1
|
Katheria S. Ruthenium Complexes as Potential Cancer Cell Growth Inhibitors for Targeted Chemotherapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202201645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
2
|
Mello-Andrade F, Guedes APM, Pires WC, Velozo-Sá VS, Delmond KA, Mendes D, Molina MS, Matuda L, de Sousa MAM, Melo-Reis P, Gomes CC, Castro CH, Almeida MAP, Menck CFM, Batista AA, Burikhanov R, Rangnekar VM, Silveira-Lacerda E. Ru(II)/amino acid complexes inhibit the progression of breast cancer cells through multiple mechanism-induced apoptosis. J Inorg Biochem 2021; 226:111625. [PMID: 34655962 DOI: 10.1016/j.jinorgbio.2021.111625] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022]
Abstract
For some cancer subtypes, such as triple-negative breast cancer, there are no specific therapies, which leads to a poor prognosis associated with invasion and metastases. Ruthenium complexes have been developed to act in all steps of tumor growth and its progression. In this study, we investigated the effects of Ruthenium (II) complexes coupled to the amino acids methionine (RuMet) and tryptophan (RuTrp) on the induction of cell death, clonogenic survival ability, inhibition of angiogenesis, and migration of MDA-MB-231 cells (human triple-negative breast cancer). The study also demonstrated that the RuMet and RuTrp complexes induce cell cycle blockage and apoptosis of MDA-MB-231 cells, as evidenced by an increase in the number of Annexin V-positive cells, p53 phosphorylation, caspase 3 activation, and poly(ADP-ribose) polymerase cleavage. Moreover, morphological changes and loss of mitochondrial membrane potential were detected. The RuMet and RuTrp complexes induced DNA damage probably due to reactive oxygen species production related to mitochondrial membrane depolarization. Therefore, the RuMet and RuTrp complexes acted directly on breast tumor cells, leading to cell death and inhibiting their metastatic potential; this reveals the potential therapeutic action of these drugs.
Collapse
Affiliation(s)
- Francyelli Mello-Andrade
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil; Department of Chemistry, Federal Institute of Education, Science and Technology of Goiás, Goiânia, Goiás 74055-110, Brazil.
| | - Adriana P M Guedes
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Wanessa C Pires
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Vivianne S Velozo-Sá
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Kezia A Delmond
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil
| | - Davi Mendes
- Department of Microbiology, Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Matheus S Molina
- Department of Microbiology, Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Larissa Matuda
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás - UFG, Goiânia, GO 74690-900, Brazil
| | | | - Paulo Melo-Reis
- Departament of Biomedicine, Pontifical Catholic University of Goiás, Goiânia, GO, Brazil
| | - Clever C Gomes
- Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, GO 74690-900, Brazil
| | - Carlos Henrique Castro
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás - UFG, Goiânia, GO 74690-900, Brazil
| | - Márcio Aurélio P Almeida
- Coordination of Science and Technology, Federal University of Maranhão, São Luís, MA 65080-805, Brazil
| | - Carlos F M Menck
- Department of Microbiology, Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, SP 05508-900, Brazil
| | - Alzir A Batista
- Department of Chemistry, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Ravshan Burikhanov
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, United States of America
| | - Vivek M Rangnekar
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, United States of America; L. P. Markey Cancer Center, University of Kentucky, Lexington, KY 40536, United States of America
| | - Elisângela Silveira-Lacerda
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás 74690-900, Brazil.
