1
|
Borović Šunjić S, Jaganjac M, Vlainić J, Halasz M, Žarković N. Lipid Peroxidation-Related Redox Signaling in Osteosarcoma. Int J Mol Sci 2024; 25:4559. [PMID: 38674143 PMCID: PMC11050283 DOI: 10.3390/ijms25084559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress and lipid peroxidation play important roles in numerous physiological and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides and reactive aldehydes, act as important mediators of redox signaling in normal and malignant cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma and highlight the involvement of lipid peroxidation products in redox signaling pathways, including the involvement of lipid peroxidation in osteosarcoma therapies.
Collapse
Affiliation(s)
- Suzana Borović Šunjić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| | | | | | | | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| |
Collapse
|
2
|
Farahzadi R, Valipour B, Fathi E, Pirmoradi S, Molavi O, Montazersaheb S, Sanaat Z. Oxidative stress regulation and related metabolic pathways in epithelial-mesenchymal transition of breast cancer stem cells. Stem Cell Res Ther 2023; 14:342. [PMID: 38017510 PMCID: PMC10685711 DOI: 10.1186/s13287-023-03571-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cell remodeling process in which epithelial cells undergo a reversible phenotype switch via the loss of adhesion capacity and acquisition of mesenchymal characteristics. In other words, EMT activation can increase invasiveness and metastatic properties, and prevent the sensitivity of tumor cells to chemotherapeutics, as mesenchymal cells have a higher resistance to chemotherapy and immunotherapy. EMT is orchestrated by a complex and multifactorial network, often linked to episodic, transient, or partial events. A variety of factors have been implicated in EMT development. Based on this concept, multiple metabolic pathways and master transcription factors, such as Snail, Twist, and ZEB, can drive the EMT. Emerging evidence suggests that oxidative stress plays a significant role in EMT induction. One emerging theory is that reducing mitochondrial-derived reactive oxygen species production may contribute to EMT development. This review describes how metabolic pathways and transcription factors are linked to EMT induction and addresses the involvement of signaling pathways.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Department of Anatomical Sciences, Sarab Faculty of Medical Sciences, Sarab, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Samaneh Pirmoradi
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zohreh Sanaat
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Didier AJ, Stiene J, Fang L, Watkins D, Dworkin LD, Creeden JF. Antioxidant and Anti-Tumor Effects of Dietary Vitamins A, C, and E. Antioxidants (Basel) 2023; 12:632. [PMID: 36978880 PMCID: PMC10045152 DOI: 10.3390/antiox12030632] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Oxidative stress, a condition characterized by an imbalance between pro-oxidant molecules and antioxidant defense systems, is increasingly recognized as a key contributor to cancer development. This is because the reactive oxygen species (ROS) generated during oxidative stress can damage DNA, proteins, and lipids to facilitate mutations and other cellular changes that promote cancer growth. Antioxidant supplementation is a potential strategy for decreasing cancer incidence; by reducing oxidative stress, DNA damage and other deleterious cellular changes may be attenuated. Several clinical trials have been conducted to investigate the role of antioxidant supplements in cancer prevention. Some studies have found that antioxidant supplements, such as vitamin A, vitamin C, and vitamin E, can reduce the risk of certain types of cancer. On the other hand, some studies posit an increased risk of cancer with antioxidant supplement use. In this review, we will provide an overview of the current understanding of the role of oxidative stress in cancer formation, as well as the potential benefits of antioxidant supplementation in cancer prevention. Additionally, we will discuss both preclinical and clinical studies highlighting the potentials and limitations of preventive antioxidant strategies.
Collapse
Affiliation(s)
- Alexander J. Didier
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | | | | | | | | | - Justin F. Creeden
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
4
|
Andreo-López MC, Contreras-Bolívar V, Muñoz-Torres M, García-Fontana B, García-Fontana C. Influence of the Mediterranean Diet on Healthy Aging. Int J Mol Sci 2023; 24:4491. [PMID: 36901921 PMCID: PMC10003249 DOI: 10.3390/ijms24054491] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The life expectancy of the global population has increased. Aging is a natural physiological process that poses major challenges in an increasingly long-lived and frail population. Several molecular mechanisms are involved in aging. Likewise, the gut microbiota, which is influenced by environmental factors such as diet, plays a crucial role in the modulation of these mechanisms. The Mediterranean diet, as well as the components present in it, offer some proof of this. Achieving healthy aging should be focused on the promotion of healthy lifestyle habits that reduce the development of pathologies that are associated with aging, in order to increase the quality of life of the aging population. In this review we analyze the influence of the Mediterranean diet on the molecular pathways and the microbiota associated with more favorable aging patterns, as well as its possible role as an anti-aging treatment.
