1
|
Zhou M, Tian M, Li Z, Wang C, Guo Z. Overview of splicing variation in ovarian cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189288. [PMID: 39993511 DOI: 10.1016/j.bbcan.2025.189288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Ovarian cancer remains one of the deadliest gynecological malignancies, with a persistently high mortality rate despite promising advancements in immunotherapy. Aberrant splicing events play a crucial role in cancer heterogeneity and treatment resistance. Many splicing variants, especially those involving key molecular markers such as BRCA1/2, are closely linked to disease progression and treatment outcomes. These variants and related splicing factors hold significant clinical value as diagnostic and prognostic biomarkers and therapeutic targets. This review provides a comprehensive overview of splicing variants in ovarian cancer, emphasizing their role in metastasis and resistance, and offers insights to advance biomarker development and treatment strategies.
Collapse
Affiliation(s)
- Min Zhou
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengdie Tian
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhuoer Li
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunli Wang
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiqiang Guo
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Chen Y, Chen B, Li J, Li H, Wang G, Cai X, Zhang Q, Liu X, Kan C, Wang L, Wang Z, Li HB. Alternative mRNA polyadenylation regulates macrophage hyperactivation via the autophagy pathway. Cell Mol Immunol 2024; 21:1522-1534. [PMID: 39537902 PMCID: PMC11607066 DOI: 10.1038/s41423-024-01237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Macrophage hyperactivation is a hallmark of inflammatory diseases, yet the role of alternative polyadenylation (APA) of mRNAs in regulating innate immunity remains unclear. In this study, we focused on 3'UTR-APA and demonstrated that Nudt21, a crucial RNA-binding component of the 3'UTR-APA machinery, is significantly upregulated in various inflammatory conditions. By utilizing myeloid-specific Nudt21-deficient mice, we revealed a protective effect of Nudt21 depletion against colitis and severe hyperinflammation, primarily through diminished production of proinflammatory cytokines. Notably, Nudt21 regulates the mRNA stability of key autophagy-related genes, Map1lc3b and Ulk2, by mediating selective 3'UTR polyadenylation in activated macrophages. As a result, Nudt21-deficient macrophages display increased autophagic activity, which leads to reduced cytokine secretion. Our findings highlight an unexplored role of Nudt21-mediated 3'UTR-APA in modulating macrophage autophagy and offer new insights into the modulation of inflammation and disease progression.
Collapse
Affiliation(s)
- Yunzhu Chen
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine - Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiwen Chen
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine - Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyu Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine - Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haixin Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gaoyang Wang
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine - Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuemin Cai
- Institute of Immunological Innovation & Translation, Chongqing Medical University, Chongqing, China
| | - Qianqian Zhang
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine - Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxu Liu
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine - Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Kan
- School of Biological Science, The University of Manchester, Manchester, UK
| | - Lei Wang
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengting Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Jiao Tong University School of Medicine - Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Immunological Innovation & Translation, Chongqing Medical University, Chongqing, China.
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Medical Center on Aging, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
3
|
Mao M, Song S, Li X, Lu J, Li J, Zhao W, Liu H, Liu J, Zeng B. Advances in epigenetic modifications of autophagic process in pulmonary hypertension. Front Immunol 2023; 14:1206406. [PMID: 37398657 PMCID: PMC10313199 DOI: 10.3389/fimmu.2023.1206406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Pulmonary hypertension is characterized by pulmonary arterial remodeling that results in increased pulmonary vascular resistance, right ventricular failure, and premature death. It is a threat to public health globally. Autophagy, as a highly conserved self-digestion process, plays crucial roles with autophagy-related (ATG) proteins in various diseases. The components of autophagy in the cytoplasm have been studied for decades and multiple studies have provided evidence of the importance of autophagic dysfunction in pulmonary hypertension. The status of autophagy plays a dynamic suppressive or promotive role in different contexts and stages of pulmonary hypertension development. Although the components of autophagy have been well studied, the molecular basis for the epigenetic regulation of autophagy is less understood and has drawn increasing attention in recent years. Epigenetic mechanisms include histone modifications, chromatin modifications, DNA methylation, RNA alternative splicing, and non-coding RNAs, which control gene activity and the development of an organism. In this review, we summarize the current research progress on epigenetic modifications in the autophagic process, which have the potential to be crucial and powerful therapeutic targets against the autophagic process in pulmonary hypertension development.
