1
|
Kim WJ, Ryu JY, Chang CS, Cho YJ, Choi JJ, Hwang JR, Choi JY, Lee JW. Anticancer effect of the antipsychotic agent penfluridol on epithelial ovarian cancer. J Gynecol Oncol 2025; 36:e28. [PMID: 39223944 PMCID: PMC11964974 DOI: 10.3802/jgo.2025.36.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Chemoresistant-epithelial ovarian cancer (EOC) has a poor prognosis, prompting the search for new therapeutic drugs. The diphenylbutylpiperidine (DPBP) class of antipsychotic drugs used in schizophrenia has shown anticancer effects. This study aimed to investigate the preclinical efficacy of penfluridol, fluspirilene, and pimozide (DPBP) using in vitro and in vivo models of EOC. METHODS Human EOC cell lines A2780, HeyA8, SKOV3ip1, A2780-CP20, HeyA8-MDR, and SKOV3-TR were treated with penfluridol, fluspirilene, and pimozide, and cell proliferation, apoptosis, and migration were assessed. The preclinical efficacy of DPBP was also investigated using in vivo mouse models, including cell lines and patient-derived xenografts (PDX) of EOC. RESULTS DPBP drugs significantly decreased cell proliferation in chemosensitive (A2780, HeyA8, and SKOV3ip1) and chemoresistant (A2780-CP20, HeyA8-MDR, and SKOV3-TR) cell lines. Among these drugs, penfluridol exerted a relatively stronger cytotoxic effect on all cell lines. Penfluridol significantly increased apoptosis and inhibited migration of EOC cells. In the cell line xenograft mouse model with HeyA8, the penfluridol group showed significantly decreased tumor weight compared with the control group. In the paclitaxel-resistant model with HeyA8-MDR, the penfluridol group had significantly decreased tumor weight compared with the paclitaxel or control groups. Penfluridol exerted anticancer effects on the PDX model. CONCLUSION Penfluridol exerted significant anticancer effects on EOC cells and xenograft models, including PDX. Thus, penfluridol therapy, as a drug repurposing strategy, might be a potential therapeutic for EOCs.
Collapse
Affiliation(s)
- Won-Ji Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji-Yoon Ryu
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chi-Son Chang
- Department of Obstetrics and Gynecology, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Korea
| | - Young-Jae Cho
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung-Joo Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Ryoung Hwang
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Song L, Wu H, Sun X, Liu X, Ling X, Ni W, Li L, Liu B, Wei J, Li X, Li J, Wang Y, Mao F. Penfluridol targets septin7 to suppress endometrial cancer by septin7-Orai/IP3R-Ca 2+-PIK3CA pathway. iScience 2025; 28:111640. [PMID: 39850355 PMCID: PMC11754080 DOI: 10.1016/j.isci.2024.111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/31/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Phenotypic screening of existing drugs is a good strategy to discover new drugs. Herein, 33 psychotherapeutic drugs in our drug library were screened by phenotypic screening and penfluridol (PFD) was found to exhibit excellent anti-endometrial cancer (EC) activity both in vitro and in vivo. Furthermore, the molecular target of PFD was identified as septin7, a tumor suppressor in EC. In septin7-deficient EC cells and xenograft mouse models, PFD exhibited weaker anti-cancer properties, indicating that septin7 was essential for the tumor inhibitory activity. Notably, PFD could induce cell apoptosis by regulating the septin7-Orai/IP3R-Ca2+-PIK3CA pathway. In addition, PFD attenuates the interaction of septin7-tubulin, thereby inhibiting microtubule polymerization. In summary, this study revealed a target and mechanistic insights into EC therapeutic strategies and identified a potential candidate agent for the treatment of EC.
Collapse
Affiliation(s)
- Lingyi Song
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Huiwen Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao Sun
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaohu Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xianwu Ling
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Ni
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lijuan Li
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Beibei Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jinlian Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, College of Pharmacy, Hainan University, Haikou 570228, China
| | - Yudong Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
- Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai 200030, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Ali Ibrahim Mze A, Abdul Rahman A. Repurposing the antipsychotic drug penfluridol for cancer treatment (Review). Oncol Rep 2024; 52:174. [PMID: 39513619 PMCID: PMC11541647 DOI: 10.3892/or.2024.8833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Cancer is one of the most prevalent diseases and the leading cause of death worldwide. Despite the improved survival rates of cancer in recent years, the current available treatments often face resistance and side effects. Drug repurposing represents a cost‑effective and efficient alternative to cancer treatment. Recent studies revealed that penfluridol (PF), an antipsychotic drug, is a promising anticancer agent. In the present study, a scoping review was conducted to ascertain the anticancer properties of PF. For this, a literature search was performed using the Scopus, PubMed and Web of Science databases with the search string 'penfluridol' AND 'cancer'. A total of 23 original articles with in vivo and/or in vitro studies on the effect of PF on cancer were included in the scoping review. The outcome of the analysis demonstrated the anticancer potential of PF. PF significantly inhibited cell proliferation, metastasis and invasion while inducing apoptosis and autophagy in vivo and across a spectrum of cancer cell lines, including breast, lung, pancreatic, glioblastoma, gallbladder, bladder, oesophageal, leukaemia and renal cancers. However, research on PF derivatives with high anticancer activities and reduced neurological side effects may be necessary.
Collapse
Affiliation(s)
- Asma Ali Ibrahim Mze
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
| | - Amirah Abdul Rahman
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
| |
Collapse
|
4
|
Nguyen MT, Lee GJ, Kim B, Kim HJ, Tak J, Park MK, Kim EJ, Kang GJ, Rho SB, Lee H, Lee K, Kim SG, Lee CH. Penfluridol suppresses MYC-driven ANLN expression and liver cancer progression by disrupting the KEAP1-NRF2 interaction. Pharmacol Res 2024; 210:107512. [PMID: 39643070 DOI: 10.1016/j.phrs.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 12/09/2024]
Abstract
Hepatocellular carcinoma (HCC) comprises the majority of primary liver cancers and possesses a low 5-year survival rate when in the advanced stages. Anillin (ANLN), a key player in cell growth and cytokinesis, is implicated in HCC development. Currently, no treatment agents are known to suppress ANLN. Analysis of The Cancer Genome Atlas data showed that high ANLN expression is associated with poor prognosis and survival in HCC patients. ANLN knockdown was shown to inhibit proliferation, cell cycle progression, and PD-L1 expression in liver cancer cells. The antipsychotic drug penfluridol was identified to suppress ANLN expression in the Connectivity Map analysis. Penfluridol downregulated ANLN at both the mRNA and protein levels, leading to G2/M cell cycle arrest and reduced colony formation in liver cancer cells. Mechanistically, penfluridol inhibited the transcription factor MYC from binding to an E-box motif in the ANLN promoter. This process was mediated by penfluridol-induced upregulation of NRF2, which competitively bound and sequestered MYC away from the ANLN promoter. Penfluridol inhibited the interaction between NRF2 and KEAP1, increasing NRF2. In a syngeneic mouse model, penfluridol suppressed liver tumour growth accompanied by increased NRF2 and decreased MYC and ANLN expression. These findings suggest penfluridol can be applied as the first ANLN blocker to modulate the MYC/NRF2/KEAP1 axis.
