1
|
Salama MM, Zaghloul RA, Khalil RM, El-Shishtawy MM. Anti-neoplastic activity of celastrol in experimentally-induced mammary adenocarcinoma in mice: targeting wnt/β-catenin signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04148-1. [PMID: 40293499 DOI: 10.1007/s00210-025-04148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
Natural bioactive compounds with anti-neoplastic effects, such as celastrol (CLS), have attracted considerable interest in recent years. The present study aimed to investigate the effect of CLS on wnt/β-catenin signaling, and its potential combination with doxorubicin (Dox) to enhance chemotherapeutic effects. After intramuscular inoculation of Ehrlich tumor cells, tumor-bearing mice received CLS (2 mg/kg, i.p), Dox (5 mg/kg, once/week, i.p), and their combination for 21 days. Treatment with CLS showed showing antioxidant and anti-inflammatory, as evidenced by a significant increase in glutathione content and a significant decrease in the malondialdehyde, interleukin 6, and interleukin 1β concentrations. CLS also inhibited VEGF-mediated angiogenesis. The current study revealed that CLS downregulated β-catenin gene expression with subsequent downstream target genes, such as cyclin-D1, and survivin, which dampens tumor cell proliferation and triggers cell cycle arrest as well as induces apoptosis as indicated by the increased expression of p53, caspase-3. The current study concludes that CLS exerted its anti-neoplastic activity by suppressing the wnt/β-catenin signaling pathway, and opens a new perspective for combining CLS with Dox to enhance its chemotherapeutic effects and reduce the oxidative imbalance and inflammatory responses associated with Dox treatment.
Collapse
Affiliation(s)
- Mohamed M Salama
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 35712, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Randa A Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Rania M Khalil
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, 35712, Egypt
| | - Mamdouh M El-Shishtawy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
2
|
Dhawale SA, Mokale SN, Dabhade PS. Discovery of Novel Pyrimidine Based Small Molecule Inhibitors as VEGFR-2 Inhibitors: Design, Synthesis, and Anti-cancer Studies. Curr Comput Aided Drug Des 2025; 21:38-49. [PMID: 38185893 DOI: 10.2174/0115734099269413231018065351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/02/2023] [Accepted: 09/12/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Receptor tyrosine kinases (RTKs) are potent oncoproteins in cancer that, when mutated or overexpressed, can cause uncontrolled growth of cells, angiogenesis, and metastasis, making them significant targets for cancer treatment. Vascular endothelial growth factor receptor 2 (VEGFR2), is a tyrosine kinase receptor that is produced in endothelial cells and is the most crucial regulator of angiogenic factors involved in tumor angiogenesis. So, a series of new substituted N-(4-((2-aminopyrimidin-5-yl)oxy)phenyl)-N-phenyl cyclopropane- 1,1-dicarboxamide derivatives as VEGFR-2 inhibitors have been designed and synthesized. METHODS Utilizing H-NMR, C13-NMR, and mass spectroscopy, the proposed derivatives were produced and assessed. HT-29 and COLO-205 cell lines were used for the cytotoxicity tests. The effective compound was investigated further for the Vegfr-2 kinase inhibition assay, cell cycle arrest, and apoptosis. A molecular docking examination was also carried out with the Maestro-12.5v of Schrodinger. RESULTS In comparison to the reference drug Cabozantinib (IC50 = 9.10 and 10.66 μM), compound SP2 revealed promising cytotoxic activity (IC50 = 4.07 and 4.98 μM) against HT-29 and COLO-205, respectively. The synthesized compound SP2 showed VEGFR-2 kinase inhibition activity with (IC50 = 6.82 μM) against the reference drug, Cabozantinib (IC50 = 0.045 μM). Moreover, compound SP2 strongly induced apoptosis by arresting the cell cycle in the G1 phase. The new compounds' potent VEGFR-2 inhibitory effect was noted with key amino acids Asp1044, and Glu883, and the hydrophobic interaction was also observed in the pocket of the VEGFR-2 active site by using a docking study. CONCLUSION The results demonstrate that at the cellular and enzyme levels, the synthetic compounds SP2 are similarly effective as cabozantinib. The cell cycle and apoptosis data demonstrate the effectiveness of the suggested compounds. Based on the findings of docking studies, cytotoxic effects, in vitro VEGFR-2 inhibition, apoptosis, and cell cycle arrest, this research has given us identical or more effective VEGFR-2 inhibitors.
Collapse
Affiliation(s)
- Sachin A Dhawale
- Department of Pharmaceutical Chemistry, Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, 431001, Maharashtra, India
- Department of Pharmaceutical Chemistry, Shreeyash Institute of Pharmaceutical Education and Research, Aurangabad, 431001, M.S. India
| | - Santosh N Mokale
- Department of Pharmaceutical Chemistry, Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, 431001, Maharashtra, India
| | - Pratap S Dabhade
- Department of Pharmaceutical Chemistry, Y.B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, 431001, Maharashtra, India
| |
Collapse
|
3
|
Mondal A, Das B, Karmakar S, Pani S, Khan S, Gupta P, Das Sarma J. Modulatory Role of Pantropic Cell Signaling Pathways in the Antimigratory and Antiproliferative Action of Triazole Chelated Iridium(III) Complexes in Cervical Cancer Cells. J Med Chem 2024; 67:20559-20570. [PMID: 39527836 DOI: 10.1021/acs.jmedchem.4c01997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In the current study, the antimigratory and antiproliferative effect of three substituted triazole-chelated iridium(III) complexes Ir-TRN, Ir-TRH, and Ir-TRF were studied with special emphasis on modulation of P53 activity, a cell cycle regulator. ERK2/MAPK, another crucial cell signaling pathway protein, was also shown to play a crucial role in cell migration and proliferation. The complexes increase the ROS generation within the cell, further supporting apoptotic induction by exerting cellular oxidative stress. These metal complexes also affect ER stress by altering ERp29, an ER-resident chaperone, further inducing the process of apoptosis. The iridium(III) complexes restrict cervical cancer cell migration and proliferation by exerting pronounced effects as P53 activators and downregulation of ERK2/MAPK activity in cervical cancer cells. The underpinning mechanism of P53 and ERK2/MAPK activity in cervical cancer cells in the presence of iridium(III) complexes was studied in detail in this study, which paves the way for developing promising avenues for cancer therapeutics.
