1
|
Tsai TF, Hwang TIS, Chen PC, Chen YC, Chou KY, Ho CY, Chen HE, Chang AC. Hyperthermia reduces cancer cell invasion and combats chemoresistance and immune evasion in human bladder cancer. Int J Oncol 2024; 65:116. [PMID: 39513598 PMCID: PMC11575926 DOI: 10.3892/ijo.2024.5704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/19/2024] [Indexed: 11/15/2024] Open
Abstract
Bladder cancer (BC) is a common malignancy and its most prevalent type is urothelial carcinoma, which accounts for ~90% of all cases of BC. The current treatment options for BC are limited, which necessitates the development of alternative treatment strategies. Hyperthermia (HT), as an adjuvant cancer therapy, is known to improve the efficacy of chemotherapy or radiotherapy. The present study aimed to investigate the anti‑tumor effects of HT on cell survival, invasiveness, chemoresistance and immune evasion in human BC cell lines (5637, T24 and UMUC3). Calcein AM staining was performed to analyze the cytotoxicity of natural killer (NK) cells against human BC cells following HT treatment. Cell migration and invasion affected by HT were analyzed using Transwell migration and invasion assays. It was found that HT inhibited the proliferation of BC cells by downregulating the phosphorylation of protein kinase B. Moreover, HT effectively enhanced the sensitivity of BC cells to the chemotherapy drug cisplatin (DDP) and reduced the chemoresistance of DDP‑resistant cells by downregulating the expression of cadherin‑11. It was further demonstrated that HT inhibited the migration and invasion of BC cells and enhanced the cytotoxic effects of NK cells. In summary, the antineoplastic effects of HT were mediated through three main mechanisms: Enhancement of the chemosensitivity of BC cells and mitigation of DDP‑induced chemoresistance, suppression of the invasive potential of BC cells and reinforcement of the anticancer response of NK cells. Thus, HT appears to be a promising adjunctive therapy for human BC.
Collapse
Affiliation(s)
- Te-Fu Tsai
- Division of Urology, Department of Surgery, Shin Kong Wu Ho‑Su Memorial Hospital, Taipei 111045, Taiwan, R.O.C
| | - Thomas I-Sheng Hwang
- Division of Urology, Department of Surgery, Shin Kong Wu Ho‑Su Memorial Hospital, Taipei 111045, Taiwan, R.O.C
| | - Po-Chun Chen
- Department of Life Science, National Taiwan Normal University, Taipei 106308, Taiwan, R.O.C
| | - Yen-Chen Chen
- Translational Medicine Center, Research Department, Shin Kong Wu Ho‑Su Memorial Hospital, Taipei 111045, Taiwan, R.O.C
| | - Kuang-Yu Chou
- Division of Urology, Department of Surgery, Shin Kong Wu Ho‑Su Memorial Hospital, Taipei 111045, Taiwan, R.O.C
| | - Chao-Yen Ho
- Division of Urology, Department of Surgery, Shin Kong Wu Ho‑Su Memorial Hospital, Taipei 111045, Taiwan, R.O.C
| | - Hung-En Chen
- Division of Urology, Department of Surgery, Shin Kong Wu Ho‑Su Memorial Hospital, Taipei 111045, Taiwan, R.O.C
| | - An-Chen Chang
- Translational Medicine Center, Research Department, Shin Kong Wu Ho‑Su Memorial Hospital, Taipei 111045, Taiwan, R.O.C
| |
Collapse
|
2
|
Hashemi M, abbasiazam A, Oraee-Yazdani S, Lenzer J. Response of human glioblastoma cells to hyperthermia: Cellular apoptosis and molecular events. Tissue Cell 2022; 75:101751. [DOI: 10.1016/j.tice.2022.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
3
|
Hyperthermia Treatment as a Promising Anti-Cancer Strategy: Therapeutic Targets, Perspective Mechanisms and Synergistic Combinations in Experimental Approaches. Antioxidants (Basel) 2022; 11:antiox11040625. [PMID: 35453310 PMCID: PMC9030926 DOI: 10.3390/antiox11040625] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023] Open
Abstract
Despite recent developments in diagnosis and treatment options, cancer remains one of the most critical threats to health. Several anti-cancer therapies have been identified, but further research is needed to provide more treatment options that are safe and effective for cancer. Hyperthermia (HT) is a promising treatment strategy for cancer because of its safety and cost-effectiveness. This review summarizes studies on the anti-cancer effects of HT and the detailed mechanisms. In addition, combination therapies with anti-cancer drugs or natural products that can effectively overcome the limitations of HT are reviewed because HT may trigger protective events, such as an increase of heat shock proteins (HSPs). In the 115 reports included, the mechanisms related to apoptosis, cell cycle, reactive oxygen species, mitochondrial membrane potential, DNA damage, transcription factors and HSPs were considered important. This review shows that HT is an effective inducer of apoptosis. Moreover, the limitations of HT may be overcome using combined therapy with anti-cancer drugs or natural products. Therefore, appropriate combinations of such agents with HT will exert maximal effects to treat cancer.
