1
|
Xie W, Li Y, Wang X, Blokhina E, Krupitsky E, Vetrova M, Hu J, Yuan T, Chen J, Wang H, Chen X. GABA B Receptor: Structure, Biological Functions, and Therapy for Diseases. MedComm (Beijing) 2025; 6:e70163. [PMID: 40242161 PMCID: PMC12000685 DOI: 10.1002/mco2.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/29/2024] [Accepted: 02/19/2025] [Indexed: 04/18/2025] Open
Abstract
Gamma-aminobutyric acid (GABA) B receptors (GABABRs) that acts slowly and maintains the inhibitory tone are versatile regulators in the complex nervous behaviors and their involvement in various neuropsychiatric disorders, such as anxiety, epilepsy, pain, drug addiction, and Alzheimer's disease. Additional study advances have implied the crucial roles of GABABRs in regulating feeding-related behaviors, yet their therapeutic potential in addressing the neuropsychiatric disorders, binge eating, and feeding-related disorders remains underutilized. This general review summarized the physiological structure and functions of GABABR, explored the regulation in various psychiatric disorders, feeding behaviors, binge eating, and metabolism disorders, and fully discussed the potential of targeting GABABRs and its regulator-binding sites for the treatment of different psychiatric disorders, binge eating and even obesity. While agonists that directly bind to GABABR1 have some negative side effects, positive allosteric modulators (PAMs) that bind to GABABR2 demonstrate excellent therapeutic efficacy and tolerability and have better safety and therapeutic indexes. Moreover, phosphorylation sites of downstream GABABRs regulators may be novel therapeutic targets for psychiatric disorders, binge eating, and obesity. Further studies, clinical trials in particular, will be essential for confirming the therapeutic value of PAMs and other agents targeting the GABABR pathways in a clinical setting.
Collapse
Affiliation(s)
- Weijie Xie
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health CenterTongji University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Yuan Li
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Xinyue Wang
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Elena Blokhina
- Valdman Institute of PharmacologyPavlov UniversitySt. PetersburgRussia
| | - Evgeny Krupitsky
- Valdman Institute of PharmacologyPavlov UniversitySt. PetersburgRussia
- Bekhterev National Medical Research Center for Psychiatry and NeurologySt. PetersburgRussia
| | - Marina Vetrova
- Valdman Institute of PharmacologyPavlov UniversitySt. PetersburgRussia
| | - Ji Hu
- ShanghaiTech UniversityShanghaiChina
| | - Ti‐Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
- Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsuChina
| | - Jue Chen
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
| | - Hua Wang
- Department of OncologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xiangfang Chen
- Department of EndocrinologySecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| |
Collapse
|
2
|
Busquets O, Parcerisas A, Verdaguer E, Ettcheto M, Camins A, Beas-Zarate C, Castro-Torres RD, Auladell C. c-Jun N-Terminal Kinases in Alzheimer's Disease: A Possible Target for the Modulation of the Earliest Alterations. J Alzheimers Dis 2021; 82:S127-S139. [PMID: 33216036 DOI: 10.3233/jad-201053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Given the highly multifactorial origin of Alzheimer's disease (AD) neuropathology, disentangling and orderly knowing mechanisms involved in sporadic onset are arduous. Nevertheless, when the elements involved are dissected into smaller pieces, the task becomes more accessible. This review aimed to describe the link between c-Jun N-terminal Kinases (JNKs), master regulators of many cellular functions, and the early alterations of AD: synaptic loss and dysregulation of neuronal transport. Both processes have a role in the posterior cognitive decline observed in AD. The manuscript focuses on the molecular mechanisms of glutamatergic, GABA, and cholinergic synapses altered by the presence of amyloid-β aggregates and hyperphosphorylated tau, as well as on several consequences of the disruption of cellular processes linked to neuronal transport that is controlled by the JNK-JIP (c-jun NH2-terminal kinase (JNK)-interacting proteins (JIPs) complex, including the transport of AβPP or autophagosomes.