Collapse
Affiliation(s)
- Anushka Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Souvik Karmakar
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Soumili Pani
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Shrabani Khan
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
4
|
Yao L, Wang X, Wang Z, Wang X, Guo X. Expression and functional analyses of TERF2 in esophageal carcinoma. Heliyon 2024; 10:e38040. [PMID: 39328506 PMCID: PMC11425175 DOI: 10.1016/j.heliyon.2024.e38040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Background Esophageal cancer (ESCA) is a prevalent malignancy with a high incidence of morbidity and mortality, particularly in Asia. Telomeric Repeat-binding Factor 2 (TERF2) is a crucial component of the telomere-binding protein complex that maintains telomere stability. Aberrant TERF2 expression has been implicated in tumorigenesis, however, its specific role in ESCA remains largely unexplored. Methods The expression levels of TERF2 were assessed in esophageal squamous cell carcinoma (ESCC) samples using RT-PCR, IHC, and Western blotting (WB). Serum tumor marker concentrations were determined via electrochemiluminescence immunoassay (ECLIA) and chemiluminescent microparticle immunoassay (CMIA). Bioinformatics analyses were employed to elucidate TERF2's function in EC. The impact of TERF2 on ESCC cell proliferation was evaluated through cell counting kit-8 (CCK8) assays and flow cytometry. Results TERF2 protein and mRNA expression were elevated in ESCC tissues and correlated with age, sex, cancer stage, tumor grade, lymph node metastasis (LNM), and tumor histology. Univariate Cox regression analysis indicated TERF2 was an independent prognostic factor for overall survival (OS). TERF2 mRNA levels were associated with serum levels of carcinoembryonic antigen (CEA), cytokeratin 19 fragment (CYFRA21-1), and tissue polypeptide antigen (TPA) in patients with ESCC. Immune infiltration and chemokine profiles were linked to TERF2 expression in ESCA. TERF2 is involved in regulating ESCC cell proliferation may through the DDR/P53 signaling way. Conclusions TERF2 is overexpressed in ESCA and contributes to ESCC cell proliferation may via DDR/TP53 signaling pathway. These results suggest that TERF2 may serve as a potential target for developing treatments and diagnostic biomarker for ESCA.
Collapse
Affiliation(s)
- Lihua Yao
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Xinlu Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Zihao Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, PR China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, PR China
| |
Collapse
|
5
|
Hsu CY, Abdulrahim MN, Mustafa MA, Omar TM, Balto F, Pineda I, Khudair TT, Ubaid M, Ali MS. The multifaceted role of PCSK9 in cancer pathogenesis, tumor immunity, and immunotherapy. Med Oncol 2024; 41:202. [PMID: 39008137 DOI: 10.1007/s12032-024-02435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), a well-known regulator of cholesterol metabolism and cardiovascular diseases, has recently garnered attention for its emerging involvement in cancer biology. The multifunctional nature of PCSK9 extends beyond lipid regulation and encompasses a wide range of cellular processes that can influence cancer progression. Studies have revealed that PCSK9 can modulate signaling pathways, such as PI3K/Akt, MAPK, and Wnt/β-catenin, thereby influencing cellular proliferation, survival, and angiogenesis. Additionally, the interplay between PCSK9 and cholesterol homeostasis may impact membrane dynamics and cellular migration, further influencing tumor aggressiveness. The central role of the immune system in monitoring and controlling cancer is increasingly recognized. Recent research has demonstrated the ability of PCSK9 to modulate immune responses through interactions with immune cells and components of the tumor microenvironment. This includes effects on dendritic cell maturation, T cell activation, and cytokine production, suggesting a role in shaping antitumor immune responses. Moreover, the potential influence of PCSK9 on immune checkpoints such as PD1/PD-L1 lends an additional layer of complexity to its immunomodulatory functions. The growing interest in cancer immunotherapy has prompted exploration into the potential of targeting PCSK9 for therapeutic benefits. Preclinical studies have demonstrated synergistic effects between PCSK9 inhibitors and established immunotherapies, offering a novel avenue for combination treatments. The strategic manipulation of PCSK9 to enhance tumor immunity and improve therapeutic outcomes presents an exciting area for further investigations. Understanding the mechanisms by which PCSK9 influences cancer biology and immunity holds promise for the development of novel immunotherapeutic approaches. This review aims to provide a comprehensive analysis of the intricate connections between PCSK9, cancer pathogenesis, tumor immunity, and the potential implications for immunotherapeutic interventions.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan.
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ, 85004, USA.
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Baghdad, Iraq
- Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Samarra, Iraq
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Franklin Balto
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Indira Pineda
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Teeba Thamer Khudair
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
6
|
Abdul-Rahman T, Ghosh S, Badar SM, Nazir A, Bamigbade GB, Aji N, Roy P, Kachani H, Garg N, Lawal L, Bliss ZSB, Wireko AA, Atallah O, Adebusoye FT, Teslyk T, Sikora K, Horbas V. The paradoxical role of cytokines and chemokines at the tumor microenvironment: a comprehensive review. Eur J Med Res 2024; 29:124. [PMID: 38360737 PMCID: PMC10868116 DOI: 10.1186/s40001-024-01711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024] Open
Abstract
Tumor progression and eradication have long piqued the scientific community's interest. Recent discoveries about the role of chemokines and cytokines in these processes have fueled renewed interest in related research. These roles are frequently viewed as contentious due to their ability to both suppress and promote cancer progression. As a result, this review critically appraised existing literature to discuss the unique roles of cytokines and chemokines in the tumor microenvironment, as well as the existing challenges and future opportunities for exploiting these roles to develop novel and targeted treatments. While these modulatory molecules play an important role in tumor suppression via enhanced cancer-cell identification by cytotoxic effector cells and directly recruiting immunological effector cells and stromal cells in the TME, we observed that they also promote tumor proliferation. Many cytokines, including GM-CSF, IL-7, IL-12, IL-15, IL-18, and IL-21, have entered clinical trials for people with advanced cancer, while the FDA has approved interferon-alpha and IL-2. Nonetheless, low efficacy and dose-limiting toxicity limit these agents' full potential. Conversely, Chemokines have tremendous potential for increasing cancer immune-cell penetration of the tumor microenvironment and promoting beneficial immunological interactions. When chemokines are combined with cytokines, they activate lymphocytes, producing IL-2, CD80, and IL-12, all of which have a strong anticancer effect. This phenomenon opens the door to the development of effective anticancer combination therapies, such as therapies that can reverse cancer escape, and chemotaxis of immunosuppressive cells like Tregs, MDSCs, and TAMs.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Medical Institute, Sumy State University, Antonova 10, Sumy, 40007, Ukraine.
