1
|
Liu W, Li K, Zhang H, Li Y, Lin Z, Xu J, Guo Y. An antitumor arabinan from Glehnia littoralis activates immunity and inhibits angiogenesis. Int J Biol Macromol 2024; 263:130242. [PMID: 38368974 DOI: 10.1016/j.ijbiomac.2024.130242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/11/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Glehnia littoralis is an edible plant with significant medicinal value. To further elucidate the potential functional components for developing antitumor agents or functional foods, the polysaccharides in this plant were investigated, and a homogeneous polysaccharide, GLP90-2, was obtained through extraction and ethanol precipitation. By employing methylation, GC-MS, FT-IR, and NMR analysis, GLP90-2 was identified as an arabinan having a molecular weight of 7.76 × 103 g/mol and consisting of three types of residues: α-l-Araf-(1→, →5)-α-l-Araf-(1→, and →3,5)-α-l-Araf-(1→. The subsequent functional analysis revealed that GLP90-2 suppressed tumor development and metastasis in a zebrafish model. Mechanistic studies have shown that GLP90-2 promoted the maturation of DC2.4 cells and macrophages and enhanced the expression of immune-related cytokines, which may be attributed to the interaction between GLP90-2 and TLR-4. Additionally, GLP90-2 exhibited a strong interaction with PD-1, contributing to the activation of immunity. Furthermore, GLP90-2 suppressed angiogenesis in the transgenic zebrafish model, and this impact may be ascribed to the modulation of the VEGF/VEGFR-2 signaling pathway. All the results indicate that GLP90-2 demonstrates a strong tumor immunotherapy effect in vivo and has high potential for development.
Collapse
Affiliation(s)
- Wenhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Kexin Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Han Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yeling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhen Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
2
|
Li S, Xu N, Fang Q, Cheng X, Chen J, Liu P, Li L, Wang C, Liu W. Glehnia littoralis Fr. Schmidtex Miq.: A systematic review on ethnopharmacology, chemical composition, pharmacology and quality control. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116831. [PMID: 37369334 DOI: 10.1016/j.jep.2023.116831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Glehnia littoralis Fr. Schmidtex Miq. is a well-known perennial herb that is used in traditional medicine in China, Japan and Korea. G. littoralis has the effects of treating the lungs with heat, nourishing yin and blood, and acting as an expectorant. Traditional Chinese medicine (TCM) prescriptions containing G. littoralis have various clinical applications, such as clearing heat, relieving coughs, treating hepatic fibrosis, resolving phlegm, and treating esophagitis. AIM OF THE REVIEW This paper aims to provide a comprehensive and productive review of G. littoralis, mainly including traditional application, ethnopharmacology, chemical composition, pharmacological activities, and quality control. MATERIALS AND METHODS Literature search was conducted through the Web of Science, ScienceDirect, Springer Link, PubMed, Baidu Scholar, CNKI, and WanFang DATA by using the keywords "Glehnia littoralis", "Radix Glehniae", "Bei Shashen", "Clinical application", "Chemical composition", "Quality control" and "pharmacological action". In addition, information was collected from relevant ancient books, reviews, and documents (1980-2022). RESULTS G. littoralis is a traditional Chinese herbal medicine with great clinical value and rich resources. More than 186 components, including coumarins, lignans, polyacetylenes, organic acids, flavonoids, and terpenoids, have been isolated and identified from G. littoralis. The pharmacological activities of more than half of these chemicals are yet unknown. Polyacetylenes and coumarins are the most important bioactive compounds responsible for pharmacological activities, such as antiproliferative, anti-oxidation, anti-inflammatory, antibacterial, antitussive, immune regulation and analgesic. In this study, the progress in chemical analysis of G. littoralis, including thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (MS), and HPLC-MS, were summarized. CONCLUSION In this paper reviewed the previous literature regarding ethnopharmacological, phytochemical, pharmacological, and quality evaluation of the processing of G. littoralis was reviewed, providing potential reference information for future investigation and clinical applications. However, research on the relationship between chemical constituents and traditional uses of G. littoralis is lacking, and the comprehensive pharmacological effects and mechanisms of G. littoralis require further detailed exploration. In addition, an efficient method for chemical profiling is still unavailable to obtain potent bioactive markers for quality control. Perfect quality standards, which are also the basis for further drug development of G. littoralis, are urgently needed to ensure its quality and clinical application.
