1
|
Skovgaard AC, Nejad AM, Beck HC, Tan Q, Soerensen M. Epigenomics and transcriptomics association study of blood pressure and incident diagnosis of hypertension in twins. Hypertens Res 2025; 48:1599-1612. [PMID: 39972178 PMCID: PMC11972964 DOI: 10.1038/s41440-025-02164-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Hypertension is the most frequent health-related condition worldwide and is a primary risk factor for renal and cardiovascular diseases. However, the underlying molecular mechanisms are still poorly understood. To uncover these mechanisms, multi-omics studies have significant potential, but such studies are challenged by genetic and environmental confounding - an issue that can be effectively reduced by studying intra-pair differences in twins. Here, we coupled data on hypertension diagnoses from the nationwide Danish Patient Registry to a study population of 740 twins for whom genome-wide DNA methylation and gene expression data were available together with measurements of systolic and diastolic blood pressure. We investigated five phenotypes: incident hypertension cases, systolic blood pressure, diastolic blood pressure, hypertension (140/90 mmHg), and hypertension (130/80 mmHg). Statistical analyses were performed using Cox (incident cases) or linear (remaining) regression analyses at both the individual-level and twin pair-level. Significant genes (p < 0.05) at both levels and in both types of biological data were investigated by bioinformatic analyses, including gene set enrichment analysis and interaction network analysis. Overall, most of the identified pathways related to the immune system, particularly inflammation, and biology of vascular smooth muscle cell. Of specific genes, lysine methyltransferase 2 A (KMT2A) was found to be central for incident hypertension, ataxia-telangiectasia mutated (ATM) for systolic blood pressure, and beta-actin (ACTB) for diastolic blood pressure. Noteworthy, lysine methyltransferase 2A (KMT2A) was also identified in the systolic and diastolic blood pressure analyses. Here, we present novel biomarkers for hypertension. This study design is surprisingly rare in the field of hypertension. We identified biological pathways related to vascular smooth muscle cells and the immune system, particular inflammation, to be associated with hypertension and blood pressure. Of specific genes, we identified KMT2A (lysine methyltransferase 2A) to be central for blood pressure and hypertension development. ACTB beta-actin, ATM ataxiatelangiectasia mutated, BP blood pressure, EWAS epigenome-wide association studies, KMT2A lysine methyltransferase 2A, LMER linear mixed effect regression, LR linear regression, TWAS transcriptome-wide association studies.
Collapse
Affiliation(s)
- Asmus Cosmos Skovgaard
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Afsaneh M Nejad
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Qihua Tan
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Mette Soerensen
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| |
Collapse
|
2
|
Barnet-Griness O, Gruber SB, Lipkin SM, Shulman K, Haddad R, Galili R, Rennert G. Ataxia telangiectasia-mutated rs56009889 and risk of common cancers. Eur J Cancer Prev 2025; 34:124-129. [PMID: 39150041 DOI: 10.1097/cej.0000000000000906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
A polymorphic variant in the ataxia telangiectasia-mutated ( ATM ) gene, rs56009889, was recently associated with an increased risk of lung cancer. We studied the role of this variant in the etiology of other cancers. Data from three population-based case-control studies of colon, breast, and lung cancer were used. Participants in these studies (4517 cases, 3383 controls) underwent a genome-wide association study using 500K Illumina OncoArray. The frequency of the AG/AA genotypes differed between Ashkenazi (4.6%) and Sephardi (0.2%) Jews ( P < 0.001). AG/AA frequency was significantly higher in Ashkenazi lung cancer (11.9%) than in controls (2.8%) [adjusted odds ratio (OR) = 5.4]. Females had a higher risk than males (OR = 12.8 versus 3.5). The adjusted OR for colorectal cancer was 1.40 [95% confidence interval (CI) = 1.01-2.0, P = 0.045] and for breast cancer was 1.43 (95% CI = 1.01-2.04, P = 0.046). Never-smokers variant carriers were at higher risk of lung and colon, but not breast, cancer. Cases with the AG/AA genotype had lower mean age at diagnosis, but this difference was significant only for breast cancer (-3.2 years, P = 0.007). No associations were observed with overall survival. Among the breast cancer subjects, the OR for having triple-negative tumors was 0.45 for AG/AA versus GG genotype (95% CI = 0.2-0.9, P = 0.02). We confirm the strong association between ATM rs56009889 and lung cancer risk in Ashkenazi Jews and report a mild association with the risk of breast cancer and colorectal cancer.
Collapse
Affiliation(s)
- Ofra Barnet-Griness
- Department of Community Medicine and Epidemiology, Carmel Medical Center, Haifa, Israel
| | | | - Steven M Lipkin
- Program in Mendelian Genetics, Weill-Cornell Medicine, New York, New York, USA
| | - Katerina Shulman
- Haifa and Western Galilee District Oncology Service, Clalit Health Services
| | | | | | - Gad Rennert
- Department of Community Medicine and Epidemiology, Carmel Medical Center, Haifa, Israel
- Faculty of Medicine, Technion-Israel Institute of Technology
- Association for Promotion of Research in Precision Medicine (APRPM) (A.R.), Haifa, Israel
| |
Collapse
|
3
|
Huang Y, Zhao J, Zhou Z, Guo X, Xu Y, Huang T, Meng S, Cao Z, Xu D, Zhao Q, Yin Z, Jiang H, Yu L, Wang H. Persistent hypertension induces atrial remodeling and atrial fibrillation through DNA damage and ATM/CHK2/p53 signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167534. [PMID: 39366645 DOI: 10.1016/j.bbadis.2024.167534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Atrial fibrillation (AF) is the most prevalent arrhythmia in clinical practice, with hypertension emerging as an independent risk factor. Previous literature has established associations between DNA damage response (DDR) and autophagy in relation to the pathogenesis of AF. The aim of this study was to evaluate the effect of atrial DNA damage response in persistent hypertension-induced atrial electrical and structural remodeling, and to further explore the potential therapeutic targets. Patient samples, spontaneous hypertensive rats (SHR) and angiotensin II (Ang II)-challenged HL-1 cells were employed to elucidate the detailed mechanisms. Bioinformatics analysis and investigation on human atrial samples revealed a critical role of DDR in the pathogenesis of AF. The markers of atrial DNA damage, DDR, autophagy, inflammation and fibrosis were detected by western blot, immunofluorescence, monodansyl cadaverine (MDC) assay and transmission electron microscopy. Compared with the control group, SHR exhibited significant atrial electrical and structural remodeling, abnormal increase of autophagy, inflammation, and fibrosis, which was accompanied by excessive activation of DDR mediated by the ATM/CHK2/p53 pathway. These detrimental changes were validated by in vitro experiments. Ang II-challenged HL-1 cells also exhibited significantly elevated γH2AX expression, and markers related to autophagy, inflammation as well as structural remodeling. Additionally, inhibition of ATM with KU55933 (a specific ATM inhibitor) significantly reversed these effects. Collectively, these data demonstrate that DNA damage and the subsequently overactivated ATM/CHK2/p53 pathway play critical roles in hypertension-induced atrial remodeling and the susceptibility to AF. Targeting ATM/CHK2/p53 signaling may serve as a potential therapeutic strategy against AF.
Collapse
Affiliation(s)
- Yuting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jikai Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zijun Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xiaodong Guo
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yinli Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Tao Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Shan Meng
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Jinzhou Medical University, Jinzhou, Liaoning 121001, PR China
| | - Zijun Cao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, PR China
| | - Dengyue Xu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China; School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116024, PR China
| | - Qiusheng Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zongtao Yin
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Hui Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Liming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| | - Huishan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|
4
|
Loffredo L, Soresina A, Cinicola BL, Capponi M, Salvatori F, Bartimoccia S, Picchio V, Forte M, Caputi C, Poscia R, Leuzzi V, Spalice A, Pignatelli P, Badolato R, Duse M, Violi F, Carnevale R, Zicari AM. Impaired arterial dilation and increased NOX2 generated oxidative stress in subjects with ataxia-telangiectasia mutated (ATM) kinase. Redox Biol 2024; 77:103347. [PMID: 39326070 PMCID: PMC11466602 DOI: 10.1016/j.redox.2024.103347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Subjects with mutations in the Ataxia-Telangiectasia mutated (ATM) gene encoding for ATM kinase have a greater predisposition to develop atherosclerosis, but the mechanism behind this phenomenon is not yet understood. NADPH oxidase type 2 may play a role in this process, leading to endothelial dysfunction and an increased susceptibility to thrombosis. The purpose of this study was to assess the redox state in individuals with ATM mutations and determine its impact on endothelial function. METHODS In this cross-sectional study, twenty-seven children with ataxia telangiectasia (AT) (13 males and 14 females, mean age 15.1 ± 7.6 years) were compared with 27 controls (13 males and 14 females, mean age 14.6 ± 8.4 years) matched for age and gender. Additionally, 29 AT parents with heterozygous mutation of ATM (h-ATM) gene, and 29 age- and gender-matched controls were included. Endothelial function was evaluated through brachial flow-mediated dilation (FMD) and the assessment of nitric oxide (NO) bioavailability. Oxidative stress was evaluated by measuring serum activity of soluble NOX2-dp (sNOX2-dp), hydrogen peroxide (H2O2) production, and hydrogen breakdown activity (HBA). Thrombus formation was assessed through the Total Thrombus Formation Analysis System (T-TAS). RESULTS AT children and parents with heterozygous ATM mutations exhibited significantly lower FMD, HBA, and NO bioavailability as compared to age and gender matched controls. AT children and ATM carrier of heterozygous ATM mutations had significantly higher concentrations of sNOX2-dp and H2O2 as compared to controls. Compared to the respective controls, AT children and their parents, who carried heterozygous ATM mutation, showed an accelerated thrombus growth as revealed by reduced occlusion time. Multivariable linear regression analysis revealed that sNOX2 (standardized coefficient β: -0.296; SE: 0.044; p = 0.002) and NO bioavailability (standardized coefficient β: 0.224; SE: 0.065; p = 0.02) emerged as the only independent predictive variables associated with FMD (R2: 0.44). CONCLUSIONS This study demonstrates that individuals with ATM mutations experience endothelial dysfunction, increased oxidative stress, and elevated thrombus formation. These factors collectively contribute to the heightened susceptibility of these individuals to develop atherosclerosis.