Collapse
Affiliation(s)
- Min Mao
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shasha Song
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Xin Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiayao Lu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Jie Li
- Marketing Department, Shenzhen Reyson Biotechnology Co., Ltd, Shenzhen, China
- Nanjing Evertop Electronics Ltd., Nanjing, China
| | - Weifang Zhao
- Quality Management Department International Registration, North China Pharmaceutical Co., Ltd. (NCPC), Hebei Huamin Pharmaceutical Co., Ltd., Shijiazhuang, China
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology (Sichuan University), Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jingxin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bin Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
4
|
Maheshwari C, Vidoni C, Titone R, Castiglioni A, Lora C, Follo C, Isidoro C. Isolation, Characterization, and Autophagy Function of BECN1-Splicing Isoforms in Cancer Cells. Biomolecules 2022; 12:biom12081069. [PMID: 36008963 PMCID: PMC9405542 DOI: 10.3390/biom12081069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 01/27/2023] Open
Abstract
Alternative splicing allows the synthesis of different protein variants starting from a single gene. Human Beclin 1 (BECN1) is a key autophagy regulator that acts as haploinsufficient tumor suppressor since its decreased expression correlates with tumorigenesis and poor prognosis in cancer patients. Recent studies show that BECN1 mRNA undergoes alternative splicing. Here, we report on the isolation and molecular and functional characterization of three BECN1 transcript variants (named BECN1-α, -β and -γ) in human cancer cells. In ovarian cancer NIHOVCAR3, these splicing variants were found along with the canonical wild-type. BECN1-α lacks 143 nucleotides at its C-terminus and corresponds to a variant previously described. BECN1-β and -γ lack the BCL2 homology 3 domain and other regions at their C-termini. Following overexpression in breast cancer cells MDA-MB231, we found that BECN1-α stimulates autophagy. Specifically, BECN1-α binds to Parkin and stimulates mitophagy. On the contrary, BECN1-β reduces autophagy with a dominant negative effect over the endogenous wild-type isoform. BECN1-γ maintains its ability to interact with the vacuolar protein sorting 34 and only has a slight effect on autophagy. It is possible that cancer cells utilize the alternative splicing of BECN1 for modulating autophagy and mitophagy in response to environmental stresses.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlo Follo
- Correspondence: (C.F.); (C.I.); Tel.: +39-0321660507 (C.I.); Fax: +39-0321620421 (C.I.)
| | - Ciro Isidoro
- Correspondence: (C.F.); (C.I.); Tel.: +39-0321660507 (C.I.); Fax: +39-0321620421 (C.I.)
| |
Collapse
|
5
|
González-Rodríguez P, Klionsky DJ, Joseph B. Autophagy regulation by RNA alternative splicing and implications in human diseases. Nat Commun 2022; 13:2735. [PMID: 35585060 PMCID: PMC9117662 DOI: 10.1038/s41467-022-30433-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
Autophagy and RNA alternative splicing are two evolutionarily conserved processes involved in overlapping physiological and pathological processes. However, the extent of functional connection is not well defined. Here, we consider the role for alternative splicing and generation of autophagy-related gene isoforms in the regulation of autophagy in recent work. The impact of changes to the RNA alternative splicing machinery and production of alternative spliced isoforms on autophagy are reviewed with particular focus on disease relevance. The use of drugs targeting both alternative splicing and autophagy as well as the selective regulation of single autophagy-related protein isoforms, are considered as therapeutic strategies.