Collapse
Affiliation(s)
- Shiyang Li
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China; College of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Nan Xu
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; College of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Qinqin Fang
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China
| | - Li Li
- College of Pharmacy, Xinjiang Medical University, 393 Xinyi Road, Urumqi, 830011, China
| | - Changhong Wang
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China.
| | - Wei Liu
- Institute of Chinese Materia Medical, The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rood, Shanghai, 201203, China; Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
3
|
Abo-Elghiet F, Ibrahim MH, El Hassab MA, Bader A, Abdallah QMA, Temraz A. LC/MS analysis of Viscum cruciatum Sieber ex Boiss. extract with anti-proliferative activity against MCF-7 cell line via G0/G1 cell cycle arrest: An in-silico and in-vitro study. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115439. [PMID: 35667581 DOI: 10.1016/j.jep.2022.115439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 05/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viscum cruciatum Sieb is a well-known medicinal plant in Jordan containing various secondary metabolites. It has traditionally been used to treat many ailments, most notably cancer. However, there is a significant gap between scientific research and its value in traditional medicine. AIM OF THE WORK To evaluate the antiproliferative activity of different V. cruciatum extracts against MCF-7 breast cancer cell lines and recognize the affected cell cycle phase. Besides, identifying the bioactive components present in the active extract using LC/MS technique. Also, to determine the possible mechanism of action by in silico and in-vitro study. MATERIALS AND METHODS V. cruciatum was extracted using solvents with increasing polarity. The antiproliferative effects of the extracts against MCF-7 cell lines were evaluated using SRB assay. Further, flow cytometry was used to identify the inhibited phase of the cell cycle, while LC/MS-MS technique was used to analyze the chemical composition of the most active extract. After that, the putative mechanism of action was investigated through in-silico docking, molecular dynamic simulation for compounds with the highest docking scores, and Western blot analysis of cyclin-dependent kinases (CDK2/4/6). RESULTS The chloroform/methanol 90/10 (ChMe) extract showed the most potent antiproliferative effect against MCF-7 cells (IC50 = 23.8 μg/mL), and cell cycle arrest at the G0/G1phase. Furthermore, LC-MS/MS analysis revealed the presence of several polyphenolics belonging to the flavonoids and phenolic acids classes. Additionally, quercetin-4'-glucoside, 3, 5, 7-trihydroxy-4'-methoxy flavone, and hesperetin-7-O-neohesperidoside demonstrated the highest docking binding scores and stable complexes against CDK2 and CDK4/6. Moreover, RMSD (root-mean-square deviation), RMSF (root-mean-square fluctuation), Rg (radius of gyration), and energy analysis during molecular dynamic simulation indicated the stable binding of the studied complexes. These results were supported by Western blot analysis, which revealed the downregulation of CDK2, CDK4, and CDK6 protein expression in MCF-7 cell lines. CONCLUSION These findings emphasized the potential breast anticancer activity of the V. cruciatum ChMe extract by arresting the G0/G1 phase of the cell cycle, which could be related to its flavonoid content. Moreover, the results provided experimental support for the traditional anticancer activity of V. cruciatum, and its ChMe extract might be a source of chemoprotective or chemotherapeutic isolates.