Collapse
Affiliation(s)
- Lorenzo Loffredo
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Italy.
| | - Annarosa Soresina
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Bianca Laura Cinicola
- Department of Maternal, Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Martina Capponi
- Department of Maternal, Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Francesca Salvatori
- Department of Maternal, Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Simona Bartimoccia
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | | | - Caterina Caputi
- Department of Human Neuroscience - Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Roberto Poscia
- Clinical Research Unit, AOU Policlinico Umberto I- Sapienza University of Rome, Rome, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience - Unit of Child Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Alberto Spalice
- Department of Maternal, Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | - Pasquale Pignatelli
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Italy
| | - Raffaele Badolato
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Marzia Duse
- Department of Maternal, Child Health and Urological Sciences, Sapienza University, Rome, Italy
| | | | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Anna Maria Zicari
- Department of Maternal, Child Health and Urological Sciences, Sapienza University, Rome, Italy
| |
Collapse
|
5
|
Skovgaard AC, Mohammadnejad A, Beck HC, Tan Q, Soerensen M. Multi-omics association study of DNA methylation and gene expression levels and diagnoses of cardiovascular diseases in Danish Twins. Clin Epigenetics 2024; 16:117. [PMID: 39187864 PMCID: PMC11348607 DOI: 10.1186/s13148-024-01727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are major causes of mortality and morbidity worldwide; yet the understanding of their molecular basis is incomplete. Multi-omics studies have significant potential to uncover these mechanisms, but such studies are challenged by genetic and environmental confounding-a problem that can be effectively reduced by investigating intrapair differences in twins. Here, we linked data on all diagnoses of the circulatory system from the nationwide Danish Patient Registry (spanning 1977-2022) to a study population of 835 twins holding genome-wide DNA methylation and gene expression data. CVD diagnoses were divided into prevalent or incident cases (i.e., occurring before or after blood sample collection (2007-2011)). The diagnoses were classified into four groups: cerebrovascular diseases, coronary artery disease (CAD), arterial and other cardiovascular diseases (AOCDs), and diseases of the veins and lymphatic system. Statistical analyses were performed by linear (prevalent cases) or cox (incident cases) regression analyses at both the individual-level and twin pair-level. Significant genes (p < 0.05) in both types of biological data and at both levels were inspected by bioinformatic analyses, including gene set enrichment analysis and interaction network analysis. RESULTS In general, more genes were found for prevalent than for incident cases, and bioinformatic analyses primarily found pathways of the immune system, signal transduction and diseases for prevalent cases, and pathways of cell-cell communication, metabolisms of proteins and RNA, gene expression, and chromatin organization groups for incident cases. This potentially reflects biology related to response to CVD (prevalent cases) and mechanisms related to regulation and development of disease (incident cases). Of specific genes, Myosin 1E was found to be central for CAD, and DEAD-Box Helicase 5 for AOCD. These genes were observed in both the prevalent and the incident analyses, potentially reflecting that their DNA methylation and gene transcription levels change both because of disease (prevalent cases) and prior disease (incident cases). CONCLUSION We present novel biomarkers for CVD by performing multi-omics analysis in twins, hereby lowering the confounding due to shared genetics and early life environment-a study design that is surprisingly rare in the field of CVD, and where additional studies are highly needed.
Collapse
Affiliation(s)
- Asmus Cosmos Skovgaard
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Afsaneh Mohammadnejad
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Hans Christian Beck
- Center for Individualized Medicine in Arterial Diseases, Department of Biochemistry, Odense University Hospital, J.B. Winsloews Vej 4, 5000, Odense C, Denmark
| | - Qihua Tan
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Mette Soerensen
- The Danish Twin Registry and the Research Unit for Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
- Department of Clinical Genetics, Odense University Hospital, J.B. Winsloews Vej 4, 5000, Odense C, Denmark
| |
Collapse
|
6
|
Uyar E, Akturk H, Usanmaz S, Kiykim A, Tufan AE, Alibas H, Aydiner O, Somer A, Ozen A, Baris S, Karakoc-Aydiner E. Neurocognitive Impairment in Patients With Ataxia Telangiectasia and Their Unaffected Parents: Is It Similar? Pediatr Neurol 2024; 156:85-90. [PMID: 38733859 DOI: 10.1016/j.pediatrneurol.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/13/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Ataxia telangiectasia (AT) is a genetic multisystemic disorder affecting the nervous system. Data on neurocognitive functioning in AT are limited and focused on patients at various stages of disease. Because of the genetic nature of the disorder, parents of patients may also display subtle neurological problems. This study aimed to evaluate neurocognitive functioning in patients with AT and their unaffected parents. METHODS The study included 26 patients with AT and 41 parents among which 13 patients and 18 parents were evaluated with neurocognitive tests. Clinical and radiological data were reviewed retrospectively. Data were analyzed with descriptive statistics. RESULTS The median ages of patients and parents were 12.5 years (interquartile range [IQR] = 9.5) and 38.0 years (IQR = 12.0), respectively. Median intelligence quotients were 62.0 (IQR = 21.3) and 82.5 (IQR = 16.8), respectively, for patients and parents. Rates of intellectual disability for patients and parents were 100.0% and 83.3%, respectively. Areas of impairment in patients in decreasing order of frequency were motor skills, visual perception/memory, visual-manual coordination, spontaneous/focused and sustained attention (100.0% for each), social judgment, as well as vocabulary and arithmetic skills (75.0% for each). Areas of impairment in unaffected parents in decreasing order of frequency were visual-manual coordination (77.8%), working memory (76.5%), and visual perception and motor skills (66.7% for each). CONCLUSION Intellectual disabilities, visual-spatial disabilities, and reduced visual-motor coordination seem to be similar in patients with AT and their parents. These results should be replicated with larger samples from multiple centers and may form putative cognitive endophenotypes for the disorder.
Collapse
Affiliation(s)
- Emel Uyar
- Faculty of Medicine, Division of Pediatric Allergy and Immunology Istanbul, Marmara University, Istanbul, Turkiye.
| | - Hacer Akturk
- Istanbul Faculty of Medicine, Division of Pediatric Infectious Diseases and Clinical Immunology, Istanbul University, Istanbul, Turkiye; Division of Pediatric Infectious Diseases, Koc University, Istanbul, Turkiye
| | - Sevil Usanmaz
- Division of Clinical Psychology, Neuron Consultancy, Istanbul, Turkiye
| | - Ayca Kiykim
- Faculty of Medicine, Division of Pediatric Allergy and Immunology Istanbul, Marmara University, Istanbul, Turkiye
| | - Ali Evren Tufan
- Department of Child and Adolescent Psychiatry, Bolu Abant İzzet Baysal University, Bolu, Turkiye
| | - Hande Alibas
- Department of Neurology, Erenkoy Mental and Nervous Diseases Research and Training Hospital, Istanbul, Turkiye
| | - Omer Aydiner
- Interventional Radiology Department, Kartal Lutfi Kirdar City Hospital, Istanbul, Turkiye
| | - Ayper Somer
- Istanbul Faculty of Medicine, Division of Pediatric Infectious Diseases and Clinical Immunology, Istanbul University, Istanbul, Turkiye
| | - Ahmet Ozen
- Faculty of Medicine, Division of Pediatric Allergy and Immunology Istanbul, Marmara University, Istanbul, Turkiye
| | - Safa Baris
- Faculty of Medicine, Division of Pediatric Allergy and Immunology Istanbul, Marmara University, Istanbul, Turkiye
| | - Elif Karakoc-Aydiner
- Faculty of Medicine, Division of Pediatric Allergy and Immunology Istanbul, Marmara University, Istanbul, Turkiye
| |
Collapse
|
7
|
Ammous-Boukhris N, Abdelmaksoud-Dammak R, Ben Ayed-Guerfali D, Guidara S, Jallouli O, Kamoun H, Charfi Triki C, Mokdad-Gargouri R. Case report: Compound heterozygous variants detected by next-generation sequencing in a Tunisian child with ataxia-telangiectasia. Front Neurol 2024; 15:1344018. [PMID: 38882696 PMCID: PMC11178103 DOI: 10.3389/fneur.2024.1344018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive primary immunodeficiency disorder (PID) caused by biallelic mutations occurring in the serine/threonine protein kinase (ATM) gene. The major role of nuclear ATM is the coordination of cell signaling pathways in response to DNA double-strand breaks, oxidative stress, and cell cycle checkpoints. Defects in ATM functions lead to A-T syndrome with phenotypic heterogeneity. Our study reports the case of a Tunisian girl with A-T syndrome carrying a compound heterozygous mutation c.[3894dupT]; p.(Ala1299Cysfs3;rs587781823), with a splice acceptor variant: c.[5763-2A>C;rs876659489] in the ATM gene that was identified by next-generation sequencing (NGS). Further genetic analysis of the family showed that the mother carried the c.[5763-2A>C] splice acceptor variant, while the father harbored the c.[3894dupT] variant in the heterozygous state. Molecular analysis provides the opportunity for accurate diagnosis and timely management in A-T patients with chronic progressive disease, especially infections and the risk of malignancies. This study characterizes for the first time the identification of compound heterozygous ATM pathogenic variants by NGS in a Tunisian A-T patient. Our study outlines the importance of molecular genetic testing for A-T patients, which is required for earlier detection and reducing the burden of disease in the future, using the patients' families.
Collapse
Affiliation(s)
- Nihel Ammous-Boukhris
- Laboratory of Eukaryotes' Molecular Biotechnology, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Rania Abdelmaksoud-Dammak
- Laboratory of Eukaryotes' Molecular Biotechnology, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Dorra Ben Ayed-Guerfali
- Laboratory of Eukaryotes' Molecular Biotechnology, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Souhir Guidara
- Department of Human Genetics, Hedi Chaker Hospital, Sfax, Tunisia
| | - Olfa Jallouli
- Department of NeuroPediatry, Hedi Chaker Hospital, Sfax, Tunisia
| | - Hassen Kamoun
- Department of Human Genetics, Hedi Chaker Hospital, Sfax, Tunisia
| | | | - Raja Mokdad-Gargouri
- Laboratory of Eukaryotes' Molecular Biotechnology, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
8
|
Wang-Heaton H, Wingard MC, Dalal S, Shook PL, Connelly BA, Johnson P, Nichols PL, Singh M, Singh K. ATM deficiency differentially affects expression of proteins related to fatty acid oxidation and oxidative stress in a sex-specific manner in response to Western-type diet prior to and following myocardial infarction. Life Sci 2024; 342:122541. [PMID: 38428572 PMCID: PMC10949412 DOI: 10.1016/j.lfs.2024.122541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
AIMS Published work has shown that ataxia-telangiectasia mutated kinase (ATM) deficiency is associated with cardioprotective effects in Western-type diet (WD)-fed female mice. This study assessed the expression of proteins related to fatty acid oxidation (FAO) and oxidative stress in WD-fed male and female mouse hearts, and investigated if sex-specific cardioprotective effects in WD-fed female ATM-deficient mice are maintained following myocardial infarction (MI). MAIN METHODS Wild-type (WT) and ATM-deficient (hKO) mice (both sexes) were placed on WD for 14 weeks. Myocardial tissue from a subset of mice was used for western blot analyses, while another subset of WD-fed mice underwent MI. Heart function was analyzed by echocardiography prior to and 1 day post-MI. KEY FINDINGS CPT1B (mitochondrial FAO enzyme) expression was lower in male hKO-WD, while it was higher in female hKO-WD vs WT-WD. WD-mediated decrease in ACOX1 (peroxisomal FAO enzyme) expression was only observed in male WT-WD. PMP70 (transports fatty acyl-CoA across peroxisomal membrane) expression was lower in male hKO-WD vs WT-WD. Catalase (antioxidant enzyme) expression was higher, while Nox4 (pro-oxidant enzyme) expression was lower in female hKO-WD vs WT-WD. Heart function was better in female hKO-WD vs WT-WD. However, post-MI heart function was not significantly different among all MI groups. Post-MI, CPT1B and catalase expression was higher in male hKO-WD-MI vs WT-WD-MI, while Nox4 expression was higher in female hKO-WD-MI vs WT-WD-MI. SIGNIFICANCE Increased mitochondrial FAO and decreased oxidative stress contribute towards ATM deficiency-mediated cardioprotective effects in WD-fed female mice which are abolished post-MI with increased Nox4 expression.