Collapse
Affiliation(s)
- Patricia González-Rodríguez
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Daniel J Klionsky
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Wang Q, Hou S. The emerging roles of ATG1/ATG13 kinase complex in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153653. [PMID: 35255243 DOI: 10.1016/j.jplph.2022.153653] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Autophagy is a conserved system from yeast to mammals that mediates the degradation and renovation of cellular components. This process is mainly driven by numerous autophagy-related (ATG) proteins. Among these components, the ATG1/ATG13 complex plays an essential role in initiating autophagy, sensing nutritional status signals, recruiting downstream ATG proteins to the autophagosome formation site, and governing autophagosome formation. In this review, we will focus on the ATG1/ATG13 kinase complex, summarizing and discussing the current views on the composition, structure, function, and regulation of this complex in plants.
Collapse
Affiliation(s)
- Qiuling Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Suiwen Hou
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
7
|
Boustani H, Khodadi E, Shahidi M. Autophagy in Hematological Malignancies: Molecular Aspects in Leukemia and Lymphoma. Lab Med 2021; 52:16-23. [PMID: 32634208 DOI: 10.1093/labmed/lmaa027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The organization of the hematopoietic system is dependent on hematopoietic stem cells (HSCs) that are capable of self-renewal and multilineage differentiation to produce different blood cell lines. Autophagy has a central role in energy production and metabolism of the cells during starvation, cellular stress adaption, and removing mechanisms for aged or damaged organelles. The role and importance of autophagy pathways are becoming increasingly recognized in the literature because these pathways can be useful in organizing intracellular circulation, molecular complexes, and organelles to meet the needs of various hematopoietic cells. There is supporting evidence in the literature that autophagy plays an emerging role in the regulation of normal cells and that it also has important features in malignant hematopoiesis. Understanding the molecular details of the autophagy pathway can provide novel methods for more effective treatment of patients with leukemia. Overall, our review will emphasize the role of autophagy and its different aspects in hematological malignant neoplasms.
Collapse
Affiliation(s)
- Hassan Boustani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Khodadi
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Minoo Shahidi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Stergiou IE, Kapsogeorgou EK. Autophagy and Metabolism in Normal and Malignant Hematopoiesis. Int J Mol Sci 2021; 22:8540. [PMID: 34445246 PMCID: PMC8395194 DOI: 10.3390/ijms22168540] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
The hematopoietic system relies on regulation of both metabolism and autophagy to maintain its homeostasis, ensuring the self-renewal and multipotent differentiation potential of hematopoietic stem cells (HSCs). HSCs display a distinct metabolic profile from that of their differentiated progeny, while metabolic rewiring from glycolysis to oxidative phosphorylation (OXPHOS) has been shown to be crucial for effective hematopoietic differentiation. Autophagy-mediated regulation of metabolism modulates the distinct characteristics of quiescent and differentiating hematopoietic cells. In particular, mitophagy determines the cellular mitochondrial content, thus modifying the level of OXPHOS at the different differentiation stages of hematopoietic cells, while, at the same time, it ensures the building blocks and energy for differentiation. Aberrations in both the metabolic status and regulation of the autophagic machinery are implicated in the development of hematologic malignancies, especially in leukemogenesis. In this review, we aim to investigate the role of metabolism and autophagy, as well as their interconnections, in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
| | - Efstathia K. Kapsogeorgou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
9
|
Adding Some "Splice" to Stress Eating: Autophagy, ESCRT and Alternative Splicing Orchestrate the Cellular Stress Response. Genes (Basel) 2021; 12:genes12081196. [PMID: 34440370 PMCID: PMC8393842 DOI: 10.3390/genes12081196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a widely studied self-renewal pathway that is essential for degrading damaged cellular organelles or recycling biomolecules to maintain cellular homeostasis, particularly under cellular stress. This pathway initiates with formation of an autophagosome, which is a double-membrane structure that envelopes cytosolic components and fuses with a lysosome to facilitate degradation of the contents. The endosomal sorting complexes required for transport (ESCRT) proteins play an integral role in controlling autophagosome fusion events and disruption to this machinery leads to autophagosome accumulation. Given the central role of autophagy in maintaining cellular health, it is unsurprising that dysfunction of this process is associated with many human maladies including cancer and neurodegenerative diseases. The cell can also rapidly respond to cellular stress through alternative pre-mRNA splicing that enables adaptive changes to the cell's proteome in response to stress. Thus, alternative pre-mRNA splicing of genes that are involved in autophagy adds another layer of complexity to the cell's stress response. Consequently, the dysregulation of alternative splicing of genes associated with autophagy and ESCRT may also precipitate disease states by either reducing the ability of the cell to respond to stress or triggering a maladaptive response that is pathogenic. In this review, we summarize the diverse roles of the ESCRT machinery and alternative splicing in regulating autophagy and how their dysfunction can have implications for human disease.