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | - Sarah M Badar
- The University of the West of Scotland, Lanarkshire, UK
| | | | - Gafar Babatunde Bamigbade
- Department of Food Science and Technology, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu Dhabi, United Arab Emirates
| | - Narjiss Aji
- McGill University, Faculty of Medicine and Health Sciences, Montreal, Canada
| | - Poulami Roy
- Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | | | - Neil Garg
- Rowan-Virtua School of Osteopathic Medicine, One Medical Center Drive Stratford, Camden, NJ, 08084, USA
| | - Lukman Lawal
- Faculty of Clinical Sciences, University of Ilorin, Ilorin, Nigeria
| | - Zarah Sophia Blake Bliss
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac Campus Norte, Huixquilucan, Mexico
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | | | - Tetiana Teslyk
- Medical Institute, Sumy State University, Antonova 10, Sumy, 40007, Ukraine
| | - Kateryna Sikora
- Medical Institute, Sumy State University, Antonova 10, Sumy, 40007, Ukraine
| | - Viktoriia Horbas
- Medical Institute, Sumy State University, Antonova 10, Sumy, 40007, Ukraine
| |
Collapse
|
7
|
Fried EI, Proppert RKK, Rieble CL. Building an Early Warning System for Depression: Rationale, Objectives, and Methods of the WARN-D Study. CLINICAL PSYCHOLOGY IN EUROPE 2023; 5:e10075. [PMID: 38356901 PMCID: PMC10863640 DOI: 10.32872/cpe.10075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 07/02/2023] [Indexed: 02/16/2024] Open
Abstract
Background Depression is common, debilitating, often chronic, and affects young people disproportionately. Given that only 50% of patients improve under initial treatment, experts agree that prevention is the most effective way to change depression's global disease burden. The biggest barrier to successful prevention is to identify individuals at risk for depression in the near future. To close this gap, this protocol paper introduces the WARN-D study, our effort to build a personalized early warning system for depression. Method To develop the system, we follow around 2,000 students over 2 years. Stage 1 comprises an extensive baseline assessment in which we collect a broad set of predictors for depression. Stage 2 lasts 3 months and zooms into participants' daily experiences that may predict depression; we use smartwatches to collect digital phenotype data such as sleep and activity, and we use a smartphone app to query participants about their experiences 4 times a day and once every Sunday. In Stage 3, we follow participants for 21 months, assessing transdiagnostic outcomes (including stress, functional impairment, anxiety, and depression) as well as additional predictors for future depression every 3 months. Collected data will be utilized to build a personalized prediction model for depression onset. Discussion Overall, WARN-D will function similarly to a weather forecast, with the core difference that one can only seek shelter from a thunderstorm and clean up afterwards, while depression may be successfully prevented before it occurs.
Collapse
Affiliation(s)
- Eiko I. Fried
- Department of Clinical Psychology, Leiden University, Leiden, The Netherlands
| | | | - Carlotta L. Rieble
- Department of Clinical Psychology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
8
|
El-Metwally SA, Elkady H, Hagras M, Husein DZ, Ibrahim IM, Taghour MS, El-Mahdy HA, Ismail A, Alsfouk BA, Elkaeed EB, Metwaly AM, Eissa IH. Design, synthesis, anti-proliferative evaluation, docking, and MD simulation studies of new thieno[2,3- d]pyrimidines targeting VEGFR-2. RSC Adv 2023; 13:23365-23385. [PMID: 37545598 PMCID: PMC10401666 DOI: 10.1039/d3ra03128d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023] Open
Abstract
In this work, new thieno[2,3-d]pyrimidine-derived compounds possessing potential anticancer activities were designed and synthesized to target VEGFR-2. The thieno[2,3-d]pyrimidine derivatives were tested in vitro for their abilities to inhibit VEGFR-2 and to prevent cancer cell growth in two types of cancer cells, MCF-7 and HepG2. Compound 18 exhibited the strongest anti-VEGFR-2 potential with an IC50 value of 0.084 μM. Additionally, it displayed excellent proliferative effects against MCF-7 and HepG2 cancer cell lines, with IC50 values of 10.17 μM and 24.47 μM, respectively. Further studies revealed that compound 18 induced cell cycle arrest in G2/M phase and promoted apoptosis in MCF-7 cancer cells. Apoptosis was stimulated by compound 18 by increasing BAX (3.6-fold) and decreasing Bcl-2 (3.1-fold). Additionally, compound 18 significantly raised the levels of caspase-8 (2.6-fold) and caspase-9 (5.4-fold). Computational techniques were also used to investigate the VEGFR-2-18 complex at a molecular level. Molecular docking and molecular dynamics simulations were performed to assess the structural and energetic features of the complex. The protein-ligand interaction profiler analysis identified the 3D interactions and binding conformation of the VEGFR-2-18 complex. Essential dynamics (ED) study utilizing principal component analysis (PCA) described the protein dynamics of the VEGFR-2-18 complex at various spatial scales. Bi-dimensional projection analysis confirmed the proper binding of the VEGFR-2-18 complex. In addition, the DFT studies provided insights into the structural and electronic properties of compound 18. Finally, computational ADMET and toxicity studies were conducted to evaluate the potential of the thieno[2,3-d]pyrimidine derivatives for drug development. The results of the study suggested that compound 18 could be a promising anticancer agent that may provide effective treatment options for cancer patients. Furthermore, the computational techniques used in this research provided valuable insights into the molecular interactions of the VEGFR-2-18 complex, which may guide future drug design efforts. Overall, this study highlights the potential of thieno[2,3-d]pyrimidine derivatives as a new class of anticancer agents and provides a foundation for further research in this area.
Collapse
Affiliation(s)
- Souad A El-Metwally
- Department of Basic Science, Higher Technological Institute 10th of Ramadan City Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University El-Kharja 72511 Egypt
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University Cairo 12613 Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City Cairo 11231 Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University Nasr City Cairo 11231 Egypt
| | - Bshra A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University Riyadh 13713 Saudi Arabia
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City) Alexandria Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| |
Collapse
|
9
|
Ali A, Manzoor MF, Ahmad N, Aadil RM, Qin H, Siddique R, Riaz S, Ahmad A, Korma SA, Khalid W, Aizhong L. The Burden of Cancer, Government Strategic Policies, and Challenges in Pakistan: A Comprehensive Review. Front Nutr 2022; 9:940514. [PMID: 35938114 PMCID: PMC9355152 DOI: 10.3389/fnut.2022.940514] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/23/2022] [Indexed: 01/09/2023] Open
Abstract
Cancer is a severe condition characterized by uncontrolled cell division and increasing reported mortality and diagnostic cases. In 2040, an estimated 28.4 million cancer cases are expected to happen globally. In 2020, an estimated 19.3 million new cancer cases (18.1 million excluding non-melanoma skin cancer) had been diagnosed worldwide, with around 10.0 million cancer deaths. Breast cancer cases have increased by 2.26 million, lung cancer by 2.21 million, stomach by 1.089 million, liver by 0.96 million, and colon cancer by 1.93 million. Cancer is becoming more prevalent in Pakistan, with 19 million new cancer cases recorded in 2020. Food adulteration, gutkha, paan, and nutritional deficiencies are major cancer risk factors that interplay with cancer pathogenesis in this country. Government policies and legislation, cancer treatment challenges, and prevention must be revised seriously. This review presents the current cancer epidemiology in Pakistan to better understand cancer basis. It summarizes current cancer risk factors, causes, and the strategies and policies of the country against cancer.
