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/12/2018] [Indexed: 01/06/2025]
|
9
|
Tang X, Wang C, Hsieh Y, Wang C, Wang J, Han Z, Cong N, Ma R, Chi F. Triptolide induces toxicity in inner ear stem cells via promoting DNA damage. Toxicol In Vitro 2019; 61:104597. [PMID: 31288072 DOI: 10.1016/j.tiv.2019.104597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/16/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022]
Abstract
Emerging evidence and clinical case reports have observed a risk of cytotoxic effects of triptolide in patients. We aimed to investigate the triptolide-induced toxicity in mouse inner ear stem cells. The utricular sensory epithelium from adult BALB/C6 mice was used for the isolation of inner ear stem cells. Sphere formation assay was applied to examine the stemness of the cells. Cell count kit-8 and Bromodeoxyuridine assays were employed to detect the cell proliferation ability. Cell apoptosis was measured with Annexin V-FITC & propidium iodide Apoptosis kit. The relative expression levels of gamma H2A histone family member X (γH2AX), tumor suppressor p53-binding protein 1 (53BP1) and optic atrophy 1 (OPA-1) were measured by Western Blot. Mitochondrial function was analyzed by the MitoGreen green-fluorescent mitochondrial dye kit. Triptolide significantly inhibited the cell viability and proliferation and suppressed the capability of sphere formation. Furthermore, triptolide induced apoptosis as indicated by increased expression of DNA damage repair markers γH2AX and 53BP1. Moreover, triptolide influenced the function of mitochondria by inducing the cleavage of OPA-1. Our work clarifies the toxicity of triptolide in mouse inner ear stem cells, which provides clues of the toxicology mechanism for future studies and basis for clinical use.
Collapse
Affiliation(s)
- Xuxia Tang
- Department of Otolaryngology, the First Affiliated Hospital of Zhejiang Traditional Chinese Medical University, Hangzhou 310006, Zhejiang, China
| | - Congpin Wang
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200031, China; Shanghai Auditory Medical Center, Shanghai 200000, China; NHC Key laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Fudan University, Shanghai 200031, China
| | - Yuelin Hsieh
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200031, China; Shanghai Auditory Medical Center, Shanghai 200000, China; NHC Key laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Fudan University, Shanghai 200031, China
| | - Chengjin Wang
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200031, China; Shanghai Auditory Medical Center, Shanghai 200000, China; NHC Key laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Fudan University, Shanghai 200031, China
| | - Jinyu Wang
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200031, China; Shanghai Auditory Medical Center, Shanghai 200000, China; NHC Key laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Fudan University, Shanghai 200031, China
| | - Zhao Han
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200031, China; Shanghai Auditory Medical Center, Shanghai 200000, China; NHC Key laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Fudan University, Shanghai 200031, China.
| | - Ning Cong
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200031, China; Shanghai Auditory Medical Center, Shanghai 200000, China; NHC Key laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Fudan University, Shanghai 200031, China.
| | - Rui Ma
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200031, China; Shanghai Auditory Medical Center, Shanghai 200000, China; NHC Key laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Fudan University, Shanghai 200031, China
| | - Fanglu Chi
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200031, China; Shanghai Auditory Medical Center, Shanghai 200000, China; NHC Key laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Fudan University, Shanghai 200031, China
| |
Collapse
|
10
|
Genetic and morphology analysis among the pentaploid F 1 hybrid fishes ( Schizothorax wangchiachii ♀ × Percocypris pingi ♂) and their parents. Animal 2019; 13:2755-2764. [PMID: 31148539 DOI: 10.1017/s1751731119001289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Triploid and pentaploid breeding is of great importance in agricultural production, but it is not always easy to obtain double ploidy parents. However, in fishes, chromosome ploidy is diversiform, which may provide natural parental resources for triploid and pentaploid breeding. Both tetraploid and hexaploid exist in Schizothorax fishes, which were thought to belong to different subfamilies with tetraploid Percocypris fishes in morphology, but they are sister genera in molecule. Fortunately, the pentaploid hybrid fishes have been successfully obtained by hybridization of Schizothorax wangchiachii (♀, 2n = 6X = 148) × Percocypris pingi (♂, 2n = 4X = 98). To understand the genetic and morphological difference among the hybrid fishes and their parents, four methods were used in this study: morphology, karyotype, red blood cell (RBC) DNA content determination and inter-simple sequence repeat (ISSR). In morphology, the hybrid fishes were steady, and between their parents with no obvious preference. The chromosome numbers of P. pingi have been reported as 2n = 4X = 98. In this study, the karyotype of S. wangchiachii was 2n = 6X = 148 = 36m + 34sm + 12st + 66t, while that the hybrid fishes was 2n = 5X = 123 = 39m + 28sm + 5st + 51t. Similarly, the RBC DNA content of the hybrid fishes was intermediate among their parents. In ISSR, the within-group genetic diversity of hybrid fishes was higher than that of their parents. Moreover, the genetic distance of hybrid fishes between P. pingi and S.wangchiachii was closely related to that of their parental ploidy, suggesting that parental genetic material stably coexisted in the hybrid fishes. This is the first report to show a stable pentaploid F1 hybrids produced by hybridization of a hexaploid and a tetraploid in aquaculture.