Collapse
Affiliation(s)
- Minh Tuan Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Gi Jeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Boram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyun Ji Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Jihoon Tak
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Bio-Healthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seung Bae Rho
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Ho Lee
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Kyung Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Sang Geon Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
5
|
Brown JS. Treatment of cancer with antipsychotic medications: Pushing the boundaries of schizophrenia and cancer. Neurosci Biobehav Rev 2022; 141:104809. [PMID: 35970416 DOI: 10.1016/j.neubiorev.2022.104809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
Over a century ago, the phenothiazine dye, methylene blue, was discovered to have both antipsychotic and anti-cancer effects. In the 20th-century, the first phenothiazine antipsychotic, chlorpromazine, was found to inhibit cancer. During the years of elucidating the pharmacology of the phenothiazines, reserpine, an antipsychotic with a long historical background, was likewise discovered to have anti-cancer properties. Research on the effects of antipsychotics on cancer continued slowly until the 21st century when efforts to repurpose antipsychotics for cancer treatment accelerated. This review examines the history of these developments, and identifies which antipsychotics might treat cancer, and which cancers might be treated by antipsychotics. The review also describes the molecular mechanisms through which antipsychotics may inhibit cancer. Although the overlap of molecular pathways between schizophrenia and cancer have been known or suspected for many years, no comprehensive review of the subject has appeared in the psychiatric literature to assess the significance of these similarities. This review fills that gap and discusses what, if any, significance the similarities have regarding the etiology of schizophrenia.
Collapse
|
6
|
Synergistic Tumor Inhibition via Energy Elimination by Repurposing Penfluridol and 2-Deoxy-D-Glucose in Lung Cancer. Cancers (Basel) 2022; 14:cancers14112750. [PMID: 35681729 PMCID: PMC9179427 DOI: 10.3390/cancers14112750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Drug repurposing has been effective for discovering novel treatments for cancer. The antipsychotic agent penfluridol was reported to suppress lung cancer growth via ATP energy deprivation. The aim of our study was to investigate how penfluridol influences energy metabolism in lung cancer cells. We observed that penfluridol inhibited mitochondrial oxidative phosphorylation (OXPHOS), but induced glycolysis to compensate for the loss of ATP caused by suppression of mitochondrial OXPHOS. We also confirmed that inhibition of glycolysis by 2-deoxy-D-glucose (2DG) significantly augmented the antitumor effects caused by penfluridol in vitro and in vivo. Our studies provide novel insights into repurposing penfluridol combined with 2-DG for lung cancer treatment. Abstract Energy metabolism is the basis for cell growth, and cancer cells in particular, are more energy-dependent cells because of rapid cell proliferation. Previously, we found that penfluridol, an antipsychotic drug, has the ability to trigger cell growth inhibition of lung cancer cells via inducing ATP energy deprivation. The toxic effect of penfluridol is related to energy metabolism, but the underlying mechanisms remain unclear. Herein, we discovered that treatment of A549 and HCC827 lung cancer cells with penfluridol caused a decrease in the total amount of ATP, especially in A549 cells. An Agilent Seahorse ATP real-time rate assay revealed that ATP production rates from mitochondrial respiration and glycolysis were, respectively, decreased and increased after penfluridol treatment. Moreover, the amount and membrane integrity of mitochondria decreased, but glycolysis-related proteins increased after penfluridol treatment. Furthermore, we observed that suppression of glycolysis by reducing glucose supplementation or using 2-deoxy-D-glucose (2DG) synergistically enhanced the inhibitory effect of penfluridol on cancer cell growth and the total amount of mitochondria. A mechanistic study showed that the penfluridol-mediated energy reduction was due to inhibition of critical regulators of mitochondrial biogenesis, the sirtuin 1 (SIRT1)/peroxisome-proliferator-activated receptor co-activator-1α (PGC-1α) axis. Upregulation of the SIRT1/PGC-1α axis reversed the inhibitory effect of penfluridol on mitochondrial biogenesis and cell viability. Clinical lung cancer samples revealed a positive correlation between PGC-1α (PPARGC1A) and SIRT1 expression. In an orthotopic lung cancer mouse model, the anticancer activities of penfluridol, including growth and metastasis inhibition, were also enhanced by combined treatment with 2DG. Our study results strongly support that a combination of repurposing penfluridol and a glycolysis inhibitor would be a good strategy for enhancing the anticancer activities of penfluridol in lung cancer.
Collapse
|
7
|
Repurposing Antipsychotics for Cancer Treatment. Biomedicines 2021; 9:biomedicines9121785. [PMID: 34944601 PMCID: PMC8698939 DOI: 10.3390/biomedicines9121785] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Cancer is a leading cause of death worldwide, with approximately 19 million new cases each year. Lately, several novel chemotherapeutic drugs have been introduced, efficiently inhibiting tumor growth and proliferation. However, developing a new drug is a time- and money-consuming process, requiring around 1 billion dollars and nearly ten years, with only a minority of the initially effective anti-cancer drugs experimentally finally being efficient in human clinical trials. Drug repurposing for cancer treatment is an optimal alternative as the safety of these drugs has been previously tested, and thus, in case of successful preclinical studies, can be introduced faster and with a lower cost into phase 3 clinical trials. Antipsychotic drugs are associated with anti-cancer properties and, lately, there has been an increasing interest in their role in cancer treatment. In the present review, we discussed in detail the in-vitro and in-vivo properties of the most common typical and atypical antipsychotics, along with their mechanism of action.
Collapse
|
8
|
Ashraf-Uz-Zaman M, Shahi S, Akwii R, Sajib MS, Farshbaf MJ, Kallem RR, Putnam W, Wang W, Zhang R, Alvina K, Trippier PC, Mikelis CM, German NA. Design, synthesis and structure-activity relationship study of novel urea compounds as FGFR1 inhibitors to treat metastatic triple-negative breast cancer. Eur J Med Chem 2021; 209:112866. [PMID: 33039722 PMCID: PMC7744370 DOI: 10.1016/j.ejmech.2020.112866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of cancer characterized by higher metastatic and reoccurrence rates, where approximately one-third of TNBC patients suffer from the metastasis in the brain. At the same time, TNBC shows good responses to chemotherapy, a feature that fuels the search for novel compounds with therapeutic potential in this area. Recently, we have identified novel urea-based compounds with cytotoxicity against selected cell lines and with the ability to cross the blood-brain barrier in vivo. We have synthesized and analyzed a library of more than 40 compounds to elucidate the key features responsible for the observed activity. We have also identified FGFR1 as a molecular target that is affected by the presence of these compounds, confirming our data using in silico model. Overall, we envision that these compounds can be further developed for the potential treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Md Ashraf-Uz-Zaman
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sadisna Shahi
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Racheal Akwii
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | | - Raja Reddy Kallem
- Clinical Pharmacology & Experimental Therapeutics Center, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - William Putnam
- Clinical Pharmacology & Experimental Therapeutics Center, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - Wei Wang
- College of Pharmacy, University of Houston, Houston, TX, USA
| | - Ruiwen Zhang
- College of Pharmacy, University of Houston, Houston, TX, USA
| | - Karina Alvina
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
9
|
Shaw V, Srivastava S, Srivastava SK. Repurposing antipsychotics of the diphenylbutylpiperidine class for cancer therapy. Semin Cancer Biol 2021; 68:75-83. [PMID: 31618686 PMCID: PMC7152558 DOI: 10.1016/j.semcancer.2019.10.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/18/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
The recent development of high throughput compound screening has allowed drug repurposing to emerge as an effective avenue for discovering novel treatments for cancer. FDA-approved antipsychotic drugs fluspirilene, penfluridol, and pimozide are clinically used for the treatment of psychotic disorders, primarily schizophrenia. These compounds, belong to diphenylbutylpiperidine class of antipsychotic drugs, are the potent inhibitors of dopamine D2 receptor and calcium channel. A correlation has been found that patients treated for schizophrenia have lower incidences of certain types of cancer, such as respiratory, prostate, and bladder cancers. These compounds have also been shown to inhibit cancer proliferation in a variety of cancer cells, including melanoma, lung carcinoma, breast cancer, pancreatic cancer, glioma, and prostate cancer, among others. Antipsychotic drugs induce apoptosis and suppress metastasis in in vitro and in vivo models through mechanisms involving p53, STAT3, STAT5, protein phosphatase 2A, cholesterol homeostasis, integrins, autophagy, USP1, wnt/β-catenin signaling, and DNA repair. Additionally, pre-clinical evidence suggests that penfluridol and pimozide act synergistically with existing chemotherapeutic agents, such as dasatinib, temozolomide, and cisplatin. Some studies have also reported that the cytotoxic activity of the antipsychotics is selective for dividing cells. Based on this growing body of evidence and the availability and previous FDA-approval of the drugs, the compounds appear to be promising anti-cancer agents.