Collapse
|
10
|
He Q, Li Z, Yin J, Li Y, Yin Y, Lei X, Zhu W. Prognostic Significance of Autophagy-Relevant Gene Markers in Colorectal Cancer. Front Oncol 2021; 11:566539. [PMID: 33937013 PMCID: PMC8081889 DOI: 10.3389/fonc.2021.566539] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background Colorectal cancer (CRC) is a common malignant solid tumor with an extremely low survival rate after relapse. Previous investigations have shown that autophagy possesses a crucial function in tumors. However, there is no consensus on the value of autophagy-associated genes in predicting the prognosis of CRC patients. This work screens autophagy-related markers and signaling pathways that may participate in the development of CRC, and establishes a prognostic model of CRC based on autophagy-associated genes. Methods Gene transcripts from the TCGA database and autophagy-associated gene data from the GeneCards database were used to obtain expression levels of autophagy-associated genes, followed by Wilcox tests to screen for autophagy-related differentially expressed genes. Then, 11 key autophagy-associated genes were identified through univariate and multivariate Cox proportional hazard regression analysis and used to establish prognostic models. Additionally, immunohistochemical and CRC cell line data were used to evaluate the results of our three autophagy-associated genes EPHB2, NOL3, and SNAI1 in TCGA. Based on the multivariate Cox analysis, risk scores were calculated and used to classify samples into high-risk and low-risk groups. Kaplan-Meier survival analysis, risk profiling, and independent prognosis analysis were carried out. Receiver operating characteristic analysis was performed to estimate the specificity and sensitivity of the prognostic model. Finally, GSEA, GO, and KEGG analysis were performed to identify the relevant signaling pathways. Results A total of 301 autophagy-related genes were differentially expressed in CRC. The areas under the 1-year, 3-year, and 5-year receiver operating characteristic curves of the autophagy-based prognostic model for CRC were 0.764, 0.751, and 0.729, respectively. GSEA analysis of the model showed significant enrichment in several tumor-relevant pathways and cellular protective biological processes. The expression of EPHB2, IL-13, MAP2, RPN2, and TRAF5 was correlated with microsatellite instability (MSI), while the expression of IL-13, RPN2, and TRAF5 was related to tumor mutation burden (TMB). GO analysis showed that the 11 target autophagy genes were chiefly enriched in mRNA processing, RNA splicing, and regulation of the mRNA metabolic process. KEGG analysis showed enrichment mainly in spliceosomes. We constructed a prognostic risk assessment model based on 11 autophagy-related genes in CRC. Conclusion A prognostic risk assessment model based on 11 autophagy-associated genes was constructed in CRC. The new model suggests directions and ideas for evaluating prognosis and provides guidance to choose better treatment strategies for CRC.