Collapse
|
4
|
Sane A, Tangen K, Frim D, Singh MR, Linninger A. Cellular Obstruction Clearance in Proximal Ventricular Catheters Using Low-Voltage Joule Heating. IEEE Trans Biomed Eng 2018; 65:2503-2511. [DOI: 10.1109/tbme.2018.2802418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Bramini M, Alberini G, Colombo E, Chiacchiaretta M, DiFrancesco ML, Maya-Vetencourt JF, Maragliano L, Benfenati F, Cesca F. Interfacing Graphene-Based Materials With Neural Cells. Front Syst Neurosci 2018; 12:12. [PMID: 29695956 PMCID: PMC5904258 DOI: 10.3389/fnsys.2018.00012] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022] Open
Abstract
The scientific community has witnessed an exponential increase in the applications of graphene and graphene-based materials in a wide range of fields, from engineering to electronics to biotechnologies and biomedical applications. For what concerns neuroscience, the interest raised by these materials is two-fold. On one side, nanosheets made of graphene or graphene derivatives (graphene oxide, or its reduced form) can be used as carriers for drug delivery. Here, an important aspect is to evaluate their toxicity, which strongly depends on flake composition, chemical functionalization and dimensions. On the other side, graphene can be exploited as a substrate for tissue engineering. In this case, conductivity is probably the most relevant amongst the various properties of the different graphene materials, as it may allow to instruct and interrogate neural networks, as well as to drive neural growth and differentiation, which holds a great potential in regenerative medicine. In this review, we try to give a comprehensive view of the accomplishments and new challenges of the field, as well as which in our view are the most exciting directions to take in the immediate future. These include the need to engineer multifunctional nanoparticles (NPs) able to cross the blood-brain-barrier to reach neural cells, and to achieve on-demand delivery of specific drugs. We describe the state-of-the-art in the use of graphene materials to engineer three-dimensional scaffolds to drive neuronal growth and regeneration in vivo, and the possibility of using graphene as a component of hybrid composites/multi-layer organic electronics devices. Last but not least, we address the need of an accurate theoretical modeling of the interface between graphene and biological material, by modeling the interaction of graphene with proteins and cell membranes at the nanoscale, and describing the physical mechanism(s) of charge transfer by which the various graphene materials can influence the excitability and physiology of neural cells.
Collapse
Affiliation(s)
- Mattia Bramini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Graphene Labs, Istituto Italiano di Tecnologia, Genova, Italy
| | - Giulio Alberini
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, Università degli Studi di Genova, Genova, Italy
| | - Elisabetta Colombo
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Graphene Labs, Istituto Italiano di Tecnologia, Genova, Italy
| | - Martina Chiacchiaretta
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, Università degli Studi di Genova, Genova, Italy
| | - Mattia L DiFrancesco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Graphene Labs, Istituto Italiano di Tecnologia, Genova, Italy
| | - José F Maya-Vetencourt
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Luca Maragliano
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Graphene Labs, Istituto Italiano di Tecnologia, Genova, Italy.,Department of Experimental Medicine, Università degli Studi di Genova, Genova, Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy.,Graphene Labs, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
6
|
Chen YD, Zhang Y, Dong TX, Xu YT, Zhang W, An TT, Liu PF, Yang XH. Hyperthermia with different temperatures inhibits proliferation and promotes apoptosis through the EGFR/STAT3 pathway in C6 rat glioma cells. Mol Med Rep 2017; 16:9401-9408. [PMID: 29039593 PMCID: PMC5779992 DOI: 10.3892/mmr.2017.7769] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/31/2017] [Indexed: 02/07/2023] Open
Abstract
Malignant gliomas are a group of aggressive neoplasms among human cancers. The curative effects of current treatments are finite for improving the prognosis of patients. Hyperthermia (HT) is an effective treatment for cancers; however, the effects of HT with different temperatures in treatment of MG and relevant mechanisms remain unclear. MTT assay and Annexin V-fluorescein isothiocyanate/propidium iodide staining were used for investigating the proliferation and apoptosis of C6 cells, respectively. Western blotting was applied to detect the expression of proteins. Ultrasonography was employed to evaluate the tumor formation rate, growth rate, angiogenesis rate and degree of hardness of tumors in vivo. The authors certified that HT with 42–46°C × 1 h, 1 t could inhibit proliferation, promote apoptosis, reduce tumor formation rate, growth rate, angiogenesis rate, degree of hardness of tumors, ischemic tolerance and anoxic tolerance, and have synergy with temozolomide in C6 cells. Long-term HT (43°C × 1 h, 1 t/5 d, 90 d) did not cut down the sensitivity of C6 cells to HT, and sustainably inhibited the proliferation of C6 cells. Furthermore, the authors proved HT produced these effects primarily through inhibition of the EGFR/STAT3/HIF-1A/VEGF-A pathway.