Collapse
Affiliation(s)
- Fatma Abo-Elghiet
- Department of Pharmacognosy, Faculty of Pharmacy for Girls, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Mona H Ibrahim
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy for Girls, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt.
| | - Ammar Bader
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Qasem M A Abdallah
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan.
| | - Abeer Temraz
- Department of Pharmacognosy, Faculty of Pharmacy for Girls, Al-Azhar University, Nasr City, Cairo, Egypt.
| |
Collapse
|
4
|
Ethnopharmacology, Phytochemistry, and Pharmacology of the Genus Glehnia: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2019:1253493. [PMID: 31915441 PMCID: PMC6931029 DOI: 10.1155/2019/1253493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/20/2019] [Indexed: 11/18/2022]
Abstract
Glehnia littoralis Fr. Schmidt ex Miq, the sole species in the genus Glehnia (Apiaceae), has long been used in traditional Chinese medicine to treat fatigue, weakness, stomach-yin deficiency, lung heat, cough, dry throat, and thirst. Recently, G. littoralis has also been incorporated into a wide range of Chinese vegetarian cuisines. Based on the comprehensive information, advances in botany, known uses, phytochemistry, pharmacology, and toxicity of G. littoralis, we aim to highlight research gaps and challenges in studying G. littoralis as well as to explore its potential use in plant biotechnology. This may provide more efficient therapeutic agents and health products from G. littoralis. A literature search of SciFinder, ScienceDirect, Scopus, TPL, Google Scholar, Baidu Scholar, and Web of Science, books, PhD and MSc dissertations, and peer-reviewed papers on G. littoralis research was conducted and comprehensively analyzed. We confirmed that the ethnomedical uses of G. littoralis have been recorded in China, Japan, and Korea for thousands of years. A phytochemical investigation revealed that the primary active compounds were phenylpropanoids, coumarins, lignanoids, and flavonoids, organic acids and derivatives, terpenoids, polyacetylenes, steroids, nitrogen compounds, and others. Our analysis also confirmed that the extracts of G. littoralis possess immunoregulatory, antitumor, anti-inflammatory, hepatoprotective, antioxidant, neuroprotective, antibacterial, antifungal, and analgesic properties. Although further studies are required, there is strong evidence of the antitumor and immunoregulatory potential of G. littoralis. Also, more studies are needed to elucidate the mechanisms of action of its active compounds (e.g., falcarinol and panaxydiol) before any clinical studies can be carried out.
Collapse
|
5
|
Park JH, Lee TK, Yan BC, Shin BN, Ahn JH, Kim IH, Cho JH, Lee JC, Hwang IK, Kim JD, Hong S, Lee YJ, Won MH, Kang IJ. Pretreated Glehnia littoralis Extract Prevents Neuronal Death Following Transient Global Cerebral Ischemia through Increases of Superoxide Dismutase 1 and Brain-derived Neurotrophic Factor Expressions in the Gerbil Hippocampal Cornu Ammonis 1 Area. Chin Med J (Engl) 2018; 130:1796-1803. [PMID: 28748852 PMCID: PMC5547831 DOI: 10.4103/0366-6999.211554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Glehnia littoralis, as a traditional herbal medicine to heal various health ailments in East Asia, displays various therapeutic properties including antioxidant effects. However, neuroprotective effects of G. littoralis against cerebral ischemic insults have not yet been addressed. Therefore, in this study, we first examined its neuroprotective effects in the hippocampus using a gerbil model of transient global cerebral ischemia (TGCI). METHODS Gerbils were subjected to TGCI for 5 min. G. littoralis extract (GLE; 100 and 200 mg/kg) was administrated orally once daily for 7 days before ischemic surgery. Neuroprotection was examined by neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. Gliosis was observed by immunohistochemistry for glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1. For neuroprotective mechanisms, immunohistochemistry for superoxide dismutase (SOD) 1 and brain-derived neurotrophic factor (BDNF) was done. RESULTS Pretreatment with 200 mg/kg of GLE protected pyramidal neurons in the cornu ammonis 1 (CA1) area from ischemic insult area (F = 29.770, P < 0.05) and significantly inhibited activations of astrocytes (F = 22.959, P < 0.05) and microglia (F = 44.135, P < 0.05) in the ischemic CA1 area. In addition, pretreatment with GLE significantly increased expressions of SOD1 (F = 28.561, P < 0.05) and BDNF (F = 55.298, P < 0.05) in CA1 pyramidal neurons of the sham- and ischemia-operated groups. CONCLUSIONS Our findings indicate that pretreatment with GLE can protect neurons from ischemic insults, and we suggest that its neuroprotective mechanism may be closely associated with increases of SOD1 and BDNF expressions as well as attenuation of glial activation.