| |
Collapse
|
3
|
Rinaldi-Neto F, Ribeiro AB, Ferreira NH, Squarisi IS, Oliveira KM, Orenha RP, Parreira RLT, Batista AA, Tavares DC. Anti-melanoma effect of ruthenium(II)-diphosphine complexes containing naphthoquinone ligand. J Inorg Biochem 2021; 222:111497. [PMID: 34090039 DOI: 10.1016/j.jinorgbio.2021.111497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022]
Abstract
The use of natural products as potential ligands has been explored as a strategy in the development of metal-based chemotherapy. Since ruthenium complexes are promising alternatives to traditional antitumor agents, this study evaluated the anti-melanoma potential of two ruthenium(II) complexes containing the naphthoquinone ligands lapachol (lap), [Ru(lap)(dppm)2]PF6, and lawsone (law), [Ru(law)(dppm)2]PF6, in addition to the bis(diphenylphosphino)methane (dppm) ligand, referred to as complexes (1) and (2), respectively, using a syngeneic murine melanoma model. Activation of the apoptotic pathway by the treatments was assessed by immunohistochemistry in tumor tissue. Additionally, toxicity of the treatments was evaluated by variation in body and organ weight, quantification of biochemical indicators of renal damage, and genotoxicity in bone marrow and hepatocytes. First, the antiproliferative activity of (1) and (2) was observed in B16F10 cells, with IC50 values of 2.78 and 1.68 μM, respectively. The results obtained in mice showed that, unlike complex (1), (2) possesses significant anti-melanoma activity demonstrated by a reduction in tumor volume and mass (88.42%), as well as in mitosis frequency (83.86%). Additionally, complex (2) increased the levels of cleaved caspase-3, inducing tumor cell apoptosis. When compared to the metallodrug cisplatin, complex (2) exhibited similar anti-melanoma activity and lower toxicity considering all parameters evaluated. In silico studies demonstrated no difference in the binding energy of the naphthoquinone complex between complexes (1) and (2). However, the complex containing the lawsone ligand has a lower molar volume, which may be important for interactions with minor DNA grooves. The present results demonstrate the antitumor efficiency of complex (2) and a significantly lower systemic toxicity compared to cisplatin.
Collapse
Affiliation(s)
- Francisco Rinaldi-Neto
- Universidade de Franca, Avenida Dr. Armando Salles Oliveira, 201 - Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Arthur Barcelos Ribeiro
- Universidade de Franca, Avenida Dr. Armando Salles Oliveira, 201 - Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Natália Helen Ferreira
- Universidade de Franca, Avenida Dr. Armando Salles Oliveira, 201 - Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Iara Silva Squarisi
- Universidade de Franca, Avenida Dr. Armando Salles Oliveira, 201 - Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Kátia Mara Oliveira
- Universidade Federal de São Carlos, Departamento de Química, Rodovia Washington Luis s/n Km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Renato Pereira Orenha
- Universidade de Franca, Avenida Dr. Armando Salles Oliveira, 201 - Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Renato Luís Tame Parreira
- Universidade de Franca, Avenida Dr. Armando Salles Oliveira, 201 - Parque Universitário, Franca, São Paulo 14404-600, Brazil
| | - Alzir Azevedo Batista
- Universidade Federal de São Carlos, Departamento de Química, Rodovia Washington Luis s/n Km 235, São Carlos, São Paulo 13565-905, Brazil
| | - Denise Crispim Tavares
- Universidade de Franca, Avenida Dr. Armando Salles Oliveira, 201 - Parque Universitário, Franca, São Paulo 14404-600, Brazil.
| |
Collapse
|
4
|
Faria RS, Silva HD, Mello-Andrade F, Pires WC, de Castro Pereira F, de Lima AP, de Fátima Oliveira Santos S, Teixeira TM, da Silva PFF, Naves PLF, Batista AA, da Silva Oliveira RJ, Reis RM, de Paula Silveira-Lacerda E. Ruthenium(II)/Benzonitrile Complex Induces Cytotoxic Effect in Sarcoma-180 Cells by Caspase-Mediated and Tp53/p21-Mediated Apoptosis, with Moderate Brine Shrimp Toxicity. Biol Trace Elem Res 2020; 198:669-680. [PMID: 32266641 DOI: 10.1007/s12011-020-02098-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
Ruthenium(II)/benzonitrile complexes have demonstrated promising anticancer properties. Considering that there are no specific therapies for treating sarcoma, we decided to evaluate the cytotoxic, genotoxic, and lethal effects of cis-[RuCl(BzCN)(phen)(dppb)]PF6 (BzCN = benzonitrile; phen = 1,10-phenanthroline; dppb = 1,4-bis-(diphenylphosphino)butane), as well as the mechanism of cell death induction that occurs against murine sarcoma-180 tumor. Thus, MTT assay was applied to assess the ruthenium cytotoxicity, showing that the compound is a more potent inhibitor for the sarcoma-180 tumor cell viability than normal cells (lymphocytes). The comet assay indicated low genotoxic for normal cells. cis-[RuCl(BzCN)(phen)(dppb)]PF6 also showed moderate lethality in Artemia salina. The complex induced cell cycle arrest in the G0/G1 phase in sarcoma-180 cells. In addition, the complex caused S180 cells to die by apoptosis by an increase in Annexin-V-positive cells and morphological changes typical of apoptotic cells. Additionally, cis-[RuCl(BzCN)(phen)(dppb)]PF6 increased the gene expression of Bax, Casp3, and Tp53 in S180 cells. By using a western blot, we observed an increased protein level of TNF-R2, Bax, and p21. In conclusion, cis-[RuCl(BzCN)(phen)(dppb)]PF6 is active and selective for sarcoma-180 cells, leading to cell cycle arrest at the G0/G1 and cell death through a caspases-mediated and Tp53/p21-mediated pathway.