Collapse
Affiliation(s)
- Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
- Food and Nutrition Society, Gilgit Baltistan, Pakistan
| | | | - Nazir Ahmad
- Department of Nutritional Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Hong Qin
- School of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Rabia Siddique
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sakhawat Riaz
- Department of Home Economics, Government College University Faisalabad, Faisalabad, Pakistan
| | - Arslan Ahmad
- Department of Home Economics, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig, Egypt
| | - Waseem Khalid
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Liu Aizhong
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China
- *Correspondence: Liu Aizhong
| |
Collapse
|
10
|
Zhong X, Yao L, Xu L, Ma Q, Huang G, Yang M, Gao C, Cheng J, Zhou X, Li Q, Guo X. Comprehensive Analysis of Potential Correlation Between Solute Carrier 1A (SLC1A) Family and Lung Adenocarcinoma. Int J Gen Med 2022; 15:2101-2117. [PMID: 35241927 PMCID: PMC8886152 DOI: 10.2147/ijgm.s350986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD) is the most common dangerous malignant tumor and the leading cause of global cancer incidence and mortality. The Solute Carrier 1A (SLC1A) family play a significant part in cellular biological process, inflammation, and immunity. Specific functions of the SLC1A family in lung cancer are still not systematically described. Objective This study aimed to explore the best biological understanding of SLC1A family in lung cancer. Methods To study the expression and role of the SLC1A family in lung cancer, researchers used a variety of bioinformatics databases and tools. Results Aberrant expression of SLC1A family genes were demonstrated and analyzed the association with gender, tumor grade, cancer stages, and nodal metastasis status. The ectopic expression of SLC1A family genes has prognostic value for LUAD patients. Immune infiltration revealed a significant correlation between SLC1A family genes expression in LUAD. SLC1A family genes were involved in manifold biological processes and have different levels of DNA methylation and genetic alteration. Conclusions These findings suggested that members of the SLC1A family could be a potential target for the development of LUAD therapeutics as well as a reliable indicator of LUAD prognostic value.
Collapse
Affiliation(s)
- Xiaowu Zhong
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Lihua Yao
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Lei Xu
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Qiang Ma
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Guangcheng Huang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Miyuan Yang
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Chuanli Gao
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Jibing Cheng
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Xi Zhou
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Qinrong Li
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Xiaolan Guo
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Translational Medicine Research Center, North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
- Correspondence: Xiaolan Guo, Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, People’s Republic of China, Tel +86-817-2282059, Fax +86-817-2282059, Email
| |
Collapse
|
11
|
Hatzidaki E, Iliopoulos A, Papasotiriou I. A Novel Method for Colorectal Cancer Screening Based on Circulating Tumor Cells and Machine Learning. ENTROPY 2021; 23:e23101248. [PMID: 34681972 PMCID: PMC8534570 DOI: 10.3390/e23101248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is one of the most common types of cancer, and it can have a high mortality rate if left untreated or undiagnosed. The fact that CRC becomes symptomatic at advanced stages highlights the importance of early screening. The reference screening method for CRC is colonoscopy, an invasive, time-consuming procedure that requires sedation or anesthesia and is recommended from a certain age and above. The aim of this study was to build a machine learning classifier that can distinguish cancer from non-cancer samples. For this, circulating tumor cells were enumerated using flow cytometry. Their numbers were used as a training set for building an optimized SVM classifier that was subsequently used on a blind set. The SVM classifier’s accuracy on the blind samples was found to be 90.0%, sensitivity was 80.0%, specificity was 100.0%, precision was 100.0% and AUC was 0.98. Finally, in order to test the generalizability of our method, we also compared the performances of different classifiers developed by various machine learning models, using over-sampling datasets generated by the SMOTE algorithm. The results showed that SVM achieved the best performances according to the validation accuracy metric. Overall, our results demonstrate that CTCs enumerated by flow cytometry can provide significant information, which can be used in machine learning algorithms to successfully discriminate between healthy and colorectal cancer patients. The clinical significance of this method could be the development of a simple, fast, non-invasive cancer screening tool based on blood CTC enumeration by flow cytometry and machine learning algorithms.
Collapse
Affiliation(s)
- Eleana Hatzidaki
- Research Genetic Cancer Centre SA (RGCC), 53100 Florina, Greece; (E.H.); (A.I.)
| | - Aggelos Iliopoulos
- Research Genetic Cancer Centre SA (RGCC), 53100 Florina, Greece; (E.H.); (A.I.)
| | - Ioannis Papasotiriou
- Research Genetic Cancer Centre International GmbH, 6300 Zug, Switzerland
- Correspondence:
| |
Collapse
|
12
|
Lee RH, Oh JD, Hwang JS, Lee HK, Shin D. Antitumorigenic effect of insect-derived peptide poecilocorisin-1 in human skin cancer cells through regulation of Sp1 transcription factor. Sci Rep 2021; 11:18445. [PMID: 34531430 PMCID: PMC8446052 DOI: 10.1038/s41598-021-97581-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022] Open
Abstract
Malignant melanoma is highly resistant to conventional treatments and is one of the most aggressive types of skin cancers. Conventional cancer treatments are limited due to drug resistance, tumor selectivity, and solubility. Therefore, new treatments with fewer side effects and excellent effects should be developed. In previous studies, we have analyzed antimicrobial peptides (AMPs), which showed antibacterial and anti-inflammatory effects in insects, and some AMPs also exhibited anticancer efficacy. Anticancer peptides (ACPs) are known to have fewer side effects and high anticancer efficacy. In this study, the insect-derived peptide poecilocorisin-1 (PCC-1) did not induce toxicity in the human epithelial cell line HaCaT, but its potential as an anticancer agent was confirmed through specific effects of antiproliferation, apoptosis, and cell cycle arrest in two melanoma cell lines, SK-MEL-28 and G361. Additionally, we discovered a novel anticancer mechanism of insect-derived peptides in melanoma through the regulation of transcription factor Sp1 protein, which is overexpressed in cancer, apoptosis, and cell cycle-related proteins. Taken together, this study aims to clarify the anticancer efficacy and safety of insect-derived peptides and to present their potential as future therapeutic agents.