Collapse
Affiliation(s)
- Yao-Dong Chen
- Department of Abdominal Ultrasonography, The First Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yu Zhang
- Department of Abdominal Ultrasonography, The First Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Tian-Xiu Dong
- Department of Abdominal Ultrasonography, The First Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yu-Tong Xu
- Department of Abdominal Ultrasonography, The First Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wei Zhang
- Department of Abdominal Ultrasonography, The First Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ting-Ting An
- Department of Abdominal Ultrasonography, The First Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Peng-Fei Liu
- Department of Magnetic Resonance, The First Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiu-Hua Yang
- Department of Abdominal Ultrasonography, The First Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
7
|
Alphandéry E, Idbaih A, Adam C, Delattre JY, Schmitt C, Guyot F, Chebbi I. Chains of magnetosomes with controlled endotoxin release and partial tumor occupation induce full destruction of intracranial U87-Luc glioma in mice under the application of an alternating magnetic field. J Control Release 2017; 262:259-272. [PMID: 28713041 DOI: 10.1016/j.jconrel.2017.07.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 01/15/2023]
Abstract
Previous studies showed that magnetic hyperthermia could efficiently destroy tumors both preclinically and clinically, especially glioma. However, antitumor efficacy remained suboptimal and therefore required further improvements. Here, we introduce a new type of nanoparticles synthesized by magnetotactic bacteria, called magnetosomes, with improved properties compared with commonly used chemically synthesized nanoparticles. Indeed, mice bearing intracranial U87-Luc glioma tumors injected with 13μg of nanoparticles per mm3 of tumor followed by 12 to 15 of 30min alternating magnetic field applications displayed either full tumor disappearance in 40% of mice or no tumor regression using magnetosomes or chemically synthesized nanoparticles, respectively. Magnetosome superior antitumor activity could be explained both by a larger production of heat and by endotoxins release under alternating magnetic field application. Most interestingly, this behavior was observed when magnetosomes occupied only 10% of the whole tumor volume, which suggests that an indirect mechanism, such as an immune reaction, takes part in tumor regression. This is desired for the treatment of infiltrating tumors, such as glioma, for which whole tumor coverage by nanoparticles can hardly be achieved.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Institut de minéralogie et de physique des milieux condensés de physique des matériaux et de cosmochimie, UMR 7590 CNRS, Sorbonne Universités, UPMC, University Paris 06, Muséum National d'Histoire Naturelle, 4 Place Jussieu, 75005 Paris, France; Nanobacterie SARL, 36 boulevard Flandrin, 75016 Paris, France.