Collapse
Affiliation(s)
- Oriol Busquets
- Department of Pharmacology, Toxicology and Therapeutic Chemistry; Pharmacy and Food Sciences Faculty, Universitat de Barcelona, Barcelona, Spain.,Department of Biochemistry and Biotechnology, Medicine and Health Sciences Faculty, Universitat Rovira i Virgili, Reus, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Dominick P. Purpura Department of Neurosciences, Albert Einstein College of Medicine, New York City, NY, USA
| | - Antoni Parcerisas
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| | - Ester Verdaguer
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry; Pharmacy and Food Sciences Faculty, Universitat de Barcelona, Barcelona, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry; Pharmacy and Food Sciences Faculty, Universitat de Barcelona, Barcelona, Spain.,Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Beas-Zarate
- Department of Cell and Molecular Biology, Laboratory of Neural Regeneration, C.U.C.B.A., Universidad de Guadalajara, Jalisco, Mexico
| | - Rubén Darío Castro-Torres
- Department of Cell and Molecular Biology, Laboratory of Biology of Neurotransmission, C.U.C.B.A., Universidad de Guadalajara, Jalisco, Mexico
| | - Carme Auladell
- Centre for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Biology Faculty, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Shukla AK, Dwivedi-Agnihotri H. Structure and function of β-arrestins, their emerging role in breast cancer, and potential opportunities for therapeutic manipulation. Adv Cancer Res 2020; 145:139-156. [PMID: 32089163 DOI: 10.1016/bs.acr.2020.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
β-Arrestins (βarrs) are multifunctional intracellular proteins with an ability to directly interact with a large number of cellular partners including the G protein-coupled receptors (GPCRs). βarrs contribute to multiple aspects of GPCR signaling, trafficking and downregulation. Considering the central involvement of GPCR signaling in the onset and progression of diverse types of cancers, βarrs have also emerged as key players in the context of investigating cancer phenotypes, and as potential therapeutic targets. In this chapter, we first provide a brief account of structure and function of βarrs and then highlight recent discoveries unfolding novel functional attributes of βarrs in breast cancer. We also underscore the recent paradigms of modulating βarr functions in cellular context and potential therapeutic opportunities going forward.
Collapse
Affiliation(s)
- Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.
| | | |
Collapse
|
4
|
Guo XX, An S, Yang Y, Liu Y, Hao Q, Tang T, Xu TR. Emerging role of the Jun N-terminal kinase interactome in human health. Cell Biol Int 2018; 42:756-768. [DOI: 10.1002/cbin.10948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/03/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Xiao-Xi Guo
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Su An
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Yang Yang
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Ying Liu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Qian Hao
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tao Tang
- Faculty of Medicine; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology; Kunming University of Science and Technology; Kunming Yunnan 650500 China
| |
Collapse
|
5
|
Sharma D, Parameswaran N. Multifaceted role of β-arrestins in inflammation and disease. Genes Immun 2015; 16:499-513. [PMID: 26378652 PMCID: PMC4670277 DOI: 10.1038/gene.2015.37] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/05/2015] [Accepted: 07/31/2015] [Indexed: 12/19/2022]
Abstract
Arrestins are intracellular scaffolding proteins known to regulate a range of biochemical processes including G protein-coupled receptor (GPCR) desensitization, signal attenuation, receptor turnover and downstream signaling cascades. Their roles in regulation of signaling network have lately been extended to receptors outside of the GPCR family, demonstrating their roles as important scaffolding proteins in various physiological processes including proliferation, differentiation and apoptosis. Recent studies have demonstrated a critical role for arrestins in immunological processes including key functions in inflammatory signaling pathways. In this review, we provide a comprehensive analysis of the different functions of the arrestin family of proteins especially related to immunity and inflammatory diseases.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Physiology and Division of Pathology Michigan State University East Lansing, MI 48824
| | - Narayanan Parameswaran
- Department of Physiology and Division of Pathology Michigan State University East Lansing, MI 48824
| |
Collapse
|