Collapse
Affiliation(s)
- Ra Ham Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jae-Don Oh
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Hak-Kyo Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Donghyun Shin
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea. .,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
13
|
Bule P, Aguiar SI, Aires-Da-Silva F, Dias JNR. Chemokine-Directed Tumor Microenvironment Modulation in Cancer Immunotherapy. Int J Mol Sci 2021; 22:9804. [PMID: 34575965 PMCID: PMC8464715 DOI: 10.3390/ijms22189804] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Chemokines are a large family of small chemotactic cytokines that coordinates immune cell trafficking. In cancer, they have a pivotal role in the migration pattern of immune cells into the tumor, thereby shaping the tumor microenvironment immune profile, often towards a pro-tumorigenic state. Furthermore, chemokines can directly target non-immune cells in the tumor microenvironment, including cancer, stromal and vascular endothelial cells. As such, chemokines participate in several cancer development processes such as angiogenesis, metastasis, cancer cell proliferation, stemness and invasiveness, and are therefore key determinants of disease progression, with a strong influence in patient prognosis and response to therapy. Due to their multifaceted role in the tumor immune response and tumor biology, the chemokine network has emerged as a potential immunotherapy target. Under the present review, we provide a general overview of chemokine effects on several tumoral processes, as well as a description of the currently available chemokine-directed therapies, highlighting their potential both as monotherapy or in combination with standard chemotherapy or other immunotherapies. Finally, we discuss the most critical challenges and prospects of developing targeted chemokines as therapeutic options.
Collapse
Affiliation(s)
| | | | | | - Joana Nunes Ribeiro Dias
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal; (P.B.); (S.I.A.); (F.A.-D.-S.)
| |
Collapse
|
14
|
Dias JNR, André AS, Aguiar SI, Gil S, Tavares L, Aires-da-Silva F. Immunotherapeutic Strategies for Canine Lymphoma: Changing the Odds Against Non-Hodgkin Lymphoma. Front Vet Sci 2021; 8:621758. [PMID: 34513964 PMCID: PMC8427286 DOI: 10.3389/fvets.2021.621758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
The new era of immune-oncology has brought complexities and challenges that emphasize the need to identify new strategies and models to develop successful and cost-effective therapies. The inclusion of a canine model in the drug development of cancer immunotherapies is being widely recognized as a valid solution to overcome several hurdles associated with conventional preclinical models. Driven by the success of immunotherapies in the treatment of human non-Hodgkin lymphoma (NHL) and by the remarkable similarities of canine NHL to its human counterpart, canine NHL has been one of the main focus of comparative research. Under the present review, we summarize a general overview of the challenges and prospects of today's cancer immunotherapies and the role that comparative medicine might play in solving the limitations brought by this rapidly expanding field. The state of art of both human and canine NHL and the rationale behind the use of the canine model to bridge the translational gap between murine preclinical studies and human clinical trials are addressed. Finally, a review of currently available immunotherapies for canine NHL is described, highlighting the potential of these therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | - Frederico Aires-da-Silva
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, Lisbon, Portugal
| |
Collapse
|
15
|
Han J, Rong Y, Gao X. Multiomic analysis of the function of SPOCK1 across cancers: an integrated bioinformatics approach. J Int Med Res 2021; 49:300060520962659. [PMID: 34156309 PMCID: PMC8236807 DOI: 10.1177/0300060520962659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective To investigate SPARC (osteonectin), cwcv and kazal like domains proteoglycan 1 (SPOCK1) gene expression across The Cancer Genome Atlas (TCGA) cancers, both in cancer versus normal tissues and in different stages across the cancer types. Methods This integrated bioinformatics study used data from several bioinformatics databases (Cancer Cell Line Encyclopedia, Genotype-Tissue Expression, TCGA, Tumor Immune Estimation Resource [TIMER]) to define the expression pattern of the SPOCK1 gene. A survival analysis was undertaken across the cancers. The search tool for retrieval of interacting genes (STRING) database was used to identify proteins that interacted with SPOCK1. Gene Set Enrichment Analysis was conducted to determine pathway enrichment. The TIMER database was used to explore the correlation between SPOCK1 and immune cell infiltration. Results This multiomic analysis showed that the SPOCK1 gene was expressed differently between normal tissues and tumours in several cancers and that it was involved in cancer progression. The overexpression of the SPOCK1 gene was associated with poor clinical outcomes. Analysis of gene expression and tumour-infiltrating immune cells showed that SPOCK1 correlated with several immune cells across cancers. Conclusions This research showed that SPOCK1 might serve as a new target for several cancer therapies in the future.
Collapse
Affiliation(s)
- Jie Han
- Department of Hepatology, Qilu Hospital, Shandong University, Shandong, China
| | - Yihui Rong
- Infection Disease Center of Peking University International Hospital, Beijing, China
| | - Xudong Gao
- Infection Disease Center of Peking University International Hospital, Beijing, China
| |
Collapse
|
16
|
Mohammadlou H, Hamzeloo-Moghadam M, Yami A, Feizi F, Moeinifard M, Gharehbaghian A. Britannin a Sesquiterpene Lactone from Inula aucheriana Exerted an Anti-leukemic Effect in Acute Lymphoblastic Leukemia (ALL) Cells and Enhanced the Sensitivity of the Cells to Vincristine. Nutr Cancer 2021; 74:965-977. [PMID: 34060394 DOI: 10.1080/01635581.2021.1931700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since chemotherapy drugs have dose-related side effects, there is still a need for finding new agents with suitable cytotoxic effects without any harmful effects. For this purpose, we evaluated the cytotoxic effects of Britannin that is a Sesquiterpene Lactone compound Inula aucheriana, alone or in combination with Vincristine (VCR), on Acute Lymphoblastic Leukemia (ALL)-derived MOLT-4 cells. In this study, we found that Britannin decreased the viability of MOLT-4 cells with the IC50 Values of 2 µM, but had no cytotoxic effects on normal cells or Peripheral Blood Mononuclear Cells (PBMCs). Our results also showed that Britannin decreased the proliferation of MOLT-4 cells by preventing the transition of the cells from the S phase of the cell cycle through the up-regulation of p21 and p27. Moreover, this agent induced ROS-mediated apoptosis by altering the expression of Bax, Bim, Caspase3, Bcl2, and XIAP. Britannin also produced a synergistic effect with Vincristine in MOLT-4 cells. Taken together, the results of this study showed for the first time that Britannin, as a natural Sesquiterpene Lactone, has cytotoxic effects that could be considered as an anti-leukemic agent in the treatment of ALL. However, there is still a demand for further studies that examine the efficacy and the safety of this purified compound.
