1
|
Ghosh S, Das SK, Sinha K, Ghosh B, Sen K, Ghosh N, Sil PC. The Emerging Role of Natural Products in Cancer Treatment. Arch Toxicol 2024; 98:2353-2391. [PMID: 38795134 DOI: 10.1007/s00204-024-03786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
The exploration of natural products as potential agents for cancer treatment has garnered significant attention in recent years. In this comprehensive review, we delve into the diverse array of natural compounds, including alkaloids, carbohydrates, flavonoids, lignans, polyketides, saponins, tannins, and terpenoids, highlighting their emerging roles in cancer therapy. These compounds, derived from various botanical sources, exhibit a wide range of mechanisms of action, targeting critical pathways involved in cancer progression such as cell proliferation, apoptosis, angiogenesis, and metastasis. Through a meticulous examination of preclinical and clinical studies, we provide insights into the therapeutic potential of these natural products across different cancer types. Furthermore, we discuss the advantages and challenges associated with their use in cancer treatment, emphasizing the need for further research to optimize their efficacy, pharmacokinetics, and delivery methods. Overall, this review underscores the importance of natural products in advancing cancer therapeutics and paves the way for future investigations into their clinical applications.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Zoology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India
| | - Sanjib Kumar Das
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Krishnendu Sinha
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India.
| | - Biswatosh Ghosh
- Department of Zoology, Bidhannagar College, Kolkata, 700064, India
| | - Koushik Sen
- Department of Zoology, Jhargram Raj College, Jhargram, 721507, India
| | - Nabanita Ghosh
- Department of Zoology, Maulana Azad College, Kolkata, 700013, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, Kolkata, 700054, India.
| |
Collapse
|
2
|
Bhuker S, Kaur A, Rajauria K, Tuli HS, Saini AK, Saini RV, Gupta M. Allicin: a promising modulator of apoptosis and survival signaling in cancer. Med Oncol 2024; 41:210. [PMID: 39060753 DOI: 10.1007/s12032-024-02459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
According to the World Health Organization, cancer is the foremost cause of mortality globally. Various phytochemicals from natural sources have been extensively studied for their anticancer properties. Allicin, a powerful organosulfur compound derived from garlic, exhibits anticancer, antioxidant, anti-inflammatory, antifungal, and antibacterial properties. This review aims to update and evaluate the chemistry, composition, mechanisms of action, and pharmacokinetics Allicin. Allicin has garnered significant attention for its potential role in modulating Fas-FasL, Bcl2-Bax, PI3K-Akt-mTOR, autophagy, and miRNA pathways. At the molecular level, allicin induces the release of cytochrome c from the mitochondria and enhances the activation of caspases-3, -8, and -9. This is accompanied by the simultaneous upregulation of Bax and Fas expression in tumor cells. Allicin can inhibit excessive autophagy by activating the PI3K/Akt/mTOR and MAPK/ERK/mTOR signaling pathways. Allicin-loaded nano-formulations efficiently induce apoptosis in cancer cells while minimizing toxicity to normal cells. Safety and clinical aspects are meticulously scrutinized, providing insights into the tolerability and adverse effects associated with allicin administration, along with an overview of current clinical trials evaluating its therapeutic potential. In conclusion, this review underscores the promising prospects of allicin as a dietary-derived medicinal compound for cancer therapy. It emphasizes the need for further research to elucidate its precise mechanisms of action, optimize delivery strategies, and validate its efficacy in clinical settings.
Collapse
Affiliation(s)
- Sunaina Bhuker
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Avneet Kaur
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Kanitha Rajauria
- SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Tamil Nadu, 603203, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Adesh K Saini
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
- Central Research Laboratory, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Reena V Saini
- Department of Bio-Sciences & Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India.
- Central Research Laboratory, Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India.
- Central Research Laboratory and Department of Bio-Sciences and Technology, MMEC, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India.
| | - Madhu Gupta
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| |
Collapse
|
3
|
Xie W, Ma F, Dou L, Chang W, Yuan D, Zhang Z, Zhang Y. Allicin affects immunoreactivity of osteosarcoma cells through lncRNA CBR3-AS1. Heliyon 2024; 10:e31971. [PMID: 38947424 PMCID: PMC11214447 DOI: 10.1016/j.heliyon.2024.e31971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
Objective To analyze the effect of allicin on the immunoreactivity of osteosarcoma (OS) cells and further explore whether its mechanism is related to the long non-coding Ribonucleic Acid (lncRNA) CBR3-AS1/miR-145-5p/GRP78 axis, so as to provide clinical evidence. Methods The human OS cell line Saos-2 was treated with allicin at 25, 50, and 100 μmol/L, respectively, to observe changes in cell biological behaviors. Subsequently, CBR3-AS1 abnormal expression vectors were constructed and transfected into Saos-2 to discuss their influence on OS. Furthermore, the regulatory relationship between allicin and the CBR3-AS1/miR-145-5p/GRP78 axis was validated by rescue experiments. Finally, a nude mice tumorigenesis experiment was carried out to analyze the effects of allicin and CBR3-AS1/miR-145-5p/GRP78 axis on the growth of living tumors. Alterations in T-lymphocyte subsets were also detected to assess the effect of allicin on OS immunoreactivity. Results With the increase of allicin concentration, Saos-2 activity decreased and apoptosis increased (P < 0.05). In addition, the expression of CBR3-AS1 and GRP78 decreased after allicin intervention, while miR-145-5p increased (P < 0.05). Silencing CBR3-AS1 led to reduced Saos-2 activity, enhanced apoptosis, and activated mitophagy and endoplasmic reticulum stress (P < 0.05). In the rescue experiment, the effect of CBR3-AS1 on OS cells was reversed by silencing miR-145-5p, while the impact of miR-145-5p was reversed by GRP78. Finally, the tumorigenesis experiment in nude mice confirmed the regulatory effects of allicin and CBR3-AS1/miR-145-5p/GRP78 on tumor growth in vivo. Meanwhile, it was seen that allicin activated CD4+CD8+ in OS mice, confirming that allicin has the effect of activating OS immunoreactivity. Conclusions Allicin activates OS immunoreactivity and induces apoptosis through the CBR3-AS1/miR-145-5p/GRP78 molecular axis.
Collapse
Affiliation(s)
- Wenpeng Xie
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| | - Fengjun Ma
- Department of Science and Technology,Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Luming Dou
- Department of Bone Traumatology,Yantai Penglai Traditional Chinese Medicine Hospital, Yantai, Shandong, 265600, China
| | - Wenjie Chang
- First Clinical Medical College,Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Daotong Yuan
- First Clinical Medical College,Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Zhimeng Zhang
- First Clinical Medical College,Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Yongkui Zhang
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250014, China
| |
Collapse
|
4
|
Rauf A, Joshi PB, Olatunde A, Hafeez N, Ahmad Z, Hemeg HA, Aljohani ASM, Al Abdulmonem W, Thiruvengadam M, Viswanathan D, Rajakumar G, Thiruvengadam R. Comprehensive review of the repositioning of non-oncologic drugs for cancer immunotherapy. Med Oncol 2024; 41:122. [PMID: 38652344 DOI: 10.1007/s12032-024-02368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Drug repositioning or repurposing has gained worldwide attention as a plausible way to search for novel molecules for the treatment of particular diseases or disorders. Drug repurposing essentially refers to uncovering approved or failed compounds for use in various diseases. Cancer is a deadly disease and leading cause of mortality. The search for approved non-oncologic drugs for cancer treatment involved in silico modeling, databases, and literature searches. In this review, we provide a concise account of the existing non-oncologic drug molecules and their therapeutic potential in chemotherapy. The mechanisms and modes of action of the repurposed drugs using computational techniques are also highlighted. Furthermore, we discuss potential targets, critical pathways, and highlight in detail the different challenges pertaining to drug repositioning for cancer immunotherapy.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Payal B Joshi
- Operations and Method Development, Shefali Research Laboratories, Ambernath, Maharashtra, 421501, India
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Nabia Hafeez
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan
| | - Hassan A Hemeg
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, P.O. Box 344, Al-Medinah, Al-Monawara, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, 52571, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul, 05029, Republic of Korea
| | - Dhivya Viswanathan
- Center for NanoBioscience, Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Govindasamy Rajakumar
- Center for NanoBioscience, Department of Orthodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, Tamil Nadu, 600077, India.