Collapse
Affiliation(s)
- Vikram Shaw
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Suyash Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA; Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
10
|
Kaushik I, Ramachandran S, Prasad S, Srivastava SK. Drug rechanneling: A novel paradigm for cancer treatment. Semin Cancer Biol 2021; 68:279-290. [PMID: 32437876 PMCID: PMC7786449 DOI: 10.1016/j.semcancer.2020.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/15/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022]
Abstract
Cancer continues to be one of the leading contributors towards global disease burden. According to NIH, cancer incidence rate per year will increase to 23.6 million by 2030. Even though cancer continues to be a major proportion of the disease burden worldwide, it has the lowest clinical trial success rate amongst other diseases. Hence, there is an unmet need for novel, affordable and effective anti-neoplastic medications. As a result, a growing interest has sparkled amongst researchers towards drug repurposing. Drug repurposing follows the principle of polypharmacology, which states, "any drug with multiple targets or off targets can present several modes of action". Drug repurposing also known as drug rechanneling, or drug repositioning is an economic and reliable approach that identifies new disease treatment of already approved drugs. Repurposing guarantees expedited access of drugs to the patients as these drugs are already FDA approved and their safety and toxicity profile is completely established. Epidemiological studies have identified the decreased occurrence of oncological or non-oncological conditions in patients undergoing treatment with FDA approved drugs. Data from multiple experimental studies and clinical observations have depicted that several non-neoplastic drugs have potential anticancer activity. In this review, we have summarized the potential anti-cancer effects of anti-psychotic, anti-malarial, anti-viral and anti-emetic drugs with a brief overview on their mechanism and pathways in different cancer types. This review highlights promising evidences for the repurposing of drugs in oncology.
Collapse
Affiliation(s)
- Itishree Kaushik
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sharavan Ramachandran
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sahdeo Prasad
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
11
|
Morofuji Y, Nakagawa S. Drug Development for Central Nervous System Diseases Using In vitro Blood-brain Barrier Models and Drug Repositioning. Curr Pharm Des 2020; 26:1466-1485. [PMID: 32091330 PMCID: PMC7499354 DOI: 10.2174/1381612826666200224112534] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
An important goal of biomedical research is to translate basic research findings into practical clinical implementation. Despite the advances in the technology used in drug discovery, the development of drugs for central nervous system diseases remains challenging. The failure rate for new drugs targeting important central nervous system diseases is high compared to most other areas of drug discovery. The main reason for the failure is the poor penetration efficacy across the blood-brain barrier. The blood-brain barrier represents the bottleneck in central nervous system drug development and is the most important factor limiting the future growth of neurotherapeutics. Meanwhile, drug repositioning has been becoming increasingly popular and it seems a promising field in central nervous system drug development. In vitro blood-brain barrier models with high predictability are expected for drug development and drug repositioning. In this review, the recent progress of in vitro BBB models and the drug repositioning for central nervous system diseases will be discussed.
Collapse
Affiliation(s)
- Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
12
|
van der Horst G, van de Merbel AF, Ruigrok E, van der Mark MH, Ploeg E, Appelman L, Tvingsholm S, Jäätelä M, van Uhm J, Kruithof-de Julio M, Thalmann GN, Pelger RCM, Bangma CH, Boormans JL, van der Pluijm G, Zwarthoff EC. Cationic amphiphilic drugs as potential anticancer therapy for bladder cancer. Mol Oncol 2020; 14:3121-3134. [PMID: 32896947 PMCID: PMC7718956 DOI: 10.1002/1878-0261.12793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
More effective therapy for patients with either muscle‐invasive or high‐risk non‐muscle‐invasive urothelial carcinoma of the bladder (UCB) is an unmet clinical need. For this, drug repositioning of clinically approved drugs represents an interesting approach. By repurposing existing drugs, alternative anticancer therapies can be introduced in the clinic relatively fast, because the safety and dosing of these clinically approved pharmacological agents are generally well known. Cationic amphiphilic drugs (CADs) dose‐dependently decreased the viability of a panel of human UCB lines in vitro. CADs induced lysosomal puncta formation, a hallmark of lysosomal leakage. Intravesical instillation of the CAD penfluridol in an orthotopic mouse xenograft model of human UCB resulted in significantly reduced intravesical tumor growth and metastatic progression. Furthermore, treatment of patient‐derived ex vivo cultured human UCB tissue caused significant partial or complete antitumor responses in 97% of the explanted tumor tissues. In conclusion, penfluridol represents a promising treatment option for bladder cancer patients and warrants further clinical evaluation.