Collapse
|
11
|
Liu H, Shen M, Zhao D, Ru D, Duan Y, Ding C, Li H. The Effect of Triptolide-Loaded Exosomes on the Proliferation and Apoptosis of Human Ovarian Cancer SKOV3 Cells. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2595801. [PMID: 31240207 PMCID: PMC6556367 DOI: 10.1155/2019/2595801] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 03/12/2019] [Accepted: 04/23/2019] [Indexed: 01/13/2023]
Abstract
Triptolide has been proven to possess anticancer efficacy; however, its application in the clinical practice was limited by poor water solubility, hepatotoxicity, and nephrotoxicity. In this study, a triptolide-loaded exosomes delivery system (TP-Exos) was constructed and its effects on the proliferation and apoptosis of SKOV3 cells in vitro and in vivo were observed. SKOV3-exosomes (SK-Exos) were collected by ultracentrifugation and ultrafiltration centrifugation. TP-Exos was constructed by sonication and ultrafiltration centrifugation. SK-Exos and TP-Exos were characterized by transmission electron microscopy, western blotting, nanoparticle-tracking analysis, and high-performance liquid chromatography. Cellular uptake of exosomes, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, bromodeoxyuridine (BrdU) cell proliferation assay, and cell apoptosis experiment were used to study the effect of TP-Exos on ovarian cancer in vitro. Tumor-targeting study of exosomes, monitoring the tumor volume of mice, and TdT-mediated dUTP Nick-End labeling (TUNEL) assay were used to evaluate the effect of TP-Exos on ovarian cancer in vivo. The toxicity of TP-Exos in vivo was evaluated by liver and kidney function and histopathology of major organs (heart, liver, spleen, lung, kidney, and ovary). The results revealed that TP-Exos not only have the general characteristics of exosomes but also have high drug encapsulation efficiency. Besides, PKH26 labeled exosomes (PKH26-Exos) could be uptaken by SKOV3 cells, and Dir labeled exosomes (Dir-Exos) could be enriched to the tumor site of tumor bearing mice. Furthermore, the cytotoxic and apoptotic effects on SKOV3 cells of TP-Exos were weaker than those of free TP, and tumor cell proliferation inhibition and tumor growth inhibition were stronger than that of free TP. Moreover, TP-Exos have toxic effect on liver and spleen. In conclusion, the TP-Exos could be a promising strategy for ovarian cancer, but they need to be further optimized to attenuate the damage to liver and spleen.
Collapse
Affiliation(s)
- Huan Liu
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ming Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - De Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Dan Ru
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Chenhuan Ding
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - He Li
- Traditional Chinese Medicine Department, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
12
|
Wang L, Xu D, Li L, Xing X, Liu L, Ismail Abdelmotalab M, Xiao L, Pang T, Huang X, Wang X, Wang T, Jiang Z, Zhang L, Sun L. Possible role of hepatic macrophage recruitment and activation in triptolide-induced hepatotoxicity. Toxicol Lett 2018; 299:32-39. [DOI: 10.1016/j.toxlet.2018.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/16/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022]
|
13
|
Wang JM, Chen RX, Zhang LL, Ding NN, Liu C, Cui Y, Cheng YX. In vivo protective effects of chlorogenic acid against triptolide-induced hepatotoxicity and its mechanism. PHARMACEUTICAL BIOLOGY 2018; 56:626-631. [PMID: 31070533 PMCID: PMC6300082 DOI: 10.1080/13880209.2018.1527370] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
CONTEXT Triptolide (TP) has outstanding biological activities, but it induces toxicities, particular hepatotoxicity, severely limiting its clinical application. Chlorogenic acid (CGA) has prominently medicinal and nutritional values. However, until now, it is not known whether CGA could mitigate TP-induced hepatotoxicity. OBJECTIVE This study explored the possible protection of CGA against TP-induced hepatotoxicity and its potential mechanisms, for the first time. MATERIAL AND METHODS KM mice were treated orally with TP at a single dose of 1 mg/kg at 4 h after being treated with CGA (10, 20 and 40 mg/kg) for seven continuous days. Blood samples were collected at 24 h after TP administration for measurement of serum biomarkers, and hepatic tissues for analysis of potential mechanisms. RESULTS TP treatment-induced acute hepatotoxicity manifested by the significant elevation in serum alanine transaminase (93.9 U/L), aspartate transaminase (185.8 U/L) and hepatic malondialdehyde (0.637 μmol/mg protein), and the remarkable reduction in hepatic glutathione (1.425 μg/mg protein), glutathione S-transferase, glutathione peroxidase, superoxide dismutase and catalase (91.7, 320.7, 360.6 and 140.7 U/mg protein, respectively). In contrast, pretreatment with CGA for 7 days effectively attenuated acute liver injury and oxidative stress caused by TP with each ED50 of 44.4, 57.1, 46.6, 22.2, 40.9, 58.1, 86.4 and 61.0 mg/kg, respectively. Furthermore, pretreatment with CGA promoted the accumulation of Nrf2 into the nucleus, and up-regulated mRNA expression of Nrf2-target downstream genes. DISCUSSION AND CONCLUSIONS Combined CGA medication may probably reduce the risk of TP poisoning, and in-depth mechanisms can be developed around the signal molecules of Nrf2.