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India.
| |
Collapse
|
5
|
Bala R, Madaan R, Chauhan S, Gupta M, Dubey AK, Zahoor I, Brijesh H, Calina D, Sharifi-Rad J. Revitalizing allicin for cancer therapy: advances in formulation strategies to enhance bioavailability, stability, and clinical efficacy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:703-724. [PMID: 37615709 DOI: 10.1007/s00210-023-02675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
The main objective of this review is to highlight the therapeutic potential of allicin, a defense molecule in garlic known for its diverse health benefits, and address the key challenges of its bioavailability and stability. The research further aims to evaluate various formulation strategies and nanotechnology-based delivery systems that can resolve these issues and improve allicin's clinical efficacy, especially in cancer therapy. We conducted a comprehensive review of the available literature and previous studies, focusing on the therapeutic properties of allicin, its bioavailability, stability issues, and novel formulation strategies. We assessed the mechanism of action of allicin in cancer, including its effects on signaling pathways, cell cycle, apoptosis, autophagy, and tumor development. We also evaluated the outcomes of both in vitro and in vivo studies on different types of cancers, such as breast, cervical, colon, lung, and gastric cancer. Despite allicin's significant therapeutic benefits, including cardiovascular, antihypertensive, cholesterol-lowering, antimicrobial, antifungal, anticancer, and immune-modulatory activity, its clinical utility is limited due to poor stability and unpredictable bioavailability. Allicin's bioavailability in the gastrointestinal tract is dependent on the activity of the enzyme alliinase, and its stability can be affected by various conditions like gastric acid and intestinal enzyme proteases. Recent advances in formulation strategies and nanotechnology-based drug delivery systems show promise in addressing these challenges, potentially improving allicin's solubility, stability, and bioavailability. Allicin offers substantial potential for cancer therapy, yet its application is hindered by its instability and poor bioavailability. Novel formulation strategies and nanotechnology-based delivery systems can significantly overcome these limitations, enhancing the therapeutic efficacy of allicin. Future research should focus on refining these formulation strategies and delivery systems, ensuring the safety and efficacy of these new allicin formulations. Clinical trials and long-term studies should be carried out to determine the optimal dosage, assess potential side effects, and evaluate their real-world applicability. The comparative analysis of different drug delivery approaches and the development of targeted delivery systems can also provide further insight into enhancing the therapeutic potential of allicin.
Collapse
Affiliation(s)
- Rajni Bala
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Malika Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ankit Kumar Dubey
- iGlobal Research and Publishing Foundation, New Delhi, India
- Institute of Scholars, Chikmagalur, India
| | - Ishrat Zahoor
- Maharishi Markandeshwar College of Pharmacy, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, 133207, India
| | - Hemavathi Brijesh
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
6
|
Guillamón E, Mut-Salud N, Rodríguez-Sojo MJ, Ruiz-Malagón AJ, Cuberos-Escobar A, Martínez-Férez A, Rodríguez-Nogales A, Gálvez J, Baños A. In Vitro Antitumor and Anti-Inflammatory Activities of Allium-Derived Compounds Propyl Propane Thiosulfonate (PTSO) and Propyl Propane Thiosulfinate (PTS). Nutrients 2023; 15:nu15061363. [PMID: 36986093 PMCID: PMC10058678 DOI: 10.3390/nu15061363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Increasing rates of cancer incidence and the side-effects of current chemotherapeutic treatments have led to the research on novel anticancer products based on dietary compounds. The use of Allium metabolites and extracts has been proposed to reduce the proliferation of tumor cells by several mechanisms. In this study, we have shown the in vitro anti-proliferative and anti-inflammatory effect of two onion-derived metabolites propyl propane thiosulfinate (PTS) and propyl propane thiosulfonate (PTSO) on several human tumor lines (MCF-7, T-84, A-549, HT-29, Panc-1, Jurkat, PC-3, SW-837, and T1-73). We observed that this effect was related to their ability to induce apoptosis regulated by oxidative stress. In addition, both compounds were also able to reduce the levels of some pro-inflammatory cytokines, such as IL-8, IL-6, and IL-17. Therefore, PTS and PTSO may have a promising role in cancer prevention and/or treatment.
Collapse
Affiliation(s)
| | | | - María Jesús Rodríguez-Sojo
- Department of Pharmacology, Center for Biomedical Research (CIBM), Instituto de Investigacion Biosanitaria de Granada (ibs.GRANADA), University of Granada, 18071 Granada, Spain
| | - Antonio Jesús Ruiz-Malagón
- Department of Pharmacology, Center for Biomedical Research (CIBM), Instituto de Investigacion Biosanitaria de Granada (ibs.GRANADA), University of Granada, 18071 Granada, Spain
| | | | - Antonio Martínez-Férez
- Chemical Engineering Department, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Center for Biomedical Research (CIBM), Instituto de Investigacion Biosanitaria de Granada (ibs.GRANADA), University of Granada, 18071 Granada, Spain
- Correspondence: (A.R.-N.); (J.G.)
| | - Julio Gálvez
- Department of Pharmacology, Center for Biomedical Research (CIBM), Instituto de Investigacion Biosanitaria de Granada (ibs.GRANADA), University of Granada, 18071 Granada, Spain
- CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (A.R.-N.); (J.G.)
| | | |
Collapse
|
7
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
8
|
Xie W, Chang W, Wang X, Liu F, Wang X, Yuan D, Zhang Y. Allicin Inhibits Osteosarcoma Growth by Promoting Oxidative Stress and Autophagy via the Inactivation of the lncRNA MALAT1-miR-376a-Wnt/ β-Catenin Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4857814. [PMID: 35783190 PMCID: PMC9249524 DOI: 10.1155/2022/4857814] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/29/2022]
Abstract
Allicin, an organic sulfur compound extracted from the bulb of Allium sativum, can potentially prevent various tumors. Our previous study found that allicin can effectively suppress the proliferation of osteosarcoma cells. However, the molecular mechanisms have not been illustrated. In this study, Saos-2 and U2OS osteosarcoma cells were used to investigate the underlying mechanisms. A series of experiments were carried out to authenticate the anticancer property of allicin. Knockdown of lncRNA MALAT1 inhibited the proliferation, invasion and migration and promoted apoptosis of osteosarcoma cells. Knockdown of miR-376a increased the proliferation, invasion, and migration and dropped apoptosis of osteosarcoma cells. Furthermore, knockdown of miR-376a reversed the influences of MALAT1 silencing in osteosarcoma cells. Based on our data, MALAT1 could downregulate the expression of miR-376a, subsequently accelerating osteosarcoma. Moreover, oxidative stress and autophagy were identified as the potential key pathway of allicin. Allicin inhibited osteosarcoma growth and promoted oxidative stress and autophagy via MALATI-miR-376a. We also found that allicin promotes oxidative stress and autophagy to inhibit osteosarcoma growth by inhibiting the Wnt/β-catenin pathway in vivo and in vitro. All data showed that allicin promotes oxidative stress and autophagy of osteosarcoma via the MALATI-miR-376a-Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Wenpeng Xie
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
| | - Wenjie Chang
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
| | - Xiaole Wang
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
| | - Fei Liu
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
| | - Xu Wang
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
| | - Daotong Yuan
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
| | - Yongkui Zhang
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, China
- Shandong Fupai Pharmaceutical Co., Ltd, Jinan, Shandong, 250000, China
| |
Collapse
|
9
|
Daidzein-directed methionine γ-lyase in enzyme prodrug therapy against breast cancer. Biochimie 2022; 201:177-183. [PMID: 35738490 DOI: 10.1016/j.biochi.2022.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/04/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
Thiosulfinates in situ formed by "pharmacological pair" C115H methionine γ-lyase/S-(allyl/alkyl)-l-cysteine sulfoxides possess cytotoxic activity against various malignant cell lines. To investigate in vivo antitumor activity of thiosulfinates generated directly at the surface of tumor cells, a chemical conjugate between Clostridium novyi C115H methionine γ-lyase (C115H MGL) and isoflavone daidzein was prepared. The binding of conjugate (C115H-Dz) to various breast cancer cell lines was demonstrated, as well as its cytotoxicity in the presence of S-(allyl/alkyl)-l-cysteine sulfoxides. The most promising among thiosulfinates was dipropyl thiosulfinate (IC50 < 0.53 μM). The pharmacokinetic parameters of C115H MGL and C115H-Dz were obtained. Plasma half-lives of the enzyme and conjugated enzyme were 4.4 and 7.2 h, respectively. In vivo antitumor effect of pharmacological pairs on SKBR-3 xenografts was demonstrated. Treatment of tumor-bearing mice with a pair of C115H-Dz/propiin inhibited tumor growth by 85%.
Collapse
|
10
|
Xu S, Liao Y, Wang Q, Liu L, Yang W. Current studies and potential future research directions on biological effects and related mechanisms of allicin. Crit Rev Food Sci Nutr 2022; 63:7722-7748. [PMID: 35293826 DOI: 10.1080/10408398.2022.2049691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allicin, a thiosulfonate extract from freshly minced garlic, has been reported to have various biological effects on different organs and systems of animals and human. It can reduce oxidative stress, inhibit inflammatory response, resist pathogen infection and regulate intestinal flora. In addition, dozens of studies also demonstrated allicin could reduce blood glucose level, protect cardiovascular system and nervous system, and fight against cancers. Allicin was widely used in disease prevention and health care. However, more investigations on human cohort study are needed to verify the biological or clinical effects of allicin in the future. In this review, we summarized the biological effects of allicin from previous outstanding and valuable studies and provided useful information for future studies on the health effects of allicin.