Collapse
Affiliation(s)
- Hui Wang-Heaton
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Mary C Wingard
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Suman Dalal
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA
| | - Paige L Shook
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Barbara A Connelly
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Patrick Johnson
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Phillip L Nichols
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Mahipal Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Krishna Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN, USA; Center for Cardiovascular Risk Research, East Tennessee State University, Johnson City, TN, USA; James H Quillen Veterans Affairs Medical Center, Mountain Home, TN, USA.
| |
Collapse
|
9
|
Sokay A, Leahy TR, O'Regan M, O' Grady M. Variant ataxia telangiectasia identified during evaluation for short stature. BMJ Case Rep 2024; 17:e257736. [PMID: 38453233 PMCID: PMC10921506 DOI: 10.1136/bcr-2023-257736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Ataxia telangiectasia (A-T) (OMIM 208900) is an autosomal recessive multisystem disorder characterised by progressive cerebellar ataxia, telangiectasias, immunodeficiency and a predisposition to malignancy. 'Variant' A-T has later onset of neurological symptoms and slower progression compared with the 'classic' form. A woman presented with short stature in late childhood. Karyotype revealed rearrangements involving chromosomes 7 and 14. A chromosomal breakage disorder gene panel demonstrated compound heterozygote mutations in her ATM gene including one mutation c.7271T>G with residual ATM function, confirming the diagnosis of variant A-T. Since diagnosis, she has developed progressive cerebellar ataxia and telangiectasias. Long-standing restrictive and aversive feeding behaviours presented challenges for her management and necessitated gastrostomy.
Collapse
Affiliation(s)
- Anitha Sokay
- Paediatrics, Midland Regional Hospital Mullingar, Mullingar, Ireland
| | | | - Mary O'Regan
- Neurology, Our Lady's Hospital Crumlin, Crumlin, Ireland
| | - Michael O' Grady
- Paediatrics, Midland Regional Hospital Mullingar, Mullingar, Ireland
| |
Collapse
|
10
|
Bloom SI, Tucker JR, Machin DR, Abdeahad H, Adeyemo AO, Thomas TG, Bramwell RC, Lesniewski LA, Donato AJ. Reduction of double-strand DNA break repair exacerbates vascular aging. Aging (Albany NY) 2023; 15:9913-9947. [PMID: 37787989 PMCID: PMC10599741 DOI: 10.18632/aging.205066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
Advanced age is the greatest risk factor for cardiovascular disease (CVD), the leading cause of death. Arterial function is impaired in advanced age which contributes to the development of CVD. One underexplored hypothesis is that DNA damage within arteries leads to this dysfunction, yet evidence demonstrating the incidence and physiological consequences of DNA damage in arteries, and in particular, in the microvasculature, in advanced age is limited. In the present study, we began by assessing the abundance of DNA damage in human and mouse lung microvascular endothelial cells and found that aging increases the percentage of cells with DNA damage. To explore the physiological consequences of increases in arterial DNA damage, we evaluated measures of endothelial function, microvascular and glycocalyx properties, and arterial stiffness in mice that were lacking or heterozygous for the double-strand DNA break repair protein ATM kinase. Surprisingly, in young mice, vascular function remained unchanged which led us to rationalize that perhaps aging is required to accumulate DNA damage. Indeed, in comparison to wild type littermate controls, mice heterozygous for ATM that were aged to ~18 mo (Old ATM +/-) displayed an accelerated vascular aging phenotype characterized by increases in arterial DNA damage, senescence signaling, and impairments in endothelium-dependent dilation due to elevated oxidative stress. Furthermore, old ATM +/- mice had reduced microvascular density and glycocalyx thickness as well as increased arterial stiffness. Collectively, these data demonstrate that DNA damage that accumulates in arteries in advanced age contributes to arterial dysfunction that is known to drive CVD.
Collapse
Affiliation(s)
- Samuel I. Bloom
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84148, USA
| | - Jordan R. Tucker
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - Daniel R. Machin
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32304, USA
| | - Hossein Abdeahad
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84148, USA
| | - AdeLola O. Adeyemo
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - Tyler G. Thomas
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - R. Colton Bramwell
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
| | - Lisa A. Lesniewski
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84148, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
- Geriatric Research, Education and Clinical Center, Veteran’s Affairs Medical Center-Salt Lake City, Salt Lake City, UT 84148, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84148, USA
| | - Anthony J. Donato
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84148, USA
- Department of Internal Medicine, Division of Geriatrics, University of Utah School of Medicine, Salt Lake City, UT 84148, USA
- Geriatric Research, Education and Clinical Center, Veteran’s Affairs Medical Center-Salt Lake City, Salt Lake City, UT 84148, USA
- Nora Eccles Harrison Cardiovascular Research and Training Institute, The University of Utah, Salt Lake City, UT 84148, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84148, USA
| |
Collapse
|
11
|
Nikfarjam S, Singh KK. DNA damage response signaling: A common link between cancer and cardiovascular diseases. Cancer Med 2023; 12:4380-4404. [PMID: 36156462 PMCID: PMC9972122 DOI: 10.1002/cam4.5274] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
DNA damage response (DDR) signaling ensures genomic and proteomic homeostasis to maintain a healthy genome. Dysregulation either in the form of down- or upregulation in the DDR pathways correlates with various pathophysiological states, including cancer and cardiovascular diseases (CVDs). Impaired DDR is studied as a signature mechanism for cancer; however, it also plays a role in ischemia-reperfusion injury (IRI), inflammation, cardiovascular function, and aging, demonstrating a complex and intriguing relationship between cancer and pathophysiology of CVDs. Accordingly, there are increasing number of reports indicating higher incidences of CVDs in cancer patients. In the present review, we thoroughly discuss (1) different DDR pathways, (2) the functional cross talk among different DDR mechanisms, (3) the role of DDR in cancer, (4) the commonalities and differences of DDR between cancer and CVDs, (5) the role of DDR in pathophysiology of CVDs, (6) interventional strategies for targeting genomic instability in CVDs, and (7) future perspective.
Collapse
Affiliation(s)
- Sepideh Nikfarjam
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Krishna K Singh
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
12
|
Amirifar P, Mehrmohamadi M, Ranjouri MR, Akrami SM, Rezaei N, Saberi A, Yazdani R, Abolhassani H, Aghamohammadi A. Genetic Risk Variants for Class Switching Recombination Defects in Ataxia-Telangiectasia Patients. J Clin Immunol 2021; 42:72-84. [PMID: 34628594 PMCID: PMC8821084 DOI: 10.1007/s10875-021-01147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/27/2021] [Indexed: 11/04/2022]
Abstract
Background Ataxia-telangiectasia (A-T) is a rare autosomal recessive disorder caused by mutations in the ataxia telangiectasia mutated (ATM) gene. A-T patients manifest considerable variability in clinical and immunological features, suggesting the presence of genetic modifying factors. A striking heterogeneity has been observed in class switching recombination (CSR) in A-T patients which cannot be explained by the severity of ATM mutations. Methods To investigate the cause of variable CSR in A-T patients, we applied whole-exome sequencing (WES) in 20 A-T patients consisting of 10 cases with CSR defect (CSR-D) and 10 controls with normal CSR (CSR-N). Comparative analyses on modifier variants found in the exomes of these two groups of patients were performed. Results For the first time, we identified some variants in the exomes of the CSR-D group that were significantly associated with antigen processing and presentation pathway. Moreover, in this group of patients, the variants in four genes involved in DNA double-strand breaks (DSB) repair signaling, in particular, XRCC3 were observed, suggesting an association with CSR defect. Conclusion Additional impact of certain variants, along with ATM mutations, may explain the heterogeneity in CSR defect phenotype among A-T patients. It can be concluded that genetic modulators play an important role in the course of A-T disease and its clinical severity. Supplementary Information The online version contains supplementary material available at 10.1007/s10875-021-01147-8.
Collapse
Affiliation(s)
- Parisa Amirifar
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Mahya Mehrmohamadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ranjouri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ali Saberi
- Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran. .,Division of Clinical Immunology, Department of Biosciences and Nutrition, NEO, Karolinska Institute, Blickagangen 16, 14157, Stockholm, Sweden. .,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran. .,Children's Medical Center Hospital, 62 Qarib St., Keshavarz Blvd, 14194, Tehran, Iran.
| |
Collapse
|
13
|
Calaf GM, Crispin LA, Roy D, Aguayo F, Muñoz JP, Bleak TC. Gene Signatures Induced by Ionizing Radiation as Prognostic Tools in an In Vitro Experimental Breast Cancer Model. Cancers (Basel) 2021; 13:4571. [PMID: 34572798 PMCID: PMC8465284 DOI: 10.3390/cancers13184571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to analyze the expression of genes involved in radiation, using an Affymetrix system with an in vitro experimental breast cancer model developed by the combined treatment of low doses of high linear energy transfer (LET) radiation α particle radiation and estrogen yielding different stages in a malignantly transformed breast cancer cell model called Alpha model. Altered expression of different molecules was detected in the non-tumorigenic Alpha3, a malignant cell line transformed only by radiation and originally derived from the parental MCF-10F human cell line; that was compared with the Alpha 5 cell line, another cell line exposed to radiation and subsequently grown in the presence 17β-estradiol. This Alpha5, a tumorigenic cell line, originated the Tumor2 cell line. It can be summarized that the Alpha 3 cell line was characterized by greater gene expression of ATM and IL7R than control, Alpha5, and Tumor2 cell lines, it presented higher selenoprotein gene expression than control and Tumor2; epsin 3 gene expression was higher than control; stefin A gene expression was higher than Alpha5; and metallothionein was higher than control and Tumor2 cell line. Therefore, radiation, independently of estrogen, induced increased ATM, IL7R, selenoprotein, GABA receptor, epsin, stefin, and metallothioneins gene expression in comparison with the control. Results showed important findings of genes involved in cancers of the breast, lung, nervous system, and others. Most genes analyzed in these studies can be used for new prognostic tools and future therapies since they affect cancer progression and metastasis. Most of all, it was revealed that in the Alpha model, a breast cancer model developed by the authors, the cell line transformed only by radiation, independently of estrogen, was characterized by greater gene expression than other cell lines. Understanding the effect of radiotherapy in different cells will help us improve the clinical outcome of radiotherapies. Thus, gene signature has been demonstrated to be specific to tumor types, hence cell-dependency must be considered in future treatment planning. Molecular and clinical features affect the results of radiotherapy. Thus, using gene technology and molecular information is possible to improve therapies and reduction of side effects while providing new insights into breast cancer-related fields.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Leodan A. Crispin
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Debasish Roy
- Department of Natural Sciences, Hostos College of the City University of New York, Bronx, NY 10451, USA;
| | - Francisco Aguayo
- Laboratorio Oncovirología, Programa de Virología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago 8380000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| |
Collapse
|
14
|
Krausz C, Cioppi F. Genetic Factors of Non-Obstructive Azoospermia: Consequences on Patients' and Offspring Health. J Clin Med 2021; 10:jcm10174009. [PMID: 34501457 PMCID: PMC8432470 DOI: 10.3390/jcm10174009] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 12/20/2022] Open
Abstract
Non-Obstructive Azoospermia (NOA) affects about 1% of men in the general population and is characterized by clinical heterogeneity implying the involvement of several different acquired and genetic factors. NOA men are at higher risk to be carriers of known genetic anomalies such as karyotype abnormalities and Y-chromosome microdeletions in respect to oligo-normozoospermic men. In recent years, a growing number of novel monogenic causes have been identified through Whole Exome Sequencing (WES). Genetic testing is useful for diagnostic and pre-TESE prognostic purposes as well as for its potential relevance for general health. Several epidemiological observations show a link between azoospermia and higher morbidity and mortality rate, suggesting a common etiology for NOA and some chronic diseases, including cancer. Since on average 50% of NOA patients has a positive TESE outcome, the identification of genetic factors in NOA patients has relevance also to the offspring's health. Although still debated, the observed increased risk of certain neurodevelopmental disorders, as well as impaired cardiometabolic and reproductive health profile in children conceived with ICSI from NOA fathers may indicate the involvement of transmissible genetic factors. This review provides an update on the reproductive and general health consequences of known genetic factors causing NOA, including offspring's health.