Collapse
Affiliation(s)
| | | | - Eline Ruigrok
- Department of Urology, Leiden University Medical Center, The Netherlands
| | | | - Emily Ploeg
- Department of Urology, Leiden University Medical Center, The Netherlands
| | - Laura Appelman
- Department of Urology, Leiden University Medical Center, The Netherlands
| | - Siri Tvingsholm
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marja Jäätelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Janneke van Uhm
- Department of Urology, Leiden University Medical Center, The Netherlands
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - George N Thalmann
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Switzerland.,Department of Urology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Rob C M Pelger
- Department of Urology, Leiden University Medical Center, The Netherlands
| | - Chris H Bangma
- Department of Urology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Ellen C Zwarthoff
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Wang NN, Zhang PZ, Zhang J, Wang HN, Li L, Ren F, Dai PF, Li H, Lv XF. Penfluridol triggers mitochondrial-mediated apoptosis and suppresses glycolysis in colorectal cancer cells through down-regulating hexokinase-2. Anat Rec (Hoboken) 2020; 304:520-530. [PMID: 32470200 DOI: 10.1002/ar.24464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/01/2020] [Accepted: 03/22/2020] [Indexed: 01/22/2023]
Abstract
Penfluridol, a commonly used antipsychotic agent in a clinical setting, exhibits potential anticancer properties against various human malignancies. Here, we investigated the effect of penfluridol on the biological behavior of colorectal cancer (CRC) cells. Cell viability and clonogenic potential were detected by the cell counting kit-8 and colony formation assay. The cell apoptosis and cell cycle distribution were quantified through flow cytometry. Caspase-3 activity, glucose consumption, lactate production, and intracellular ATP levels were evaluated using the corresponding commercial detection kits. The protein levels of related genes were detected through western blotting. Mitochondrial membrane potential was detected using JC-1 staining. A CRC xenograft tumor model was used to validate the antitumor activity of penfluridol in vivo. Penfluridol reduced cell survival and promoted apoptotic cell death effectively through the mitochondria-mediated intrinsic pathway in a dose-dependent manner. Furthermore, the process of glycolysis in HCT-116 and HT-29 cells was inhibited upon penfluridol treatment, as evidenced by the decrease in glucose consumption, lactate production, and intracellular ATP levels. Further mechanistic studies revealed that penfluridol influenced cell apoptosis and glycolysis in CRC cells by downregulating hexokinase-2 (HK-2). The proapoptotic effect and glycolytic inhibition-induced by penfluridol were effectively reversed by HK-2 overexpression. Consistent with in vitro results, penfluridol could also suppress tumor growth and trigger apoptosis in vivo. Penfluridol triggers mitochondrial-mediated apoptosis and induces glycolysis inhibition via modulating HK-2 in CRC and provides a theoretical basis to support penfluridol as a repurposed drug for CRC patients.
Collapse
Affiliation(s)
- Ning-Ning Wang
- Department of Intervention Diagnosis and Treatment, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Peng-Zhen Zhang
- Department of Intervention Diagnosis and Treatment, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Jing Zhang
- Department of Intervention Diagnosis and Treatment, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Hai-Ning Wang
- Department of Cosmetic Surgery, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Ling Li
- Department of Outpatient, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Feng Ren
- Endoscopic Consulting Room, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Peng-Fei Dai
- Coronary Care Unit, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Hui Li
- Hemodialysis Room, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Xiao-Feng Lv
- Department of Pharmacy, Reproductive Medicine Center of Zibo Maternity and Child Health Hospital, Zibo, China
| |
Collapse
|
14
|
Cai H, Wen Z, Li X, Meng K, Yang P. Lactobacillus plantarum FRT10 alleviated high-fat diet-induced obesity in mice through regulating the PPARα signal pathway and gut microbiota. Appl Microbiol Biotechnol 2020; 104:5959-5972. [PMID: 32409945 DOI: 10.1007/s00253-020-10620-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/31/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022]
Abstract
Previous studies showed that probiotics supplementation contributed to alleviate obesity. This work was to assess the efficacy of Lactobacillus plantarum FRT10 from sour dough in alleviating obesity in mice fed with a high-fat diet (HFD), and the underlying mechanisms focusing on modulation of the gut microbiota profile. Kunming mice were fed with a regular diet (CT), a high-fat diet (HFD), and two HFDs containing low and high doses of L. plantarum FRT10 for 8 weeks. The physiological and biochemical modulations in liver were analyzed. Cecal contents were analyzed by high-throughput 16S ribosomal RNA sequencing. FRT10 supplementation significantly reduced body weight gain, fat weight, and liver triacylglycerols (TGs) and alanine aminotransferase (ALT) concentrations (P < 0.05). FRT10 significantly ameliorated the HFD-induced gut dysbiosis, as evidenced by increased abundance of microbes, including Butyricicoccus, Butyricimonas, Intestinimonas, Odoribacter, and Alistipes, and decreased abundance of Desulfovibrionaceae, Roseburia, and Lachnoclostridium. Lactobacillus, Bifidobacterium, and Akkermansia were markedly increased after FRT10 intervention. In addition, real-time quantitative PCR revealed that FRT10 upregulated the mRNA expression levels of peroxisome proliferator-activated receptor-α (PPARα) and carnitine palmitoyltransferase-1α (CPT1α), and downregulated the mRNA expression levels of sterol regulatory element-binding protein 1 (SREBP-1) and TG-synthesizing enzyme diacylglycerol acyltransferase 1 (DGAT1) in liver. These findings suggested that FRT10 had anti-obesity effects in obese mice partly related to the activation of PPARα/CPT1α pathway. FRT10 can be considered a single probiotic agent for preventing HFD-induced obesity in humans and animals.
Collapse
Affiliation(s)
- Hongying Cai
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,National Engineering Research Center of Biological Feed, Beijing, 100081, China
| | - Zhiguo Wen
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiumei Li
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kun Meng
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Peilong Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,National Engineering Research Center of Biological Feed, Beijing, 100081, China.
| |
Collapse
|
15
|
Abstract
Being originally discovered as cellular recycling bins, lysosomes are today recognized as versatile signaling organelles that control a wide range of cellular functions that are essential not only for the well-being of normal cells but also for malignant transformation and cancer progression. In addition to their core functions in waste disposal and recycling of macromolecules and energy, lysosomes serve as an indispensable support system for malignant phenotype by promoting cell growth, cytoprotective autophagy, drug resistance, pH homeostasis, invasion, metastasis, and genomic integrity. On the other hand, malignant transformation reduces the stability of lysosomal membranes rendering cancer cells sensitive to lysosome-dependent cell death. Notably, many clinically approved cationic amphiphilic drugs widely used for the treatment of other diseases accumulate in lysosomes, interfere with their cancer-promoting and cancer-supporting functions and destabilize their membranes thereby opening intriguing possibilities for cancer therapy. Here, we review the emerging evidence that supports the supplementation of current cancer therapies with lysosome-targeting cationic amphiphilic drugs.
Collapse
|
16
|
Penfluridol as a Candidate of Drug Repurposing for Anticancer Agent. Molecules 2019; 24:molecules24203659. [PMID: 31614431 PMCID: PMC6832311 DOI: 10.3390/molecules24203659] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
Penfluridol has robust antipsychotic efficacy and is a first-generation diphenylbutylpiperidine. Its effects last for several days after a single oral dose and it can be administered once a week to provide better compliance and symptom control. Recently; strong antitumour effects for penfluridol were discovered in various cancer cell lines; such as breast; pancreatic; glioblastoma; and lung cancer cells via several distinct mechanisms. Therefore; penfluridol has drawn much attention as a potentially novel anti-tumour agent. In addition; the anti-cancer effects of penfluridol have been demonstrated in vivo: results showed slight changes in the volume and weight of organs at doses tested in animals. This paper outlines the potential for penfluridol to be developed as a next-generation anticancer drug.