Collapse
Affiliation(s)
- Jun-Ming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
- CONTACT Jun-Ming Wang College of Pharmacy, Henan University of Chinese Medicine, East Jinshui Road & Boxue road, Zhengzhou 450046, China
| | - Rong-Xing Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lu-Lu Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ning-Ning Ding
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Chen Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Ying Cui
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, China
| | | |
Collapse
|
14
|
Wang D, Zhao XH, Cui Y, Zhang TT, Wang F, Hu YH. Efficacy and safety of Tripterygium wilfordii Hook F for CKD in Mainland China: A systematic review and meta-analysis. Phytother Res 2017; 32:436-451. [PMID: 29193402 DOI: 10.1002/ptr.5987] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/26/2017] [Accepted: 10/20/2017] [Indexed: 12/25/2022]
Abstract
Tripterygium wilfordii Hook F (TwHF) is a promising Chinese traditional medicine used to significantly reduce proteinuria and improve renal function. However, its efficacy and safety in treatment of chronic kidney disease need to be further explored in order to promote its application in clinics. This review compared the efficacy and safety of TwHF with the placebo, conventional Western medicine and other immunosuppressive medicine in a range of kidney disorders. One hundred three randomized controlled trials were included. TwHF therapy decreased 24-hr proteinuria by 0.59 g/day (95% confidence interval [CI; -0.68, -0.50]), serum creatinine level by 1.93 μmol/L (95% CI [-3.69, -0.17]), and blood urea nitrogen level by 0.24 mmol/L (95% CI [-0.41, -0.07]); increased the total effective rate by 27% (95% CI [1.24, 1.30]); and decreased the incidence of adverse reactions by 19% (95% CI [0.68, 0.96]) overall. Meta regression results showed that the duration of therapy and mean age of participants were the major sources of high heterogeneity. Sensitivity analysis demonstrated that our statistic results were relatively stable and credible. The present findings suggested that TwHF possibly has nephroprotective effects by decreasing proteinuria, serum creatinine level, and blood urea nitrogen level and no more adverse reactions compared with control group in most kidney disorders. However, these findings still need to be further confirmed by high-quality trials.
Collapse
Affiliation(s)
- Duo Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Xiao-Han Zhao
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yi Cui
- Information Technology Department, Hebei Youth Administrative Cadres College, Shijiazhuang, China
| | - Tian-Tian Zhang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Fang Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yong-Hong Hu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
15
|
Xi C, Peng S, Wu Z, Zhou Q, Zhou J. WITHDRAWN: Toxicity of triptolide and the molecular mechanisms involved. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017:S1382-6689(17)30271-5. [PMID: 29037923 DOI: 10.1016/j.etap.2017.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Chen Xi
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Shaojun Peng
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Zhengping Wu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Qingping Zhou
- Internet and Education Technology Center, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China.
| |
Collapse
|
16
|
Toxicity of triptolide and the molecular mechanisms involved. Biomed Pharmacother 2017; 90:531-541. [DOI: 10.1016/j.biopha.2017.04.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/14/2017] [Accepted: 04/02/2017] [Indexed: 01/27/2023] Open
|
17
|
Jao HY, Yu FS, Yu CS, Chang SJ, Liu KC, Liao CL, Ji BC, Bau DT, Chung JG. Suppression of the migration and invasion is mediated by triptolide in B16F10 mouse melanoma cells through the NF-kappaB-dependent pathway. ENVIRONMENTAL TOXICOLOGY 2016; 31:1974-1984. [PMID: 26420756 DOI: 10.1002/tox.22198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/10/2015] [Accepted: 09/13/2015] [Indexed: 06/05/2023]
Abstract
Melanoma cancer is one of the major causes of death in humans worldwide. Triptolide is one of the active components of Tripterygium wilfordii Hook F, and has biological activities including induced cell cycle arrest and induction of apoptosis but its antimetastatic effects on murine melanoma cells have not yet been elucidated. Herein, we investigated the effect of triptolide on the inhibition of migration and invasion and possible associated signal pathways in B16F10 murine melanoma cancer cells. Wound healing assay and Matrigel Cell Migration Assay and Invasion System demonstrated that triptolide marked inhibiting the migration and invasion of B16F10 cells. Gelatin zymography assay demonstrated that triptolide significantly inhibited the activities of matrix metalloproteinases-2 (MMP-2). Western blotting showed that triptolide markedly reduced CXCR4, SOS1, GRB2, p-ERK, FAK, p-AKT, Rho A, p-JNK, NF-κB, MMP-9, and MMP-2 but increased PI3K and p-p38 and COX2 after compared to the untreated (control) cells. Real time PCR indicated that triptolide inhibited the gene expression of MMP-2, FAK, ROCK-1, and NF-κB but did not significantly affect TIMP-1 and -2 gene expression in B16F10 cells in vitro. EMSA assay also showed that triptolide inhibited NF-κB DNA binding in a dose-dependent manner. Confocal laser microscopy examination also confirmed that triptolide inhibited the expression of NF-κB in B16F10 cells. Taken together, we suggest that triptolide inhibited B16F10 cell migration and invasion via the inhibition of NF-κB expression then led to suppress MMP-2 and -9 expressions. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1974-1984, 2016.