Collapse
Affiliation(s)
- Joon Ha Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Bing-Chun Yan
- Department of Traditional Chinese and Western Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, Jiangsu 225001, China
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Jong Dai Kim
- Division of Food Biotechnology, School of Biotechnology, Kangwon National University, Chuncheon, 24341, Korea
| | - Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Young Joo Lee
- Department of Emergency Medicine, Seoul Hospital, College of Medicine, Sooncheonhyang University, Seoul 04401, Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
6
|
Kaushik V, Azad N, Yakisich JS, Iyer AKV. Antitumor effects of naturally occurring cardiac glycosides convallatoxin and peruvoside on human ER+ and triple-negative breast cancers. Cell Death Discov 2017; 3:17009. [PMID: 28250972 PMCID: PMC5327615 DOI: 10.1038/cddiscovery.2017.9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/14/2016] [Indexed: 11/09/2022] Open
Abstract
Breast cancer is second most prevalent cancer in women, and the second only to lung cancer in cancer-related deaths. It is a heterogeneous disease and has several subtypes based on the presence or absence of hormone receptors and/or human epidermal growth factor receptor 2 (HER2). Hormone receptor-positive and HER2-enriched cancers can be targeted using hormone and HER2-targeting therapies such as trastuzumab or lapatinib. However, triple-negative breast cancers (TNBCs) do not express any of the receptors and therefore are resistant to most targeted therapies, and cytotoxic chemotherapies are the only viable option available for the treatment of TNBCs. Recently, cardiac glycosides (CGs) have emerged as potential anticancer agents that impart their antiproliferative effect by targeting multiple pathways. In this study our aim was to evaluate anticancer effects of two naturally occurring CGs, Convallatoxin (CT) and Peruvoside (PS), on ER+ and TNBCs cells. CT and PS demonstrated dose- and time-dependent cytotoxic effect on MCF-7 cells, which was further supported by loss of colony formation on drug treatment. CT and PS arrested MCF-7 cells in the G0/G1 phase and reduced the viability of MCF-7-derived mammospheres (MMs). Interestingly, while CT and PS imparted cell death in TNBCs cells from both Caucasians (MDA-MB-231 cells) and African Americans (MDA-MB-468 cells) in a dose- and time-dependent manner, the drugs were much more potent in MDA-MB-468 as compared with TNBC MDA-MB-231 cells. Both drugs significantly inhibited migration and invasion of both MCF-7 and MDA-MB-468 cells. An assessment of intracellular pathways indicated that both drugs were able to modulate several key cellular pathways such as EMT, cell cycle, proliferation and cell death in both cell types. Our data suggest a promising role for CGs in breast cancer treatment specifically in targeting TNBCs derived from African Americans, and provides impetus for further investigation of the anticancer potential of this class of drugs.
Collapse
Affiliation(s)
- Vivek Kaushik
- Department of Pharmaceutical Sciences, Hampton University School of Pharmacy , Kittrell Hall, Queen & Tyler Streets, Hampton, VA 23668, USA
| | - Neelam Azad
- Department of Pharmaceutical Sciences, Hampton University School of Pharmacy , Kittrell Hall, Queen & Tyler Streets, Hampton, VA 23668, USA
| | - Juan Sebastian Yakisich
- Department of Pharmaceutical Sciences, Hampton University School of Pharmacy , Kittrell Hall, Queen & Tyler Streets, Hampton, VA 23668, USA
| | - Anand Krishnan V Iyer
- Department of Pharmaceutical Sciences, Hampton University School of Pharmacy , Kittrell Hall, Queen & Tyler Streets, Hampton, VA 23668, USA
| |
Collapse
|