Collapse
Affiliation(s)
- Qinglian He
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Ziqi Li
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Jinbao Yin
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Yuling Li
- Department of Pathology, Dongguan People's Hospital, Southern Medical University, Dongguan, China
| | - Yuting Yin
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Xue Lei
- Department of Pathology, Guangdong Medical University, Dongguan, China
| | - Wei Zhu
- Department of Pathology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
11
|
Dissecting the role of alternative splicing in the regulation of autophagy: a narrative review. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Koschade SE, Brandts CH. Selective Autophagy in Normal and Malignant Hematopoiesis. J Mol Biol 2020; 432:261-282. [DOI: 10.1016/j.jmb.2019.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022]
|
13
|
Therapeutic Modulation of Autophagy in Leukaemia and Lymphoma. Cells 2019; 8:cells8020103. [PMID: 30704144 PMCID: PMC6406467 DOI: 10.3390/cells8020103] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Haematopoiesis is a tightly orchestrated process where a pool of hematopoietic stem and progenitor cells (HSPCs) with high self-renewal potential can give rise to both lymphoid and myeloid lineages. The HSPCs pool is reduced with ageing resulting in few HSPC clones maintaining haematopoiesis thereby reducing blood cell diversity, a phenomenon called clonal haematopoiesis. Clonal expansion of HSPCs carrying specific genetic mutations leads to increased risk for haematological malignancies. Therefore, it comes as no surprise that hematopoietic tumours develop in higher frequency in elderly people. Unfortunately, elderly patients with leukaemia or lymphoma still have an unsatisfactory prognosis compared to younger ones highlighting the need to develop more efficient therapies for this group of patients. Growing evidence indicates that macroautophagy (hereafter referred to as autophagy) is essential for health and longevity. This review is focusing on the role of autophagy in normal haematopoiesis as well as in leukaemia and lymphoma development. Attenuated autophagy may support early hematopoietic neoplasia whereas activation of autophagy in later stages of tumour development and in response to a variety of therapies rather triggers a pro-tumoral response. Novel insights into the role of autophagy in haematopoiesis will be discussed in light of designing new autophagy modulating therapies in hematopoietic cancers.
Collapse
|
14
|
Zhang MQ, Li JR, Peng ZG, Zhang JP. Differential Effects of Autophagy-Related 10 Protein on HCV Replication and Autophagy Flux Are Mediated by Its Cysteine 44 and Cysteine 135. Front Immunol 2018; 9:2176. [PMID: 30319633 PMCID: PMC6165859 DOI: 10.3389/fimmu.2018.02176] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022] Open
Abstract
Autophagy-related 10 (ATG10) is essential for autophagy since it promotes ATG5-ATG12 complex formation. Our previous study found that there are two isoforms of the ATG10 protein, ATG10 (a longer one) and ATG10S, which have identical sequences except an absence of a 36-amino acid fragment (peptide B) in ATG10S, yet exhibit distinct effects on HCV genome replication. Here, we report the existence of two amino acids, cysteine at residue 44 and 135 (Cys44 and Cys135, respectively), in ATG10 being related to differential effects of ATG10 on HCV replication and autophagy flux. Through a series of ATG10 mutation experiments and protein modeling prediction, we found that Cys44 was involved in the dual role of the two isoforms of ATG10 protein on HCV replication and autophagy flux, and that Cys135 plays similar roles as Cys44, but the disulfide bond of Cys44-Cys135 was not verified in the ATG10 protein. Further analyses by full HCV virion infection confirmed the roles of -SH of Cys44 and Cys135 on HCV replication. ATG10 with deleted or mutated Cys44 and/or Cys135 could activate expression of innate immunity-related genes, including il28a, irf-3, irf-7, and promote complete autophagy by driving autophagosomes to interact with lysosomes via IL28A-mediation. Subcellular localization assay and chromatin immunoprecipitation assay showed that ATG10 with the sulfydryl deletion or substitution of Cys44 and Cys135 could translocate into the nucleus and bind to promoter of IL28A gene; the results indicated that ATG10 with Cys44 and/or Cys135 absence might act as transcriptional factors to trigger the expression of anti-HCV immunological genes, too. In conclusion, our findings provide important information for understanding the differential roles on HCV replication and autophagy flux between ATG10 and ATG10S, and how the structure-function relationship of ATG10 transformed by a single -SH group loss on Cys44 and Cys135 in ATG10 protein, which may be a new target against HCV replication.