Collapse
Affiliation(s)
- Hui-Yu Jao
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan, ROC
| | - Fu-Shun Yu
- School of Dentistry, China Medical University, Taichung, 404, Taiwan, ROC
| | - Chun-Shu Yu
- School of Pharmacology, China Medical University, Taichung, 404, Taiwan, ROC
| | - Shu-Jen Chang
- School of Pharmacology, China Medical University, Taichung, 404, Taiwan, ROC
| | - Kuo-Ching Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 404, Taiwan, ROC
| | - Ching-Lung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan, ROC
| | - Bin-Chuan Ji
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, 500, Taiwan, ROC
| | - Da-Tian Bau
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, 404, Taiwan, ROC
- Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, 404, Taiwan, ROC
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan, ROC
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan, ROC
| |
Collapse
|
18
|
Yuan S, Wang L, Chen X, Fan B, Yuan Q, Zhang H, Yang D, Wang S. Triptolide inhibits the migration and invasion of human prostate cancer cells via Caveolin-1/CD147/MMPs pathway. Biomed Pharmacother 2016; 84:1776-1782. [DOI: 10.1016/j.biopha.2016.10.104] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 12/15/2022] Open
|
19
|
Wang Y, Liu T, Li H. Enhancement of triptolide-loaded micelles on tumorigenicity inhibition of human ovarian cancer. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:545-56. [PMID: 26786618 DOI: 10.1080/09205063.2015.1131667] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Triptolide (TP), a diterpenoid obtained from Tripterygium wilfordii Hook.f, has shown its antitumor activities against a variety of cancers in vitro in recent years. Unfortunately, TP has a small margin between the therapeutic and toxic doses and shows serious toxicity which limits its uses in antitumor treatment. In our previous study, Triptolide-loaded micelles (TP micelles), a TP drug delivery system with a sustained release behavior, had been reported to decrease TP uptake in the liver to relieve its toxicity, and increase TP distribution in the ovary to enhance its effects. This work therefore aimed at evaluating the inhibitory ability of TP micelles in the proliferation, apoptosis, invasion, and migration, and compared with free TP in SKOV3 cells. Our results showed that TP micelles inhibited the proliferation of SKOV3 in a time- and dose-dependent manner, and exhibited enhanced inhibition following 48 and 72 h treatment compared to TP. Cell cycle analysis revealed that TP and TP micelles inhibited cell proliferation by blocking their progression from the G2/M phase to the S phase. Although TP induced a significant increase in cell apoptosis, TP micelles showed a superior effect following 48 and 72 h treatment. Induction of caspase-dependent way and inhibition of NF-κB activation were found to be involved in the mechanism of TP micelles-induced apoptosis. Furthermore, the wound healing assay and transwell assay showed that both TP and TP micelles could obviously inhibit SKOV3 cells migration and invasion. Overall, TP micelles exhibited enhanced therapeutic efficacy in ovarian cancer in vitro due to its prolonged release and redistribution compared with the free TP. TP micelles might lead to an increase in tumorigenicity inhibition and a decrease in resistance and incidence simultaneously, indicating that it offers a new strategy with promising characteristics for TP chemotherapy application for ovarian cancer.