Collapse
Affiliation(s)
- Raquel Santos Faria
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
| | - Hugo Delleon Silva
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
- Uni-Anhanguera University Center of Goias, Goiania, Goiás, 74423-115, Brazil
| | - Francyelli Mello-Andrade
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
- Department of Chemistry, Federal Institute of Education, Science and Technology of Goiás, Goiania, Goiás, 74055-110, Brazil
| | - Wanessa Carvalho Pires
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
| | - Flávia de Castro Pereira
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
| | - Aliny Pereira de Lima
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
- Faculty of Brazil Institute (FIBRA), Anapolis, Goiás, 75133-050, Brazil
| | - Sônia de Fátima Oliveira Santos
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
| | - Thallita Monteiro Teixeira
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
| | - Paula Francinete Faustino da Silva
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil
| | | | - Alzir Azevedo Batista
- Department of Chemistry, Federal University of São Carlos, Sao Carlos, São Paulo, 13565-905, Brazil
| | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, 14784-400, Brazil
| | - Elisângela de Paula Silveira-Lacerda
- Department of Genetics, Laboratory of Molecular Genetics and Cytogenetics, Institute of Biological Sciences, Federal University of Goiás, Avenida Esperança, s/n, Campus Samambaia (Campus II), Cx. Postal 131, Goiania, GO, 74690-900, Brazil.
| |
Collapse
|
5
|
Mello-Andrade F, da Costa WL, Pires WC, Pereira FDC, Cardoso CG, Lino-Junior RDS, Irusta VRC, Carneiro CC, de Melo-Reis PR, Castro CH, Almeida MAP, Batista AA, Silveira-Lacerda EDP. Antitumor effectiveness and mechanism of action of Ru(II)/amino acid/diphosphine complexes in the peritoneal carcinomatosis progression. Tumour Biol 2017; 39:1010428317695933. [DOI: 10.1177/1010428317695933] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Francyelli Mello-Andrade
- Laboratório de Genética Molecular e Citogenética, Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Wanderson Lucas da Costa
- Laboratório de Genética Molecular e Citogenética, Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Wanessa Carvalho Pires
- Laboratório de Genética Molecular e Citogenética, Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Flávia de Castro Pereira
- Laboratório de Genética Molecular e Citogenética, Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Clever Gomes Cardoso
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Ruy de Souza Lino-Junior
- Laboratório de Patologia Geral, Departamento de Microbiologia, Imunologia, Parasitologia e Patologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Cristiene Costa Carneiro
- Laboratório de Radiobiologia de Microrganismos e Mutagênese, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Paulo Roberto de Melo-Reis
- Laboratório de Estudos Experimentais em Biotecnologia, Departamento de Biomedicina, Pontifícia Universidade Católica de Goiás, Goiânia, Brazil
| | - Carlos Henrique Castro
- Laboratório de Fisiologia Autonômica e Cardíaca, Departamento de Fisiologia e Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | | | - Elisângela de Paula Silveira-Lacerda
- Laboratório de Genética Molecular e Citogenética, Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
6
|
da Silveira Carvalho JM, de Morais Batista AH, Nogueira NAP, Holanda AKM, de Sousa JR, Zampieri D, Bezerra MJB, Stefânio Barreto F, de Moraes MO, Batista AA, Gondim ACS, de F. Paulo T, de França Lopes LG, Sousa EHS. A biphosphinic ruthenium complex with potent anti-bacterial and anti-cancer activity. NEW J CHEM 2017. [DOI: 10.1039/c7nj02943h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photorelease of CO and moderate binding to DNA did not seem to be essential features for potent biological activities.