Collapse
Affiliation(s)
- Hassan Mohammadlou
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Hamzeloo-Moghadam
- Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Yami
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Feizi
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Moeinifard
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Gharehbaghian
- Department of Laboratory Hematology and Blood Bank, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Pediatric Congenital Hematologic Disorders Research Center, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Hosseini SS, Goudarzi H, Ghalavand Z, Hajikhani B, Rafeieiatani Z, Hakemi-Vala M. Anti-proliferative effects of cell wall, cytoplasmic extract of Lactococcus lactis and nisin through down-regulation of cyclin D1 on SW480 colorectal cancer cell line. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 12:424-430. [PMID: 33603997 PMCID: PMC7867695 DOI: 10.18502/ijm.v12i5.4603] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background and Objectives: Colorectal cancer is one of the most types of cancer. Researchers have shown that lactic acid bacteria have antitumor activity. The cell wall of Lactococcus lactis, as the bacterial cytoplasmic extract and nisin can affect the proliferation of cancer cells. Since cyclin D1 plays an important role in the progression of the cell cycle, its regulation can also be a therapeutic approach. We investigated the antiproliferative effect of cell wall, cytoplasmic extract and nisin on SW480 cancer cell line and the expression level of cyclin D1 gene in treated cancer cells. Materials and Methods: SW480 cell lines were treated with different concentrations of bacterial cell wall, cytoplasmic extract and nisin. MTT test was also performed. The expression level of cyclin D1 gene was determined using Real time PCR. Data were analyzed using Graph Pad Prism software. Results: The growth rate of cancer cells treated with nisin has significantly decreased compared to the cancer cells treated by other two substances (p< 0.05). Survival rates of the cancer cells treated by nisin at a concentration of 2000 μg, cytoplasmic extract, and cell wall were 34%, 47% and 49%, respectively. Real-time PCR results showed that cyclin D1 mRNA expression has significantly decreased in nisin treated sw480 cells (P<0.05). Conclusion: The results of this study show that nisin, bacterial cytoplasmic extract, and bacterial cell wall have antiproliferative effects, which are associated with the decreased expression of cyclin D1 in SW480 cell line.
Collapse
Affiliation(s)
- Sareh Sadat Hosseini
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Rafeieiatani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojdeh Hakemi-Vala
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Samec M, Liskova A, Koklesova L, Mersakova S, Strnadel J, Kajo K, Pec M, Zhai K, Smejkal K, Mirzaei S, Hushmandi K, Ashrafizadeh M, Saso L, Brockmueller A, Shakibaei M, Büsselberg D, Kubatka P. Flavonoids Targeting HIF-1: Implications on Cancer Metabolism. Cancers (Basel) 2021; 13:E130. [PMID: 33401572 PMCID: PMC7794792 DOI: 10.3390/cancers13010130] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor hypoxia is described as an oxygen deprivation in malignant tissue. The hypoxic condition is a consequence of an imbalance between rapidly proliferating cells and a vascularization that leads to lower oxygen levels in tumors. Hypoxia-inducible factor 1 (HIF-1) is an essential transcription factor contributing to the regulation of hypoxia-associated genes. Some of these genes modulate molecular cascades associated with the Warburg effect and its accompanying pathways and, therefore, represent promising targets for cancer treatment. Current progress in the development of therapeutic approaches brings several promising inhibitors of HIF-1. Flavonoids, widely occurring in various plants, exert a broad spectrum of beneficial effects on human health, and are potentially powerful therapeutic tools against cancer. Recent evidences identified numerous natural flavonoids and their derivatives as inhibitors of HIF-1, associated with the regulation of critical glycolytic components in cancer cells, including pyruvate kinase M2(PKM2), lactate dehydrogenase (LDHA), glucose transporters (GLUTs), hexokinase II (HKII), phosphofructokinase-1 (PFK-1), and pyruvate dehydrogenase kinase (PDK). Here, we discuss the results of most recent studies evaluating the impact of flavonoids on HIF-1 accompanied by the regulation of critical enzymes contributing to the Warburg phenotype. Besides, flavonoid effects on glucose metabolism via regulation of HIF-1 activity represent a promising avenue in cancer-related research. At the same time, only more-in depth investigations can further elucidate the mechanistic and clinical connections between HIF-1 and cancer metabolism.
Collapse
Affiliation(s)
- Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Lenka Koklesova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Sandra Mersakova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia; (S.M.); (J.S.)
| | - Jan Strnadel
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mala Hora 4D, 03601 Martin, Slovakia; (S.M.); (J.S.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200 Brno, Czech Republic;
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, 1477893855 Tehran, Iran;
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, 1419963114 Tehran, Iran;
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine, Sapienza University, 00185 Rome, Italy;
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, D-80336 Munich, Germany; (A.B.); (M.S.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| |
Collapse
|
19
|
Yu S, Wu Y, Li C, Qu Z, Lou G, Guo X, Ji J, Li N, Guo M, Zhang M, Lei L, Tai S. Comprehensive analysis of the SLC16A gene family in pancreatic cancer via integrated bioinformatics. Sci Rep 2020; 10:7315. [PMID: 32355273 PMCID: PMC7193566 DOI: 10.1038/s41598-020-64356-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/10/2020] [Indexed: 12/13/2022] Open
Abstract
SLC16A family members play crucial roles in tumorigenesis and tumor progression. However, the exact role of distinct members in the SLC16A family in human pancreatic cancer remains unclear. Integrated bioinformatics analysis for the identification of therapeutic targets for certain cancers based on transcriptomics, proteomics and high-throughput sequencing could help us obtain novel information and understand potential underlying molecular mechanisms. In the present study, we investigated SLC16A family members in pancreatic cancer through accumulated data from GEO (Gene Expression Omnibus), TCGA (The Cancer Genome Atlas) and other available databases. The expression profile, clinical application significance and prognostic value of the SLC16A family for patients with pancreatic cancer were explored. SLC16A1, SLC16A3 and SLC16A13 exhibited biomarker potential for prognosis, and we further identified their related genes and regulatory networks, revealing core molecular pathways that require further investigation for pancreatic cancer.