Collapse
|
15
|
Blignaut M, Harries S, Lochner A, Huisamen B. Ataxia Telangiectasia Mutated Protein Kinase: A Potential Master Puppeteer of Oxidative Stress-Induced Metabolic Recycling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8850708. [PMID: 33868575 PMCID: PMC8032526 DOI: 10.1155/2021/8850708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
Abstract
Ataxia Telangiectasia Mutated protein kinase (ATM) has recently come to the fore as a regulatory protein fulfilling many roles in the fine balancing act of metabolic homeostasis. Best known for its role as a transducer of DNA damage repair, the activity of ATM in the cytosol is enjoying increasing attention, where it plays a central role in general cellular recycling (macroautophagy) as well as the targeted clearance (selective autophagy) of damaged mitochondria and peroxisomes in response to oxidative stress, independently of the DNA damage response. The importance of ATM activation by oxidative stress has also recently been highlighted in the clearance of protein aggregates, where the expression of a functional ATM construct that cannot be activated by oxidative stress resulted in widespread accumulation of protein aggregates. This review will discuss the role of ATM in general autophagy, mitophagy, and pexophagy as well as aggrephagy and crosstalk between oxidative stress as an activator of ATM and its potential role as a master regulator of these processes.
Collapse
Affiliation(s)
- Marguerite Blignaut
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Sarah Harries
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Amanda Lochner
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| | - Barbara Huisamen
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, South Africa
| |
Collapse
|
16
|
Amirifar P, Ranjouri MR, Lavin M, Abolhassani H, Yazdani R, Aghamohammadi A. Ataxia-telangiectasia: epidemiology, pathogenesis, clinical phenotype, diagnosis, prognosis and management. Expert Rev Clin Immunol 2020; 16:859-871. [PMID: 32791865 DOI: 10.1080/1744666x.2020.1810570] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Ataxia-telangiectasia (A-T) is a rare autosomal recessive syndrome characterized by progressive cerebellar ataxia, oculocutaneous telangiectasia, variable immunodeficiency, radiosensitivity, and cancer predisposition. Mutations cause A-T in the ataxia telangiectasia mutated (ATM) gene encoding a serine/threonine-protein kinase. AREAS COVERED The authors reviewed the literature on PubMed, Web of Science, and Scopus databases to collect comprehensive data related to A-T. This review aims to discuss various update aspects of A-T, including epidemiology, pathogenesis, clinical manifestations, diagnosis, prognosis, and management. EXPERT OPINION A-T as a congenital disorder has phenotypic heterogeneity, and the severity of symptoms in different patients depends on the severity of mutations. This review provides a comprehensive overview of A-T, although some relevant questions about pathogenesis remain unanswered, probably owing to the phenotypic heterogeneity of this monogenic disorder. The presence of various clinical and immunologic manifestations in A-T indicates that the identification of the role of defective ATM in phenotype can be helpful in the better management and treatment of patients in the future.
Collapse
Affiliation(s)
- Parisa Amirifar
- Medical Genetics Department, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science , Tehran, Iran
| | - Mohammad Reza Ranjouri
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science , Tehran, Iran.,Molecular Medicine and Genetics Department, School of Medicine, Zanjan University of Medical Sciences , Zanjan, Iran
| | - Martin Lavin
- University of Queensland Centre for Clinical Research (UQCCR), University of Queensland , L, Australia
| | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Iran University of Medical Science , Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science , Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science , Tehran, Iran
| |
Collapse
|
17
|
Barreto TLN, Kotchetkoff ECDA, Lago CSA, Sarni ROS. Agreement of cardiovascular risk in ataxia-telangiectasia mutated heterozygotes and their children with Ataxia-telangiectasia. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1780117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Bharucha PP, Chiu KE, François FM, Scott JL, Khorjekar GR, Tirada NP. Genetic Testing and Screening Recommendations for Patients with Hereditary Breast Cancer. Radiographics 2020; 40:913-936. [PMID: 32469631 DOI: 10.1148/rg.2020190181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Professionals who specialize in breast imaging may be the first to initiate the conversation about genetic counseling with patients who have a diagnosis of premenopausal breast cancer or a strong family history of breast and ovarian cancer. Commercial genetic testing panels have gained popularity and have become more affordable in recent years. Therefore, it is imperative for radiologists to be able to provide counseling and to identify those patients who should be referred for genetic testing. The authors review the process of genetic counseling and the associated screening recommendations for patients at high and moderate risk. Ultimately, genetic test results enable appropriate patient-specific screening, which allows improvement of overall survival by early detection and timely treatment. The authors discuss pretest counseling, which involves the use of various breast cancer risk assessment tools such as the Gail and Tyrer-Cuzick models. The most common high- and moderate-risk gene mutations associated with breast cancer are also reviewed. In addition to BRCA1 and BRCA2, several high-risk genes, including TP53, PTEN, CDH1, and STK11, are discussed. Moderate-risk genes include ATM, CHEK2, and PALB2. The imaging appearances of breast cancer typically associated with each gene mutation, as well as the other associated cancers, are described. ©RSNA, 2020 See discussion on this article by Butler (pp 937-940).
Collapse
Affiliation(s)
- Puja P Bharucha
- From the Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201
| | - Kellie E Chiu
- From the Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201
| | - Fabienne M François
- From the Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201
| | - Jessica L Scott
- From the Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201
| | - Gauri R Khorjekar
- From the Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201
| | - Nikki P Tirada
- From the Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201
| |
Collapse
|
19
|
Amirifar P, Mozdarani H, Yazdani R, Kiaei F, Moeini Shad T, Shahkarami S, Abolhassani H, Delavari S, Sohani M, Rezaei A, Hassanpour G, Akrami SM, Aghamohammadi A. Effect of Class Switch Recombination Defect on the Phenotype of Ataxia-Telangiectasia Patients. Immunol Invest 2020; 50:201-215. [PMID: 32116070 DOI: 10.1080/08820139.2020.1723104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Objectives: Ataxia-telangiectasia (A-T) is an autosomal recessive neurodegenerative disorder with multisystem involvement caused by homozygous or compound heterozygous mutations in the ataxia telangiectasia mutated (ATM) gene which encodes a serine/threonine protein kinase. The aims of this study were to investigate class switch recombination (CSR) and to review the clinical and immunologic phenotypes of 3 groups of A-T patients, including A-T patients with CSR defects (CSR-D), A-T patients with selective immunoglobulin A deficiency (IgA-D) and A-T patients with normal Ig level. Methods: In this study, 41 patients with confirmed diagnosis of A-T (16 A-T patients with HIgM, 15 A-T patients with IgA-D, and 10 A-T patients with normal Ig levels) from Iranian immunodeficiency registry center were enrolled. B-cell proliferation, in vitro CSR toward IgE and IgA were compared between three groups as well as G2 radiosensitivity assay. Results: Earliest presentation of telangiectasia was a significant hallmark in A-T patients with CSR-D (p = .036). In this investigation, we found that the frequency of respiratory infection (p = .002), pneumonia (p = .02), otitis media (p = .008), chronic fever (p < .001), autoimmunity (p = .02) and hepatosplenomegaly (p = .03) in A-T patients with HIgM phenotype were significantly higher than the other groups. As expected IgE production stimulation and IgA CSR were perturbed in HIgM patients that were aligned with the higher readiosenstivity scores in this group. Conclusion: A-T patients with HIgM compared to other A-T patients presenting more infections and noninfectious complications, therefore, early detection and careful management of these patients is necessary.
Collapse
Affiliation(s)
- Parisa Amirifar
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University , Terhran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran
| | - Fatemeh Kiaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran
| | - Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran.,Medical Genetics Network (Megene), Universal Scientific Education and Research Network (USERN) , Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Iran University of Medical Sciences , Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm, Sweden
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran
| | - Mahsa Sohani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran
| | - Arezou Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran
| | - Gholamreza Hassanpour
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences , Tehran, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, University of Medical Science , Tehran, Iran
| |
Collapse
|
20
|
Clark KL, Keating AF. Ataxia-telangiectasia mutated coordinates the ovarian DNA repair and atresia-initiating response to phosphoramide mustard. Biol Reprod 2020; 102:248-260. [PMID: 31435664 DOI: 10.1093/biolre/ioz160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/31/2019] [Accepted: 08/13/2019] [Indexed: 11/13/2022] Open
Abstract
Ataxia-telangiectasia-mutated (ATM) protein recognizes and repairs DNA double strand breaks through activation of cell cycle checkpoints and DNA repair proteins. Atm gene mutations increase female reproductive cancer risk. Phosphoramide mustard (PM) induces ovarian DNA damage and destroys primordial follicles, and pharmacological ATM inhibition prevents PM-induced follicular depletion. Wild-type (WT) C57BL/6 or Atm+/- mice were dosed once intraperitoneally with sesame oil (95%) or PM (25 mg/kg) in the proestrus phase of the estrous cycle and ovaries harvested 3 days thereafter. Atm+/- mice spent ~25% more time in diestrus phase than WT. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) on ovarian protein was performed and bioinformatically analyzed. Relative to WT, Atm+/- mice had 64 and 243 proteins increased or decreased in abundance, respectively. In WT mice, PM increased 162 and decreased 20 proteins. In Atm+/- mice, 173 and 37 proteins were increased and decreased, respectively, by PM. Exportin-2 (XPO2) was localized to granulosa cells of all follicle stages and was 7.2-fold greater in Atm+/- than WT mice. Cytoplasmic FMR1-interacting protein 1 was 6.8-fold lower in Atm+/- mice and was located in the surface epithelium with apparent translocation to the ovarian medulla post-PM exposure. PM induced γH2AX, but fewer γH2AX-positive foci were identified in Atm+/- ovaries. Similarly, cleaved caspase-3 was lower in the Atm+/- PM-treated, relative to WT mice. These findings support ATM involvement in ovarian DNA repair and suggest that ATM functions to regulate ovarian atresia.