Collapse
Affiliation(s)
| | | | - Nádia Accioly Pinto Nogueira
- Department of Clinical and Toxicological Analyses
- Faculty of Pharmacy
- Dentistry and Nursing
- Federal University of Ceará
- Fortaleza
| | | | - Jackson Rodrigues de Sousa
- Bioinorganic Group
- Departament of Organic and Inorganic Chemistry
- Federal University of Ceará
- Fortaleza
- Brazil
| | - Dávila Zampieri
- Bioinorganic Group
- Departament of Organic and Inorganic Chemistry
- Federal University of Ceará
- Fortaleza
- Brazil
| | - Maria Júlia Barbosa Bezerra
- Experimental Oncology Laboratory
- Department of Physiology and Pharmacology Federal University of Ceará
- Fortaleza
- Brazil
| | - Francisco Stefânio Barreto
- Experimental Oncology Laboratory
- Department of Physiology and Pharmacology Federal University of Ceará
- Fortaleza
- Brazil
| | - Manoel Odorico de Moraes
- Experimental Oncology Laboratory
- Department of Physiology and Pharmacology Federal University of Ceará
- Fortaleza
- Brazil
| | - Alzir A. Batista
- Department of Chemistry
- Federal University of São Carlos
- São Carlos
- Brazil
| | - Ana Cláudia Silva Gondim
- Bioinorganic Group
- Departament of Organic and Inorganic Chemistry
- Federal University of Ceará
- Fortaleza
- Brazil
| | - Tercio de F. Paulo
- Bioinorganic Group
- Departament of Organic and Inorganic Chemistry
- Federal University of Ceará
- Fortaleza
- Brazil
| | | | | |
Collapse
|
7
|
Comparative In Vitro Binding Studies of TiCl2(dpme)2, Ti(ada)2(bzac)2, and TiCl2(bzac)(bpme) Titanium Complexes with Calf-Thymus DNA. Biochem Res Int 2015; 2015:836928. [PMID: 26843985 PMCID: PMC4710919 DOI: 10.1155/2015/836928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 11/17/2022] Open
Abstract
The binding of TiCl2(dpme)2 (1), (dpme = 6,6'-dimethyl-2,2'-bipyridine), Ti(ada)2(bzac)2 (2), (ada = adamantylamine; bzac = benzoylacetone), and TiCl2(bzac)(bpme) (3), (bpme = 4,4'-dimethyl-2,2'-bipyrdine) with calf thymus (ct) DNA has been studied by UV-visible spectroscopy, thermal denaturation, and circular dichroism spectroscopy. In UV-visible study complexes 1, 2, and 3 showed red, blue, and red shifts, respectively, upon the addition of ct-DNA along with a significant hyperchromism. The intrinsic binding constants (K b ) calculated from UV-visible absorption studies were 2.3 × 10(3) M(-1), 3.3 × 10(3) M(-1) and, 7.1 × 10(3) M(-1) for complexes 1, 2, and 3, respectively. The change in melting temperature (ΔT m ) was calculated to be 2-3°C for each complex. Circular dichroism (CD) study showed blue shift for complex 2 and red shift for complexes 1 and 3 along with rise in molecular ellipticity upon the addition of complexes. Results suggest a binding mode of complex 2 different than 1 and 3.
Collapse
|
8
|
Synthesis, structural elucidation, and in vitro antiproliferative activities of mixed-ligand titanium complexes. Med Chem Res 2014. [DOI: 10.1007/s00044-014-0963-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Anchuri SS, Thota S, Bongoni RN, Yerra R, Reddy RN, Dhulipala S. Antimicrobial and Antimalarial Activity of Novel Synthetic Mononuclear Ruthenium(II) Compounds. J CHIN CHEM SOC-TAIP 2012. [DOI: 10.1002/jccs.201200301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|