Collapse
Affiliation(s)
| | - Victoria Contreras-Bolívar
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
| | - Manuel Muñoz-Torres
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| | - Beatriz García-Fontana
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
- Department of Cell Biology, University of Granada, 18016 Granada, Spain
| | - Cristina García-Fontana
- Endocrinology and Nutrition Unit, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. Granada), 18014 Granada, Spain
- CIBER on Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III, 18012 Granada, Spain
| |
Collapse
|
5
|
Feng D, Zhu W, You J, Shi X, Han P, Wei W, Wei Q, Yang L. Mitochondrial Aldehyde Dehydrogenase 2 Represents a Potential Biomarker of Biochemical Recurrence in Prostate Cancer Patients. Molecules 2022; 27:6000. [PMID: 36144737 PMCID: PMC9500792 DOI: 10.3390/molecules27186000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We aimed to explore the role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in prostate cancer (PCa) patients and provide insights into the tumor immune microenvironment (TME) for those patients undergoing radical radiotherapy. METHODS We performed all analyses using R version 3.6.3 and its suitable packages. Cytoscape 3.8.2 was used to establish network of competing endogenous RNAs (ceRNAs). RESULTS Downregulation of ADLH2 was significantly associated with higher risk of BCR-free survival (HR: 0.40, 95%CI: 0.24-0.68, p = 0.001) and metastasis-free survival (HR: 0.21, 95%CI: 0.09-0.49, p = 0.002). Additionally, ALDH2 repression contributed to significantly shorter BCR-free survival in the TCGA database (HR: 0.55, 95%CI: 0.33-0.93, p = 0.027). For immune checkpoints, patients that expressed a higher level of CD96 had a higher risk of BCR than their counterparts (HR: 1.79, 95%CI: 1.06-3.03, p = 0.032), as well as NRP1 (HR: 2.18, 95%CI: 1.29-3.69, p = 0.005). In terms of the TME parameters, the spearman analysis showed that ALDH was positively associated with B cells (r: 0.13), CD8+ T cells (r: 0.19), neutrophils (r: 0.13), and macrophages (r: 0.17). Patients with higher score of neutrophils (HR: 1.75, 95%CI: 1.03-2.95, p = 0.038), immune score (HR: 1.92, 95%CI: 1.14-3.25, p = 0.017), stromal score (HR: 2.52, 95%CI: 1.49-4.26, p = 0.001), and estimate score (HR: 1.81, 95%CI: 1.07-3.06, p = 0.028) had higher risk of BCR than their counterparts. Our ceRNA network found that PART1 might regulate the expression of ALDH via has-miR-578 and has-miR-6833-3p. Besides, PHA-793887, PI-103, and piperlongumine had better correlations with ALDH2. CONCLUSIONS We found that ALDH2 might serve as a potential biomarker predicting biochemical recurrence for PCa patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Jinna N, Rida P, Smart M, LaBarge M, Jovanovic-Talisman T, Natarajan R, Seewaldt V. Adaptation to Hypoxia May Promote Therapeutic Resistance to Androgen Receptor Inhibition in Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23168844. [PMID: 36012111 PMCID: PMC9408190 DOI: 10.3390/ijms23168844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) surpasses other BC subtypes as the most challenging to treat due to its lack of traditional BC biomarkers. Nearly 30% of TNBC patients express the androgen receptor (AR), and the blockade of androgen production and AR signaling have been the cornerstones of therapies for AR-positive TNBC. However, the majority of women are resistant to AR-targeted therapy, which is a major impediment to improving outcomes for the AR-positive TNBC subpopulation. The hypoxia signaling cascade is frequently activated in the tumor microenvironment in response to low oxygen levels; activation of the hypoxia signaling cascade allows tumors to survive despite hypoxia-mediated interference with cellular metabolism. The activation of hypoxia signaling networks in TNBC promotes resistance to most anticancer drugs including AR inhibitors. The activation of hypoxia network signaling occurs more frequently in TNBC compared to other BC subtypes. Herein, we examine the (1) interplay between hypoxia signaling networks and AR and (2) whether hypoxia and hypoxic stress adaptive pathways promote the emergence of resistance to therapies that target AR. We also pose the well-supported question, “Can the efficacy of androgen-/AR-targeted treatments be enhanced by co-targeting hypoxia?” By critically examining the evidence and the complex entwinement of these two oncogenic pathways, we argue that the simultaneous targeting of androgen biosynthesis/AR signaling and hypoxia may enhance the sensitivity of AR-positive TNBCs to AR-targeted treatments, derail the emergence of therapy resistance, and improve patient outcomes.
Collapse
Affiliation(s)
- Nikita Jinna
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Max Smart
- Rowland Hall, Salt Lake City, UT 84102, USA
| | - Mark LaBarge
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | | | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Victoria Seewaldt
- Department of Population Science, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence:
| |
Collapse
|
7
|
Antonio-Andres G, Martinez-Ruiz GU, Morales-Martinez M, Jiménez-Hernandez E, Martinez-Torres E, Lopez-Perez TV, Estrada-Abreo LA, Patino-Lopez G, Juarez-Mendez S, Davila-Borja VM, Huerta-Yepez S. Transcriptional Regulation of Yin-Yang 1 Expression through the Hypoxia Inducible Factor-1 in Pediatric Acute Lymphoblastic Leukemia. Int J Mol Sci 2022; 23:ijms23031728. [PMID: 35163649 PMCID: PMC8835886 DOI: 10.3390/ijms23031728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
Yin-Yang transcription factor 1 (YY1) is involved in tumor progression, metastasis and has been shown to be elevated in different cancers, including leukemia. The regulatory mechanism underlying YY1 expression in leukemia is still not understood. Bioinformatics analysis reveal three Hypoxia-inducible factor 1-alpha (HIF-1α) putative binding sites in the YY1 promoter region. The regulation of YY1 by HIF-1α in leukemia was analyzed. Mutation of the putative YY1 binding sites in a reporter system containing the HIF-1α promoter region and CHIP analysis confirmed that these sites are important for YY1 regulation. Leukemia cell lines showed that both proteins HIF-1α and YY1 are co-expressed under hypoxia. In addition, the expression of mRNA of YY1 was increased after 3 h of hypoxia conditions and affect several target genes expression. In contrast, chemical inhibition of HIF-1α induces downregulation of YY1 and sensitizes cells to chemotherapeutic drugs. The clinical implications of HIF-1α in the regulation of YY1 were investigated by evaluation of expression of HIF-1α and YY1 in 108 peripheral blood samples and by RT-PCR in 46 bone marrow samples of patients with pediatric acute lymphoblastic leukemia (ALL). We found that the expression of HIF-1α positively correlates with YY1 expression in those patients. This is consistent with bioinformatic analyses of several databases. Our findings demonstrate for the first time that YY1 can be transcriptionally regulated by HIF-1α, and a correlation between HIF-1α expression and YY1 was found in ALL clinical samples. Hence, HIF-1α and YY1 may be possible therapeutic target and/or biomarkers of ALL.
Collapse
Affiliation(s)
- Gabriela Antonio-Andres
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City 06720, Mexico; (G.A.-A.); (M.M.-M.); (E.M.-T.); (T.V.L.-P.)
| | - Gustavo U. Martinez-Ruiz
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Mario Morales-Martinez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City 06720, Mexico; (G.A.-A.); (M.M.-M.); (E.M.-T.); (T.V.L.-P.)
| | - Elva Jiménez-Hernandez
- Servicio de Hemato-Oncología, Hospital Infantil de Moctezuma, Mexico City 15530, Mexico;
| | - Estefany Martinez-Torres
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City 06720, Mexico; (G.A.-A.); (M.M.-M.); (E.M.-T.); (T.V.L.-P.)
| | - Tania V. Lopez-Perez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City 06720, Mexico; (G.A.-A.); (M.M.-M.); (E.M.-T.); (T.V.L.-P.)