Collapse
Affiliation(s)
- Kendra L Clark
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
21
|
Amirifar P, Yazdani R, Moeini Shad T, Ghanadan A, Abolhassani H, Lavin M, Sotoudeh S, Aghamohammadi A. Cutaneous Granulomatosis and Class Switching Defect as a Presenting Sign in Ataxia-Telangiectasia: First Case from the National Iranian Registry and Review of the Literature. Immunol Invest 2019; 49:597-610. [DOI: 10.1080/08820139.2019.1692864] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Parisa Amirifar
- Medical genetics department, School of Medicine, Tehran University of medical sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran, and the University of Medical Science, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran, and the University of Medical Science, Tehran, Iran
| | - Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran, and the University of Medical Science, Tehran, Iran
| | - Alireza Ghanadan
- Department of Dermatopathology, Razi Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Martin Lavin
- Centre for Clinical Research (UQCCR), University of Queensland, Brisbane, Australia
| | - Soheila Sotoudeh
- Department of Dermatology, Children’s Medical Center, Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran, and the University of Medical Science, Tehran, Iran
| |
Collapse
|
22
|
Amirifar P, Ranjouri MR, Yazdani R, Abolhassani H, Aghamohammadi A. Ataxia-telangiectasia: A review of clinical features and molecular pathology. Pediatr Allergy Immunol 2019; 30:277-288. [PMID: 30685876 DOI: 10.1111/pai.13020] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/29/2018] [Accepted: 12/30/2018] [Indexed: 01/09/2023]
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive primary immunodeficiency (PID) disease that is caused by mutations in ataxia-telangiectasia mutated (ATM) gene encoding a serine/threonine protein kinase. A-T patients represent a broad range of clinical manifestations including progressive cerebellar ataxia, oculocutaneous telangiectasia, variable immunodeficiency, radiosensitivity, susceptibility to malignancies, and increased metabolic diseases. This congenital disorder has phenotypic heterogeneity, and the severity of symptoms varies in different patients based on severity of mutations and disease progression. The principal role of nuclear ATM is the coordination of cellular signaling pathways in response to DNA double-strand breaks, oxidative stress, and cell cycle checkpoint. The pathogenesis of A-T is not limited to the role of ATM in the DNA damage response (DDR) pathway, and it has other functions mainly in the hematopoietic cells and neurons. ATM adjusts the functions of organelles such as mitochondria and peroxisomes and also regulates angiogenesis and glucose metabolisms. However, ATM has other functions in the cells (especially cell viability) that need further investigations. In this review, we described functions of ATM in the nucleus and cytoplasm, and also its association with some disorder formation such as neurologic, immunologic, vascular, pulmonary, metabolic, and dermatologic complications.
Collapse
Affiliation(s)
- Parisa Amirifar
- Medical Genetics Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Ranjouri
- Molecular Medicine and Genetics Department, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran, Iran
- University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran, Iran
- University of Medical Science, Tehran, Iran
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran, Iran
- University of Medical Science, Tehran, Iran
| |
Collapse
|
23
|
Blignaut M, Loos B, Botchway SW, Parker AW, Huisamen B. Ataxia-Telangiectasia Mutated is located in cardiac mitochondria and impacts oxidative phosphorylation. Sci Rep 2019; 9:4782. [PMID: 30886180 PMCID: PMC6423017 DOI: 10.1038/s41598-019-41108-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/26/2019] [Indexed: 01/16/2023] Open
Abstract
The absence of Ataxia-Telangiectasia mutated protein kinase (ATM) is associated with neurological, metabolic and cardiovascular defects. The protein has been associated with mitochondria and its absence results in mitochondrial dysfunction. Furthermore, it can be activated in the cytosol by mitochondrial oxidative stress and mediates a cellular anti-oxidant response through the pentose phosphate pathway (PPP). However, the precise location and function of ATM within mitochondria and its role in oxidative phosphorylation is still unknown. We show that ATM is found endogenously within cardiac myocyte mitochondria under normoxic conditions and is consistently associated with the inner mitochondrial membrane. Acute ex vivo inhibition of ATM protein kinase significantly decreased mitochondrial electron transfer chain complex I-mediated oxidative phosphorylation rate but did not decrease coupling efficiency or oxygen consumption rate during β-oxidation. Chemical inhibition of ATM in rat cardiomyoblast cells (H9c2) significantly decreased the excited-state autofluorescence lifetime of enzyme-bound reduced NADH and its phosphorylated form, NADPH (NAD(P)H; 2.77 ± 0.26 ns compared to 2.57 ± 0.14 ns in KU60019-treated cells). This suggests an interaction between ATM and the electron transfer chain in the mitochondria, and hence may have an important role in oxidative phosphorylation in terminally differentiated cells such as cardiomyocytes.
Collapse
Affiliation(s)
- Marguerite Blignaut
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa.
| | - Ben Loos
- Department of Physiological Sciences, Faculty of Sciences, Stellenbosch University, Stellenbosch, 7602, South Africa
| | - Stanley W Botchway
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, OX3 0BP, UK
| | - Anthony W Parker
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, UK
- Department of Physics, Faculty of Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Barbara Huisamen
- Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, 7505, South Africa
- Biomedical, Research and Innovation Platform, South African Medical Research Council, Tygerberg, 7505, South Africa
| |
Collapse
|
24
|
Nagirnaja L, Aston KI, Conrad DF. Genetic intersection of male infertility and cancer. Fertil Steril 2018; 109:20-26. [PMID: 29307395 DOI: 10.1016/j.fertnstert.2017.10.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/11/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022]
Abstract
Recent epidemiological studies have identified an association between male factor infertility and increased cancer risk, however, the underlying etiology for the shared risk has not been investigated. It is likely that much of the association between the two disease states can be attributed to underlying genetic lesions. In this article we review the reported associations between cancer and spermatogenic defects, and through database searches we identify candidate genes and gene classes that could explain some of the observed shared genetic risk. We discuss the importance of fully characterizing the genetic basis for the relationship between cancer and male factor infertility and propose future studies to that end.
Collapse
Affiliation(s)
- Liina Nagirnaja
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Kenneth I Aston
- Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Donald F Conrad
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
25
|
Ye F, Chai W, Yang M, Xie M, Yang L. Ataxia-telangiectasia with a novel ATM gene mutation and Burkitt leukemia: A case report. Mol Clin Oncol 2018; 9:493-498. [PMID: 30402232 PMCID: PMC6200993 DOI: 10.3892/mco.2018.1721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/17/2018] [Indexed: 01/22/2023] Open
Abstract
Ataxia-telangiectasia (A-T) is an infrequent autosomal recessive disorder that involves multiple systems and is characterized by progressive cerebellar ataxia, oculocutaneous telangiectasias, radiosensitivity, immune deficiency with recurrent respiratory infections, and a tendency to develop lymphoid malignancies. A-T is caused by mutations in the ATM gene, with >1,000 mutations reported to date and gradually increasing in number. Patients with A-T have an increased incidence of cancers. The aim of the present study was to retrospectively review the case of a patient who presented at the age of 5 years with cerebellar ataxia without telangiectasia, and was diagnosed with Burkitt leukemia by bone marrow biopsy and molecular testing at the age of 7 years at the Xiangya Hospital of Central South University (Changsha, China). The patient received chemotherapy with the pediatric CCCG-BNHL-2015 regimen (R4 group) and achieved a complete remission after 2 courses. However, recurrent respiratory infections and thrombosis occurred during chemotherapy. The diagnosis of A-T was confirmed by uncovering two variants of the ATM gene, including c.742C>T (p.R248X; rs730881336) in exon 7 and c.6067-c.6068 ins GAGGGAAGAT in exon 41 by whole-exome sequencing. Unfortunately, the patient's parents refused follow-up treatment and he succumbed to recurrent severe infections 4 months after the diagnosis of Burkitt leukemia. The diagnosis of A-T may be challenging, as its phenotype can be incomplete early in the course of the disease. Detailed medical history, characteristic clinical manifestations and increasingly developed exome sequencing techniques may be helpful in diagnosing this rare disease. Management should be based on multidisciplinary guidance and other treatment options must be investigated in the future.
Collapse
Affiliation(s)
- Fanghua Ye
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wenwen Chai
- Department of Nuclear Medicine, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Minghua Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Min Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liangchun Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
26
|
Yoshioka J. Ataxia telangiectasia mutated kinase is an autophagic balancer at the onset of heart failure. Am J Physiol Heart Circ Physiol 2018; 315:H80-H82. [PMID: 29750568 DOI: 10.1152/ajpheart.00270.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jun Yoshioka
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, City College of New York , New York, New York.,The Graduate Center, City University of New York , New York, New York
| |
Collapse
|
27
|
Jerzak KJ, Mancuso T, Eisen A. Ataxia-telangiectasia gene ( ATM) mutation heterozygosity in breast cancer: a narrative review. ACTA ACUST UNITED AC 2018; 25:e176-e180. [PMID: 29719442 DOI: 10.3747/co.25.3707] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Despite the fact that heterozygosity for a pathogenic ATM variant is present in 1%-2% of the adult population, clinical guidelines to inform physicians and genetic counsellors about optimal management in that population are lacking. Methods In this narrative review, we describe the challenges and controversies in the management of women who are heterozygous for a pathogenic ATM variant with respect to screening for breast and other malignancies, to choices for systemic therapy, and to decisions about radiation therapy. Results Given that the lifetime risk for breast cancer in women who are heterozygous for a pathogenic ATM variant is likely greater than 25%, those women should undergo annual mammographic screening starting at least by 40 years of age. For women in this group who have a strong family history of breast cancer, earlier screening with both magnetic resonance imaging and mammography should be considered. High-quality data to inform the management of established breast cancer in carriers of pathogenic ATM variants are lacking. Although deficiency in the ATM gene product might confer sensitivity to dna-damaging pharmaceuticals such as inhibitors of poly (adp-ribose) polymerase or platinum agents, prospective clinical trials have not been conducted in the relevant patient population. Furthermore, the evidence with respect to radiation therapy is mixed; some data suggest increased toxicity, and other data suggest improved clinical benefit from radiation in women who are carriers of a pathogenic ATM variant. Conclusions As in the 2017 U.S. National Comprehensive Cancer Network guidelines, we recommend high-risk imaging for women in Ontario who are heterozygous for a pathogenic ATM variant. Currently, ATM carrier status should not influence decisions about systemic or radiation therapy in the setting of an established breast cancer diagnosis.