Collapse
Affiliation(s)
- Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Kamran S, Sinniah A, Abdulghani MAM, Alshawsh MA. Therapeutic Potential of Certain Terpenoids as Anticancer Agents: A Scoping Review. Cancers (Basel) 2022; 14:1100. [PMID: 35267408 PMCID: PMC8909202 DOI: 10.3390/cancers14051100] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is a life-threatening disease and is considered to be among the leading causes of death worldwide. Chemoresistance, severe toxicity, relapse and metastasis are the major obstacles in cancer therapy. Therefore, introducing new therapeutic agents for cancer remains a priority to increase the range of effective treatments. Terpenoids, a large group of secondary metabolites, are derived from plant sources and are composed of several isoprene units. The high diversity of terpenoids has drawn attention to their potential anticancer and pharmacological activities. Some terpenoids exhibit an anticancer effect by triggering various stages of cancer progression, for example, suppressing the early stage of tumorigenesis via induction of cell cycle arrest, inhibiting cancer cell differentiation and activating apoptosis. At the late stage of cancer development, certain terpenoids are able to inhibit angiogenesis and metastasis via modulation of different intracellular signaling pathways. Significant progress in the identification of the mechanism of action and signaling pathways through which terpenoids exert their anticancer effects has been highlighted. Hence, in this review, the anticancer activities of twenty-five terpenoids are discussed in detail. In addition, this review provides insights on the current clinical trials and future directions towards the development of certain terpenoids as potential anticancer agents.
Collapse
Affiliation(s)
- Sareh Kamran
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.K.); (A.S.)
| | - Ajantha Sinniah
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.K.); (A.S.)
| | - Mahfoudh A. M. Abdulghani
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Al Qassim 51911, Saudi Arabia;
| | - Mohammed Abdullah Alshawsh
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.K.); (A.S.)
| |
Collapse
|
12
|
Anticancer potential of allicin: A review. Pharmacol Res 2022; 177:106118. [DOI: 10.1016/j.phrs.2022.106118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
|
13
|
Ma Z, Woon CYN, Liu CG, Cheng JT, You M, Sethi G, Wong ALA, Ho PCL, Zhang D, Ong P, Wang L, Goh BC. Repurposing Artemisinin and its Derivatives as Anticancer Drugs: A Chance or Challenge? Front Pharmacol 2022; 12:828856. [PMID: 35035355 PMCID: PMC8758560 DOI: 10.3389/fphar.2021.828856] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022] Open
Abstract
Cancer has become a global health problem, accounting for one out of six deaths. Despite the recent advances in cancer therapy, there is still an ever-growing need for readily accessible new therapies. The process of drug discovery and development is arduous and takes many years, and while it is ongoing, the time for the current lead compounds to reach clinical trial phase is very long. Drug repurposing has recently gained significant attention as it expedites the process of discovering new entities for anticancer therapy. One such potential candidate is the antimalarial drug, artemisinin that has shown anticancer activities in vitro and in vivo. In this review, major molecular and cellular mechanisms underlying the anticancer effect of artemisinin and its derivatives are summarised. Furthermore, major mechanisms of action and some key signaling pathways of this group of compounds have been reviewed to explore potential targets that contribute to the proliferation and metastasis of tumor cells. Despite its established profile in malaria treatment, pharmacokinetic properties, anticancer potency, and current formulations that hinder the clinical translation of artemisinin as an anticancer agent, have been discussed. Finally, potential solutions or new strategies are identified to overcome the bottlenecks in repurposing artemisinin-type compounds as anticancer drugs.
Collapse
Affiliation(s)
- Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Clariis Yi-Ning Woon
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Chen-Guang Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Jun-Ting Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Mingliang You
- Hangzhou Cancer Institute, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, China.,Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Paul Chi-Lui Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Daping Zhang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Peishi Ong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon-Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| |
Collapse
|
14
|
Farmanpour-Kalalagh K, Beyraghdar Kashkooli A, Babaei A, Rezaei A, van der Krol AR. Artemisinins in Combating Viral Infections Like SARS-CoV-2, Inflammation and Cancers and Options to Meet Increased Global Demand. FRONTIERS IN PLANT SCIENCE 2022; 13:780257. [PMID: 35197994 PMCID: PMC8859114 DOI: 10.3389/fpls.2022.780257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/03/2022] [Indexed: 05/05/2023]
Abstract
Artemisinin is a natural bioactive sesquiterpene lactone containing an unusual endoperoxide 1, 2, 4-trioxane ring. It is derived from the herbal medicinal plant Artemisia annua and is best known for its use in treatment of malaria. However, recent studies also indicate the potential for artemisinin and related compounds, commonly referred to as artemisinins, in combating viral infections, inflammation and certain cancers. Moreover, the different potential modes of action of artemisinins make these compounds also potentially relevant to the challenges the world faces in the COVID-19 pandemic. Initial studies indicate positive effects of artemisinin or Artemisia spp. extracts to combat SARS-CoV-2 infection or COVID-19 related symptoms and WHO-supervised clinical studies on the potential of artemisinins to combat COVID-19 are now in progress. However, implementing multiple potential new uses of artemisinins will require effective solutions to boost production, either by enhancing synthesis in A. annua itself or through biotechnological engineering in alternative biosynthesis platforms. Because of this renewed interest in artemisinin and its derivatives, here we review its modes of action, its potential application in different diseases including COVID-19, its biosynthesis and future options to boost production.
Collapse
Affiliation(s)
- Karim Farmanpour-Kalalagh
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Arman Beyraghdar Kashkooli
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Arman Beyraghdar Kashkooli,
| | - Alireza Babaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ali Rezaei
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
15
|
Patiño-Morales CC, Jaime-Cruz R, Sánchez-Gómez C, Corona JC, Hernández-Cruz EY, Kalinova-Jelezova I, Pedraza-Chaverri J, Maldonado PD, Silva-Islas CA, Salazar-García M. Antitumor Effects of Natural Compounds Derived from Allium sativum on Neuroblastoma: An Overview. Antioxidants (Basel) 2021; 11:antiox11010048. [PMID: 35052552 PMCID: PMC8773006 DOI: 10.3390/antiox11010048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Garlic (Allium sativum) has been used in alternative medicine to treat several diseases, such as cardiovascular and neurodegenerative diseases, cancer, and hepatic diseases. Several publications have highlighted other features of garlic, including its antibacterial, antioxidative, antihypertensive, and antithrombotic properties. The properties of garlic result from the combination of natural compounds that act synergistically and cause different effects. Some garlic-derived compounds have been studied for the treatment of several types of cancer; however, reports on the effects of garlic on neuroblastoma are scarce. Neuroblastoma is a prevalent childhood tumor for which the search for therapeutic alternatives to improve treatment without affecting the patients’ quality of life continues. Garlic-derived compounds hold potential for the treatment of this type of cancer. A review of articles published to date on some garlic compounds and their effect on neuroblastoma was undertaken to comprehend the possible therapeutic role of these compounds. This review aimed to analyze the impact of some garlic compounds on cells derived from neuroblastoma.
Collapse
Affiliation(s)
- Carlos César Patiño-Morales
- Laboratory of Cell Biology, Universidad Autónoma Metropolitana—Cuajimalpa, Mexico City 05348, Mexico;
- Laboratory of Developmental Biology and Experimental Teratogenesis, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.J.-C.); (C.S.-G.)
| | - Ricardo Jaime-Cruz
- Laboratory of Developmental Biology and Experimental Teratogenesis, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.J.-C.); (C.S.-G.)
| | - Concepción Sánchez-Gómez
- Laboratory of Developmental Biology and Experimental Teratogenesis, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.J.-C.); (C.S.-G.)
| | - Juan Carlos Corona
- Laboratory of Neurosciences, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Estefani Yaquelin Hernández-Cruz
- Department of Biology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (E.Y.H.-C.); (I.K.-J.); (J.P.-C.)
| | - Ivia Kalinova-Jelezova
- Department of Biology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (E.Y.H.-C.); (I.K.-J.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (E.Y.H.-C.); (I.K.-J.); (J.P.-C.)
| | - Perla D. Maldonado
- Laboratory of Cerebral Vascular Pathology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (P.D.M.); (C.A.S.-I.)
| | - Carlos Alfredo Silva-Islas
- Laboratory of Cerebral Vascular Pathology, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico; (P.D.M.); (C.A.S.-I.)
| | - Marcela Salazar-García
- Laboratory of Developmental Biology and Experimental Teratogenesis, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (R.J.-C.); (C.S.-G.)