Collapse
Affiliation(s)
- You Wang
- b Department of Obstetrics and Gynecology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200001 , PR China.,c Focus Construction Subject of Shanghai Education Department , Shanghai Key Laboratory of Gynecologic Oncology , Shanghai 200127 , China
| | - Ting Liu
- b Department of Obstetrics and Gynecology , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200001 , PR China.,c Focus Construction Subject of Shanghai Education Department , Shanghai Key Laboratory of Gynecologic Oncology , Shanghai 200127 , China
| | - He Li
- a Department of Traditional Chinese Medicine , Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200001 , PR China.,c Focus Construction Subject of Shanghai Education Department , Shanghai Key Laboratory of Gynecologic Oncology , Shanghai 200127 , China
| |
Collapse
|
20
|
Rabe ST, Emami SA, Iranshahi M, Rastin M, Tabasi N, Mahmoudi M. Anti-cancer properties of a sesquiterpene lactone-bearing fraction from Artemisia khorassanica. Asian Pac J Cancer Prev 2015; 16:863-8. [PMID: 25735374 DOI: 10.7314/apjcp.2015.16.3.863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Artemisia species are important medicinal plants throughout the world. The present in vitro study, using a sesquiterpene lactone-bearing fraction prepared from Artemisia khorassanica (SLAK), sought to investigate anti-cancer properties of this plant and elucidate potential underlying mechanisms for the effects. MATERIALS AND METHODS Anti-cancer potential was evaluated by toxicity against human melanoma and fibroblast cell lines. To explore the involved pathways, pattern of any cell death was determined using annexin-V/PI staining and also the expression of Bax and cytochrome c was investigated by Western blotting. RESULTS The results showed that SLAK selectively caused a concentration-related inhibition of proliferation of melanoma cells that was associated with remarkable increase in early events and over-expression of both Bax and cytochrome c. CONCLUSIONS The current experiment indicates that Artemisia may have anti-cancer activity. We anticipate that the ingredients may be employed as therapeutic candidates for melanoma.
Collapse
Affiliation(s)
- Shahrzad Taghizadeh Rabe
- Immunology Research Center, Bu-Ali Research Institute, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran E-mail :
| | | | | | | | | | | |
Collapse
|
21
|
Chung TW, Tan KT, Chan HL, Lai MD, Yen MC, Li YR, Lin SH, Lin CC. Induction of indoleamine 2,3-dioxygenase (IDO) enzymatic activity contributes to interferon-gamma induced apoptosis and death receptor 5 expression in human non-small cell lung cancer cells. Asian Pac J Cancer Prev 2015; 15:7995-8001. [PMID: 25292102 DOI: 10.7314/apjcp.2014.15.18.7995] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Interferon-gamma (IFN-γ) has been used to treat various malignant tumors. However, the molecular mechanisms underlying the direct anti-proliferative activity of IFN-γ are poorly understood. In the present study, we examined the in vitro antitumor activity of IFN-γ on two human non-small-cell lung carcinoma (NSCLC) cell lines, H322M and H226. Our findings indicated that IFN-γ treatment caused a time-dependent reduction in cell viability and induced apoptosis through a FADD-mediated caspase-8/tBid/mitochondria-dependent pathway in both cell lines. Notably, we also postulated that IFN-γ increased indoleamine 2,3-dioxygenase (IDO) expression and enzymatic activity in H322M and H226 cells. In addition, inhibition of IDO activity by the IDO inhibitor 1-MT or tryptophan significantly reduced IFN-γ-induced apoptosis and death receptor 5 (DR5) expression, which suggests that IDO enzymatic activity plays an important role in the anti-NSCLC cancer effect of IFN-γ. These results provide new mechanistic insights into interferon-γ antitumor activity and further support IFN-γ as a potential therapeutic adjuvant for the treatment of NCSLC.
Collapse
Affiliation(s)
- Ting Wen Chung
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, Taiwan E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhang ML, Tao Y, Zhou WQ, Ma PC, Cao YP, He CD, Wei J, Li LJ. All-trans retinoic acid induces cell-cycle arrest in human cutaneous squamous carcinoma cells by inhibiting the mitogen-activated protein kinase-activated protein 1 pathway. Clin Exp Dermatol 2015; 39:354-60. [PMID: 24635079 DOI: 10.1111/ced.12227] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND All-trans retinoic acid (ATRA) has been tried for the treatment and prevention of a number of epithelial cancers. However, the precise mechanism by which ATRA inhibits the growth of cutaneous squamous cell carcinoma (cSCC) remains elusive. AIMS To determine the suppressive effects of ATRA on the human cSCC cell line SCL-1, and explore the possible mechanisms involved. METHODS SCL-1 cells were treated with ATRA, then cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, while apoptosis and cell cycle progression were analysed by flow cytometry. Protein levels of cell-cycle regulatory proteins and the activation of extracellular signal-regulated kinase (ERK) and Jun kinase (JNK) were detected by western blotting analysis. Transcriptional activity of activator protein (AP)-1 was examined by luciferase reporter assay. RESULTS ATRA inhibited the proliferation of SCL-1 cells and had modest proapoptotic effects. ATRA also induced G1 cell-cycle arrest, inhibited the expression of cyclin D1/cyclin-dependent kinase (CDK)4 and cyclinE/CDK2, and increased the expression of the cyclin-dependent kinase inhibitors p21 and p27. In addition, ATRA significantly decreased the phosphorylation of ERK1/2 and JNK1/2, and inhibited AP-1 transcriptional activity. CONCLUSIONS ATRA induces cell-cycle arrest in human cSCC cells by inhibiting the mitogen-activated protein kinase (MAPK)-AP1 pathway, and could be effective in the prevention and chemotherapy of human cSCC.