Collapse
Affiliation(s)
- Shan Yu
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Yanshuang Wu
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150001, China
| | - Chunlong Li
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhaowei Qu
- Department of Hepatobiliary and Pancreatic Surgery, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | - Ge Lou
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xiaorong Guo
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jingjing Ji
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Nan Li
- Department of Pathology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Mian Guo
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Maomao Zhang
- The Key Laboratory of Myocardial Ischemia, Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150001, China
- The Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, 150001, China
| | - Sheng Tai
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
20
|
Trickey A, May MT, Gill MJ, Grabar S, Vehreschild J, Wit FWNM, Bonnet F, Cavassini M, Abgrall S, Berenguer J, Wyen C, Reiss P, Grabmeier-Pfistershammer K, Guest JL, Shepherd L, Teira R, d'Arminio Monforte A, Del Amo J, Justice A, Costagliola D, Sterne JAC. Cause-specific mortality after diagnosis of cancer among HIV-positive patients: A collaborative analysis of cohort studies. Int J Cancer 2020; 146:3134-3146. [PMID: 32003460 PMCID: PMC7187452 DOI: 10.1002/ijc.32895] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/11/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022]
Abstract
People living with HIV (PLHIV) are more likely than the general population to develop AIDS-defining malignancies (ADMs) and several non-ADMs (NADMs). Information is lacking on survival outcomes and cause-specific mortality after cancer diagnosis among PLHIV. We investigated causes of death within 5 years of cancer diagnosis in PLHIV enrolled in European and North American HIV cohorts starting antiretroviral therapy (ART) 1996-2015, aged ≥16 years, and subsequently diagnosed with cancer. Cancers were grouped: ADMs, viral NADMs and nonviral NADMs. We calculated cause-specific mortality rates (MR) after diagnosis of specific cancers and compared 5-year survival with the UK and France general populations. Among 83,856 PLHIV there were 4,436 cancer diagnoses. Of 603 deaths after ADM diagnosis, 292 (48%) were due to an ADM. There were 467/847 (55%) and 74/189 (39%) deaths that were due to an NADM after nonviral and viral NADM diagnoses, respectively. MR were higher for diagnoses between 1996 and 2005 versus 2006-2015: ADMs 102 (95% CI 92-113) per 1,000 years versus 88 (78-100), viral NADMs 134 (106-169) versus 111 (93-133) and nonviral NADMs 264 (232-300) versus 226 (206-248). Estimated 5-year survival for PLHIV diagnosed with liver (29% [19-39%]), lung (18% [13-23%]) and cervical (75% [63-84%]) cancer was similar to general populations. Survival after Hodgkin's lymphoma diagnosis was lower in PLHIV (75% [67-81%]). Among ART-treated PLHIV diagnosed with cancer, MR and causes of death varied by cancer type, with mortality highest for liver and lung cancers. Deaths within 5 years of NADM diagnoses were more likely to be from cancer than AIDS.
Collapse
Affiliation(s)
- Adam Trickey
- Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Margaret T May
- Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - M John Gill
- Division of Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Sophie Grabar
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidemiologie et de Santé Publique (IPLESP), Paris, France.,Unité de Biostatistique et d'Épidémiologie Groupe Hospitalier Cochin Broca Hôtel-Dieu, Assistance Publique Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Janne Vehreschild
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany.,German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Ferdinand W N M Wit
- Stichting HIV Monitoring, Amsterdam, The Netherlands.,Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | - Fabrice Bonnet
- University of Bordeaux, ISPED, INSERM U1219, Bordeaux, France.,CHU de Bordeaux, Bordeaux, France
| | - Matthias Cavassini
- Service of Infectious Diseases, Lausanne University Hospital, Lausanne, Switzerland.,University of Lausanne, Lausanne, Switzerland
| | - Sophie Abgrall
- Department of Internal Medicine, Antoine Béclère Hospital, Clamart, France.,University of Paris Saclay, Paris-Sud University, UVSQ, Le Kremlin-Bicêtre, France.,CESP INSERM U1018, Le Kremlin-Bicêtre, France
| | - Juan Berenguer
- Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Christoph Wyen
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Peter Reiss
- Stichting HIV Monitoring, Amsterdam, The Netherlands.,Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.,Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands
| | | | - Jodie L Guest
- Rollins School of Public Health, Atlanta, GA.,Emory School of Medicine, Atlanta, GA
| | - Leah Shepherd
- Institute of Global Health, University College London, London, United Kingdom
| | - Ramon Teira
- Unit of Infectious Diseases, Hospital Sierrallana, Torrelavega, Spain
| | | | - Julia Del Amo
- National Epidemiology Center, Carlos III Health Institute, Madrid, Spain
| | - Amy Justice
- Yale University School of Medicine and Public Health, New Haven, CT.,VA Connecticut Healthcare System, West Haven, CT
| | - Dominique Costagliola
- Sorbonne Université, INSERM, Institut Pierre Louis d'Épidemiologie et de Santé Publique (IPLESP), Paris, France
| | | |
Collapse
|
21
|
Vernolactone Promotes Apoptosis and Autophagy in Human Teratocarcinomal (NTERA-2) Cancer Stem-Like Cells. Stem Cells Int 2020; 2019:6907893. [PMID: 31949439 PMCID: PMC6942914 DOI: 10.1155/2019/6907893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Vernonia zeylanica, is a shrub endemic to Sri Lanka. V. zeylanica has been used in Sri Lankan traditional medicine for the treatment of various diseases and conditions. The present study was designed to determine antiproliferative, apoptotic, autophagic, and antioxidant effects of vernolactone, isolated from V. zeylanica, in human embryonal carcinoma cells (NTERA-2, a cancer stem cell model). Antiproliferative effects of vernolactone in NTERA-2 cells and human peripheral blood mononuclear cells (control cells) were evaluated using the Sulforhodamine B (SRB) assay and WST-1 antiproliferative assays, respectively. The antiproliferative effect of vernolactone was further investigated using the colony formation assay. Effects of vernolactone on apoptosis were investigated by phase contrast light microscopic and fluorescence microscopic analysis, caspase 3/7 expression, and real-time PCR of apoptosis-associated genes p53 and Survivin. The effect of vernolactone on NTERA-2 cell migration was monitored using the wound healing assay. Effects of vernolactone on the expression of autophagy-related genes (LC3, Beclin 1, PI3K, Akt, and mTOR) were evaluated using real-time PCR. 2,2-Diphenyl-1-2,2-diphenyl-picrylhydrazyl (DPPH) radical scavenging assay, 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, and ferric reducing antioxidant power (FRAP) assays were also carried out to evaluate the antioxidant activity of vernolactone. Overall results confirm that vernolactone can exert antiproliferative effects, induce apoptosis and autophagy, and decrease NTERA-2 cell migration in a dose- and time-dependent manner with a very small antioxidant property.