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City 03940, Mexico
| | - Laura A. Estrada-Abreo
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México, Federico Gómez, Mexico City 06720, Mexico; (L.A.E.-A.); (G.P.-L.)
| | - Genaro Patino-Lopez
- Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México, Federico Gómez, Mexico City 06720, Mexico; (L.A.E.-A.); (G.P.-L.)
| | - Sergio Juarez-Mendez
- Laboratorio de Oncología Experimental, Instituto Nacional de Pediatría, S.S.A., Mexico City 04530, Mexico; (S.J.-M.); (V.M.D.-B.)
| | - Víctor M. Davila-Borja
- Laboratorio de Oncología Experimental, Instituto Nacional de Pediatría, S.S.A., Mexico City 04530, Mexico; (S.J.-M.); (V.M.D.-B.)
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Mexico City 06720, Mexico; (G.A.-A.); (M.M.-M.); (E.M.-T.); (T.V.L.-P.)
- Correspondence: ; Tel.: +52-55-52289917 (ext. 4401); Fax: +52-55-44349663
| |
Collapse
|
8
|
Yu H, Zhang Y, Liu M, Liao L, Wei X, Zhou R. SIRT3 deficiency affects the migration, invasion, tube formation and necroptosis of trophoblast and is implicated in the pathogenesis of preeclampsia. Placenta 2022; 120:1-9. [DOI: 10.1016/j.placenta.2022.01.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 12/14/2022]
|
9
|
Korac B, Kalezic A, Pekovic-Vaughan V, Korac A, Jankovic A. Redox changes in obesity, metabolic syndrome, and diabetes. Redox Biol 2021; 42:101887. [PMID: 33579666 PMCID: PMC8113039 DOI: 10.1016/j.redox.2021.101887] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
"Life is an instantaneous encounter of circulating matter and flowing energy" (Jean Giaja, Serbian physiologist), is one of the most elegant definitions not only of life but the relationship of redox biology and metabolism. Their evolutionary liaison has created inseparable yet dynamic homeostasis in health, which, when disrupted, leads to disease. This interconnection is even more pertinent today, in an era of increasing metabolic diseases of epidemic proportions such as obesity, metabolic syndrome, and diabetes. Despite great advances in understanding the molecular mechanisms of redox and metabolic regulation, we face significant challenges in preventing, diagnosing, and treating metabolic diseases. The etiological association and temporal overlap of these syndromes present significant challenges for the discrimination of appropriate clinical biomarkers for diagnosis, treatment, and outcome prediction. These multifactorial, multiorgan metabolic syndromes with complex etiopathogenic mechanisms are accompanied by disturbed redox equilibrium in target tissues and circulation. Free radicals and reactive species are considered both a causal factor and a consequence of disease status. Thus, determining the subtypes and levels of free radicals and reactive species, oxidatively damaged biomolecules (lipids, proteins, and nucleic acids) and antioxidant defense components as well as redox-sensitive transcription factors and fluxes of redox-dependent metabolic pathways will help define existing and establish novel redox biomarkers for stratifying metabolic diseases. This review aims to discuss diverse redox/metabolic aspects in obesity, metabolic syndrome, and diabetes, with the imperative to help establish a platform for emerging and future redox-metabolic biomarkers research in precision medicine. Future research warrants detailed investigations into the status of redox biomarkers in healthy subjects and patients, including the use of emerging 'omic' profiling technologies (e.g., redox proteomes, lipidomes, metabolomes, and transcriptomes), taking into account the influence of lifestyle (diet, physical activity, sleep, work patterns) as well as circadian ~24h fluctuations in circulatory factors and metabolites.
Collapse
Affiliation(s)
- Bato Korac
- Department of Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia; Center for Electron Microscopy, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia.
| | - Andjelika Kalezic
- Department of Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Vanja Pekovic-Vaughan
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, William Henry Duncan Building, University of Liverpool, L7 8TX, Liverpool, UK
| | - Aleksandra Korac
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, 11000, Belgrade, Serbia
| | - Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia.
| |
Collapse
|
10
|
Chewing Behavior Attenuates the Tumor Progression-Enhancing Effects of Psychological Stress in a Breast Cancer Model Mouse. Brain Sci 2021; 11:brainsci11040479. [PMID: 33918787 PMCID: PMC8069186 DOI: 10.3390/brainsci11040479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022] Open
Abstract
We examined whether chewing behavior affects the tumor progression-enhancing impact of psychological stress. Human breast cancer cell line (MDA-MB-231) cells were inoculated into the mammary fat pads of athymic nude mice. The mice were assigned randomly to control, stress, and stress+chewing groups. Psychological stress was created by keeping mice in a transparent restraint cylinder for 45 min, three times a day, for 35 days after cell inoculation. Animals in the stress+chewing group were provided with a wooden stick for chewing on during the psychological stress period. Chewing behavior remarkably inhibited the tumor growth accelerated by the psychological stress. Immunohistochemical and Western blot findings revealed that chewing behavior during psychological stress markedly suppressed tumor angiogenesis and cell proliferation. In addition, chewing behavior decreased serum glucocorticoid levels and expressions of glucocorticoid and β2-adrenergic receptors in tumors. Chewing behavior decreased expressions of inducible nitric oxide synthase and 4-hydroxynonenal, and increased expression of superoxide dismutase 2 in tumors. Our findings suggest that chewing behavior could ameliorate the enhancing effects of psychological stress on the progression of breast cancer, at least partially, through modulating stress hormones and their receptors, and the subsequent signaling pathways involving reactive oxygen and nitrogen species.
Collapse
|
11
|
Kalezic A, Udicki M, Srdic Galic B, Aleksic M, Korac A, Jankovic A, Korac B. Redox profile of breast tumor and associated adipose tissue in premenopausal women - Interplay between obesity and malignancy. Redox Biol 2021; 41:101939. [PMID: 33765617 PMCID: PMC8008245 DOI: 10.1016/j.redox.2021.101939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/13/2022] Open
Abstract
One of the underlying mechanisms that could link breast cancer and obesity is shifted redox homeostasis in the tumor microenvironment. To reveal the relationship between the malignant phenotype and obesity, we compared redox profiles of breast tumor and tumor-associated adipose tissue from premenopausal women: normal-weight with benign tumors, overweight/obese with benign tumors, normal-weight with malignant tumors, and overweight/obese with malignant tumors. Namely, we examined the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), protein expression and activity of main antioxidant defense (AD) enzymes: copper, zinc- and manganese superoxide dismutase, catalase, and glutathione peroxidase, as well as the level of 4-hydroxy-2-nonenal (4-HNE) modified proteins. Higher protein expression and activity of AD enzymes were found in malignant tumor tissue than benign tumor tissue, irrespective of obesity. Nevertheless, malignant tumor tissue of overweight/obese women was characterized by higher protein expression of Nrf2 and weaker immunopositivity for 4-HNE modified proteins. In malignant tumor-associated adipose tissue, the redox profile was clearly related to obesity. Higher Nrf2 protein expression and higher AD enzyme levels were observed in normal-weight women, while stronger immunopositivity for 4-HNE modified proteins was found in overweight/obese women. The results suggest that the complex interplay between obesity and malignancy involves redox-sensitive pathways in breast tumor and tumor-associated adipose tissue. In malignant breast tumor tissue, antioxidant defense enzyme levels are not related to obesity. In malignant tumor-associated adipose tissue, redox profile is related to obesity. Nrf2 contributes to the “activated” phenotype of adipose tissue in malignancy.