Collapse
Affiliation(s)
- Miao-Qing Zhang
- Key Laboratory of Biotechnology of Antibiotics, National Health Commission (NHC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Rui Li
- Key Laboratory of Biotechnology of Antibiotics, National Health Commission (NHC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zong-Gen Peng
- Key Laboratory of Biotechnology of Antibiotics, National Health Commission (NHC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Pu Zhang
- Key Laboratory of Biotechnology of Antibiotics, National Health Commission (NHC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Xu F, Fang Y, Yan L, Xu L, Zhang S, Cao Y, Xu L, Zhang X, Xie J, Jiang G, Ge C, An N, Zhou D, Yuan N, Wang J. Nuclear localization of Beclin 1 promotes radiation-induced DNA damage repair independent of autophagy. Sci Rep 2017; 7:45385. [PMID: 28345663 PMCID: PMC5366945 DOI: 10.1038/srep45385] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/23/2017] [Indexed: 12/27/2022] Open
Abstract
Beclin 1 is a well-established core mammalian autophagy protein that is embryonically indispensable and has been presumed to suppress oncogenesis via an autophagy-mediated mechanism. Here, we show that Beclin 1 is a prenatal primary cytoplasmic protein but rapidly relocated into the nucleus during postnatal development in mice. Surprisingly, deletion of beclin1 in in vitro human cells did not block an autophagy response, but attenuated the expression of several DNA double-strand break (DSB) repair proteins and formation of repair complexes, and reduced an ability to repair DNA in the cells exposed to ionizing radiation (IR). Overexpressing Beclin 1 improved the repair of IR-induced DSB, but did not restore an autophagy response in cells lacking autophagy gene Atg7, suggesting that Beclin 1 may regulate DSB repair independent of autophagy in the cells exposed to IR. Indeed, we found that Beclin 1 could directly interact with DNA topoisomerase IIβ and was recruited to the DSB sites by the interaction. These findings reveal a novel function of Beclin 1 in regulation of DNA damage repair independent of its role in autophagy particularly when the cells are under radiation insult.
Collapse
Affiliation(s)
- Fei Xu
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Yixuan Fang
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Lili Yan
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Lan Xu
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Suping Zhang
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
- Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, The First Affiliated Hospital, Soochow University School of Medicine, Suzhou 215123, China
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Yan Cao
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Li Xu
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Xiaoying Zhang
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Jialing Xie
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Gaoyue Jiang
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Chaorong Ge
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Ni An
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Na Yuan
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
- Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, The First Affiliated Hospital, Soochow University School of Medicine, Suzhou 215123, China
| | - Jianrong Wang
- Hematology Center of Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University School of Medicine, Suzhou 215123, China
- Jiangsu Institute of Hematology, Jiangsu Key Laboratory for Stem Cell Research, The First Affiliated Hospital, Soochow University School of Medicine, Suzhou 215123, China
| |
Collapse
|
16
|
Radwan SM, Hamdy NM, Hegab HM, El-Mesallamy HO. Beclin-1 and hypoxia-inducible factor-1α genes expression: Potential biomarkers in acute leukemia patients. Cancer Biomark 2017; 16:619-26. [PMID: 27002764 DOI: 10.3233/cbm-160603] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Beclin-1, an important autophagic gene, and hypoxia-inducible factor-1α (HIF-1α), the master regulator of the hypoxic response, are reported in several human cancers. However, their expressions in acute leukemia haven't yet been well investigated. OBJECTIVE This study was designed to investigate the gene expression of beclin-1, microtubule-associated protein-1 light chain-3B (MAB1LC3B), the anti-apoptotic marker Bcl-2, and HIF-1α, as well as to evaluate the relationship between their expressions profile and prognosis in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) adult patients. METHODS The study involved 30 AML patients, 25 ALL patients, and 20 controls. Gene expression was analyzed using quantitative reverse transcriptase polymerase chain reaction (QRT-PCR). RESULTS In both AML and ALL groups, beclin-1 and MAB1LC3B expressions were significantly down-regulated (p < 0.001), while HIF-1α (p < 0.01) and Bcl-2 (p < 0.001) expressions were significantly up-regulated compared to the control group. HIF-1α fold expression was significantly negatively correlated with beclin-1 (p < 0.01). Moreover, decreased beclin-1 gene expression and increased HIF-1α gene expression were both associated with poor survival, supporting their pivotal role in the development and progression of acute leukemia. CONCLUSIONS Both Beclin-1 and HIF-1α could be considered as important biomarkers determinants of pathogenesis and survival in acute leukemia.