Collapse
Affiliation(s)
- M-L Zhang
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Li XJ, Jiang ZZ, Zhang LY. Triptolide: progress on research in pharmacodynamics and toxicology. JOURNAL OF ETHNOPHARMACOLOGY 2014; 155:67-79. [PMID: 24933225 DOI: 10.1016/j.jep.2014.06.006] [Citation(s) in RCA: 294] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tripterygium wilfordii Hook. f. (Tripterygium wilfordii), also known as Huangteng and gelsemium elegan, is a traditional Chinese medicine that has been marketed in China as Tripterygium wilfordii glycoside tablets. Triptolide (TP), an active component in Tripterygium wilfordii extracts, has been used to treat various diseases, including lupus, cancer, rheumatoid arthritis and nephritic syndrome. This review summarizes recent developments in the research on the pharmacodynamics, pharmacokinetics, pharmacy and toxicology of TP, with a focus on its novel mechanism of reducing toxicity. This review provides insight for future studies on traditional Chinese medicine, a field that is both historically and currently important. MATERIALS AND METHODS We included studies published primarily within the last five years that were available in online academic databases (e.g., PubMed, Google Scholar, CNKI, SciFinder and Web of Science). RESULTS TP has a long history of use in China because it displays multiple pharmacological activities, including anti-rheumatism, anti-inflammatory, anti-tumor and neuroprotective properties. It has been widely used for the treatment of various diseases, such as rheumatoid arthritis, nephritic syndrome, lupus, Behcet׳s disease and central nervous system diseases. Recently, numerous breakthroughs have been made in our understanding of the pharmacological efficacy of TP. Although TP has been marketed as a traditional Chinese medicine, its multi-organ toxicity prevents it from being widely used in clinical practice. CONCLUSIONS Triptolide, a biologically active natural product extracted from the root of Tripterygium wilfordii, has shown promising pharmacological effects, particularly as an anti-tumor agent. Currently, in anti-cancer research, more effort should be devoted to investigating effective anti-tumor targets and confirming the anti-tumor spectrum and clinical indications of novel anti-tumor pro-drugs. To apply TP appropriately, with high efficacy and low toxicity, the safety and non-toxic dose range for specific target organs and diseases should be determined, the altered pathways and mechanisms of exposure need to be clarified, and an early warning system for toxicity needs to be established. With further in-depth study of the efficacy and toxicity of TP, we believe that TP will become a promising multi-use drug with improved clinical efficacy and safety in the future.
Collapse
Affiliation(s)
- Xiao-Jiaoyang Li
- Jiangsu Center of Drug Screening, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhen-Zhou Jiang
- Jiangsu Center of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China.
| | - Lu-yong Zhang
- Jiangsu Center of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
24
|
Liu Y, Cui YF. Synergism of cytotoxicity effects of triptolide and artesunate combination treatment in pancreatic cancer cell lines. Asian Pac J Cancer Prev 2014; 14:5243-8. [PMID: 24175808 DOI: 10.7314/apjcp.2013.14.9.5243] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Triptolide, extracted from the herb Tripteryglum wilfordii Hook.f that has long been used as a natural medicine in China, has attracted much interest for its anti-cancer effects against some kinds of tumours in recent years. Artesunate, extracted from the Chinese herb Artemisia annua, has proven to be effective and safe as an anti-malarial drug that possesses anticancer potential. The present study attempted to clarify if triptolide enhances artesunate-induced cytotoxicity in pancreatic cancer cell lines in vitro and in vivo. METHODS In vitro, to test synergic actions, cell viability and apoptosis were analyzed after treatment of pancreatic cancer cell lines with the two agents singly or in combination. The molecular mechanisms of apoptotic effects were also explored using qRT-PCR and Western blotting. In vivo, a tumor xenograft model was established in nude mice, for assessment of inhibitory effects of triptolide and artesunate. RESULTS We could show that the combination of triptolide and artesunate could inhibit pancreatic cancer cell line growth, and induce apoptosis, accompanied by expression of HSP 20 and HSP 27, indicating important roles in the synergic effects. Moreover, tumor growth was decreased with triptolide and artesunate synergy. CONCLUSION Our result indicated that triptolide and artesunate in combination at low concentrations can exert synergistic anti-tumor effects in pancreatic cancer cells with potential clinical applications.