| | - Ahmed Idbaih
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC, University Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, F-75013 Paris, France
| | - Clovis Adam
- Laboratoire de neuropathologie, GHU Paris-Sud-Hôpital Bicêtre, 78 rue du Général Leclerc, 94270 Le Kremlin Bicêtre, France
| | - Jean-Yves Delattre
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC, University Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, F-75013 Paris, France
| | - Charlotte Schmitt
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC, University Paris 06, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; AP-HP, Hôpitaux Universitaires Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, F-75013 Paris, France
| | - François Guyot
- Institut de minéralogie et de physique des milieux condensés de physique des matériaux et de cosmochimie, UMR 7590 CNRS, Sorbonne Universités, UPMC, University Paris 06, Muséum National d'Histoire Naturelle, 4 Place Jussieu, 75005 Paris, France
| | - Imène Chebbi
- Nanobacterie SARL, 36 boulevard Flandrin, 75016 Paris, France
| |
Collapse
|
8
|
Pandey PK, Sharma AK, Gupta U. Blood brain barrier: An overview on strategies in drug delivery, realistic in vitro modeling and in vivo live tracking. Tissue Barriers 2016; 4:e1129476. [PMID: 27141418 PMCID: PMC4836458 DOI: 10.1080/21688370.2015.1129476] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/01/2015] [Accepted: 12/04/2015] [Indexed: 12/25/2022] Open
Abstract
Blood brain barrier (BBB) is a group of astrocytes, neurons and endothelial cells, which makes restricted passage of various biological or chemical entities to the brain tissue. It gives protection to brain at one hand, but at the other hand it has very selective permeability for bio-actives and other foreign materials and is one of the major challenges for the drug delivery. Nanocarriers are promising to cross BBB utilizing alternative route of administration such as intranasal and intra-carotid drug delivery which bypasses BBB. In future more optimized drug delivery system can be achieved by compiling the best routes with the best carriers. Single photon emission tomography (SPECT) and different brain-on-a-chip in vitro models are being very reliable to study live in vivo tracking of BBB and its pathophysiology, respectively. In the current review we have tried to exploit mechanistically all these to understand and manage the various BBB disruptions in diseased condition along with crossing the hurdles occurring in drug or gene delivery across BBB.
Collapse
Affiliation(s)
- Pawan Kumar Pandey
- Department of Pharmacy; School of Chemical Sciences and Pharmacy, Central University of Rajasthan; Ajmer; Rajasthan, India
| | - Ashok Kumar Sharma
- Department of Pharmacy; School of Chemical Sciences and Pharmacy, Central University of Rajasthan; Ajmer; Rajasthan, India
| | - Umesh Gupta
- Department of Pharmacy; School of Chemical Sciences and Pharmacy, Central University of Rajasthan; Ajmer; Rajasthan, India
| |
Collapse
|
9
|
Zhang F, Xu CL, Liu CM. Drug delivery strategies to enhance the permeability of the blood-brain barrier for treatment of glioma. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:2089-100. [PMID: 25926719 PMCID: PMC4403597 DOI: 10.2147/dddt.s79592] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gliomas are amongst the most insidious and destructive types of brain cancer and are associated with a poor prognosis, frequent recurrences, and extremely high lethality despite combination treatment of surgery, radiotherapy, and chemotherapy. The existence of the blood–brain barrier (BBB) restricts the delivery of therapeutic molecules into the brain and offers the clinical efficacy of many pharmaceuticals that have been demonstrated to be effective for other kinds of tumors. This challenge emphasizes the need to be able to deliver drugs effectively across the BBB to reach the brain parenchyma. Enhancement of the permeability of the BBB and being able to transport drugs across it has been shown to be a promising strategy to improve drug absorption and treatment efficacy. This review highlights the innovative technologies that have been introduced to enhance the permeability of the BBB and to obtain an optimal distribution and concentration of drugs in the brain to treat gliomas, such as nanotechniques, hyperthermia techniques, receptor-mediated transport, cell-penetrating peptides, and cell-mediated delivery.
Collapse
Affiliation(s)
- Fang Zhang
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Chun-Lei Xu
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Chun-Mei Liu
- School of Pharmacy, National First-Class Key Discipline for Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Hong M, Jiang Z, Zhou YF. Effects of thermotherapy on Th1/Th2 cells in esophageal cancer patients treated with radiotherapy. Asian Pac J Cancer Prev 2014; 15:2359-62. [PMID: 24716984 DOI: 10.7314/apjcp.2014.15.5.2359] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To investigate the effects of double radiofrequency hyperthermia on Th1/Th2 cells in esophageal cancer patients treated with radiotherapy. MATERIALS AND METHODS 22 patients with esophageal cancer were divided into a radiotherapy group (10 cases) and a combined group (double radiofrequency hyperthermia combined with radiotherapy group, 12 cases). Both groups received conventional radiotherapy using a cobalt-60 therapy apparatus (TD60-66Gy/30-33F). Patients in the combined group also underwent double radiofrequency hyperthermia (2F/W, 8-10F). Before and after treatment, Th1, Th2, Tc1 and Tc2 cells in peripheral blood were determined with flow cytometry. RESULTS In the radiotherapy group, Th1 cell contents before and after radiotherapy were 17.5 ± 5.26% and 9.69 ± 4.86%, respectively, with a significant difference (p<0.01). The Th1/Th2 ratio was significantly decreased from 28.2 ± 14.3 to 16.5 ± 10.4 (p<0.01). In the combined group, Th1 cell content before radiotherapy was 15.9 ± 8.18%, and it increased to 18.6 ± 8.84 after radiotherapy (p>0.05), the Th1/Th2 ratio decreasing from 38.4 ± 36.3 to 28.1 ± 24.0 (p>0.05). Changes in Th2, Tc1 and Tc2 cell levels were not significant in the two groups before and after therapy (p>0.05). CONCLUSIONS Double radiofrequency hyperthermia can promote the conversion from Th2 to Th1 cells, and regulate the balance of Th1/Th2 cells.