Collapse
Affiliation(s)
- Andjelika Kalezic
- Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mirjana Udicki
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | - Marija Aleksic
- Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | | - Aleksandra Jankovic
- Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bato Korac
- Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia; Faculty of Biology, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
12
|
Natural Antioxidant Control of Neuropathic Pain-Exploring the Role of Mitochondrial SIRT3 Pathway. Antioxidants (Basel) 2020; 9:antiox9111103. [PMID: 33182469 PMCID: PMC7698145 DOI: 10.3390/antiox9111103] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain is a chronic painful disease. Data have shown that reactive oxygen species (ROS) are implicated in chronic pain. Particularly, the enhanced ROS production alters the mitochondrial genome and proteome through the accumulation of lipid peroxidation products, such as 4-hydroxynonenal (4-HNE) and malondialdehyde (MDA). Sirtuin 3 (SIRT3) is a mitochondrial protein and its activity can reduce ROS levels by modulating key antioxidant enzymes, such as manganese superoxide dismutase (MnSOD). Here, we evaluated the role of SIRT3 in the maintenance of basal levels of ROS in a model of chronic constriction injury (CCI) of the sciatic nerve and the protective effects of a natural antioxidant, the bergamot polyphenolic fraction (BPF). Rats were exposed to CCI of the sciatic nerve in the presence or absence of BPF (25–75 mg/kg). Level of acetylation, post-translational modulation on cysteine residues of proteins by HNE and SIRT3 activation, were detected in the spinal cord through western blotting, WES methodology and enzymatic assays. Our results reported that SIRT3 carbonylation and therefore its inactivation contributes to mitochondrial MnSOD hyperacetylation during CCI induced neuropathic pain in rats. In particular, we have demonstrated a close relation between oxidative stress, hyperalgesia, allodynia and sirtuins inactivation reverted by BPF administration.
Collapse
|
13
|
Jaganjac M, Milkovic L, Gegotek A, Cindric M, Zarkovic K, Skrzydlewska E, Zarkovic N. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic Biol Med 2020; 157:128-153. [PMID: 31756524 DOI: 10.1016/j.freeradbiomed.2019.11.023] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
Modern analytical methods combined with the modern concepts of redox signaling revealed 4-hydroxy-2-nonenal (4-HNE) as particular growth regulating factor involved in redox signaling under physiological and pathophysiological circumstances. In this review current knowledge of the relevance of 4-HNE as "the second messenger of reactive oxygen species" (ROS) in redox signaling of representative major stress-associated diseases is briefly summarized. The findings presented allow for 4-HNE to be considered not only as second messenger of ROS, but also as one of fundamental factors of the stress- and age-associated diseases. While standard, even modern concepts of molecular medicine and respective therapies in majority of these diseases target mostly the disease-specific symptoms. 4-HNE, especially its protein adducts, might appear to be the bioactive markers that would allow better monitoring of specific pathophysiological processes reflecting their complexity. Eventually that could help development of advanced integrative medicine approach for patients and the diseases they suffer from on the personalized basis implementing biomedical remedies that would optimize beneficial effects of ROS and 4-HNE to prevent the onset and progression of the illness, perhaps even providing the real cure.
Collapse
Affiliation(s)
- Morana Jaganjac
- Qatar Analytics & BioResearch Lab, Anti Doping Lab Qatar, Sport City Street, Doha, Qatar
| | - Lidija Milkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia
| | - Agnieszka Gegotek
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Marina Cindric
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Kamelija Zarkovic
- University of Zagreb, School of Medicine, Div. of Pathology, University Hospital Centre Zagreb, Kispaticeva 12, Zagreb, Croatia
| | - Elzbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222, Bialystok, Poland
| | - Neven Zarkovic
- Rudjer Boskovic Institute, Laboratory for Oxidative Stress, Div. of Molecular Medicine, Bijenicka 54, Zagreb, Croatia.
| |
Collapse
|
14
|
Cucci MA, Compagnone A, Daga M, Grattarola M, Ullio C, Roetto A, Palmieri A, Rosa AC, Argenziano M, Cavalli R, Simile MM, Pascale RM, Dianzani C, Barrera G, Pizzimenti S. Post-translational inhibition of YAP oncogene expression by 4-hydroxynonenal in bladder cancer cells. Free Radic Biol Med 2019; 141:205-219. [PMID: 31207288 DOI: 10.1016/j.freeradbiomed.2019.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/15/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022]
Abstract
The transcriptional regulator YAP plays an important role in cancer progression and is negatively controlled by the Hippo pathway. YAP is frequently overexpressed in human cancers, including bladder cancer. Interestingly, YAP expression and activity can be inhibited by pro-oxidant conditions; moreover, YAP itself can also affect the cellular redox status through multiple mechanisms. 4-Hydroxynonenal (HNE), the most intensively studied end product of lipid peroxidation, is a pro-oxidant agent able to deplete GSH and has an anti-tumoral effect by affecting multiple signal pathways, including the down-regulation of oncogene expressions. These observations prompted us to investigate the effect of HNE on YAP expression and activity. We demonstrated that HNE inhibited YAP expression and its target genes in bladder cancer cells through a redox-dependent mechanism. Moreover, the YAP down-regulation was accompanied by an inhibition of proliferation, migration, invasion, and angiogenesis, as well as by an accumulation of cells in the G2/M phase of cell cycle and by an induction of apoptosis. We also established the YAP role in inhibiting cell viability and inducing apoptosis in HNE-treated cells by using an expression vector for YAP. Furthermore, we identified a post-translational mechanism for the HNE-induced YAP expression inhibition, involving an increase of YAP phosphorylation and ubiquitination, leading to proteasomal degradation. Our data established that HNE can post-translationally down-regulate YAP through a redox-dependent mechanism and that this modulation can contribute to determining the specific anti-cancer effects of HNE.