- Correspondence:
| |
Collapse
|
16
|
Khakbaz P, Panahizadeh R, Vatankhah MA, Najafzadeh N. Allicin Reduces 5-fluorouracil-resistance in Gastric Cancer Cells through Modulating MDR1, DKK1, and WNT5A Expression. Drug Res (Stuttg) 2021; 71:448-454. [PMID: 34261152 DOI: 10.1055/a-1525-1499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND & OBJECTIVE 5-fluorouracil (5-FU) is approved for the treatment of gastric carcinoma (GC), but chemo-resistance limits the application of it for GC. Thus, the combination of 5-FU with adjuvants such as allicin may overcome multidrug resistance (MDR). METHODS The anticancer effects of allicin, 5-FU, and allicin/5-FU on the 5-FU resistant MKN-45 cells were evaluated by MTT assay and DAPi staining. The expression of the P-glycoprotein (P-gp) and CD44 protein were determined using immunocytochemistry. We also quantified mRNA expression levels of WNT5A, Dickkopf-1 (DKK1), and MDR1 in the GC cells. RESULTS Here, we found that the combination of allicin with 5-FU significantly increased apoptosis compared to 5-FU alone (P<0.05). We showed that WNT5A, MDR1, and DKK1 mRNA expression levels were down-regulated in the allicin- and allicin/5-FU-treated cells. Indeed, the combination of allicin and 5-FU significantly decreased the expression of the P-gp and CD44 proteins (P<0.05). CONCLUSION Our findings indicate that the combination of allicin with 5-FU could reverse multidrug resistance in the GC cells by reducing the expression of WNT5A, DKK1, MDR1, P-gp, and CD44 levels.
Collapse
Affiliation(s)
- Parya Khakbaz
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Reza Panahizadeh
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Amin Vatankhah
- Student Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nowruz Najafzadeh
- Research Laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
17
|
Allicin, the Odor of Freshly Crushed Garlic: A Review of Recent Progress in Understanding Allicin's Effects on Cells. Molecules 2021; 26:molecules26061505. [PMID: 33801955 PMCID: PMC8001868 DOI: 10.3390/molecules26061505] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/14/2022] Open
Abstract
The volatile organic sulfur compound allicin (diallyl thiosulfinate) is produced as a defense substance when garlic (Allium sativum) tissues are damaged, for example by the activities of pathogens or pests. Allicin gives crushed garlic its characteristic odor, is membrane permeable and readily taken up by exposed cells. It is a reactive thiol-trapping sulfur compound that S-thioallylates accessible cysteine residues in proteins and low molecular weight thiols including the cellular redox buffer glutathione (GSH) in eukaryotes and Gram-negative bacteria, as well as bacillithiol (BSH) in Gram-positive firmicutes. Allicin shows dose-dependent antimicrobial activity. At higher doses in eukaryotes allicin can induce apoptosis or necrosis, whereas lower, biocompatible amounts can modulate the activity of redox-sensitive proteins and affect cellular signaling. This review summarizes our current knowledge of how bacterial and eukaryotic cells are specifically affected by, and respond to, allicin.
Collapse
|
18
|
Artesunate inhibits melanoma progression in vitro via suppressing STAT3 signaling pathway. Pharmacol Rep 2021; 73:650-663. [PMID: 33609273 DOI: 10.1007/s43440-021-00230-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Melanoma is a life-threatening cancer characterized with a potentially metastatic tumor of melanocytic origin. Improved methods or novel therapies are urgently needed to eliminate the development of metastases. Artesunate is a semi-synthetic derivative of artemisinin used for trarment of malaria and cancer. The purpose of this study was to investigate the anti-cancer effect of artesunate and the role on STAT3 signaling in A375 human melanoma cell line. METHODS Melanoma cells were treated with artesunate at concentrations of 0-5 μM for 24 and 48 h. The inhibition of cell viability, colony formation, migration, invasion, adhesion, percentage of apoptotic cells, and expressions of signal transducer and activator of transcription-3 (STAT3) and related proteins were examined. RESULTS Artesunate inhibited cellular proliferation of cancer cells by induction of apoptosis at sub-toxic doses. Cells treated with artesunate showed an inhibition in adhesion to extracellular matrix substrate matrigel and type IV collagen. Artesunate treatment showed a decreased cellular migration, invasion, and colony formation in melanoma cells. Artesunate also inhibited STAT3 and Src activations and STAT3 related protein expressions; such as metalloproteinase 2 (MMP-2), MMP-9, Mcl-1, Bxl-xL, vascular endothelial growth factor (VEGF), and Twist. Moreover, overexpression of constitutively active STAT3 in A375 cells attenuated the anti-proliferative, apoptotic and anti-invasive effects of artesunate. CONCLUSION The results obtained from this study demonstrated that the anticancer activity of artesunate occurred via STAT3 pathway and its target proteins. Therefore, it can be suggested that artesunate may be an important candidate molecule in the treatment of melanoma.
Collapse
|
19
|
Schultz CR, Gruhlke MC, Slusarenko AJ, Bachmann AS. Allicin, a Potent New Ornithine Decarboxylase Inhibitor in Neuroblastoma Cells. JOURNAL OF NATURAL PRODUCTS 2020; 83:2518-2527. [PMID: 32786875 PMCID: PMC9162488 DOI: 10.1021/acs.jnatprod.0c00613] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The natural product allicin is a reactive sulfur species (RSS) from garlic (Allium sativum L.). Neuroblastoma (NB) is an early childhood cancer arising from the developing peripheral nervous system. Ornithine decarboxylase (ODC) is a rate-limiting enzyme in the biosynthesis of polyamines, which are oncometabolites that contribute to cell proliferation in NB and other c-MYC/MYCN-driven cancers. Both c-MYC and MYCN directly transactivate the E-box gene ODC1, a validated anticancer drug target. We identified allicin as a potent ODC inhibitor in a specific radioactive in vitro assay using purified human ODC. Allicin was ∼23 000-fold more potent (IC50 = 11 nM) than DFMO (IC50 = 252 μM), under identical in vitro assay conditions. ODC is a homodimer with 12 cysteines per monomer, and allicin reversibly S-thioallylates cysteines. In actively proliferating human NB cells allicin inhibited ODC enzyme activity, reduced cellular polyamine levels, inhibited cell proliferation (IC50 9-19 μM), and induced apoptosis. The natural product allicin is a new ODC inhibitor and could be developed for use in conjunction with other anticancer treatments, the latter perhaps at a lower than usual dosage, to achieve drug synergism with good prognosis and reduced adverse effects.
Collapse
Affiliation(s)
- Chad R. Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Martin C.H. Gruhlke
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| | - Alan J. Slusarenko
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
- Corresponding Authors: André S. Bachmann, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave, NW, Grand Rapids, MI 49503, USA. Tel: +616-234-2841, or Alan J. Slusarenko, Department of Plant Physiology, RWTH Aachen University, Worringerweg 1, D-52074 Aachen, Germany. Tel: +49-241-80-266-50,
| | - André S. Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- Corresponding Authors: André S. Bachmann, Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, 400 Monroe Ave, NW, Grand Rapids, MI 49503, USA. Tel: +616-234-2841, or Alan J. Slusarenko, Department of Plant Physiology, RWTH Aachen University, Worringerweg 1, D-52074 Aachen, Germany. Tel: +49-241-80-266-50,
| |
Collapse
|
20
|
Kiani BH, Kayani WK, Khayam AU, Dilshad E, Ismail H, Mirza B. Artemisinin and its derivatives: a promising cancer therapy. Mol Biol Rep 2020; 47:6321-6336. [PMID: 32710388 DOI: 10.1007/s11033-020-05669-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
The world is experiencing a cancer epidemic and an increase in the prevalence of the disease. Cancer remains a major killer, accounting for more than half a million deaths annually. There is a wide range of natural products that have the potential to treat this disease. One of these products is artemisinin; a natural product from Artemisia plant. The Nobel Prize for Medicine was awarded in 2015 for the discovery of artemisinin in recognition of the drug's efficacy. Artemisinin produces highly reactive free radicals by the breakdown of two oxygen atoms that kill cancerous cells. These cells sequester iron and accumulate as much as 1000 times in comparison with normal cells. Generally, chemotherapy is toxic to both cancerous cells and normal cells, while no significant cytotoxicity from artemisinin to normal cells has been found in more than 4000 case studies, which makes it far different than conventional chemotherapy. The pleiotropic response of artemisinin in cancer cells is responsible for growth inhibition by multiple ways including inhibition of angiogenesis, apoptosis, cell cycle arrest, disruption of cell migration, and modulation of nuclear receptor responsiveness. It is very encouraging that artemisinin and its derivatives are anticipated to be a novel class of broad-spectrum antitumor agents based on efficacy and safety. This review aims to highlight these achievements and propose potential strategies to develop artemisinin and its derivatives as a new class of cancer therapeutic agents.
Collapse
Affiliation(s)
- Bushra Hafeez Kiani
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, 44000, Pakistan.
| | - Waqas Khan Kayani
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 23053, Alnarp, Sweden
| | - Asma Umer Khayam
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, 50700, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
21
|
Țigu AB, Toma VA, Moț AC, Jurj A, Moldovan CS, Fischer-Fodor E, Berindan-Neagoe I, Pârvu M. The Synergistic Antitumor Effect of 5-Fluorouracil Combined with Allicin against Lung and Colorectal Carcinoma Cells. Molecules 2020; 25:molecules25081947. [PMID: 32331446 PMCID: PMC7221923 DOI: 10.3390/molecules25081947] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
5-fluorouracil (5-FU) is an anticancer drug used to inhibit the proliferation of many different tumor cells. Since severe events are associated with this compound, its combination with different anticancer drugs or adjuvants would allow the use of a significantly lower dose of 5-FU. In this study, we highlighted that the combination of allicin with 5-FU inhibited the cell migration and proliferation of colorectal and lung cancer cells. 5-FU inhibited cell growth with a similar inhibitory concentration for both normal and tumor cells (~200µM), while allicin showed different inhibitory concentrations. With an IC50 of 8.625 µM, lung cancer cells were the most sensitive to allicin. Compared to 5-FU and allicin single-agent treatments, the co-treatment showed a reduced viability rate, with p < 0.05. The morphological changes were visible on all three cell lines, indicating that the treatment inhibited the proliferation of both normal and tumor cells. We highlighted different cell death mechanisms—apoptosis for lung cancer and a non-apoptotic cell death for colorectal cancer. The synergistic antitumor effect of 5-FU combined with allicin was visible against lung and colorectal carcinoma cells. Better results were obtained when a lower concentration of 5-FU was combined with allicin than the single-agent treatment at IC50.