Collapse
Affiliation(s)
- Mei Hong
- Department of Radiotherapy, Nanjing Thoracic Hospital, Nanjing, Jiangsu, China E-mail :
| | | | | |
Collapse
|
11
|
Yan S, Chen M, Fan J, Wang Y, Du Y, Hu Y, Xu L. Therapeutic mechanism of treating SMMC-7721 liver cancer cells with magnetic fluid hyperthermia using Fe₂O₃ nanoparticles. Braz J Med Biol Res 2014; 47:947-959. [PMID: 25296356 PMCID: PMC4230284 DOI: 10.1590/1414-431x20143808] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/09/2014] [Indexed: 01/17/2023] Open
Abstract
This study aimed to investigate the therapeutic mechanism of treating SMMC-7721 liver cancer cells with magnetic fluid hyperthermia (MFH) using Fe₂O₃ nanoparticles. Hepatocarcinoma SMMC-7721 cells cultured in vitro were treated with ferrofluid containing Fe₂O₃ nanoparticles and irradiated with an alternating radio frequency magnetic field. The influence of the treatment on the cells was examined by inverted microscopy, MTT and flow cytometry. To study the therapeutic mechanism of the Fe₂O₃ MFH, Hsp70, Bax, Bcl-2 and p53 were detected by immunocytochemistry and reverse transcription polymerase chain reaction (RT-PCR). It was shown that Fe₂O₃ MFH could cause cellular necrosis, induce cellular apoptosis, and significantly inhibit cellular growth, all of which appeared to be dependent on the concentration of the Fe₂O₃nanoparticles. Immunocytochemistry results showed that MFH could induce high expression of Hsp70 and Bax, decrease the expression of mutant p53, and had little effect on Bcl-2. RT-PCR indicated that Hsp70 expression was high in the early stage of MFH (<24 h) and became low or absent after 24 h of MFH treatment. It can be concluded that Fe₂O₃MFH significantly inhibited the proliferation of in vitro cultured liver cancer cells (SMMC-7721), induced cell apoptosis and arrested the cell cycle at the G₂/M phase. Fe₂O₃ MFH can induce high Hsp70 expression at an early stage, enhance the expression of Bax, and decrease the expression of mutant p53, which promotes the apoptosis of tumor cells.
Collapse
Affiliation(s)
- S.Y. Yan
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine,
Department of Gastroenterology, Shanghai, China
| | - M.M. Chen
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine,
Department of Gastroenterology, Shanghai, China
| | - J.G. Fan
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine,
Department of Gastroenterology, Shanghai, China
| | - Y.Q. Wang
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine,
Department of Gastroenterology, Shanghai, China
| | - Y.Q. Du
- Cancer Hospital, Fudan University, Department of Pathology,
Shanghai, China
| | - Y. Hu
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine,
Department of Gastroenterology, Shanghai, China
| | - L.M. Xu
- Xinhua Hospital, Shanghai Jiaotong University School of Medicine,
Department of Gastroenterology, Shanghai, China
| |
Collapse
|
12
|
Luo QS, Wang JL, Deng YY, Huang HD, Fu HD, Li CY, Huang HN. Interleukin-16 polymorphism is associated with an increased risk of glioma. Genet Test Mol Biomarkers 2014; 18:711-4. [PMID: 25166752 DOI: 10.1089/gtmb.2014.0170] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Previous studies have shown that interleukin (IL)-16 is overexpressed in human and rat gliomas. Potential links between IL-16 polymorphisms and glioma risk are currently unclear. The aim of this study was to investigate the association between IL-16 polymorphisms and glioma risk. METHODS We examined IL-16 gene polymorphisms (i.e., rs 4778889, rs 11556218, and rs 4072111) in 216 patients with glioma and 275 controls in a Chinese population. Genotypes were determined using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. Odds ratios (OR) and their corresponding 95% confidence intervals (CI) were used to evaluate the effect of the IL-16 polymorphisms on glioma risk. RESULTS The rs 11556218TG genotype is associated with an increased risk of glioma compared with the TT genotype (OR=1.76; 95% CI, 1.22-2.54; p=0.002). Similarly, the rs 11556218G allele is associated with an increased risk of glioma compared with the T allele (OR=1.41; 95% CI, 1.06-1.87; p=0.017). However, no significant association was observed between the IL-16 rs 4778889 and rs 4072111 polymorphisms and the risk of glioma. CONCLUSION These findings suggest that the IL-16 rs 11556218 polymorphism may be used as a susceptibility marker for glioma.