Collapse
Affiliation(s)
- Marie Angele Cucci
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Alessandra Compagnone
- Department of Oncology, University of Turin, Via Michelangelo 27, 10125, Turin, Italy
| | - Martina Daga
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Margherita Grattarola
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Chiara Ullio
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Antonella Roetto
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Antonietta Palmieri
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Arianna Carolina Rosa
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Monica Argenziano
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Roberta Cavalli
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Maria Maddalena Simile
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Rosa Maria Pascale
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Chiara Dianzani
- Department of Scienza e Tecnologia del Farmaco, University of Turin, Via Pietro Giuria 9, 10125, Turin, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125 Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy.
| |
Collapse
|
15
|
Storder J, Renard P, Arnould T. Update on the role of Sirtuin 3 in cell differentiation: A major metabolic target that can be pharmacologically controlled. Biochem Pharmacol 2019; 169:113621. [PMID: 31472127 DOI: 10.1016/j.bcp.2019.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023]
Abstract
Cell differentiation is a fundamental biological event in which a precursor stem cell is turning into a specialized somatic cell. It is thus crucial for the development, tissue turnover and regeneration in mammals. Among the numerous changes taking place in a cell during a differentiation programme, the biology of mitochondria, the central organelle mainly responsible for energy homeostasis and stress adaptation, is deeply modified. These modifications are now well recognized as taking an active part to the completion of the differentiation programme. Indeed, mitochondrial biogenesis and metabolic shift are observed during cell differentiation, adapting many syntheses, calcium homeostasis, ATP and reactive oxygen species production, to the needs. These mitochondrial functions are substantially regulated by the post-translational modifications of the mitochondrial proteins among which lysine acetylation is essential. This mitoacetylome is then globally controlled by the balance between spontaneous/enzymatically-catalysed protein acetylation and the NAD+-dependent deacetylation mediated by Sirtuin 3. This enzyme is now considered as a major regulator of the function of the organelle. Regarding the requirement of these mitochondrial adaptations, the subsequent growing interest for this enzyme recently extended to the investigation of the mechanisms driving cell differentiation. This review summarizes the currently available information about the significance of SIRT3 in cell differentiation in physio-pathological contexts. We also suggest a control of the differentiation-activated autophagy by SIRT3, a hypothesis supported by recent findings establishing a causal link between SIRT3 and autophagy. Eventually, an update on the present pharmacological modulators of SIRT3 in a context of cell differentiation is discussed.
Collapse
Affiliation(s)
- Julie Storder
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 rue de Bruxelles, 5000 Namur, Belgium.
| |
Collapse
|
16
|
Abstract
The concept of cell signaling in the context of nonenzyme-assisted protein modifications by reactive electrophilic and oxidative species, broadly known as redox signaling, is a uniquely complex topic that has been approached from numerous different and multidisciplinary angles. Our Review reflects on five aspects critical for understanding how nature harnesses these noncanonical post-translational modifications to coordinate distinct cellular activities: (1) specific players and their generation, (2) physicochemical properties, (3) mechanisms of action, (4) methods of interrogation, and (5) functional roles in health and disease. Emphasis is primarily placed on the latest progress in the field, but several aspects of classical work likely forgotten/lost are also recollected. For researchers with interests in getting into the field, our Review is anticipated to function as a primer. For the expert, we aim to stimulate thought and discussion about fundamentals of redox signaling mechanisms and nuances of specificity/selectivity and timing in this sophisticated yet fascinating arena at the crossroads of chemistry and biology.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Pharmacology and Toxicology, College of
Pharmacy, University of Utah, Salt Lake City, Utah, 84112, USA
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Marcus J. C. Long
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Jesse R. Poganik
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
| | - Yimon Aye
- Ecole Polytechnique Fédérale de Lausanne,
Institute of Chemical Sciences and Engineering, 1015, Lausanne, Switzerland
- Department of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York, 14853, USA
- Department of Biochemistry, Weill Cornell Medicine, New
York, New York, 10065, USA
| |
Collapse
|
17
|
Cardiac-specific overexpression of aldehyde dehydrogenase 2 exacerbates cardiac remodeling in response to pressure overload. Redox Biol 2018; 17:440-449. [PMID: 29885625 PMCID: PMC5991908 DOI: 10.1016/j.redox.2018.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 12/20/2022] Open
Abstract
Pathological cardiac remodeling during heart failure is associated with higher levels of lipid peroxidation products and lower abundance of several aldehyde detoxification enzymes, including aldehyde dehydrogenase 2 (ALDH2). An emerging idea that could explain these findings concerns the role of electrophilic species in redox signaling, which may be important for adaptive responses to stress or injury. The purpose of this study was to determine whether genetically increasing ALDH2 activity affects pressure overload-induced cardiac dysfunction. Mice subjected to transverse aortic constriction (TAC) for 12 weeks developed myocardial hypertrophy and cardiac dysfunction, which were associated with diminished ALDH2 expression and activity. Cardiac-specific expression of the human ALDH2 gene in mice augmented myocardial ALDH2 activity but did not improve cardiac function in response to pressure overload. After 12 weeks of TAC, ALDH2 transgenic mice had larger hearts than their wild-type littermates and lower capillary density. These findings show that overexpression of ALDH2 augments the hypertrophic response to pressure overload and imply that downregulation of ALDH2 may be an adaptive response to certain forms of cardiac pathology.