Collapse
Affiliation(s)
- Adrian Bogdan Țigu
- MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400349 Cluj-Napoca, Romania; (A.B.Ț.); (C.S.M.); (E.F.-F.); (I.B.-N.)
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania;
| | - Vlad-Alexandru Toma
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania;
- Institute of Biological Research Cluj-Napoca, branch of NIRDBS Bucuresti, 400113 Cluj-Napoca, Romania
- Department of Molecular and Biomolecular Physics, National Institute for R&D of Isotopic and MolecularTechnologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Augustin Cătălin Moț
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University,11 Arany Janos Street, 400028 Cluj-Napoca, Romania;
| | - Ancuța Jurj
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400028 Cluj-Napoca, Romania;
| | - Cristian Silviu Moldovan
- MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400349 Cluj-Napoca, Romania; (A.B.Ț.); (C.S.M.); (E.F.-F.); (I.B.-N.)
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400028 Cluj-Napoca, Romania;
| | - Eva Fischer-Fodor
- MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400349 Cluj-Napoca, Romania; (A.B.Ț.); (C.S.M.); (E.F.-F.); (I.B.-N.)
- Department of Radiobiology and Tumor Biology, the Oncology Institute “Prof Dr Ion Chiricuta”, 400028 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400349 Cluj-Napoca, Romania; (A.B.Ț.); (C.S.M.); (E.F.-F.); (I.B.-N.)
- The Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400028 Cluj-Napoca, Romania;
- Department of Functional Genomics and Experimental Pathology, the Oncology Institute “Prof Dr Ion Chiricuta”, 400028 Cluj-Napoca, Romania
| | - Marcel Pârvu
- Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania;
- Correspondence:
| |
Collapse
|
22
|
Taleghani A, Emami SA, Tayarani-Najaran Z. Artemisia: a promising plant for the treatment of cancer. Bioorg Med Chem 2020; 28:115180. [DOI: 10.1016/j.bmc.2019.115180] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/28/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022]
|
23
|
Chinese Herbal Medicine for Osteosarcoma in the Mouse: A Systematic Review and Meta-Analysis. Chin J Integr Med 2018; 25:370-377. [PMID: 30484018 DOI: 10.1007/s11655-018-2565-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To summarize and critically assess the inhibitory effects of Chinese herbal medicine (CHM) on tumor volume and tumor weight for the treatment of osteosarcoma (OS) in mouse models. METHODS PubMed, Embase, Web of Science, China Knowledge Resource Integrated Database (CNKI), Wanfang Database, VIP Database, and Chinese BioMedical (CBM) were searched since their inception dates to March 10, 2016. Two reviewers independently selected the controlled studies estimating effects of CHM on mouse OS by administration in vivo. A pair-wise meta-analysis was performed. Twenty-five studies with adequate randomization were included in the systematic review. RESULTS CHM may significantly inhibit OS growth in mice, as assessed using the tumor weight [20 studies, n=443; 290 for CHM and 153 for the control: pooled mean difference (MD)=-2.90; 95% confidence interval (Cl): -3.50 to -2.31: P<0.01], tumor volume (16 studies, n=382; 257 for CHM and 125 for the control; pooled MD =-2.57; 95% Cl: -3.33 to -1.80; P<0.01) and tumor growth inhibition rate. CONCLUSION CHM could significantly inhibit the growth of OS in mouse models, which might be supportive for the design of preclinical and clinical trials in future.
Collapse
|
24
|
Tan M, Rong Y, Su Q, Chen Y. Artesunate induces apoptosis via inhibition of STAT3 in THP-1 cells. Leuk Res 2017; 62:98-103. [PMID: 29031126 DOI: 10.1016/j.leukres.2017.09.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Our objective was to explore STAT3 expression in patients with acute myeloid leukaemia (AML), assess the anti-proliferative effects of artesunate (ART) on THP-1 cells in vivo and in vitro, and investigate the underlying mechanisms. METHODS In this study, we examined 30 patients with acute myeloid leukaemia diagnosed in our hospital from January 2015 to January 2016. The 20 control group patients had non-haematological diseases and were hospitalized for the same period. We extracted 2ml bone marrow, separated the mononuclear cells, obtained total proteins, and detected STAT3 protein levels with Western blot analyses. The THP-1 cells were treated with different concentrations of ART(0, 10, 25, 50, 100, 200μM). Then, THP-1 cell viability was detected with CCK-8 assays, apoptosis was measured with flow cytometry, and the STAT3, caspase-3 and caspase-8 protein levels were assessed using Western blot analyses. THP-1 cells in logarithmic growth phase were subcutaneously injected into the necks of 5-week-old nude mice. The control group was subcutaneously injected with 0.1ml PBS. After the nude mouse tumours grew, the mice were divided into the control group and drug intervention groups (ART 100μM group, ART 200μM group). The mice in the intervention groups were intraperitoneally injected with ART, and the control group was injected with the same amount of normal saline. Then, changes in the tumours were observed. After the drug intervention, the total protein was extracted, and STAT3 expression was detected by Western blot analysis. RESULTS Compared with the control group, the AML patients had significantly increased STAT3 protein levels (P<0.01). ART significantly inhibited the proliferation of THP-1 cells in a dose-dependent and time-dependent manner. ART also increased THP-1cell apoptosis. After treatment with ART, STAT3 protein was significantly down-regulated, and apoptosis of the cells was induced by the activation of caspase-3 and caspse-8. CONCLUSION AML patients had higher expression of STAT3 than that of the controls. ART induced apoptosis in THP-1 cells and inhibited the growth of xenografts in nude mice, and we also observed that ART down-regulated the expression of STAT3 and activated the caspase-3 and caspase-8. We speculated that the effect of ART on THP-1 cells may be related to inhibition of STAT3 and activation of caspase3 and caspase-8.
Collapse
Affiliation(s)
- Mei Tan
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Ying Rong
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Qiong Su
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| | - Yan Chen
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China.
| |
Collapse
|
25
|
Wang L, Liu L, Wang J, Chen Y. Inhibitory Effect of Artesunate on Growth and Apoptosis of Gastric Cancer Cells. Arch Med Res 2017; 48:623-630. [DOI: 10.1016/j.arcmed.2018.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022]
|
26
|
Xiang Q, Li XH, Yang B, Fang XX, Jia J, Ren J, Dong YC, Ou-Yang C, Wang GC. Allicin attenuates tunicamycin-induced cognitive deficits in rats via its synaptic plasticity regulatory activity. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:676-682. [PMID: 28868122 PMCID: PMC5569445 DOI: 10.22038/ijbms.2017.8837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective(s): To illuminate the functional effects of allicin on rats with cognitive deficits induced by tunicamycin (TM) and the molecular mechanism of this process. Materials and Methods: 200–250 g male SD rats were divided into three groups at random: control group (n=12), TM group (5 μl, 50 μM, ICV, n=12), and allicin treatment group (180 mg/kg/d with chow diet, n=12). After 16 weeks of allicin treatment, the learning ability and memory were tested using novel object recognition (NOR) testing on rats with 72 hr TM treatment (5 μl, 50 μM, ICV); meanwhile, the variation of field excitatory postsynaptic potential (fEPSP) in the Schaffer Collateral (SC)-CA1 synapse was detected by extracellular electrophysiological recordings and the morphology of dendritic spine was observed by Golgi staining as well as detecting several synaptic plasticity-related proteins by Western blot. Results: The density of dendritic spine was increased significantly in allicin-treated groups and the correspondence slope of fEPSP in TM-induced cognitive deficits group was enhanced and expression of synaptophysin and glutamate receptor-1(GluR1) in hippocampal neurons was up-regulated. Conclusion: The results indicate that allicin plays an important role in synaptic plasticity regulation. These finding showed that allicin could be used as a pharmacologic treatment in TM-induced cognitive deficits.