Collapse
|
17
|
Repurposing Penfluridol in Combination with Temozolomide for the Treatment of Glioblastoma. Cancers (Basel) 2019; 11:cancers11091310. [PMID: 31492002 PMCID: PMC6770574 DOI: 10.3390/cancers11091310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Despite the presence of aggressive treatment strategies, glioblastoma remains intractable, warranting a novel therapeutic modality. An oral antipsychotic agent, penflurido (PFD), used for schizophrenia treatment, has shown an antitumor effect on various types of cancer cells. As glioma sphere-forming cells (GSCs) are known to mediate drug resistance in glioblastoma, and considering that antipsychotics can easily penetrate the blood-brain barrier, we investigated the antitumor effect of PFD on patient-derived GSCs. Using five GSCs, we found that PFD exerts an antiproliferative effect in a time- and dose-dependent manner. At IC50, spheroid size and second-generation spheroid formation were significantly suppressed. Stemness factors, SOX2 and OCT4, were decreased. PFD treatment reduced cancer cell migration and invasion by reducing the Integrin α6 and uPAR levels and suppression of the expression of epithelial-to-mesenchymal transition (EMT) factors, vimentin and Zeb1. GLI1 was found to be involved in PFD-induced EMT inhibition. Furthermore, combinatorial treatment of PFD with temozolomide (TMZ) significantly suppressed tumor growth and prolonged survival in vivo. Immunostaining revealed decreased expression of GLI1, SOX2, and vimentin in the PFD treatment group but not in the TMZ-only treatment group. Therefore, PFD can be effectively repurposed for the treatment of glioblastoma by combining it with TMZ.
Collapse
|
18
|
Guan X, Liu Z, Zhao Z, Zhang X, Tao S, Yuan B, Zhang J, Wang D, Liu Q, Ding Y. Emerging roles of low-density lipoprotein in the development and treatment of breast cancer. Lipids Health Dis 2019; 18:137. [PMID: 31182104 PMCID: PMC6558919 DOI: 10.1186/s12944-019-1075-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/19/2019] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is a heterogeneous disease with increasing incidence and mortality and represents one of the most common cancer types worldwide. Low-density lipoprotein (LDL) is a complex particle composed of several proteins and lipids, which carries cholesterol into peripheral tissues and also affects the metabolism of fatty acids. Recent reports have indicated an emerging role of LDL in breast cancer, affecting cell proliferation and migration, thereby facilitating disease progression. However, controversy still exists among distinct types of breast cancer that can be affected by LDL. Classical therapeutic approaches, such as radiotherapy, chemotherapy, and lipid-lowering drugs were also reported as affecting LDL metabolism and content in breast cancer patients. Therefore, in this review we summarized and discussed the role of LDL in the development and treatment of breast cancer.
Collapse
Affiliation(s)
- Xuefeng Guan
- Department of Laboratory Animals, College of Animal Sciences, JiLin University in Changchun of Jilin Province in China, Xian Road 5333#, Changchun, 130062 China
| | - Zhuo Liu
- China-Japan Union Hospital of Jilin University, Changchun, 130333 China
| | - Zhen Zhao
- Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, 519015 China
- The 2nd Clinical School of Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
- The 85th Hospital of CPLA, Shanghai, 200040 China
| | - Xuefeng Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118 China
| | - Siteng Tao
- Department of Laboratory Animals, College of Animal Sciences, JiLin University in Changchun of Jilin Province in China, Xian Road 5333#, Changchun, 130062 China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, JiLin University in Changchun of Jilin Province in China, Xian Road 5333#, Changchun, 130062 China
| | - Jiabao Zhang
- Department of Laboratory Animals, College of Animal Sciences, JiLin University in Changchun of Jilin Province in China, Xian Road 5333#, Changchun, 130062 China
| | - Dawei Wang
- The 2nd Clinical School of Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Qing Liu
- Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, 519015 China
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
- The 2nd Clinical School of Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120 China
| | - Yu Ding
- Department of Laboratory Animals, College of Animal Sciences, JiLin University in Changchun of Jilin Province in China, Xian Road 5333#, Changchun, 130062 China
| |
Collapse
|
19
|
Meziane W, Mekkaoui Z, Hai I, Kacimi K, Djilali K, Touil-Boukoffa C, Lefranc G, Fernandez A, Lamb N, Mennechet F, Aribi M. Combination of metformin with sodium selenite induces a functional phenotypic switch of human GM-CSF monocyte-derived macrophages. Int Immunopharmacol 2019; 73:212-224. [PMID: 31108386 DOI: 10.1016/j.intimp.2019.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 04/03/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES We evaluated the effects of metformin (Met, 1,1‑dimethylbiguanide hydrochloride) combined or not with sodium selenite (Ss, Na2SeO3) on the functional activities of LPS-activated GM-CSF monocyte-derived macrophages (GM-MDM). MATERIALS AND METHODS Human GM-MDMs from three healthy donors were treated with Met or Ss alone, or with the combination of Met and Ss, and assayed for various biological activities and cytokines expression. RESULTS Met alone and Ss alone had significantly different effects on phagocytosis and killing capacities and IL-β production, but had similar effects on the downregulation of inducible nitric oxide synthase (iNOS) activity, relative nicotinamide adenine dinucleotide reduced (NADH) dehydrogenase (Complex I), intracellular free calcium ions (ifCa2+), and on the upregulation of arginase activity. Additionally, iNOS activity-to-arginase activity ratio was downregulated in Met or Ss treated-GM-MDMs, and, conversely, upregulated in GM-MDMs treated with Met + Ss in combination, indicating that arginase activity dominates that of iNOS when the two treatments are associated. Moreover, combination of Met with Ss significantly upregulated hydrogen peroxide (H2O2) production and phagocytic capacity, but significantly downregulated the production of IL-1β, iNOS activity and killing capacity. On the contrary, we show that Met alone induced significant downregulation of phagocytic capacity and slight upregulation of killing capacity. Nevertheless, Ss seems to accentuate the effect of Met on the downregulation of NO production, as well as to reverse its effect on both phagocytic and killing capacities. On the other hand, all treatments induced a sharp decrease in relative levels of NADH dehydrogenase, and a marked decrease in the levels of ifCa2+. Finally, we found that GM-MDMs treated with Met or Ss, or Met combined with Ss exhibited different functional activation phenotypes, as indicated by the surface expression of co-stimulatory and cell activation and presentation molecules CD14, CD80, CD86 and HLA-DR. CONCLUSIONS Our results demonstrated that Met/Ss combination can play an important role in the modulation of functional activities of human LPS-activated GM-MDMs. Additionally, the overall effects of Met and the induction of "M2" GM-MDMs-associated arginase could be influenced by its combination with Ss.