Collapse
Affiliation(s)
- K J Jerzak
- Department of Medicine, University of Toronto, Toronto, ON
| | - T Mancuso
- Department of Medicine, University of Toronto, Toronto, ON
| | - A Eisen
- Department of Medicine, University of Toronto, Toronto, ON
| |
Collapse
|
28
|
Zaki-Dizaji M, Akrami SM, Azizi G, Abolhassani H, Aghamohammadi A. Inflammation, a significant player of Ataxia-Telangiectasia pathogenesis? Inflamm Res 2018; 67:559-570. [PMID: 29582093 DOI: 10.1007/s00011-018-1142-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/03/2018] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Ataxia-Telangiectasia (A-T) syndrome is an autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, chromosome instability, radiosensitivity, and predisposition to malignancy. There is growing evidence that A-T patients suffer from pathologic inflammation that is responsible for many symptoms of this syndrome, including neurodegeneration, autoimmunity, cardiovascular disease, accelerated aging, and insulin resistance. In addition, epidemiological studies have shown A-T heterozygotes, somewhat like deficient patients, are susceptible to ionizing irradiation and have a higher risk of cancers and metabolic disorders. AREA COVERED This review summarizes clinical and molecular findings of inflammation in A-T syndrome. CONCLUSION Ataxia-Telangiectasia Mutated (ATM), a master regulator of the DNA damage response is the protein known to be associated with A-T and has a complex nuclear and cytoplasmic role. Loss of ATM function may induce immune deregulation and systemic inflammation.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.
| |
Collapse
|
29
|
Anichini C, Lotti F, Longini M, Felici C, Proietti F, Buonocore G. Antioxidant Strategies in Genetic Syndromes with High Neoplastic Risk in Infant Age. TUMORI JOURNAL 2018. [DOI: 10.1177/1778.19256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Cecilia Anichini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Federica Lotti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mariangela Longini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Cosetta Felici
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Fabrizio Proietti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
30
|
Sasihuseyinoglu AS, Yılmaz M, Bisgin A, Dogruel D, Altintas DU, Duyuler G, Serbes M. Ataxia-Telangiectasia Clinical and Laboratory Features: Single Center Results. PEDIATRIC ALLERGY, IMMUNOLOGY, AND PULMONOLOGY 2018. [DOI: 10.1089/ped.2017.0788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
| | - Mustafa Yılmaz
- Department of Pediatric Allergy and Immunology, Çukurova University, Adana, Turkey
| | - Atıl Bisgin
- Department of Medical Genetics, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Dilek Dogruel
- Department of Pediatric Allergy and Immunology, Çukurova University, Adana, Turkey
| | - Derya Ufuk Altintas
- Department of Pediatric Allergy and Immunology, Çukurova University, Adana, Turkey
| | - Gulsah Duyuler
- Department of Pediatric Allergy and Immunology, Çukurova University, Adana, Turkey
| | - Mahir Serbes
- Department of Pediatric Allergy and Immunology, Çukurova University, Adana, Turkey
| |
Collapse
|
31
|
Kotchetkoff ECDA, Souza FISD, Fonseca FLA, Hix S, Ajzen SA, Shigueoka DC, Carvalho BTC, Sarni ROS. Assessing cardiovascular risk in ATM heterozygotes. Rev Assoc Med Bras (1992) 2018; 64:148-153. [DOI: 10.1590/1806-9282.64.02.148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/06/2017] [Indexed: 11/21/2022] Open
Abstract
Summary Objective: To evaluate the carotid intima-media complex (CIMC) thickness and lipid metabolism biomarkers associated with cardiovascular risk (CR) in parents of patients with ataxia-telangiectasia and verify an association with gender. Method: A cross-sectional and controlled study with 29 ATM heterozygotes and 14 healthy controls. Biochemical tests and CIMC thickness measurement were performed. Results: The mean CIMC measurement in heterozygous ATM was 0.72 ± 0.1 mm (minimum: 0.5 mm and maximum: 1.0 mm). Noticed high percentage of amounts above 75 percentile compared to the population referential (16 [76.2%]), without any significant statistical differences between the female and the male gender (11/15 [73.3%] vs. 5/6 [83.3%]; p=0.550). The comparison between heterozygous and controls, stratified by gender, showed that in heterozygous ATMs, women had higher concentrations of HDL-c compared to men, as well as higher values of hs-CRP in relation to the control women. In heterozygous ATMs, stratified by gender, the correlation between HDL-c and hs-CRP was inversely proportional and stronger among women, with a tendency to statistical significance. Conclusion: Heterozygous ATMs did not differ from controls in relation to the biomarkers studied related to CR. However, most of them presented increased CIMC, independent predictor of death, risk for myocardial infarction and stroke, compared to the referential for the same age group. This finding suggests CR in the heterozygous ATM and shows to the need to monitor CIMC thickness and nutritional orientations.
Collapse
Affiliation(s)
| | | | | | - Sonia Hix
- Faculdade de Medicina do ABC, Brazil
| | | | | | | | | |
Collapse
|
32
|
Ding X, He Y, Hao Q, Chen S, Yang M, Leng SX, Yue J, Dong B. The association of single nucleotide polymorphism rs189037C>T in ATM gene with coronary artery disease in Chinese Han populations: A case control study. Medicine (Baltimore) 2018; 97:e9747. [PMID: 29369221 PMCID: PMC5794405 DOI: 10.1097/md.0000000000009747] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Accumulated evidence has indicated that ataxia telangiectasia mutated (ATM) is closely related to atherosclerosis and cardiovascular diseases. So we aimed to examine potential association between a gene variant [single nucleotide polymorphisms (SNPs), i.e., rs189037C>T] in the promoter of ATM gene and coronary artery disease (CAD) in Chinese Han populations.In this hospital-based case-control study, a total of 1308 participants were divided into CAD group (652 patients) and control group (656 subjects) after performing coronary angiography. The SNP rs189037 was genotyped by using polymerase chain reaction-restriction fragment length polymorphism.The distribution of rs189037 genotypes and alleles showed a significant difference between CAD and control subjects (genotypes: P = .032; alleles: P = .028). The percentage of the TT genotype is much higher in control group than that in CAD group (22.0% vs 16.3%, P = .009). After adjustment of the major confounding factors, such difference remained significant (OR = 0.62, 95% CI = 0.43-0.89, P = .010). After analyzing data from different groups divided by genders and smoking status respectively, we found that the protective effect of TT genotype on CAD was significant in males (P = .007) and smokers (P = .031). The difference remained statistically significant after multivariate adjustment (adjusted in males: OR = 0.60, 95% CI = 0.38-0.93, P = .022; adjusted in smokers: OR = 0.47, 95% CI = 0.27-0.81, P = .006).Our study suggests that ATM rs189037 polymorphism is associated with CAD in Chinese Han populations. The TT genotype of rs189037 seems to be associated with a lower risk of CAD and a protective genetic marker of CAD, especially in males and smokers.
Collapse
Affiliation(s)
- Xiang Ding
- The Center of Gerontology and Geriatrics
- National Clinical Research Center of Geriatrics
| | - Yong He
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qiukui Hao
- The Center of Gerontology and Geriatrics
| | | | - Ming Yang
- The Center of Gerontology and Geriatrics
| | - Sean X. Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jirong Yue
- The Center of Gerontology and Geriatrics
| | - Birong Dong
- The Center of Gerontology and Geriatrics
- Collaborative Innovation Center of Sichuan for Elderly Care and Health, Chengdu, Sichuan Province, China
| |
Collapse
|
33
|
Zaki-Dizaji M, Akrami SM, Abolhassani H, Rezaei N, Aghamohammadi A. Ataxia telangiectasia syndrome: moonlighting ATM. Expert Rev Clin Immunol 2017; 13:1155-1172. [PMID: 29034753 DOI: 10.1080/1744666x.2017.1392856] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Ataxia-telangiectasia (A-T) a multisystem disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. Identification of the gene defective in this syndrome, ataxia-telangiectasia mutated gene (ATM), and further characterization of the disorder together with a greater insight into the function of the ATM protein have expanded our knowledge about the molecular pathogenesis of this disease. Area covered: In this review, we have attempted to summarize the different roles of ATM signaling that have provided new insights into the diverse clinical phenotypes exhibited by A-T patients. Expert commentary: ATM, in addition to DNA repair response, is involved in many cytoplasmic roles that explain diverse phenotypes of A-T patients. It seems accumulation of DNA damage, persistent DNA damage response signaling, and chronic oxidative stress are the main players in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| | - Seyed Mohammad Akrami
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,c Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden.,d Primary Immunodeficiency Diseases Network (PIDNet ), Universal Scientific Education and Research Network (USERN) , Stockholm , Sweden
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,e Department of Immunology and Biology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,f Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| |
Collapse
|
34
|
Anderson R, Richardson GD, Passos JF. Mechanisms driving the ageing heart. Exp Gerontol 2017; 109:5-15. [PMID: 29054534 DOI: 10.1016/j.exger.2017.10.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/16/2017] [Indexed: 01/07/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. One of the main risk factors for CVD is age, however the biological processes that occur in the heart during ageing are poorly understood. It is therefore important to understand the fundamental mechanisms driving heart ageing to enable the development of preventions and treatments targeting these processes. Cellular senescence is often described as the irreversible cell-cycle arrest which occurs in somatic cells. Emerging evidence suggests that cellular senescence plays a key role in heart ageing, however the cell-types involved and the underlying mechanisms are not yet elucidated. In this review we discuss the current understanding of how mechanisms known to contribute to senescence impact on heart ageing and CVD. Finally, we evaluate recent data suggesting that targeting senescent cells may be a viable therapy to counteract the ageing of the heart.
Collapse
Affiliation(s)
- Rhys Anderson
- The Randall Division, King's College London, London, UK; Ageing Research Laboratories, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Gavin D Richardson
- Cardiovascular Research Centre, Institute for Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - João F Passos
- Ageing Research Laboratories, Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, UK; Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
35
|
Ding X, Hao Q, Yang M, Chen T, Chen S, Yue J, Leng SX, Dong B. Polymorphism rs189037C > T in the promoter region of the ATM gene may associate with reduced risk of T2DM in older adults in China: a case control study. BMC MEDICAL GENETICS 2017; 18:84. [PMID: 28806901 PMCID: PMC5557265 DOI: 10.1186/s12881-017-0446-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/31/2017] [Indexed: 02/05/2023]
Abstract
Background Recent evidence indicates that ataxia telangiectasia mutated (ATM) is a cytoplasmic protein that involves in insulin signaling pathways. When ATM gene is mutated, this event appears to contribute to the development of insulin resistance and type 2 diabetes mellitus (T2DM). Up to date, little information about the relationship between ATM gene polymorphism and T2DM is available. This study aimed to explore potential association between a genetic variant [single nucleotide polymorphism (SNP), i.e. rs189037C > T] in the ATM promoter region and T2DM in older adults in China. Methods We conducted a 1:1 age- and sex-matched case-control study. It enrolled 160 patients including 80 type 2 diabetic and 80 nondiabetic patients who were aged 60 years and above. Genotyping of the polymorphism rs189037 in the promoter of the ATM gene was performed using polymerase chain reaction-restriction fragment length polymorphism. Chi-square test or Fisher’s exact test (when an expected cell count was <5) and unpaired Student’s t test were used for categorical and continuous variables, respectively. Logistic regression was used to estimate odds ratio (OR) and 95% confidence interval (CI) with adjustment for factors associated with T2DM. Results Significant association was found between the genotypes of the ATM rs189037 polymorphism and T2DM (P = 0.037). The frequency of CT genotype is much higher in patients without T2DM than in diabetics (60.0% versus 40.0%, P = 0.012). After adjustment of the major confounding factors, such difference remained significant (OR for non-T2DM is 2.62, 95%CI = 1.05–6.53, P = 0.038). Similar effect of CT genotype on T2DM was observed in male population (adjusted: OR = 0.27, 95%CI = 0.09–0.84, P = 0.024). In addition, the percentage of TT genotype in diabetics with coronary artery disease (CAD) was considerably lower than in those without CAD (17.9% versus 61.5%, P = 0.004). Conclusions Our study suggests that the ATM rs189037 polymorphism is associated with reduced risk of T2DM in older adult population in China. Specifically, CT heterozygote seems to be associated with a lower risk of T2DM than CC or TT genotype, especially in male older adults. Moreover, TT genotype may reduce the risk of CAD in diabetic patients. Electronic supplementary material The online version of this article (doi:10.1186/s12881-017-0446-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiang Ding
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, NO. 37, Guoxuexiang, Chengdu, Sichuan, 610041, China
| | - Qiukui Hao
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, NO. 37, Guoxuexiang, Chengdu, Sichuan, 610041, China
| | - Ming Yang
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, NO. 37, Guoxuexiang, Chengdu, Sichuan, 610041, China
| | - Tie Chen
- Institute of Molecular Medicine, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Shanping Chen
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, NO. 37, Guoxuexiang, Chengdu, Sichuan, 610041, China
| | - Jirong Yue
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, NO. 37, Guoxuexiang, Chengdu, Sichuan, 610041, China.
| | - Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD, 21224, USA
| | - Birong Dong
- Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, NO. 37, Guoxuexiang, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
36
|
Choy KR, Watters DJ. Neurodegeneration in ataxia-telangiectasia: Multiple roles of ATM kinase in cellular homeostasis. Dev Dyn 2017; 247:33-46. [PMID: 28543935 DOI: 10.1002/dvdy.24522] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 12/13/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is characterized by neuronal degeneration, cancer, diabetes, immune deficiency, and increased sensitivity to ionizing radiation. A-T is attributed to the deficiency of the protein kinase coded by the ATM (ataxia-telangiectasia mutated) gene. ATM is a sensor of DNA double-strand breaks (DSBs) and signals to cell cycle checkpoints and the DNA repair machinery. ATM phosphorylates numerous substrates and activates many cell-signaling pathways. There has been considerable debate about whether a defective DNA damage response is causative of the neurological aspects of the disease. In proliferating cells, ATM is localized mainly in the nucleus; however, in postmitotic cells such as neurons, ATM is mostly cytoplasmic. Recent studies reveal an increasing number of roles for ATM in the cytoplasm, including activation by oxidative stress. ATM associates with organelles including mitochondria and peroxisomes, both sources of reactive oxygen species (ROS), which have been implicated in neurodegenerative diseases and aging. ATM is also associated with synaptic vesicles and has a role in regulating cellular homeostasis and autophagy. The cytoplasmic roles of ATM provide a new perspective on the neurodegenerative process in A-T. This review will examine the expanding roles of ATM in cellular homeostasis and relate these functions to the complex A-T phenotype. Developmental Dynamics 247:33-46, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kay Rui Choy
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| | - Dianne J Watters
- School of Natural Sciences, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
37
|
Khoronenkova SV. Mechanisms of Non-canonical Activation of Ataxia Telangiectasia Mutated. BIOCHEMISTRY (MOSCOW) 2017; 81:1669-1675. [PMID: 28260489 DOI: 10.1134/s0006297916130058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ATM is a master regulator of the cellular response to DNA damage. The classical mechanism of ATM activation involves its monomerization in response to DNA double-strand breaks, resulting in ATM-dependent phosphorylation of more than a thousand substrates required for cell cycle progression, DNA repair, and apoptosis. Here, new experimental evidence for non-canonical mechanisms of ATM activation in response to stimuli distinct from DNA double-strand breaks is discussed. It includes cytoskeletal changes, chromatin modifications, RNA-DNA hybrids, and DNA single-strand breaks. Noncanonical ATM activation may be important for the pathology of the multisystemic disease Ataxia Telangiectasia.
Collapse
Affiliation(s)
- S V Khoronenkova
- University of Cambridge, Department of Biochemistry, Cambridge, CB2 1GA, UK.
| |
Collapse
|
38
|
Shiloh Y, Lederman HM. Ataxia-telangiectasia (A-T): An emerging dimension of premature ageing. Ageing Res Rev 2017; 33:76-88. [PMID: 27181190 DOI: 10.1016/j.arr.2016.05.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 12/28/2022]
Abstract
A-T is a prototype genome instability syndrome and a multifaceted disease. A-T leads to neurodegeneration - primarily cerebellar atrophy, immunodeficiency, oculocutaneous telangiectasia (dilated blood vessels), vestigial thymus and gonads, endocrine abnormalities, cancer predisposition and varying sensitivity to DNA damaging agents, particularly those that induce DNA double-strand breaks. With the recent increase in life expectancy of A-T patients, the premature ageing component of this disease is gaining greater awareness. The complex A-T phenotype reflects the ever growing number of functions assigned to the protein encoded by the responsible gene - the homeostatic protein kinase, ATM. The quest to thoroughly understand the complex A-T phenotype may reveal yet elusive ATM functions.
Collapse
|
39
|
Barzilai A, Schumacher B, Shiloh Y. Genome instability: Linking ageing and brain degeneration. Mech Ageing Dev 2017; 161:4-18. [DOI: 10.1016/j.mad.2016.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/23/2016] [Accepted: 03/26/2016] [Indexed: 02/06/2023]
|
40
|
Prodosmo A, Buffone A, Mattioni M, Barnabei A, Persichetti A, De Leo A, Appetecchia M, Nicolussi A, Coppa A, Sciacchitano S, Giordano C, Pinnarò P, Sanguineti G, Strigari L, Alessandrini G, Facciolo F, Cosimelli M, Grazi GL, Corrado G, Vizza E, Giannini G, Soddu S. Detection of ATM germline variants by the p53 mitotic centrosomal localization test in BRCA1/2-negative patients with early-onset breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:135. [PMID: 27599564 PMCID: PMC5012020 DOI: 10.1186/s13046-016-0410-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Variant ATM heterozygotes have an increased risk of developing cancer, cardiovascular diseases, and diabetes. Costs and time of sequencing and ATM variant complexity make large-scale, general population screenings not cost-effective yet. Recently, we developed a straightforward, rapid, and inexpensive test based on p53 mitotic centrosomal localization (p53-MCL) in peripheral blood mononuclear cells (PBMCs) that diagnoses mutant ATM zygosity and recognizes tumor-associated ATM polymorphisms. METHODS Fresh PBMCs from 496 cancer patients were analyzed by p53-MCL: 90 cases with familial BRCA1/2-positive and -negative breast and/or ovarian cancer, 337 with sporadic cancers (ovarian, lung, colon, and post-menopausal breast cancers), and 69 with breast/thyroid cancer. Variants were confirmed by ATM sequencing. RESULTS A total of seven individuals with ATM variants were identified, 5/65 (7.7 %) in breast cancer cases of familial breast and/or ovarian cancer and 2/69 (2.9 %) in breast/thyroid cancer. No variant ATM carriers were found among the other cancer cases. Excluding a single case in which both BRCA1 and ATM were mutated, no p53-MCL alterations were observed in BRCA1/2-positive cases. CONCLUSIONS These data validate p53-MCL as reliable and specific test for germline ATM variants, confirm ATM as breast cancer susceptibility gene, and highlight a possible association with breast/thyroid cancers.
Collapse
Affiliation(s)
- Andrea Prodosmo
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Amelia Buffone
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Manlio Mattioni
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Agnese Barnabei
- Endocrinology Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Agnese Persichetti
- Endocrinology Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy.,Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Aurora De Leo
- Endocrinology Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Marialuisa Appetecchia
- Endocrinology Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Arianna Nicolussi
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena, 32400161, Rome, Italy
| | - Anna Coppa
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I, Viale Regina Elena, 32400161, Rome, Italy
| | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, University La Sapienza, Laboratorio di Ricerca Biomedica, Fondazione Università Niccolò Cusano per la Ricerca Medico Scientifica, Rome, Italy
| | - Carolina Giordano
- Radiotherapy Unit, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Paola Pinnarò
- Radiotherapy Unit, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Giuseppe Sanguineti
- Radiotherapy Unit, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Lidia Strigari
- Medical Physics Unit, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Gabriele Alessandrini
- Toracic Surgery Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Francesco Facciolo
- Toracic Surgery Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Maurizio Cosimelli
- Hepato-pancreato-biliary Surgery Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Gian Luca Grazi
- Hepato-pancreato-biliary Surgery Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Giacomo Corrado
- Gynecological Oncology Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Enrico Vizza
- Gynecological Oncology Unit, Department of Clinical and Experimental Oncology, Regina Elena National Cancer Institute - IRCCS, Rome, Italy
| | - Giuseppe Giannini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Molecular Medicine, University La Sapienza, Rome, Italy. .,Department of Molecular Medicine, University La Sapienza, Rome, Italy.
| | - Silvia Soddu
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostic, and Technological Innovation, Regina Elena National Cancer Institute - IRCCS, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
41
|
Robust reprogramming of Ataxia-Telangiectasia patient and carrier erythroid cells to induced pluripotent stem cells. Stem Cell Res 2016; 17:296-305. [DOI: 10.1016/j.scr.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/29/2016] [Accepted: 08/06/2016] [Indexed: 12/18/2022] Open
|
42
|
Daniel LL, Scofield SLC, Thrasher P, Dalal S, Daniels CR, Foster CR, Singh M, Singh K. Ataxia telangiectasia-mutated kinase deficiency exacerbates left ventricular dysfunction and remodeling late after myocardial infarction. Am J Physiol Heart Circ Physiol 2016; 311:H445-52. [PMID: 27288435 DOI: 10.1152/ajpheart.00338.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/09/2016] [Indexed: 12/22/2022]
Abstract
Ataxia telangiectasia-mutated kinase (ATM), a cell cycle checkpoint protein, is activated in response to DNA damage and oxidative stress. We have previously shown that ATM deficiency is associated with increased apoptosis and fibrosis and attenuation of cardiac dysfunction early (1-7 days) following myocardial infarction (MI). Here, we tested the hypothesis that enhanced fibrosis and apoptosis, as observed early post-MI during ATM deficiency, exacerbate cardiac dysfunction and remodeling in ATM-deficient mice late post-MI. MIs were induced in wild-type (WT) and ATM heterozygous knockout (hKO) mice by ligation of the left anterior descending artery. Left ventricular (LV) structural and functional parameters were assessed by echocardiography 14 and 28 days post-MI, whereas biochemical parameters were measured 28 days post-MI. hKO-MI mice exhibited exacerbated LV dysfunction as observed by increased LV end-systolic volume and decreased percent fractional shortening and ejection fraction. Infarct size and thickness were not different between the two genotypes. Myocyte cross-sectional area was greater in hKO-MI group. The hKO-MI group exhibited increased fibrosis in the noninfarct and higher expression of α-smooth muscle actin (myofibroblast marker) in the infarct region. Apoptosis and activation of GSK-3β (proapoptotic kinase) were significantly lower in the infarct region of hKO-MI group. Matrix metalloproteinase 2 (MMP-2) expression was not different between the two genotypes. However, MMP-9 expression was significantly lower in the noninfarct region of hKO-MI group. Thus ATM deficiency exacerbates cardiac remodeling late post-MI with effects on cardiac function, fibrosis, apoptosis, and myocyte hypertrophy.