Collapse
Affiliation(s)
- Qiong Xiang
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China
| | - Xian-Hui Li
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China
| | - Bo Yang
- Jishou University First Affiliated Hospital, Jishou University, Hunan, China
| | - Xin-Xing Fang
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China
| | - Jing Jia
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China
| | - Jie Ren
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China
| | - Yu-Chun Dong
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China
| | - Cheng Ou-Yang
- Institute of Medicine, Medical Research Center, Jishou University, Hunan, China
| | - Guang-Cheng Wang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, China
| |
Collapse
|
27
|
Cancer combination therapies with artemisinin-type drugs. Biochem Pharmacol 2017; 139:56-70. [DOI: 10.1016/j.bcp.2017.03.019] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/28/2017] [Indexed: 01/28/2023]
|
28
|
Chen X, Wong YK, Lim TK, Lim WH, Lin Q, Wang J, Hua Z. Artesunate Activates the Intrinsic Apoptosis of HCT116 Cells through the Suppression of Fatty Acid Synthesis and the NF-κB Pathway. Molecules 2017; 22:E1272. [PMID: 28786914 PMCID: PMC6152404 DOI: 10.3390/molecules22081272] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 11/16/2022] Open
Abstract
The artemisinin compounds, which are well-known for their potent therapeutic antimalarial activity, possess in vivo and in vitro antitumor effects. Although the anticancer effect of artemisinin compounds has been extensively reported, the precise mechanisms underlying its cytotoxicity remain under intensive study. In the present study, a high-throughput quantitative proteomics approach was applied to identify differentially expressed proteins of HCT116 colorectal cancer cell line with artesunate (ART) treatment. Through Ingenuity Pathway Analysis, we discovered that the top-ranked ART-regulated biological pathways are abrogation of fatty acid biosynthetic pathway and mitochondrial dysfunction. Subsequent assays showed that ART inhibits HCT116 cell proliferation through suppressing the fatty acid biosynthetic pathway and activating the mitochondrial apoptosis pathway. In addition, ART also regulates several proteins that are involved in NF-κB pathway, and our subsequent assays showed that ART suppresses the NF-κB pathway. These proteomic findings will contribute to improving our understanding of the underlying molecular mechanisms of ART for its therapeutic cytotoxic effect towards cancer cells.
Collapse
Affiliation(s)
- Xiao Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Yin Kwan Wong
- Department of Biological Science, National University of Singapore, Singapore 117543, Singapore.
| | - Teck Kwang Lim
- Department of Biological Science, National University of Singapore, Singapore 117543, Singapore.
| | - Wei Hou Lim
- Department of Biological Science, National University of Singapore, Singapore 117543, Singapore.
| | - Qingsong Lin
- Department of Biological Science, National University of Singapore, Singapore 117543, Singapore.
| | - Jigang Wang
- Department of Biological Science, National University of Singapore, Singapore 117543, Singapore.
- Changzhou High-Tech Research Institute of Nanjing University, Institute of Biotechnology, Jiangsu Industrial Technology Research Institute and Jiangsu TargetPharma Laboratories Inc., Changzhou 213164, China.
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
- Changzhou High-Tech Research Institute of Nanjing University, Institute of Biotechnology, Jiangsu Industrial Technology Research Institute and Jiangsu TargetPharma Laboratories Inc., Changzhou 213164, China.
| |
Collapse
|
29
|
Farnesylthiosalicylic acid sensitizes hepatocarcinoma cells to artemisinin derivatives. PLoS One 2017; 12:e0171840. [PMID: 28182780 PMCID: PMC5300221 DOI: 10.1371/journal.pone.0171840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/26/2017] [Indexed: 01/03/2023] Open
Abstract
Dihydroartemisinin (DHA) and artesunate (ARS), two artemisinin derivatives, have efficacious anticancer activities against human hepatocarcinoma (HCC) cells. This study aims to study the anticancer action of the combination treatment of DHA/ARS and farnesylthiosalicylic acid (FTS), a Ras inhibitor, in HCC cells (Huh-7 and HepG2 cell lines). FTS pretreatment significantly enhanced DHA/ARS-induced phosphatidylserine (PS) externalization, Bak/Bax activation, mitochondrial membrane depolarization, cytochrome c release, and caspase-8 and -9 activations, characteristics of the extrinsic and intrinsic apoptosis. Pretreatment with Z-IETD-FMK (caspase-8 inhibitor) potently prevented the cytotoxicity of the combination treatment of DHA/ARS and FTS, and pretreatment with Z-VAD-FMK (pan-caspase inhibitor) significantly inhibited the loss of ΔΨm induced by DHA/ARS treatment or the combination treatment of DHA/ARS and FTS in HCC cells. Furthermore, silencing Bak/Bax modestly but significantly inhibited the cytotoxicity of the combination treatment of DHA/ARS and FTS. Interestingly, pretreatment with an antioxidant N-Acetyle-Cysteine (NAC) significantly prevented the cytotoxicity of the combination treatment of DHA and FTS instead of the combination treatment of ARS and FTS, suggesting that reactive oxygen species (ROS) played a key role in the anticancer action of the combination treatment of DHA and FTS. Similar to FTS, DHA/ARS also significantly prevented Ras activation. Collectively, our data demonstrate that FTS potently sensitizes Huh-7 and HepG2 cells to artemisinin derivatives via accelerating the extrinsic and intrinsic apoptotic pathways.
Collapse
|
30
|
Hu XQ, Sun Y, Lau E, Zhao M, Su SB. Advances in Synergistic Combinations of Chinese Herbal Medicine for the Treatment of Cancer. Curr Cancer Drug Targets 2016; 16:346-56. [PMID: 26638885 PMCID: PMC5425653 DOI: 10.2174/1568009616666151207105851] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/15/2015] [Accepted: 12/04/2015] [Indexed: 12/13/2022]
Abstract
The complex pathology of cancer development requires correspondingly complex treatments. The traditional application of individual single-target drugs fails to sufficiently treat cancer with durable therapeutic effects and tolerable adverse events. Therefore, synergistic combinations of drugs represent a promising way to enhance efficacy, overcome toxicity and optimize safety. Chinese Herbal Medicines (CHMs) have long been used as such synergistic combinations. Therefore, we summarized the synergistic combinations of CHMs used in the treatment of cancer and their roles in chemotherapy in terms of enhancing efficacy, reducing side effects, immune modulation, as well as abrogating drug resistance. Our conclusions support the development of further science-based holistic modalities for cancer care.
Collapse
Affiliation(s)
| | | | | | | | - Shi-Bing Su
- Department of Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
31
|
Chen F, Li H, Wang Y, Gao M, Cheng Y, Liu D, Jia M, Zhang J. Inhibition of allicin in Eca109 and EC9706 cells via G2/M phase arrest and mitochondrial apoptosis pathway. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.06.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
32
|
Role of p38 MAPK activation and mitochondrial cytochrome-c release in allicin-induced apoptosis in SK-N-SH cells. Anticancer Drugs 2016; 27:312-7. [DOI: 10.1097/cad.0000000000000340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Artesunate suppresses tumor growth and induces apoptosis through the modulation of multiple oncogenic cascades in a chronic myeloid leukemia xenograft mouse model. Oncotarget 2016; 6:4020-35. [PMID: 25738364 PMCID: PMC4414170 DOI: 10.18632/oncotarget.3004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/21/2014] [Indexed: 12/16/2022] Open
Abstract
Artesunate (ART), a semi-synthetic derivative of artemisinin, is one of the most commonly used anti-malarial drugs. Also, ART possesses anticancer potential albeit through incompletely understood molecular mechanism(s). Here, the effect of ART on various protein kinases, associated gene products, cellular response, and apoptosis was investigated. The in vivo effect of ART on the growth of human CML xenograft tumors in athymic nu/nu mice was also examined. In our preliminary experiments, we first observed that phosphorylation of p38, ERK, CREB, Chk-2, STAT5, and RSK proteins were suppressed upon ART exposure. Interestingly, ART induced the expression of SOCS-1 protein and depletion of SOCS-1 using siRNA abrogated the STAT5 inhibitory effect of the drug. Also various dephosphorylations caused by ART led to the suppression of various survival gene products and induced apoptosis through caspase-3 activation. Moreover, ART also substantially potentiated the apoptosis induced by chemotherapeutic agents. Finally, when administered intraperitoneally, ART inhibited p38, ERK, STAT5, and CREB activation in tumor tissues and the growth of human CML xenograft tumors in mice without exhibiting any significant adverse effects. Overall, our results suggest that ART exerts its anti-proliferative and pro-apoptotic effects through suppression of multiple signaling cascades in CML both in vitro and in vivo.