Collapse
|
18
|
Liu KL, Kuo WC, Lin CY, Lii CK, Liu YL, Cheng YH, Tsai CW. Prevention of 4-hydroxynonenal-induced lipolytic activation by carnosic acid is related to the induction of glutathione S-transferase in 3T3-L1 adipocytes. Free Radic Biol Med 2018; 121:1-8. [PMID: 29698741 DOI: 10.1016/j.freeradbiomed.2018.04.567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/12/2018] [Accepted: 04/21/2018] [Indexed: 02/07/2023]
Abstract
UNLABELLED Induction of 4-hydroxynonenal (4-HNE), a major lipid peroxidation aldehyde, is observed in patients with obesity and type 2 diabetes mellitus. The lipolytic response by 4-HNE has been linked to insulin resistance. In this study, we investigated the effects of carnosic acid (CA) on 4-HNE-induced lipolysis and the inhibition of β-oxidation in 3T3-L1 adipocytes. The results indicated that cells pretreated with CA reduced 4-HNE-mediated free fatty acid (FFA) release. Furthermore, CA reversed the inhibition of phosphorylation of Tyr632 of insulin receptor substrate-1 (IRS-1) and Akt and the phosphorylation of Ser307 of IRS-1. CA inhibited 4-HNE-induced phosphorylation of protein kinase A (PKA) and hormone-sensitive lipase (HSL), and reversed the suppression by 4-HNE of phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (p < 0.05). Pretreatment of cells with forskolin (a cAMP agonist) and compound C (an AMPK inhibitor) reversed these effects, respectively (p < 0.05). In human subcutaneous adipocytes, CA also attenuated 4-HNE-induced FFA release and the phosphorylation of PKA and HSL (p < 0.05). Moreover, CA increased the protein expression of glutathione S-transferase (GST) A and M. Pretreatment with ethacrynic acid, a GST inhibitor, prevented the 4-HNE-conjugated proteins suppression, the PKA and HSL phosphorylation reduction, and the FFA release inhibition by CA (p < 0.05). CONCLUSION The attenuation by CA of the lipolytic response by 4-HNE is likely related to the induction of GST, which in turn reduced 4-HNE-conjugated proteins and decreased the activation of the PKA/HSL pathway. The observed effects may explain how CA improves 4-HNE-induced insulin resistance.
Collapse
Affiliation(s)
- Kai-Li Liu
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan; Department of Dietitian, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wen-Chen Kuo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Yuan Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yen-Lin Liu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yun-Hsin Cheng
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung, Taiwan.
| |
Collapse
|
19
|
Balogh E, Veale DJ, McGarry T, Orr C, Szekanecz Z, Ng CT, Fearon U, Biniecka M. Oxidative stress impairs energy metabolism in primary cells and synovial tissue of patients with rheumatoid arthritis. Arthritis Res Ther 2018; 20:95. [PMID: 29843785 PMCID: PMC5972404 DOI: 10.1186/s13075-018-1592-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/12/2018] [Indexed: 03/18/2023] Open
Abstract
Background In this study, we examined the effect of oxidative stress on cellular energy metabolism and pro-angiogenic/pro-inflammatory mechanisms of primary rheumatoid arthritis synovial fibroblast cells (RASFC) and human umbilical vein endothelial cells (HUVEC). Methods Primary RASFC and HUVEC were cultured with the oxidative stress inducer 4-hydroxy-2-nonenal (4-HNE), and extracellular acidification rate, oxygen consumption rate, mitochondrial function and pro-angiogenic/pro-inflammatory mechanisms were assessed using the Seahorse analyser, complex I–V activity assays, random mutation mitochondrial capture assays, enzyme-linked immunosorbent assays and functional assays, including angiogenic tube formation, migration and invasion. Expression of angiogenic growth factors in synovial tissue (ST) was assessed by IHC in patients with rheumatoid arthritis (RA) undergoing arthroscopy before and after administration of tumour necrosis factor inhibitors (TNFi). Results In RASFC and HUVEC, 4-HNE-induced oxidative stress reprogrammed energy metabolism by inhibiting mitochondrial basal, maximal and adenosine triphosphate-linked respiration and reserve capacity, coupled with the reduced enzymatic activity of oxidative phosphorylation complexes III and IV. In contrast, 4-HNE elevated basal glycolysis, glycolytic capacity and glycolytic reserve, paralleled by an increase in mitochondrial DNA mutations and reactive oxygen species. 4-HNE activated pro-angiogenic responses of RASFC, which subsequently altered HUVEC invasion and migration, angiogenic tube formation and the release of pro-angiogenic mediators. In vivo markers of angiogenesis (vascular endothelial growth factor, angiopoietin 2 [Ang2], tyrosine kinase receptor [Tie2]) were significantly associated with oxidative damage and oxygen metabolism in the inflamed synovium. Significant reduction in ST vascularity and Ang2/Tie2 expression was demonstrated in patients with RA before and after administration of TNFi. Conclusions Oxidative stress promotes metabolism in favour of glycolysis, an effect that may contribute to acceleration of inflammatory mechanisms and subsequent dysfunctional angiogenesis in RA. Electronic supplementary material The online version of this article (10.1186/s13075-018-1592-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emese Balogh
- Department of Rheumatology, University of Debrecen Medical and Health Science Centre, 98. Nagyerdei krt, Debrecen, Hungary
| | - Douglas J Veale
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - Trudy McGarry
- Molecular Rheumatology, Trinity Biomedical Sciences Institute Trinity College Dublin, Dublin, Ireland
| | - Carl Orr
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - Zoltan Szekanecz
- Department of Rheumatology, University of Debrecen Medical and Health Science Centre, 98. Nagyerdei krt, Debrecen, Hungary
| | - Chin-Teck Ng
- Department of Rheumatology and Immunology, Singapore General Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Ursula Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute Trinity College Dublin, Dublin, Ireland
| | - Monika Biniecka
- Centre for Arthritis and Rheumatic Diseases, Dublin Academic Medical Centre, St. Vincent's University Hospital, Dublin, Ireland.
| |
Collapse
|
20
|
Kudryavtseva AV, Krasnov GS, Dmitriev AA, Alekseev BY, Kardymon OL, Sadritdinova AF, Fedorova MS, Pokrovsky AV, Melnikova NV, Kaprin AD, Moskalev AA, Snezhkina AV. Mitochondrial dysfunction and oxidative stress in aging and cancer. Oncotarget 2018; 7:44879-44905. [PMID: 27270647 PMCID: PMC5216692 DOI: 10.18632/oncotarget.9821] [Citation(s) in RCA: 375] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/28/2016] [Indexed: 12/16/2022] Open
Abstract
Aging and cancer are the most important issues to research. The population in the world is growing older, and the incidence of cancer increases with age. There is no doubt about the linkage between aging and cancer. However, the molecular mechanisms underlying this association are still unknown. Several lines of evidence suggest that the oxidative stress as a cause and/or consequence of the mitochondrial dysfunction is one of the main drivers of these processes. Increasing ROS levels and products of the oxidative stress, which occur in aging and age-related disorders, were also found in cancer. This review focuses on the similarities between ageing-associated and cancer-associated oxidative stress and mitochondrial dysfunction as their common phenotype.