Collapse
Affiliation(s)
- Laura L Daniel
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Stephanie L C Scofield
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Patsy Thrasher
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Suman Dalal
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Christopher R Daniels
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Cerrone R Foster
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee
| | - Mahipal Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Krishna Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; Center for Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee; James H. Quillen Veterans Affairs Medical Center, Mountain Home, Johnson City, Tennessee
| |
Collapse
|
43
|
Oxidative Stress in Cancer-Prone Genetic Diseases in Pediatric Age: The Role of Mitochondrial Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4782426. [PMID: 27239251 PMCID: PMC4863121 DOI: 10.1155/2016/4782426] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/10/2016] [Indexed: 12/12/2022]
Abstract
Oxidative stress is a distinctive sign in several genetic disorders characterized by cancer predisposition, such as Ataxia-Telangiectasia, Fanconi Anemia, Down syndrome, progeroid syndromes, Beckwith-Wiedemann syndrome, and Costello syndrome. Recent literature unveiled new molecular mechanisms linking oxidative stress to the pathogenesis of these conditions, with particular regard to mitochondrial dysfunction. Since mitochondria are one of the major sites of ROS production as well as one of the major targets of their action, this dysfunction is thought to be the cause of the prooxidant status. Deeper insight of the pathogenesis of the syndromes raises the possibility to identify new possible therapeutic targets. In particular, the use of mitochondrial-targeted agents seems to be an appropriate clinical strategy in order to improve the quality of life and the life span of the patients.
Collapse
|
44
|
Vazharova R, Kremensky I. Individual capacity for DNA repair and maintenance of genomic integrity: a fertile ground for studies in the field of assisted reproduction. BIOTECHNOL BIOTEC EQ 2016. [DOI: 10.1080/13102818.2016.1159923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Radoslava Vazharova
- Department of Biology, Medical Genetics and Microbiology, Faculty of Medicine, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Ivo Kremensky
- Center of Molecular Medicine, University Hospital of Obstetrics and Gynaecology “Maichin Dom”, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
45
|
Ghoshal A, Salins N, Damani A, Deodhar J, Muckaden MA. Medical Management of Pediatric Malignant Bowel Obstruction in a Patient with Burkitt's Lymphoma and Ataxia Telangiectasia Using Continuous Ambulatory Drug Delivery System. J Pain Palliat Care Pharmacother 2016; 30:44-8. [DOI: 10.3109/15360288.2015.1134748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Jo KM, Yang SY, Park JH, Kim TO, Jeong HJ, Heo CM, Jang JH, Hur SC, Jeong NR, Jeong SJ, Seol SH, Nam KH. Childhood colon cancer in a patient with ataxia telangiectasia. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:11. [PMID: 26855947 DOI: 10.3978/j.issn.2305-5839.2015.12.59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Ataxia-telangiectasia (AT) is a rare autosomal recessive disease characterized by progressive neurologic impairment and cerebellar ataxia. In addition, patients with this disease are known to have an inherent increased susceptibility to the development of cancer, predominantly hematologic malignancies. METHODS We report the case of a young boy with AT from Russia, who had abdominal pain. Laboratory tests and radiologic examinations were performed to him. RESULTS After abdominal computed tomography (CT), colonoscopy and surgical interventions, the young boy was diagnosed with colon cancer that had signet ring cell features. CONCLUSIONS It is known that the patient with AT appeared to be predisposed to various tumors, including leukemia or lymphoma, which are more common in childhood. Even if the patient with AT could have solid tumor such as stomach cancer or breast cancer, it is less likely to have colon cancer, especially signet ring cell type. Actually, no case of colon cancer has ever been reported, especially in young patient and hence, we have focused on this point and are hereby reporting this unique case.
Collapse
Affiliation(s)
- Kyeong Min Jo
- 1 Department of Internal Medicine, 2 Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea
| | - Sung Yeun Yang
- 1 Department of Internal Medicine, 2 Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea
| | - Jong Ha Park
- 1 Department of Internal Medicine, 2 Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea
| | - Tae Oh Kim
- 1 Department of Internal Medicine, 2 Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea
| | - Heui Jeong Jeong
- 1 Department of Internal Medicine, 2 Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea
| | - Chang Min Heo
- 1 Department of Internal Medicine, 2 Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea
| | - Ji Hoon Jang
- 1 Department of Internal Medicine, 2 Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea
| | - So Chong Hur
- 1 Department of Internal Medicine, 2 Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea
| | - Na Ri Jeong
- 1 Department of Internal Medicine, 2 Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea
| | - Su Jin Jeong
- 1 Department of Internal Medicine, 2 Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea
| | - Sang Hoon Seol
- 1 Department of Internal Medicine, 2 Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea
| | - Kyung Han Nam
- 1 Department of Internal Medicine, 2 Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea
| |
Collapse
|
47
|
van Os N, Roeleveld N, Weemaes C, Jongmans M, Janssens G, Taylor A, Hoogerbrugge N, Willemsen M. Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin Genet 2016; 90:105-17. [DOI: 10.1111/cge.12710] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/13/2015] [Accepted: 12/07/2015] [Indexed: 01/03/2023]
Affiliation(s)
- N.J.H. van Os
- Department of Neurology - Pediatric Neurology, Donders Institute for Brain, Cognition and Behaviour; Nijmegen The Netherlands
| | - N. Roeleveld
- Department for Health Evidence, Radboud Institute for Health Sciences; Nijmegen The Netherlands
- Department of Pediatrics, Radboudumc Amalia Children's Hospital; Nijmegen The Netherlands
| | - C.M.R. Weemaes
- Department of Pediatrics, Radboudumc Amalia Children's Hospital; Nijmegen The Netherlands
| | - M.C.J. Jongmans
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences; Radboud university medical center; Nijmegen The Netherlands
| | - G.O. Janssens
- Department of Radiation Oncology; University Medical Center Utrecht and Princess Maxima Center for Pediatric Oncology; Utrecht The Netherlands
| | - A.M.R. Taylor
- School of Cancer Sciences; University of Birmingham; Birmingham UK
| | - N. Hoogerbrugge
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences; Radboud university medical center; Nijmegen The Netherlands
| | - M.A.A.P. Willemsen
- Department of Neurology - Pediatric Neurology, Donders Institute for Brain, Cognition and Behaviour; Nijmegen The Netherlands
| |
Collapse
|
48
|
Daniel LL, Daniels CR, Harirforoosh S, Foster CR, Singh M, Singh K. Deficiency of ataxia telangiectasia mutated kinase delays inflammatory response in the heart following myocardial infarction. J Am Heart Assoc 2015; 3:e001286. [PMID: 25520329 PMCID: PMC4338722 DOI: 10.1161/jaha.114.001286] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Ataxia‐telangiectasia results from mutations in ataxia telangiectasia mutated kinase (ATM) gene. We recently reported that ATM deficiency attenuates left ventricular (LV) dysfunction and dilatation 7 days after myocardial infarction (MI) with increased apoptosis and fibrosis. Here we investigated the role of ATM in the induction of inflammatory response, and activation of survival signaling molecules in the heart acute post‐MI. Methods and Results LV structure, function, inflammatory response, and biochemical parameters were measured in wild‐type (WT) and ATM heterozygous knockout (hKO) mice 1 and 3 days post‐MI. ATM deficiency had no effect on infarct size. MI‐induced decline in heart function, as measured by changes in percent fractional shortening, ejection fraction and LV end systolic and diastolic volumes, was lower in hKO‐MI versus WT‐MI (n=10 to 12). The number of neutrophils and macrophages was significantly lower in the infarct LV region of hKO versus WT 1 day post‐MI. Fibrosis and expression of α‐smooth muscle actin (myofibroblast marker) were higher in hKO‐MI, while active TGF‐β1 levels were higher in the WT‐MI 3 days post‐MI. Myocyte cross‐sectional area was higher in hKO‐sham with no difference between the two MI groups. MMP‐9 protein levels were similarly increased in the infarct LV region of both MI groups. Apoptosis was significantly higher in the infarct LV region of hKO at both time points. Akt activation was lower, while Bax expression was higher in hKO‐MI infarct. Conclusion ATM deficiency results in decreased dilative remodeling and delays inflammatory response acute post‐MI. However, it associates with increased fibrosis and apoptosis.
Collapse
Affiliation(s)
- Laura L Daniel
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | | | | | | | | | | |
Collapse
|
49
|
Navratil M, Đuranović V, Nogalo B, Švigir A, Dumbović Dubravčić I, Turkalj M. Ataxia-Telangiectasia Presenting as Cerebral Palsy and Recurrent Wheezing: A Case Report. AMERICAN JOURNAL OF CASE REPORTS 2015; 16:631-6. [PMID: 26380989 PMCID: PMC4578644 DOI: 10.12659/ajcr.893995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Patient: Male, 8 Final Diagnosis: Ataxia-telangiectasia Symptoms: Ataxia • sinopulmonary infection • telangiectasiae • wheezing Medication: — Clinical Procedure: IVIG supstitution Specialty: Pediatrics and Neonatology
Collapse
Affiliation(s)
- Marta Navratil
- Department of Allergy and Immunology, Srebrnjak Children's Hospital, Zagreb, Croatia
| | - Vlasta Đuranović
- Department of Neurology, Zagreb Children's Hospital, Zagreb, Croatia
| | - Boro Nogalo
- Department of Allergy and Immunology, Srebrnjak Children's Hospital, Zagreb, Croatia
| | - Alen Švigir
- Department of Allergy and Pulmonology, Srebrnjak Children's Hospital, Zagreb, Croatia
| | | | - Mirjana Turkalj
- Department of Allergy and Immunology, Srebrnjak Children's Hospital, Zagreb, Croatia
| |
Collapse
|
50
|
Cardiovascular abnormalities in primary immunodeficiency diseases. LYMPHOSIGN JOURNAL-THE JOURNAL OF INHERITED IMMUNE DISORDERS 2015. [DOI: 10.14785/lpsn-2014-0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, increasing numbers of patients with primary immune deficiency (PID) are being recognized as also suffering from cardiovascular system (CVS) abnormalities. These CVS defects might be explained by infectious or autoimmune etiologies, as well as by the role of specific genes and the immune system in the development and function of CVS tissues. Here, we provide the first comprehensive review of the clinical, potentially pathogenic mechanisms, and the management of PID, as well as the associated immune and CVS defects. In addition to some well-known associations of PID with CVS abnormalities, such as DiGeorge syndrome and CHARGE anomaly, we describe the cardiac defects associated with Omenn syndrome, calcium channel deficiencies, DNA repair defects, common variable immunodeficiency, Roifman syndrome, various neutrophil/macrophage defects, FADD deficiency, and HOIL1 deficiency. Moreover, we detail the vascular abnormalities recognized in chronic mucocutaneous candidiasis, chronic granulomatous disease, Wiskott–Aldrich syndrome, Schimke immuno-osseus dysplasia, hyper-IgE syndrome, MonoMAC syndrome, and X-linked lymphoproliferative disease. In conclusion, the expanding spectrum of PID requires increased alertness to the possibility of CVS involvement as an important contributor to the diagnosis and management of these patients.
Collapse
|