Collapse
Affiliation(s)
- Warda Meziane
- Laboratory of Applied Molecular Biology and Immunology, BioMolim, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Zineb Mekkaoui
- Laboratory of Applied Molecular Biology and Immunology, BioMolim, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Ismahane Hai
- Laboratory of Applied Molecular Biology and Immunology, BioMolim, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Kamila Kacimi
- Laboratory of Applied Molecular Biology and Immunology, BioMolim, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Khuira Djilali
- Laboratory of Applied Molecular Biology and Immunology, BioMolim, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria
| | - Chafia Touil-Boukoffa
- Cytokines and NO Synthases Team, Laboratory of Cellular and Molecular Biology (LBCM), Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), BP 32 El-Alia Bab-Ezzouar, Algiers, Algeria
| | - Gérard Lefranc
- Institut de Génétique Humaine, UMR 9002 CNRS-Université de Montpellier, Montpellier, France
| | - Anne Fernandez
- Institut de Génétique Humaine, UMR 9002 CNRS-Université de Montpellier, Montpellier, France
| | - Ned Lamb
- Institut de Génétique Humaine, UMR 9002 CNRS-Université de Montpellier, Montpellier, France
| | - Franck Mennechet
- Institut de Génétique Moléculaire de Montpellier (IGMM) - UMR5535, CNRS et Université de Montpellier, France
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, BioMolim, W0414100, University of Tlemcen, 13000 Tlemcen, Algeria.
| |
Collapse
|
20
|
Gupta N, Gupta P, Srivastava SK. Penfluridol overcomes paclitaxel resistance in metastatic breast cancer. Sci Rep 2019; 9:5066. [PMID: 30911062 PMCID: PMC6434141 DOI: 10.1038/s41598-019-41632-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/01/2019] [Indexed: 12/27/2022] Open
Abstract
Paclitaxel is a first line chemotherapeutic agent for the patients with metastatic breast cancer. But inherited or acquired resistance to paclitaxel leads to poor response rates in a majority of these patients. To identify mechanisms of paclitaxel resistance, we developed paclitaxel resistant breast cancer cell lines, MCF-7 and 4T1 by continuous exposure to paclitaxel for several months. Western blot analysis showed increased expression of HER2 and β-catenin pathway in resistant cell lines as compared to parent cells. Hence, we hypothesized that HER2/β-catenin mediates paclitaxel resistance in breast cancer and suppression of HER2/β-catenin signaling could overcome paclitaxel resistance. Our data showed that penfluridol (PFL) treatment significantly reduced the survival of paclitaxel-resistant cells. Western blot analysis revealed that PFL treatment suppressed HER2, as well as, β-catenin pathway. In vivo data confirmed that PFL significantly potentiated tumor growth suppressive effects of paclitaxel in an orthotropic breast cancer model. In addition, tumors from paclitaxel and PFL-treated mice showed reduced HER2 and β-catenin expression, along with increased apoptosis. Taken together our results demonstrate a novel role of HER2/β-catenin in paclitaxel resistance and open up new avenues for application of PFL as a therapeutic option for overcoming paclitaxel resistance.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, Texas, 79601, USA
| | - Parul Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, Texas, 79601, USA.
| |
Collapse
|
21
|
Pan X, Lin Z, Jiang D, Yu Y, Yang D, Zhou H, Zhan D, Liu S, Peng G, Chen Z, Yu Z. Erastin decreases radioresistance of NSCLC cells partially by inducing GPX4-mediated ferroptosis. Oncol Lett 2019; 17:3001-3008. [PMID: 30854078 PMCID: PMC6365906 DOI: 10.3892/ol.2019.9888] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
Abstract
The aim of the present study was to examine whether erastin influences radioresistance in non-small cell lung cancer (NSCLC) cells and produce a preliminary investigation into its mechanism of action. The radioresistant subtype of NSCLC cells, A549-R and H460-R, were induced by high-dose hypofractionated irradiation. Erastin was used to treat the radioresistant cells and radiosensitivity was examined by colony formation assays. Cell death was determined after the cells were treated with erastin, irradiation (IR) or erastin together with IR. The expression of glutathione peroxidase 4 (GPX4) expression in the parental cells and radioresistance cells was detected by western blotting. GPX4 expression in the radioresistance cells was subsequently inhibited, radiosensitivity and cell death was measured, and erastin enhanced radiosensitivity in A549-R and H460-R cells. Erastin and IR exhibited a combined effect on killing cells, as co-treatment with erastin and IR demonstrated a higher effect on killing cells compared with erastin or IR alone. GPX4 expression was inhibited by erastin in the radioresistant cells. Inhibiting GPX4 expression also radiosensitized NSCLC cells to radiation in the radioresistant cell lines. Erastin-induced and GPX4-inhibition-induced cell death could partially be rescued by deferoxamine, but not Z-VAD-FMK and olaparib, which indicated that erastin and GPX4-inhibition induced ferroptosis in the radioresistant cells. Erastin decreased radioresistance of NSCLC cells partially by inducing GPX4-mediated ferroptosis.
Collapse
Affiliation(s)
- Xiaofen Pan
- Department of Head and Neck Cancer, Oncology Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524000, P.R. China
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518000, P.R. China
| | - Zhixiu Lin
- Department of Pharmacy, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524000, P.R. China
| | - Danxian Jiang
- Department of Head and Neck Cancer, Oncology Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524000, P.R. China
| | - Ying Yu
- Department of Head and Neck Cancer, Oncology Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524000, P.R. China
| | - Donghong Yang
- Department of Head and Neck Cancer, Oncology Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524000, P.R. China
| | - Hechao Zhou
- Department of Head and Neck Cancer, Oncology Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524000, P.R. China
| | - Dechao Zhan
- Department of Head and Neck Cancer, Oncology Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524000, P.R. China
| | - Sha Liu
- Department of Oncology, Jingzhou Central Hospital, Jingzhou, Hubei 434020, P.R. China
| | - Gang Peng
- Department of Head and Neck Cancer, Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zihong Chen
- Department of Head and Neck Cancer, Oncology Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524000, P.R. China
| | - Zhonghua Yu
- Department of Head and Neck Cancer, Oncology Center, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524000, P.R. China
| |
Collapse
|
22
|
Ashraf-Uz-Zaman M, Sajib MS, Cucullo L, Mikelis CM, German NA. Analogs of penfluridol as chemotherapeutic agents with reduced central nervous system activity. Bioorg Med Chem Lett 2018; 28:3652-3657. [PMID: 30389290 DOI: 10.1016/j.bmcl.2018.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 11/30/2022]
Abstract
Several recent reports have highlighted the feasibility of the use of penfluridol, a well-known antipsychotic agent, as a chemotherapeutic agent. In vivo experiments have confirmed the cytotoxic activity of penfluridol in triple-negative breast cancer model, lung cancer model, and further studies have been proposed to assess its anticancer activity and viability for the treatment of glioblastomas. However, penfluridol anticancer activity was observed at a dosage significantly higher than that administered in antipsychotic therapy, thus raising the concern for the potential onset of CNS side effects in patients undergoing intensive pharmacological treatment. In this study, we evaluate the potential CNS toxicity of penfluridol side by side with a set of analogs.