Collapse
Affiliation(s)
- Anna V Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - George S Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Y Alekseev
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga L Kardymon
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Asiya F Sadritdinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Maria S Fedorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Nataliya V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey D Kaprin
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | |
Collapse
|
21
|
Nègre-Salvayre A, Garoby-Salom S, Swiader A, Rouahi M, Pucelle M, Salvayre R. Proatherogenic effects of 4-hydroxynonenal. Free Radic Biol Med 2017; 111:127-139. [PMID: 28040472 DOI: 10.1016/j.freeradbiomed.2016.12.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 01/08/2023]
Abstract
4-hydroxy-2-nonenal (HNE) is a α,β-unsaturated hydroxyalkenal generated by peroxidation of n-6 polyunsaturated fatty acid. This reactive carbonyl compound exhibits a huge number of biological properties that result mainly from the formation of HNE-adducts on free amino groups and thiol groups in proteins. In the vascular system, HNE adduct accumulation progressively leads to cellular dysfunction and tissue damages that are involved in the progression of atherosclerosis and related diseases. HNE contributes to the atherogenicity of oxidized LDL, by forming HNE-apoB adducts that deviate the LDL metabolism to the scavenger receptor pathway of macrophagic cells, and lead to the formation of foam cells. HNE activates transcription factors (Nrf2, NF-kappaB) that (dys)regulate various cellular responses ranging from hormetic and survival signaling at very low concentrations, to inflammatory and apoptotic effects at higher concentrations. Among a variety of cellular targets, HNE can modify signaling proteins involved in atherosclerotic plaque remodeling, particularly growth factor receptors (PDGFR, EGFR), cell cycle proteins, mitochondrial and endoplasmic reticulum components or extracellular matrix proteins, which progressively alters smooth muscle cell proliferation, angiogenesis and induces apoptosis. HNE adducts accumulate in the lipidic necrotic core of advanced atherosclerotic lesions, and may locally contribute to macrophage and smooth muscle cell apoptosis, which may induce plaque destabilization and rupture, thereby increasing the risk of athero-thrombotic events.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert Salvayre
- Inserm UMR-1048, France; University of Toulouse, Faculty of Medicine, Biochemistry Dept, Toulouse, France; CHU Toulouse, Rangueil, Toulouse, France
| |
Collapse
|
22
|
Gasparovic AC, Milkovic L, Sunjic SB, Zarkovic N. Cancer growth regulation by 4-hydroxynonenal. Free Radic Biol Med 2017; 111:226-234. [PMID: 28131901 DOI: 10.1016/j.freeradbiomed.2017.01.030] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 02/07/2023]
Abstract
While reactive oxygen species (ROS) gain their carcinogenic effects by DNA mutations, if generated in the vicinity of genome, lipid peroxidation products, notably 4-hydroxynonenal (HNE), have much more complex modes of activities. Namely, while ROS are short living and have short efficiency distance range (in nm or µm) HNE has strong binding affinity for proteins, thus forming relatively stable adducts. Hence, HNE can diffuse from the site or origin changing structure and function of respective proteins. Consequently HNE can influence proliferation, differentiation and apoptosis of cancer cells on one hand, while on the other it can affect genome functionality, too. Although HNE is considered to be important factor of carcinogenesis due to its ability to covalently bind to DNA, it might also be cytotoxic for cancer cells, as well as it can modulate their growth. In addition to direct cytotoxicity, HNE is also involved in activity mechanisms by which several cytostatic drugs and radiotherapy exhibit their anticancer effects. Complementary to that, the metabolic pathway for HNE detoxification through RLIP76, which is enhanced in cancer, may be a target for anti-cancer treatments. In addition, some cancer cells can undergo apoptosis or necrosis, if exposed to supraphysiological HNE levels in the cancer microenvironment, especially if challenged additionally by pro-oxidative cytostatics and/or inflammation. These findings could explain previously observed disappearance of HNE from invading cancer cells, which is associated with the increase of HNE in non-malignant cells close to invading cancer utilizing cardiolipin as the source of cancer-inhibiting HNE.
Collapse
Affiliation(s)
| | | | | | - Neven Zarkovic
- Rudjer Boskovic Institute, Bijenicka 54, Zagreb, Croatia.
| |
Collapse
|
23
|
Phan NN, Wang CY, Chen CF, Sun Z, Lai MD, Lin YC. Voltage-gated calcium channels: Novel targets for cancer therapy. Oncol Lett 2017; 14:2059-2074. [PMID: 28781648 PMCID: PMC5530219 DOI: 10.3892/ol.2017.6457] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/13/2017] [Indexed: 01/11/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) comprise five subtypes: The L-type; R-type; N-type; P/Q-type; and T-type, which are encoded by α1 subunit genes. Calcium ion channels also have confirmed roles in cellular functions, including mitogenesis, proliferation, differentiation, apoptosis and metastasis. An association between VGCCs, a reduction in proliferation and an increase in apoptosis in prostate cancer cells has also been reported. Therefore, in the present study, the online clinical database Oncomine was used to identify the alterations in the mRNA expression level of VGCCs in 19 cancer subtypes. Overall, VGCC family genes exhibited under-expression in numerous types of cancer, including brain, breast, kidney and lung cancers. Notably, the majority of VGCC family members (CACNA1C, CACNA1D, CACNA1A, CACNA1B, CACNA1E, CACNA1H and CACNA1I) exhibited low expression in brain tumors, with mRNA expression levels in the top 1–9% of downregulated gene rankings. A total of 5 VGCC family members (CACNA1A, CACNA1B, CACNA1E, CACNA1G and CACNA1I) were under-expressed in breast cancer, with a gene ranking in the top 1–10% of the low-expressed genes compared with normal tissue. In kidney and lung cancers, CACNA1S, CACNA1C, CACNA1D, CACNA1A and CACNA1H exhibited low expression, with gene rankings in the top 1–8% of downregulated genes. In conclusion, the present findings may contribute to the development of new cancer treatment approaches by identifying target genes involved in specific types of cancer.