Collapse
Affiliation(s)
- Sara M Radwan
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Hany M Hegab
- Department of Internal Medicine-Clinical Hematology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala O El-Mesallamy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
17
|
HnRNP L is important for the expression of oncogene SRSF3 and oncogenic potential of oral squamous cell carcinoma cells. Sci Rep 2016; 6:35976. [PMID: 27808105 PMCID: PMC5093901 DOI: 10.1038/srep35976] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/07/2016] [Indexed: 01/02/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the leading cause of death related to oral diseases. The mechanisms of OSCC development remain largely unknown. Heterogeneous nuclear ribonucleoprotein L (HnRNP L) is a multi-functional splicing factor. It has been reported to be an important regulator of apoptosis. However, the functions of hnRNP L in cancer need to be further explored. In the present study, we found that OSCC tissues expressed significantly higher levels of hnRNP L than normal tissues. Depletion of hnRNP L retarded cell growth, cell migration, and tumorigenesis of OSCC cells. HnRNP L regulates both the expression of oncogenic splicing factor SRSF3 and the alternative splicing of SRSF3 exon 4. Expression of hnRNP L is correlated with SRSF3 expression in OSCC tissues. These findings suggest that hnRNP L is important for the pathogenesis of OSCC and may be a novel potential therapeutic target of OSCC.
Collapse
|
18
|
Li CL, Wei HL, Chen J, Wang B, Xie B, Fan LL, Li LJ. Ebb-and-flow of macroautophagy and chaperone-mediated autophagy in Raji cells induced by starvation and arsenic trioxide. Asian Pac J Cancer Prev 2015; 15:5715-9. [PMID: 25081691 DOI: 10.7314/apjcp.2014.15.14.5715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Autophagy is crucial in the maintenance of homeostasis and regenerated energy of mammalian cells. Macroautophagy and chaperone-mediated autophagy(CMA) are the two best-identified pathways. Recent research has found that in normal cells, decline of macroautophagy is appropriately parallel with activation of CMA. However, whether it is also true in cancer cells has been poorly studied. Here we focused on cross-talk and conversion between macroautophagy and CMA in cultured Burkitt lymphoma Raji cells when facing serum deprivation and exposure to a toxic compound, arsenic trioxide. The results showed that both macroautophagy and CMA were activated sequentially instead of simultaneously in starvation-induced Raji cells, and macroautophagy was quickly activated and peaked during the first hours of nutrition deprivation, and then gradually decreased to near baseline. With nutrient deprivation persisted, CMA progressively increased along with the decline of macroautophagy. On the other hand, in arsenic trioxide-treated Raji cells, macroautophagy activity was also significantly increased, but CMA activity was not rapidly enhanced until macroautophagy was inhibited by 3-methyladenine, an inhibitor. Together, we conclude that cancer cells exhibit differential responses to diverse stressor-induced damage by autophagy. The sequential switch of the first-aider macroautophagy to the homeostasis-stabilizer CMA, whether active or passive, might be conducive to the adaption of cancer cells to miscellaneous intracellular or extracellular stressors. These findings must be helpful to understand the characteristics, compensatory mechanisms and answer modes of different autophagic pathways in cancer cells, which might be very important and promising to the development of potential targeting interventions for cancer therapies via regulation of autophagic pathways.