Collapse
Affiliation(s)
- Md Ashraf-Uz-Zaman
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, United States
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, United States
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, United States
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, United States
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, United States.
| |
Collapse
|
23
|
Feng Z, Xia Y, Gao T, Xu F, Lei Q, Peng C, Yang Y, Xue Q, Hu X, Wang Q, Wang R, Ran Z, Zeng Z, Yang N, Xie Z, Yu L. The antipsychotic agent trifluoperazine hydrochloride suppresses triple-negative breast cancer tumor growth and brain metastasis by inducing G0/G1 arrest and apoptosis. Cell Death Dis 2018; 9:1006. [PMID: 30258182 PMCID: PMC6158270 DOI: 10.1038/s41419-018-1046-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 02/08/2023]
Abstract
Women with aggressive triple-negative breast cancer (TNBC) are at high risk of brain metastasis, which has no effective therapeutic option partially due to the poor penetration of drugs across the blood-brain barrier. Trifluoperazine (TFP) is an approved antipsychotic drug with good bioavailability in brain and had shown anticancer effect in several types of cancer. It drives us to investigate its activities to suppress TNBC, especially the brain metastasis. In this study, we chose three TNBC cell lines MDA-MB-468, MDA-MB-231, and 4T1 to assess its anticancer activities along with the possible mechanisms. In vitro, it induced G0/G1 cell cycle arrest via decreasing the expression of both cyclinD1/CDK4 and cyclinE/CDK2, and stimulated mitochondria-mediated apoptosis. In vivo, TFP suppressed the growth of subcutaneous xenograft tumor and brain metastasis without causing detectable side effects. Importantly, it prolonged the survival of mice bearing brain metastasis. Immunohistochemical analysis of Ki67 and cleaved caspase-3 indicated TFP could suppress the growth and induce apoptosis of cancer cells in vivo. Taken together, TFP might be a potential available drug for treating TNBC with brain metastasis, which urgently needs novel treatment options.
Collapse
Affiliation(s)
- Zhanzhan Feng
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Yong Xia
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Tiantao Gao
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Fuyan Xu
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Qian Lei
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Cuiting Peng
- School of Chemical Engineering, Sichuan University, 610041, Chengdu, China
| | - Yufei Yang
- Sichuan Yuanda Shuyang Pharmaceutical Co., Ltd., 610041, Chengdu, China
| | - Qiang Xue
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Xi Hu
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Qianqian Wang
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China
| | - Ranran Wang
- West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Zhiqiang Ran
- West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Zhilin Zeng
- West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Nan Yang
- West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Zixin Xie
- West China School of Pharmacy, Sichuan University, 610041, Chengdu, China
| | - Luoting Yu
- Lab of Medicinal Chemistry, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, China.
| |
Collapse
|
24
|
Padma K, Nanaware S, Pande N, Ransing R, Kulkarni K. Radiation-Induced Neuropsychiatric Manifestations in a Patient with Brain Metastasis: A Diagnostic and Therapeutic Challenges for Consultation-Liaison Psychiatrist. Indian J Palliat Care 2018; 24:369-371. [PMID: 30111955 PMCID: PMC6069615 DOI: 10.4103/ijpc.ijpc_210_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this case report is to highlight diagnostic and therapeutic challenges for consultation-liaison psychiatrist in the case of radiation-induced neuropsychiatric syndrome. We report the case of a 61-year-old man presented with neurological and psychiatric manifestations following the radiation therapy for non-small cell lung carcinoma with brain metastasis. We have briefly reviewed and discussed the risk factors, clinical features, diagnostic, therapeutic, and preventive aspect of radiation-induced neuropsychiatric manifestations.
Collapse
Affiliation(s)
- Kumari Padma
- Department of Psychiatry, B.K.L. Walawalkar Rural Medical College, Maharashtra, India
| | - Sagar Nanaware
- Department of Medicine, B.K.L. Walawalkar Rural Medical College, Maharashtra, India
| | - Nikhil Pande
- Department of Medical Oncology, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Ramdas Ransing
- Department of Psychiatry, B.K.L. Walawalkar Rural Medical College, Maharashtra, India
| | | |
Collapse
|
25
|
Ranjan A, German N, Mikelis C, Srivenugopal K, Srivastava SK. Penfluridol induces endoplasmic reticulum stress leading to autophagy in pancreatic cancer. Tumour Biol 2017; 39:1010428317705517. [DOI: 10.1177/1010428317705517] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Nadezhda German
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Constantinos Mikelis
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Kalkunte Srivenugopal
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
26
|
Ranjan A, Srivastava SK. Penfluridol suppresses glioblastoma tumor growth by Akt-mediated inhibition of GLI1. Oncotarget 2017; 8:32960-32976. [PMID: 28380428 PMCID: PMC5464842 DOI: 10.18632/oncotarget.16515] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/03/2017] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) is the most common brain tumor with poor survival rate. Our results show that penfluridol, an antipsychotic drug significantly reduced the survival of ten adult and pediatric glioblastoma cell lines with IC50 ranging 2-5 μM after 72 hours of treatment and induced apoptosis. Penfluridol treatment suppressed the phosphorylation of Akt at Ser473 and reduced the expression of GLI1, OCT4, Nanog and Sox2 in several glioblastoma cell lines in a concentration-dependent manner. Inhibiting Akt with LY294002 and siRNA, or inhibiting GLI1 using GANT61, cyclopamine, siRNA and CRISPR/Cas9 resulted in enhanced cell growth suppressive effects of penfluridol. On the other hand, overexpression of GLI1 significantly attenuated the effects of penfluridol. Our results further demonstrated that penfluridol treatment inhibited the growth of U87MG tumors by 65% and 72% in subcutaneous and intracranial in vivo glioblastoma tumor models respectively. Immunohistochemical and western blot analysis of tumors revealed reduced pAkt (Ser 473), GLI1, OCT4 and increase in caspase-3 cleavage and TUNEL staining, confirming in vitro findings. Taken together, our results indicate that overall glioblastoma tumor growth suppression by penfluridol was associated with Akt-mediated inhibition of GLI1.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sanjay K. Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| |
Collapse
|
27
|
Ranjan A, Srivastava SK. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis. Sci Rep 2016; 6:26165. [PMID: 27189859 PMCID: PMC4870635 DOI: 10.1038/srep26165] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/27/2016] [Indexed: 01/06/2023] Open
Abstract
Pancreatic tumors exhibit enhanced autophagy as compared to any other cancer, making it resistant to chemotherapy. We evaluated the effect of penfluridol against pancreatic cancer. Penfluridol treatment induced apoptosis and inhibited the growth of Panc-1, BxPC-3 and AsPC-1, pancreatic cancer cells with IC50 ranging between 6-7 μM after 24 h of treatment. Significant autophagy was induced by penfluridol treatment in pancreatic cancer cells. Punctate LC3B and autophagosomes staining confirmed autophagy. Inhibiting autophagy by chloroquine, bafilomycin, 3-methyladenine or LC3BsiRNA, significantly blocked penfluridol-induced apoptosis, suggesting that autophagy lead to apoptosis in our model. Penfluridol treatment suppressed the growth of BxPC-3 tumor xenografts by 48% as compared to 17% when treated in combination with chloroquine. Similarly, penfluridol suppressed the growth of AsPC-1 tumors by 40% versus 16% when given in combination with chloroquine. TUNEL staining and caspase-3 cleavage revealed less apoptosis in the tumors from mice treated with penfluridol and chloroquine as compared to penfluridol alone. Penfluridol treatment also suppressed the growth of orthotopically implanted Panc-1 tumors by 80% by inducing autophagy-mediated apoptosis in the tumors. These studies established that penfluridol inhibits pancreatic tumor growth by autophagy-mediated apoptosis. Since penfluridol is already in clinic, positive findings from our study will accelerate its clinical development.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| |
Collapse
|
28
|
Ranjan A, Gupta P, Srivastava SK. Penfluridol: An Antipsychotic Agent Suppresses Metastatic Tumor Growth in Triple-Negative Breast Cancer by Inhibiting Integrin Signaling Axis. Cancer Res 2016; 76:877-890. [PMID: 26627008 PMCID: PMC4755811 DOI: 10.1158/0008-5472.can-15-1233] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/13/2015] [Indexed: 01/01/2023]
Abstract
Metastasis of breast cancer, especially to the brain, is the major cause of mortality. The inability of anticancer agents to cross the blood-brain-barrier represents a critical challenge for successful treatment. In the current study, we investigated the antimetastatic potential of penfluridol, an antipsychotic drug frequently prescribed for schizophrenia with anticancer activity. We show that penfluridol induced apoptosis and reduced the survival of several metastatic triple-negative breast cancer (TNBC) cell lines. In addition, penfluridol treatment significantly reduced the expression of integrin α6, integrin β4, Fak, paxillin, Rac1/2/3, and ROCK1 in vitro. We further evaluated the efficacy of penfluridol in three different in vivo tumor models. We demonstrate that penfluridol administration to an orthotopic model of breast cancer suppressed tumor growth by 49%. On the other hand, penfluridol treatment inhibited the growth of metastatic brain tumors introduced by intracardiac or intracranial injection of breast cancer cells by 90% and 72%, respectively. Penfluridol-treated tumors from all three models exhibited reduced integrin β4 and increased apoptosis. Moreover, chronic administration of penfluridol failed to elicit significant toxic or behavioral side effects in mice. Taken together, our results indicate that penfluridol effectively reduces the growth of primary TNBC tumors and especially metastatic growth in the brain by inhibiting integrin signaling, and prompt further preclinical investigation into repurposing penfluridol for the treatment of metastatic TNBC.