Collapse
Affiliation(s)
- Qi-Sheng Luo
- 1 Department of Neurosurgery, Affiliated Hospital of Youjiang Medical College for Nationalities , Guangxi, Baise, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
13
|
Takagi H, Azuma K, Tsuka T, Imagawa T, Osaki T, Okamoto Y. Antitumor effects of high-temperature hyperthermia on a glioma rat model. Oncol Lett 2014; 7:1007-1010. [PMID: 24944659 PMCID: PMC3961387 DOI: 10.3892/ol.2014.1852] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 10/31/2013] [Indexed: 11/05/2022] Open
Abstract
High-temperature hyperthermia (HTH) is an established treatment option for cancer. The aim of the present study was to reveal the exact correlation between HTH at temperatures of 50-70°C and the resulting antitumor effects, using a glioma rat model. In the 60°C (T-60) and 70°C (T-70) HTH groups, tumor growth rates were significantly suppressed compared with those in the nontreatment (NT) group. In the 50°C (T-50) HTH group, tumor growth rates were not suppressed compared with those in the NT group. The numbers of terminal dUTP nick-end labeling-positive cells in tumor tissue were significantly higher in the T-50, T-60 and T-70 groups than those in the NT group. The Ki-67-positive areas were significantly decreased in the T-70 group compared with those in the NT and T-60 groups. Our data indicate that HTH at 60 and 70°C suppresses tumor growth in a glioma rat model. In particular, cell proliferation was significantly suppressed by HTH at 70°C. However, differences in the mechanism of action of HTH at 60 and 70°C were observed.
Collapse
Affiliation(s)
- Hidefumi Takagi
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan ; Takagi Animal Clinic, Saijo, Ehime 793-0035, Japan
| | - Kazuo Azuma
- Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan
| | - Takeshi Tsuka
- Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan
| | - Tomohiro Imagawa
- Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan
| | - Tomohiro Osaki
- Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan
| | | |
Collapse
|
14
|
Wang Y, Tian Y, Wan H, Li D, Wu W, Yin L, Jiang J, Wan W, Zhang L. Differences between brainstem gliomas in juvenile and adult rats. Oncol Lett 2013; 6:246-250. [PMID: 23946812 PMCID: PMC3742815 DOI: 10.3892/ol.2013.1319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 04/16/2013] [Indexed: 11/25/2022] Open
Abstract
Clinical studies have shown that gliomas of the brainstem behave differently in children and adults. The aim of the present study was to compare and analyze the differences between these gliomas in juvenile and adult rats with regard to tumor growth, survival, pathology and magnetic resonance imaging (MRI). A total of 25 juvenile and 25 adult Wistar rats were divided into groups A (15 juvenile rats), B (10 juvenile rats), C (15 adult rats) and D (10 adult rats). The rats of groups A and C (experimental) were injected with glioma cells, while groups B and D (control) were injected with a physiological saline solution. Rat neurological signs, survival time, tumor size, hematoxylin and eosin (HE) staining and immunohistochemical staining for MMP-2, MMP-9 and β-catenin were compared. The survival time of group A was 19.47±2.232 days, whereas that of group C was 21.47±2.232 days (P<0.05). The tumor sizes were 4.55 and 4.62 mm (P>0.05) in groups A and C, respectively. HE and immunohistochemical staining revealed no differences between the groups. The results suggest that the growth patterns and invasiveness of brainstem gliomas may vary in children compared with adults due to the varied biological behaviors of the tumor cells.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhang GJ, Zhang Z. Effect of Bcl-2 on Apoptosis and Transcription Factor NF-κB Activation Induced by Adriamycin in Bladder Carcinoma BIU87 Cells. Asian Pac J Cancer Prev 2013; 14:2387-91. [DOI: 10.7314/apjcp.2013.14.4.2387] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|