Collapse
Affiliation(s)
- Yao Liu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China E-mail :
| | | |
Collapse
|
25
|
Su J, Cheng J, Sun HX, Diao ZY, Zhen X, Yang J, Ding LJ, Hu YL. Tripterygium glycosides impairs the proliferation of granulosa cells and decreases the reproductive outcomes in female rats. BIRTH DEFECTS RESEARCH. PART B, DEVELOPMENTAL AND REPRODUCTIVE TOXICOLOGY 2014; 101:283-291. [PMID: 24831781 DOI: 10.1002/bdrb.21111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/11/2014] [Indexed: 11/07/2022]
Abstract
This study was carried out to investigate the impact of tripterygium glycosides (TGs) on ovarian function of female rats in vitro and in vivo. In vitro studies showed that TG induced cells decrease at G1 phase and inhibited cell proliferation in rat granulosa cells. In vivo, female rats were intragastrically administered with TG at the dose of 60 mg/kg/day for consecutive 50 days. TG caused a prolonged estrous cycle, and a significant reduction in ovarian index, serum E2 level, and numbers of secondary and antral follicles (p < 0.05) in these rats. A significant reduction of viable embryos was demonstrated in TG-treated female rats after mating (p < 0.01). Further, we observed observed the reduced expression level of TGF-β1 after TG treatment in vitro and in vivo. Moreover, the expression of Smad2 and AKT was also decreased after TG treatment. These results suggest that TG can impair ovarian function through Smads-mediated TGF-β1 signal pathway.
Collapse
Affiliation(s)
- Jing Su
- Center for Reproductive Medicine, The Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing City, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Shao X, Cao X, Song G, Zhao Y, Shi B. Metformin rescues the MG63 osteoblasts against the effect of high glucose on proliferation. J Diabetes Res 2014; 2014:453940. [PMID: 24812633 PMCID: PMC4000639 DOI: 10.1155/2014/453940] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/02/2014] [Accepted: 03/26/2014] [Indexed: 02/07/2023] Open
Abstract
AIMS. To study the proliferation of osteoblasts and genes expression under normal glucose, high glucose, and metformin (Met). METHODS. MG63 osteoblast-like cells were cultured in osteogenic medium supplemented with normal glucose (glucose 5.5 mmol/L) or high glucose (glucose 16.7 mmol/L) and metformin + high glucose (Met 300 μmol/L + glucose 16.7 mmol/L). Proliferation was detected with CCK-8 assay at days 1, 3, and 7. Real-time PCR and Western blot were performed to compare the expression of collagen I (Col I), osteocalcin (OCN), osteoprotegerin (OPG), receptor activator for NF- κB ligand (RANKL), and metal matrix proteinases 1 and 2 (MMP1, MMP2). Alkaline phosphatase (ALP) activity was also detected at days 6, 12, and 18. RESULTS. Exposure to high glucose inhibited the proliferation of osteoblasts (P < 0.05), with suppressed OCN and OPG. Meanwhile, Col I, RANKL, MMP1, and MMP2 were unaffected. Metformin attenuated the suppression on proliferation with increased expression of Col I, OCN, and OPG, meanwhile suppressing MMP1 and MMP2. High glucose lowered the intracellular ALP, while metformin raised it. Metformin attenuated the downregulation of ALP completely at day 6, partly at day 12, but not at day 18. CONCLUSIONS. Metformin attenuated the suppression effect of high glucose to the osteoblast proliferation and gene expression, more prominently in earlier stage.
Collapse
Affiliation(s)
- Xinyu Shao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China
| | - Xiaojun Cao
- Department of Endocrinology and Metabolism, Zhangjiagang First People's Hospital, Zhangjiagang, Jiangsu 215600, China
| | - Ge Song
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China
| | - Yuan Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China
| | - Bimin Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu 215006, China
- *Bimin Shi:
| |
Collapse
|
27
|
Park SW, Kim YI. Triptolide induces apoptosis of PMA-treated THP-1 cells through activation of caspases, inhibition of NF-κB and activation of MAPKs. Int J Oncol 2013; 43:1169-75. [PMID: 23900299 DOI: 10.3892/ijo.2013.2033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/07/2013] [Indexed: 11/05/2022] Open
Abstract
Triptolide is known to be involved in many cellular events, such as those related to immunosuppressive and antitumor activity. We investigated whether triptolide mediates these effects through multiple mechanisms, including activation of cell cycle arrest and caspase-dependent pathways, as well as by blocking nuclear factor-κB (NF-κB) activation and by potentiating the activities of the mitogen-activated protein kinase (MAPK) pathway, in phorbol myristate acetate (PMA)-differentiated THP-1 cells. Triptolide significantly inhibited cell proliferation in a dose- and time-dependent manner and it increased the apoptotic fraction in the cell cycle and the number of apoptotic THP-1 cells. Exposure of the cells to triptolide also increased caspase-3 activity in these cells. Furthermore, co-treatment of cells with triptolide and the pan-caspase inhibitor, Z-VAD-FMK, or the caspase-3 inhibitor, Z-DEVE-FMK, increased THP-1 cell growth. Triptolide treatment resulted in a significant decrease in mRNA expression levels in genes encoding Bcl-2, cyclin D1, p27 and survivin and an increase in those encoding Bax and p21 in THP-1 cells. Triptolide not only inhibited NF-κB activation, but also activated p38 MAPK and MEK/ERK phosphorylation. These results show that triptolide inhibits the growth of THP-1 cells by inducing apoptosis through caspase activation and the mechanism involves NF-κB inhibition and the MAPK pathway.