Collapse
Affiliation(s)
- Alok Ranjan
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Parul Gupta
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas
| | - Sanjay K Srivastava
- Department of Biomedical Sciences and Cancer Biology Center, Texas Tech University Health Sciences Center, Amarillo, Texas.
| |
Collapse
|
29
|
De Hert M, Peuskens J, Sabbe T, Mitchell AJ, Stubbs B, Neven P, Wildiers H, Detraux J. Relationship between prolactin, breast cancer risk, and antipsychotics in patients with schizophrenia: a critical review. Acta Psychiatr Scand 2016; 133:5-22. [PMID: 26114737 DOI: 10.1111/acps.12459] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/02/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVE A recent meta-analysis showed that breast cancer probably is more common in female patients with schizophrenia than in the general population (effect size = 1.25, P < 0.05). Increasing experimental and epidemiological data have alerted researchers to the influence of prolactin (PRL) in mammary carcinogenesis. We therefore investigated the possible relationship between antipsychotic-induced hyperprolactinemia (HPRL) and breast cancer risk in female patients with schizophrenia. METHOD A literature search (1950 until January 2015), using the MEDLINE database, was conducted for English-language published clinical trials to identify and synthesize data of the current state of knowledge concerning breast cancer risk (factors) in women with schizophrenia and its (their) relationship between HPRL and antipsychotic medication. RESULTS Although an increasing body of evidence supports the involvement of PRL in breast carcinogenesis, results of human prospective studies are limited, equivocal, and correlative (with risk ratios ranging from 0.70 to 1.9 for premenopausal women and from 0.76 to 2.03 for postmenopausal women). Moreover, these studies equally do not take into account the local production of PRL in breast epithelium, although amplification or overexpression of the local autocrine/paracrine PRL loop may be a more important mechanism in tumorigenesis. Until now, there is also no conclusive evidence that antipsychotic medication can increase the risk of breast malignancy and mortality. CONCLUSION Other breast risk factors than PRL, such as nulliparity, obesity, diabetes mellitus, and unhealthy lifestyle behaviours (alcohol dependence, smoking, low physical activity), probably are of greater relevance in individual breast cancer cases within the population of female patients with schizophrenia.
Collapse
Affiliation(s)
- M De Hert
- Department of Neurosciences, KU Leuven University Psychiatric Centre, Kortenberg, Belgium
| | - J Peuskens
- Department of Neurosciences, KU Leuven University Psychiatric Centre, Kortenberg, Belgium
| | - T Sabbe
- Department of Neurosciences, KU Leuven University Psychiatric Centre, Kortenberg, Belgium
| | - A J Mitchell
- Department of Psycho-oncology, Cancer & Molecular Medicine, University of Leicester, Leicester, UK
| | - B Stubbs
- School of Health and Social Care, University of Greenwich, Greenwich, UK
| | - P Neven
- Multidisciplinary Breast Center, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
| | - H Wildiers
- Multidisciplinary Breast Center, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium.,Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
| | - J Detraux
- Department of Neurosciences, KU Leuven University Psychiatric Centre, Kortenberg, Belgium
| |
Collapse
|
30
|
Zhou C, Jiang SS, Wang CY, Li R, Che HL. Different immunology mechanisms of Phellinus igniarius in inhibiting growth of liver cancer and melanoma cells. Asian Pac J Cancer Prev 2015; 15:3659-65. [PMID: 24870774 DOI: 10.7314/apjcp.2014.15.8.3659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
To assess inhibition mechanisms of a Phellinus igniarius (PI) extract on cancer, C57BL/6 mice were orally treated with PI extractive after or before implanting H22 (hepatocellular carcinoma ) or B16 (melanoma) cells. Mice were orally gavaged with different doses of PI for 36 days 24h after introduction of H22 or B16 cells. Mice in another group were orally treated as above daily for 42 days and implanted with H22 cells on day 7. Then the T lymphocyte, antibody, cytokine, LAK, NK cell activity in spleen, tumor cell apoptosis status and tumor inhibition in related organs, as well as the expression of iNOS and PCNA in tumor tissue were examined. The PI extract could improve animal immunity as well as inhibit cancer cell growth and metastasis with a dose-response relationship. Notably, PI's regulation with the two kinds of tumor appeared to occur in different ways, since the antibody profile and tumor metastasis demonstrated variation between animals implanted with hepatocellular carcinoma and melanoma cells.
Collapse
Affiliation(s)
- Cui Zhou
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China E-mail :
| | | | | | | | | |
Collapse
|
31
|
Qin JJ, Nag S, Wang W, Zhou J, Zhang WD, Wang H, Zhang R. NFAT as cancer target: mission possible? Biochim Biophys Acta Rev Cancer 2014; 1846:297-311. [PMID: 25072963 DOI: 10.1016/j.bbcan.2014.07.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/30/2022]
Abstract
The NFAT signaling pathway regulates various aspects of cellular functions; NFAT acts as a calcium sensor, integrating calcium signaling with other pathways involved in development and growth, immune response, and inflammatory response. The NFAT family of transcription factors regulates diverse cellular functions such as cell survival, proliferation, migration, invasion, and angiogenesis. The NFAT isoforms are constitutively activated and overexpressed in several cancer types wherein they transactivate downstream targets that play important roles in cancer development and progression. Though the NFAT family has been conclusively proved to be pivotal in cancer progression, the different isoforms play distinct roles in different cellular contexts. In this review, our discussion is focused on the mechanisms that drive the activation of various NFAT isoforms in cancer. Additionally, we analyze the potential of NFAT as a valid target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, PR China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|