Collapse
|
34
|
Lencesova L, Vlcek M, Krizanova O, Hudecova S. Hypoxic conditions increases H₂S-induced ER stress in A2870 cells. Mol Cell Biochem 2016; 414:67-76. [PMID: 26868821 DOI: 10.1007/s11010-016-2659-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/03/2016] [Indexed: 12/13/2022]
Abstract
Hypoxia - a state of lower oxygen demand-is responsible for a higher aggressiveness of tumors and therefore a worse prognosis. During hypoxia, several metabolic pathways are re-organized, e.g., energetic metabolism, modulation of pH, and calcium transport. Calcium is an important second messenger that regulates variety of processes in the cell. Thus, aim of this work was to compare H2S modulation of the intracellular calcium transport systems in hypoxia and in cells grown in standard culture conditions. For all experiments, we used ovarian cancer cell line (A2780). H2S is a novel gasotransmitter, known to be involved in a modulation of several calcium transport systems, thus resulting in altered calcium signaling. Two models of hypoxia were used in our study-chemical (induced by dimethyloxallyl glycine) and 2 % O2 hypoxia, both combined with a treatment using a slow H2S donor GYY4137. In hypoxia, we observed rapid changes in cytosolic and reticular calcium levels compared to cells grown in standard culture conditions, and these changes were even more exagerrated when combined with the GYY4137. Changes in a calcium homeostasis result from IP3 receptor´s up-regulation and down-regulation of the SERCA 2, which leads to a development of the endoplasmic reticulum stress. Based on our results, we propose a higher vulnerability of calcium transport systems to H2S regulation under hypoxia.
Collapse
Affiliation(s)
- Lubomira Lencesova
- Biomedical Research Center, Institute for Clinical and Translational Research, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovak Republic
| | - Miroslav Vlcek
- Biomedical Research Center, Institute for Clinical and Translational Research, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovak Republic
| | - Olga Krizanova
- Biomedical Research Center, Institute for Clinical and Translational Research, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovak Republic
| | - Sona Hudecova
- Biomedical Research Center, Institute for Clinical and Translational Research, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovak Republic.
| |
Collapse
|
35
|
Artesunate attenuates unilateral ureteral obstruction-induced renal fibrosis by regulating the expressions of bone morphogenetic protein-7 and uterine sensitization-associated gene-1 in rats. Int Urol Nephrol 2016; 48:619-29. [DOI: 10.1007/s11255-016-1232-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/28/2016] [Indexed: 12/13/2022]
|
36
|
Qu F, Li CB, Yuan BT, Qi W, Li HL, Shen XZ, Zhao G, Wang JT, Liu YJ. MicroRNA-26a induces osteosarcoma cell growth and metastasis via the Wnt/β-catenin pathway. Oncol Lett 2015; 11:1592-1596. [PMID: 26893786 DOI: 10.3892/ol.2015.4073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 12/04/2015] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are a type of highly conserved, small non-coding RNA that are vital to the post-transcriptional regulation of gene expression via base pairing with target mRNA 3'-untranslated regions (3'-UTRs). Several studies have indicated that the abnormal expression of miRNAs occurs frequently in human osteosarcoma (OS). In the present study, the role of miR-26a in the progression and metastasis of OS was investigated using reverse transcription-quantitative polymerase chain reaction, a luciferase activity assay, cell viability assay, in vitro migration and invasion assays, transfection and western blot analysis. miR-26a was upregulated in OS tissues and cell lines, and the expression of miR-26a was indicated to affect the proliferation, migration and invasion of OS Saos-2 cells. At the molecular level, the results showed that glycogen synthase kinase-3β (GSK-3β) was identified as a target of miR-26a, and the ectopic expression of miR-26a inhibited GSK-3β by directly binding to the 3'-UTR. Therefore, the expression of miR-26a was negatively correlated with GSK-3β in the OS tissues. These data suggest that miR-26a is significant in the proliferation of human OS cells due to the direct regulation of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Feng Qu
- Department of Orthopedics, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China; Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Chun-Bao Li
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Bang-Tuo Yuan
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Wei Qi
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Hong-Liang Li
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Xue-Zhen Shen
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Gang Zhao
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Jiang-Tao Wang
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Yu-Jie Liu
- Department of Orthopedics, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
37
|
Rabe ST, Emami SA, Iranshahi M, Rastin M, Tabasi N, Mahmoudi M. Anti-cancer properties of a sesquiterpene lactone-bearing fraction from Artemisia khorassanica. Asian Pac J Cancer Prev 2015; 16:863-8. [PMID: 25735374 DOI: 10.7314/apjcp.2015.16.3.863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Artemisia species are important medicinal plants throughout the world. The present in vitro study, using a sesquiterpene lactone-bearing fraction prepared from Artemisia khorassanica (SLAK), sought to investigate anti-cancer properties of this plant and elucidate potential underlying mechanisms for the effects. MATERIALS AND METHODS Anti-cancer potential was evaluated by toxicity against human melanoma and fibroblast cell lines. To explore the involved pathways, pattern of any cell death was determined using annexin-V/PI staining and also the expression of Bax and cytochrome c was investigated by Western blotting. RESULTS The results showed that SLAK selectively caused a concentration-related inhibition of proliferation of melanoma cells that was associated with remarkable increase in early events and over-expression of both Bax and cytochrome c. CONCLUSIONS The current experiment indicates that Artemisia may have anti-cancer activity. We anticipate that the ingredients may be employed as therapeutic candidates for melanoma.
Collapse
Affiliation(s)
- Shahrzad Taghizadeh Rabe
- Immunology Research Center, Bu-Ali Research Institute, School of Medicine, Mashhad University of Medical Science, Mashhad, Iran E-mail :
| | | | | | | | | | | |
Collapse
|
38
|
Li CJ, Cong Y, Liu XZ, Zhou X, Shi X, Wu SJ, Zhou GX, Lu M. Research progress on the livin gene and osteosarcomas. Asian Pac J Cancer Prev 2015; 15:8577-9. [PMID: 25374170 DOI: 10.7314/apjcp.2014.15.20.8577] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Osteosarcoma is a common malignant tumor of bone, but mechanisms underlying its development are still unclear. At present, it is believed that the inhibition of normal apoptotic mechanisms is one of the reasons for the development of tumors, so specific stimulation of tumor cell apoptosis can be considered as an important therapeutic method. Livin, as a member of the newly discovered inhibitor of apoptosis proteins (IAPs) family, has specifically high expression in tumor tissues and can inhibit tumor cell apoptosis through multiple ways, which can become a new target for malignant tumor treatment (including osteosarcoma) and might of great significance in the clinical diagnosis of tumors and the screening of anti-tumor agents and carcinoma treatment.
Collapse
Affiliation(s)
- Cheng-Jun Li
- Jinling Hosp, Dept Orthopedics, Nanjing Univ, Sch Med, Nanjing 210002, China E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kast RE, Karpel-Massler G, Halatsch ME. CUSP9* treatment protocol for recurrent glioblastoma: aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, ritonavir, sertraline augmenting continuous low dose temozolomide. Oncotarget 2015; 5:8052-82. [PMID: 25211298 PMCID: PMC4226667 DOI: 10.18632/oncotarget.2408] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
CUSP9 treatment protocol for recurrent glioblastoma was published one year ago. We now present a slight modification, designated CUSP9*. CUSP9* drugs--aprepitant, artesunate, auranofin, captopril, celecoxib, disulfiram, itraconazole, sertraline, ritonavir, are all widely approved by regulatory authorities, marketed for non-cancer indications. Each drug inhibits one or more important growth-enhancing pathways used by glioblastoma. By blocking survival paths, the aim is to render temozolomide, the current standard cytotoxic drug used in primary glioblastoma treatment, more effective. Although esthetically unpleasing to use so many drugs at once, the closely similar drugs of the original CUSP9 used together have been well-tolerated when given on a compassionate-use basis in the cases that have come to our attention so far. We expect similarly good tolerability for CUSP9*. The combined action of this suite of drugs blocks signaling at, or the activity of, AKT phosphorylation, aldehyde dehydrogenase, angiotensin converting enzyme, carbonic anhydrase -2,- 9, -12, cyclooxygenase-1 and -2, cathepsin B, Hedgehog, interleukin-6, 5-lipoxygenase, matrix metalloproteinase -2 and -9, mammalian target of rapamycin, neurokinin-1, p-gp efflux pump, thioredoxin reductase, tissue factor, 20 kDa translationally controlled tumor protein, and vascular endothelial growth factor. We believe that given the current prognosis after a glioblastoma has recurred, a trial of CUSP9* is warranted.
Collapse
Affiliation(s)
| | - Georg Karpel-Massler
- University of Ulm, Department of Neurosurgery, Albert-Einstein-Allee 23, Ulm, Germany
| | - Marc-Eric Halatsch
- University of Ulm, Department of Neurosurgery, Albert-Einstein-Allee 23, Ulm, Germany
| |
Collapse
|
40
|
Wei MY, Zhuang YF, Wang WM. Gemcitabine for the treatment of patients with osteosarcoma. Asian Pac J Cancer Prev 2015; 15:7159-62. [PMID: 25227807 DOI: 10.7314/apjcp.2014.15.17.7159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients with recurrent or refractory osteosarcoma are considered to have a very poor prognosis, and new regimens are needed to improve the prognosis in this setting. Gemcitabine, a nucleoside antimetabolite, is an analog of deoxycytidine which mainly inhibits DNA synthesis through interfering with DNA chain elongation and depleting deoxynucleotide stores, resulting in gemcitabine-induced cell death. Here we performed a systemic analysis to evaluate gemcitabine based chemotherapy as salvage treatment for patients with recurrent or refractory osteosarcoma. METHODS Clinical studies evaluating the impact of gemcitabine based regimens on response and safety for patients with osteosarcoma were identified by using a predefined search strategy. Pooled response rates (RRs) of treatment were calculated. RESULTS In gemcitabine based regimens, 4 clinical studies which included 66 patients with recurrent or refractory osteosarcoma were considered eligible for inclusion. Systemic analysis suggested that, in all patients, pooled RR was 12.1% (8/66) in gemcitabine based regimens. Major adverse effects were hematologic toxicity, including grade 3 or 4 anemia, leucopenia and thrombocytopenia in gemcitabine based treatment. No treatment related death occurred in gemcitabine based treatment. CONCLUSION This systemic analysis suggests that gemcitabine based regimens are associated with mild activity with good tolerability in treating patients with recurrent or refractory osteosarcoma.