Collapse
Affiliation(s)
- Cai-Li Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
19
|
Abnormal Glucose Metabolism in Alzheimer's Disease: Relation to Autophagy/Mitophagy and Therapeutic Approaches. Neurochem Res 2015; 40:2557-69. [PMID: 26077923 DOI: 10.1007/s11064-015-1631-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/09/2015] [Accepted: 05/29/2015] [Indexed: 12/19/2022]
Abstract
Diminished glucose metabolism accompanies many neurodegenerative diseases including Alzheimer's disease. An understanding of the relation of these metabolic changes to the disease will enable development of novel therapeutic strategies. Following a metabolic challenge, cells generally conserve energy to preserve viability. This requires activation of many cellular repair/regenerative processes such as mitophagy/autophagy and fusion/fission. These responses may diminish cell function in the long term. Prolonged fission induces mitophagy/autophagy which promotes repair but if prolonged progresses to mitochondrial degradation. Abnormal glucose metabolism alters protein signaling including the release of proteins from the mitochondria or migration of proteins from the cytosol to the mitochondria or nucleus. This overview provides an insight into the different mechanisms of autophagy/mitophagy and mitochondrial dynamics in response to the diminished metabolism that occurs with diseases, especially neurodegenerative diseases such as Alzheimer's disease. The review discusses multiple aspects of mitochondrial responses including different signaling proteins and pathways of mitophagy and mitochondrial biogenesis. Improving cellular bioenergetics and mitochondrial dynamics will alter protein signaling and improve cellular/mitochondrial repair and regeneration. An understanding of these changes will suggest new therapeutic strategies.
Collapse
|
20
|
Dong WM, Cao XS, Wang B, Lin Y, Hua XY, Qiu GQ, Gu WY, Xie XB. Allogeneic hemopietic stem cell transplants for the treatment of B cell acute lymphocytic leukemia. Asian Pac J Cancer Prev 2014; 15:6127-30. [PMID: 25124585 DOI: 10.7314/apjcp.2014.15.15.6127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Explore the feasibility of allo- hemopietic stem cell transplants in treating patients with B cell acute lymphocytic leukemia. METHODS Between september 2006 and February 2011, fifteen patients with B cell acute lymphocytic leukemia (ALL) were treated by allo-hemopietic stem cell transplants (HSCT). Stem cell sources were peripheral blood. Six patients were conditioned by busulfan (BU) and cyclophosphamide (CY) and nine patients were conditioned with TBI and cyclophosphamide (CY). Graft versus host disease (GVHD) prophylaxis regimen consisted of cyclosporine A (CSA), methotrex ate (MTX) and mycophenolatemofetil (MMF). RESULTS Patients received a median of 7.98×10⁸·kg⁻¹ (5.36-12.30×10⁸·kg⁻¹) mononuclear cells (MNC). The median time of ANC>0.5×10⁹/L was day 12 (10-15), and PLT>20.0×10⁹/L was day 13 (11-16). Extensive acute GVHD occurred in 6 (40.0%) patients, and extensive chronic GVHD was recorded in 6 (40.0%) patients. Nine patients were alive after 2.5-65 months follow-up. CONCLUSION Allogeneic stem cell transplant could be effective in treating patients with B cell acute lymphocytic leukemia.
Collapse
Affiliation(s)
- Wei-Min Dong
- Department of Hematology, The First People's Hospital of Changzhou, Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China E-mail :
| | | | | | | | | | | | | | | |
Collapse
|