Collapse
Affiliation(s)
- Seung-Won Park
- Department of Biotechnology, Catholic University of Daegu, Daegu 712-702, Republic of Korea
| | | |
Collapse
|
28
|
Anasamy T, Abdul AB, Sukari MA, Abdelwahab SI, Mohan S, Kamalidehghan B, Azid MZ, Muhammad Nadzri N, Andas ARJ, Kuan Beng N, Hadi AHA, Sulaiman Rahman H. A Phenylbutenoid Dimer, cis-3-(3',4'-Dimethoxyphenyl)-4-[(E)-3''',4'''-Dimethoxystyryl] Cyclohex-1-ene, Exhibits Apoptogenic Properties in T-Acute Lymphoblastic Leukemia Cells via Induction of p53-Independent Mitochondrial Signalling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:939810. [PMID: 23710242 PMCID: PMC3603377 DOI: 10.1155/2013/939810] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/23/2013] [Indexed: 12/03/2022]
Abstract
The current study was designed to evaluate the in vitro cytotoxicity effect of a phenylbutenoid dimer, cis-3-(3',4'-dimethoxyphenyl)-4-[(E)-3 (‴) ,4 (‴) -dimethoxystyryl]cyclohex-1-ene (ZC-B11) isolated from the rhizome of Zingiber cassumunar on various cancer cell line, and normal human blood mononuclear cells, and to further investigate the involvement of apoptosis-related proteins that leads, to the probable pathway in which apoptosis is triggered. Cytotoxicity test using MTT assay showed selective inhibition of ZC-B11 towards T-acute lymphoblastic leukemia cells, CEMss, with an IC50 value of 7.11 ± 0.240 μ g/mL, which did not reveal cytotoxic effects towards normal human blood mononuclear cells (IC50 > 50 μ g/mL). Morphology assessments demonstrated distinctive morphological changes corresponding to a typical apoptosis. ZC-B11 also arrested cell cycle progression at S phase and causes DNA fragmentation in CEMss cells. Decline of mitochondrial membrane potential was also determined qualitatively. In the apoptosis-related protein determination, ZC-B11 was found to significantly upregulate Bax, caspase 3/7, caspase 9, cytochrome c, and SMAC and downregulate Bcl-2, HSP70, and XIAP, but did not affect caspase 8, p53, and BID. These results demonstrated for the first time the apoptogenic property of ZC-B11 on CEMss cell line, leading to the programmed cell death via intrinsic mitochondrial pathway of apoptosis induction.
Collapse
Affiliation(s)
- Theebaa Anasamy
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ahmad Bustamam Abdul
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Aspollah Sukari
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Siddig Ibrahim Abdelwahab
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Medical Research Center, Faculty of Medicine, Jazan University, Jazan, P.O. Box 114, Saudi Arabia
| | - Syam Mohan
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Behnam Kamalidehghan
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Mohd Zulkhairi Azid
- Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nabilah Muhammad Nadzri
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - A. Reenaa Joys Andas
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Ng Kuan Beng
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - A. Hamid A. Hadi
- Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Heshu Sulaiman Rahman
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
- Department of Microbiology and Pathology, Faculty of Veterinary Medicine, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
29
|
Triptolide-Mediated Apoptosis by Suppression of Focal Adhesion Kinase through Extrinsic and Intrinsic Pathways in Human Melanoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:172548. [PMID: 25945102 PMCID: PMC4402567 DOI: 10.1155/2013/172548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/29/2013] [Accepted: 04/07/2013] [Indexed: 02/03/2023]
Abstract
Triptolide (TPL) has been shown to inhibit cell proliferation and induce apoptosis in various human cancer cells; however, the precise mechanism of apoptosis induced by TPL in human melanoma cells has not yet been elucidated. In this study, we investigated the precise mechanism underlying cytocidal effects of TPL on human melanoma cells. Treatment of human melanoma cells with TPL significantly inhibited cell growth and induced apoptosis, as evidenced by flow cytometry and annexin V-fluorescein isothiocyanate analyses. TPL increased the levels of Fas and Fas-associated death domain (FADD) and induced cleavage of Bid by activation of caspase-8 and cytochrome c release from mitochondria to the cytosol, which resulted in activation of caspase-9 and caspase-3. Moreover, TPL-induced apoptosis in SK-MEL-2 cells was mediated through dephosphorylation of focal adhesion kinase (FAK) and its cleavage by caspase-8-mediated caspase-3 activation via upregulation of Fas expression. We also found that TPL mediated the dissociation of receptor-interacting protein (RIP) from FAK and enhanced the formation of RIP/Fas complex formation initiating cell death. In conclusion, our data firstly demonstrated that TPL induces apoptosis by both extrinsic and intrinsic apoptosis pathways in human melanoma cells and identified that RIP shuttles between Fas and FAK to mediate apoptosis.
Collapse
|