Collapse
Affiliation(s)
- Nam Nhut Phan
- Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, Ho Chi Minh 700000, Vietnam
| | - Chih-Yang Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C.,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C.,Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Chien-Fu Chen
- School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 84001, Taiwan, R.O.C
| | - Zhengda Sun
- Department of Radiology, University of California, San Francisco, CA 94143, USA
| | - Ming-Derg Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C.,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 1114, Taiwan, R.O.C
| |
Collapse
|
24
|
Barrera G, Gentile F, Pizzimenti S, Canuto RA, Daga M, Arcaro A, Cetrangolo GP, Lepore A, Ferretti C, Dianzani C, Muzio G. Mitochondrial Dysfunction in Cancer and Neurodegenerative Diseases: Spotlight on Fatty Acid Oxidation and Lipoperoxidation Products. Antioxidants (Basel) 2016; 5:antiox5010007. [PMID: 26907355 PMCID: PMC4808756 DOI: 10.3390/antiox5010007] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/22/2016] [Accepted: 02/05/2016] [Indexed: 12/21/2022] Open
Abstract
In several human diseases, such as cancer and neurodegenerative diseases, the levels of reactive oxygen species (ROS), produced mainly by mitochondrial oxidative phosphorylation, is increased. In cancer cells, the increase of ROS production has been associated with mtDNA mutations that, in turn, seem to be functional in the alterations of the bioenergetics and the biosynthetic state of cancer cells. Moreover, ROS overproduction can enhance the peroxidation of fatty acids in mitochondrial membranes. In particular, the peroxidation of mitochondrial phospholipid cardiolipin leads to the formation of reactive aldehydes, such as 4-hydroxynonenal (HNE) and malondialdehyde (MDA), which are able to react with proteins and DNA. Covalent modifications of mitochondrial proteins by the products of lipid peroxidation (LPO) in the course of oxidative cell stress are involved in the mitochondrial dysfunctions observed in cancer and neurodegenerative diseases. Such modifications appear to affect negatively mitochondrial integrity and function, in particular energy metabolism, adenosine triphosphate (ATP) production, antioxidant defenses and stress responses. In neurodegenerative diseases, indirect confirmation for the pathogenetic relevance of LPO-dependent modifications of mitochondrial proteins comes from the disease phenotypes associated with their genetic alterations.
Collapse
Affiliation(s)
- Giuseppina Barrera
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino 10125, Italy.
| | - Fabrizio Gentile
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università del Molise, Campobasso 86100, Italy.
| | - Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino 10125, Italy.
| | - Rosa Angela Canuto
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino 10125, Italy.
| | - Martina Daga
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino 10125, Italy.
| | - Alessia Arcaro
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università del Molise, Campobasso 86100, Italy.
| | - Giovanni Paolo Cetrangolo
- Dipartimento di Medicina e Scienze della Salute "V. Tiberio", Università del Molise, Campobasso 86100, Italy.
| | - Alessio Lepore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli 80131, Italy.
| | - Carlo Ferretti
- Dipartimento di Scienze e Tecnologia del Farmaco, Università di Torino, Torino 10125, Italy.
| | - Chiara Dianzani
- Dipartimento di Scienze e Tecnologia del Farmaco, Università di Torino, Torino 10125, Italy.
| | - Giuliana Muzio
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Torino 10125, Italy.
| |
Collapse
|
25
|
Yang F, Zhou L, Wang D, Wang Z, Huang QY. Minocycline ameliorates hypoxia-induced blood-brain barrier damage by inhibition of HIF-1α through SIRT-3/PHD-2 degradation pathway. Neuroscience 2015. [PMID: 26211444 DOI: 10.1016/j.neuroscience.2015.07.051] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Minocycline, a second-generation tetracycline alleviates neuro-inflammation and protects the blood-brain barrier (BBB) in ischemia stroke. However, the effect of minocycline in hypoxia-induced BBB damage is unclear. Here, we have investigated the effect of minocycline under hypoxia and explored its possible underlying mechanisms. METHODS The effect of minocycline was examined in vitro in Human Brain Microvascular Endothelial Cells (HBMECs) using Trans Epithelial Electric Resistance (TEER). Protein and mRNA expression of Hypoxia-Inducible Factors-1α (HIF-1α), matrix metalloproteinases (MMP-2 and MMP-9) and tight junction proteins (TJs) were detected by using Western blot and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The translocation and transcription of HIF-1α were detected by using immunocytochemistry and luciferase reporter assay. In vivo, to adult male Sprague Dawley (SD) rats under hypobaric hypoxia were administered minocycline for 1h and BBB permeability was tested by using Evans Blue and Transmission Electron Microscopy (TEM). Also, reduction of NAD-dependent deacetylase sirtuin-3 (SIRT-3)/proline hydroxylase-2 (PHD-2) signaling pathway was evaluated. RESULTS Minocycline increased TEER in HBMECs after hypoxia (P<0.05), and reduced the extravasation of Evans Blue (P<0.05) and colloidal gold nanoparticles in rats. Minocycline administration significantly reduced HIF-1α expression, protein and mRNA expression of MMP-2, MMP-9 and Vascular Endothelial Growth Factor (VEGF) (P<0.05), and increased TJs (ZO-1, claudin-5 and occluding) (P<0.05) in HBMECs after hypoxia. Furthermore, minocycline reversed the hypoxia-induced reduction of PHD-2 (P<0.05) and SIRT-3 (P<0.05). Effects of minocycline were abolished by siRNA-mediated knockdown of SIRT-3 in the brain. CONCLUSIONS Minocycline inhibits HIF-1α-mediated cellular responses and protects BBB integrity through SIRT-3/PHD-2 pathway, proving to be a potential drug for the prevention and treatment of hypoxic brain injuries.
Collapse
Affiliation(s)
- F Yang
- Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine, Third Military Medical University, 30 Gaotanyan, Shapingba, Chongqing 400038, China; Key Laboratory of High Altitude Medicine (Third Military Medical University), Ministry of Education, China; Key Laboratory of High Altitude Medicine, PLA, China
| | - L Zhou
- Department of Pharmacology, Xinqiao Hospital & The Second Affiliated Hospital, The Third Military Medical University, Chongqing, China
| | - D Wang
- Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine, Third Military Medical University, 30 Gaotanyan, Shapingba, Chongqing 400038, China; Key Laboratory of High Altitude Medicine (Third Military Medical University), Ministry of Education, China; Key Laboratory of High Altitude Medicine, PLA, China
| | - Z Wang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Q-Y Huang
- Department of Pathophysiology and High Altitude Pathology, College of High Altitude Military Medicine, Third Military Medical University, 30 Gaotanyan, Shapingba, Chongqing 400038, China; Key Laboratory of High Altitude Medicine (Third Military Medical University), Ministry of Education, China; Key Laboratory of High Altitude Medicine, PLA, China.
| |
Collapse
|