Collapse
Affiliation(s)
- Mei-Yang Wei
- Department of Orthopaedics, Fuzhou General Hospital of Nanjing Military Command, Fuzhou, Fujian, China E-mail :
| | | | | |
Collapse
|
41
|
Allicin Alleviates Dextran Sodium Sulfate- (DSS-) Induced Ulcerative Colitis in BALB/c Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:605208. [PMID: 26075036 PMCID: PMC4436474 DOI: 10.1155/2015/605208] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/23/2015] [Indexed: 12/20/2022]
Abstract
The objective of this study is to evaluate the effect of allicin (10 mg/kg body weight, orally) in an experimental murine model of UC by administering 2.5% dextran sodium sulfate (DSS) in drinking water to BALB/c mice. DSS-induced mice presented reduced body weight, which was improved by allicin administration. We noted increases in CD68 expression, myeloperoxidase (MPO) activities, and Malonaldehyde (MDA) and mRNA levels of proinflammatory cytokines, such as tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, and IL-17, and decrease in the activities of enzymic antioxidants such as superoxide dismutase (SOD), Catalase (CAT), Glutathione reductase (GR), and Glutathione peroxidase (GPx) in DSS-induced mice. However, allicin treatment significantly decreased CD68, MPO, MDA, and proinflammatory cytokines and increased the enzymic antioxidants significantly (P < 0.05). In addition, allicin was capable of reducing the activation and nuclear accumulation of signal transducer and activator of transcription 3 (STAT3), thereby preventing degradation of the inhibitory protein IκB and inducing inhibition of the nuclear translocation of nuclear factor (NF)-κB-p65 in the colonic mucosa. These findings suggest that allicin exerts clinically useful anti-inflammatory effects mediated through the suppression of the NF-κB and IL-6/p-STAT3Y705 pathways.
Collapse
|
42
|
Gao XY, Geng XJ, Zhai WL, Zhang XW, Wei Y, Hou GJ. Effect of combined treatment with cyclophosphamidum and allicin on neuroblastoma-bearing mice. ASIAN PAC J TROP MED 2015; 8:137-41. [PMID: 25902028 DOI: 10.1016/s1995-7645(14)60304-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 12/20/2014] [Accepted: 01/15/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate the efficacy of allicin combined with cyclophosphamide on neuroblastoma (NB)-bearing mice and explore the immunological mechanism in it. METHODS A total of 30 NB-bearing mice were equally randomized into model group, cyclophosphamide group and combined therapy group, 10 nudemice were set as normal saline (NS) group. Cyclophosphamide group and combined therapy group were weekly injected with 60 mg/kg cyclophosphamide for four weeks; besides, combined therapy group was given with allicin (10 mg/kg/d) by gastric perfusion for 4 weeks; model group and NS group were given with the same volume of NS. Serum VEGF content was detected by ELISA pre-treating (0 d) and on the 3rd d, 14th d and 28th d; on 29th d, all mice were sacrificed and the tumor, liver, spleen and thymic tissues were weighted. Tumors were made into paraffin section for detecting tumor cell apoptosis and proliferation by TUNEL and BrdU method, respectively. Survival curves were drawn by Kaplan-Meier method. RESULTS After treatment, both treatment groups relieved on viscera indexes, VEGF level, T cell subsets distribution and tumor growth and each index of combined therapy group was better than cyclophosphamide group (P<0.05 or 0.01); only combined therapy group could significantly increase the lifetime of NB-bearing mice (μ (2)=5.667, P=0.017). CONCLUSIONS Allicin can improve T cell subsets distribution and inhibit VEGF expression through its immunomodulatory activity, thereby improve the efficiency on NB in coordination with cyclophosphamide.
Collapse
Affiliation(s)
- Xiang-Yang Gao
- Department of General Surgery, Children's Hospital of Zhengzhou, Zhengzhou, China
| | - Xian-Jie Geng
- Department of General Surgery, Children's Hospital of Zhengzhou, Zhengzhou, China
| | - Wen-Long Zhai
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xian-Wei Zhang
- Department of General Surgery, Children's Hospital of Zhengzhou, Zhengzhou, China
| | - Yuan Wei
- Department of General Surgery, Children's Hospital of Zhengzhou, Zhengzhou, China
| | - Guang-Jun Hou
- Department of General Surgery, Children's Hospital of Zhengzhou, Zhengzhou, China.
| |
Collapse
|
43
|
Xian SL, Cao W, Zhang XD, Lu YF. Inhibitory effects of 3-bromopyruvate on human gastric cancer implant tumors in nude mice. Asian Pac J Cancer Prev 2015; 15:3175-8. [PMID: 24815466 DOI: 10.7314/apjcp.2014.15.7.3175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastric cancer is a common malignant tumor. Our previous study demonstrated inhibitory effects of 3-bromopyruvate (3-BrPA) on pleural mesothelioma. Moreover, we found that 3-BrPA could inhibit human gastric cancer cell line SGC-7901 proliferation in vitro, but whether similar effects might be exerted in vivo have remained unclear. AIM To investigate the effect of 3-BrPA to human gastric cancer implant tumors in nude mice. MATERIALS AND METHODS Animals were randomly divided into 6 groups: 3-BrPA low, medium and high dose groups, PBS negative control group 1 (PH7.4), control group 2 (PH 6.8-7.8) and positive control group receiving 5-FU. The TUNEL method was used to detect apoptosis, and cell morphology and structural changes of tumor tissue were observed under transmission electron microscopy (TEM). RESULTS 3-BrPA low, medium, high dose group, and 5-FU group, the tumor volume inhibition rates were 34.5%, 40.2%, 45.1%, 47.3%, tumor volume of experimental group compared with 2 PBS groups (p<0.05), with no significant difference between the high dose and 5-FU groups (p>0.05). TEM showed typical characteristics of apoptosis. TUNEL demonstrated apoptosis indices of 28.7%, 39.7%, 48.7% for the 3-BrPA low, medium, high dose groups, 42.2% for the 5-FU group and 5% and 4.3% for the PBS1 (PH7.4) and PBS2 (PH6.8-7.8) groups. Compared each experimental group with 2 negative control groups, there was significant difference (p<0.05); there was no significant difference between 5-FU group and medium dose group (p>0.05), but there was between the 5-FU and high dose groups (p<0.05). CONCLUSIONS This study indicated that 3-BrPA in vivo has strong inhibitory effects on human gastric cancer implant tumors in nude mice .
Collapse
Affiliation(s)
- Shu-Lin Xian
- Department of Gastrointestine and Gland Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China E-mail :
| | | | | | | |
Collapse
|
44
|
Li YY, Jiang XM, Dong YG, Xu G, Ma YB. Ifosfamide-containing regimens for treating patients with osteosarcomas. Asian Pac J Cancer Prev 2014; 15:9763-6. [PMID: 25520101 DOI: 10.7314/apjcp.2014.15.22.9763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND This systemic analysis was conducted to evaluate the efficacy and safety of an ifosfamide- containing regimen in treating patients with osteosarcoma. METHODS Clinical studies evaluating the efficacy and safety of Ifosfamide-containing regimen on response and safety for patients with osteosarcoma were identified by using a predefined search strategy. Pooled response rate (RR) of treatment were calculated. RESULTS When ifosfamide-containing regimens were evaluated, 4 clinical studies which including 134 patients with osteosarcoma were considered eligible for inclusion. Systemic analysis suggested that, in all patients, pooled RR was 44.8% (60/134) in ifosfamide-containing regimens. Major adverse effects were neutropenia, leukopenia, and fatigue inIfosfamide-containing regimens; No treatment related death occurred in cantharidin combined regimens. CONCLUSION This systemic analysis suggests that ifosfamide-containing regimens are associated with good response rate and acceptable toxicity in treating patients with osteosarcoma, but this result should be confirmed by randomized clinical trials.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Neurology, The Second People Hospital of Mudanjiang, Mudanjiang, China E-mail :
| | | | | | | | | |
Collapse
|
45
|
Tayarani-Najaran Z, Hajian Z, Mojarrab M, Emami SA. Cytotoxic and Apoptotic Effects of Extracts of Artemisia ciniformis Krasch. & Popov ex Poljakov on K562 and HL-60 Cell Lines. Asian Pac J Cancer Prev 2014; 15:7055-9. [DOI: 10.7314/apjcp.2014.15.17.7055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|