Collapse
|
22
|
Kaushik AC, Mehmood A, Peng S, Zhang YJ, Dai X, Wei DQ. A-CaMP: a tool for anti-cancer and antimicrobial peptide generation. J Biomol Struct Dyn 2020; 39:285-293. [PMID: 31870207 DOI: 10.1080/07391102.2019.1708796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Anti-cancer peptides (ACPs) play a vital role in the cell signaling process. Antimicrobial peptides (AMPs) provide immunity against pathogenic microbes, AMPs present activity against pathogenic microbes. Some of them are known to possess both anticancer and antimicrobial activity. However, so far, no tools have been developed that could predict potential ACPs from wild and mutated cancerous protein sequences in the numerous public databases. In the present study, we developed a A-CaMP tool that allows rapid fingerprinting of the anti-cancer and antimicrobial peptides, which play a crucial role in current bioinformatics research. Besides, we compared the performance and functionality of our A-CaMP tool with those of other methods available online. A-CaMP scans the target protein sequences provided by the user against the datasets. It possesses a robust coding architecture, has been developed in PERL language and is scalable of therefore has extensive applications in bioinformatics. It was observed to achieve a prediction accuracy of 93.4%, which is much higher than that of any of the existing tools. Sequence alignment studies also highlight the potential use of A-CaMP as a tool for the identification of AMPs. A-CaMP is the first open source tool that uses clinical data and proposes final peptides along with the necessary information; this includes wild and mutant sequence and peptides, which lays the foundation for its application in therapies for cancer and bacterial infections. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aman Chandra Kaushik
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Aamir Mehmood
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoliang Peng
- School of Computer Science, National University of Defense Technology, Changsha, China
| | - Yu-Juan Zhang
- College of Life Science, Chongqing Normal University, Chongqing, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Kumaraswamy BV. Understanding the etiopathogenesis and diagnosis of malignancy in the framework of Ayurveda: A review based on experience of working in an institute of oncology. Ayu 2020; 41:58-65. [PMID: 34566386 PMCID: PMC8415240 DOI: 10.4103/ayu.ayu_45_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/05/2018] [Accepted: 02/03/2021] [Indexed: 11/04/2022] Open
Abstract
Background The etiopathogenesis and diagnosis of cancer has intrigued modern oncology researchers for decades, and it is still a rapidly growing area in medicine. Cancer is not a single disease, but rather a collection of related diseases which is diagnosed on the basis of aberrant cellular changes. Since this is established by the modern medical science, it becomes important to understand it from the perspective of Ayurveda. Despite the fact that there are a few endeavors in this area, there is no common agreement among the experts. The current article is an effort to fulfill this knowledge gap. Aims and objectives To understand the cancer systematically in the frame work of Ayurveda and propose its probable Samprapti (pathogenic process) based on clinical observations. Materials and methods It is based on the clinical observation and detailed examination of 400 cancer patients, following modern and Ayurvedic methods in an institution dedicated to oncology. Results After careful study of each type of cases of cancer at its all stages to understand the natural history and clinical behavior, Ayurvedic pathogenesis, diagnosis with possible etiologic association has been arrived at. Three main conditions, namely Udara (enlargement of abdomen), Gulma (lump in abdomen) and Vidradhi (abscess) can be equated with cancer. Conclusion Modern diagnosis of cancer cannot be equated with any single disease entity mentioned in the Ayurvedic literature. Udara-Gulma-Vidradhi is the abdominal tumors present as benign and possess cancerous potential.
Collapse
Affiliation(s)
- B V Kumaraswamy
- Department of Research in Indian Medicine, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, India
| |
Collapse
|
24
|
Katta S, Srivastava A, Thangapazham RL, Rosner IL, Cullen J, Li H, Sharad S. Curcumin-Gene Expression Response in Hormone Dependent and Independent Metastatic Prostate Cancer Cells. Int J Mol Sci 2019; 20:ijms20194891. [PMID: 31581661 PMCID: PMC6801832 DOI: 10.3390/ijms20194891] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/25/2019] [Accepted: 09/29/2019] [Indexed: 12/25/2022] Open
Abstract
The androgen receptor is one of the key targets for prostate cancer treatment. Despite its less satisfactory effects, chemotherapy is the most common treatment option for metastatic and/or castration-resistant patients. There are constant needs for novel anti-prostate cancer therapeutic/prevention agents. Curcumin, a known chemo-preventive agent, was shown to inhibit prostate cancer cell growth. This study aimed to unravel the inhibitory effect of curcumin in prostate cancer through analyzing the alterations of expressions of curcumin targeting genes clusters in androgen-dependent LNCaP cells and androgen-independent metastatic C4-2B cells. Hierarchical clustering showed the highest number of differentially expressed genes at 12 h post treatment in both cells, suggesting that the androgen-dependent/independent manner of curcumin impacts on prostate cancer cells. Evaluation of significantly regulated top canonical pathways highlighted that Transforming growth factor beta (TGF-β), Wingless-related integration site (Wnt), Phosphoinositide 3-kinase/Protein Kinase B/ mammalian target of rapamycin (PIK3/AKT(PKB)/mTOR), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) signaling were primarily inhibited, and Phosphatase and tensin homolog (PTEN) dependent cell cycle arrest and apoptosis pathways were elevated with curcumin treatment. The short term (3–24 h) and long term (48 h) effect of curcumin treatment revealed 31 and four genes modulated in both cell lines. TGF-β signaling, including the androgen/TGF-β inhibitor Prostate transmembrane protein androgen-induced 1 (PMEPA1), was the only pathway impacted by curcumin treatment after 48 h. Our findings also established that MYC Proto-Oncogene, basic helix-loop-helix (bHLH) Transcription Factor (MYC) signaling was down-regulated in curcumin-treated cell lines. This study established, for the first time, novel gene-networks and signaling pathways confirming the chemo-preventive and cancer-growth inhibitory nature of curcumin as a natural anti-prostate cancer compound.
Collapse
Affiliation(s)
- Shilpa Katta
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Arun Srivastava
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Rajesh L Thangapazham
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Inger L Rosner
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Department of Urology, Walter Reed National Military Medical Center, 8901 Rockville Pike, Bethesda, MD 20889, USA.
| | - Jennifer Cullen
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Hua Li
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| | - Shashwat Sharad
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
- Henry Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr., Suite 300, Bethesda, MD 20817, USA.
| |
Collapse
|
25
|
Negative regulators of cell death pathways in cancer: perspective on biomarkers and targeted therapies. Apoptosis 2019; 23:93-112. [PMID: 29322476 DOI: 10.1007/s10495-018-1440-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cancer is a primary cause of human fatality and conventional cancer therapies, e.g., chemotherapy, are often associated with adverse side-effects, tumor drug-resistance, and recurrence. Molecularly targeted therapy, composed of small-molecule inhibitors and immunotherapy (e.g., monoclonal antibody and cancer vaccines), is a less harmful alternative being more effective against cancer cells whilst preserving healthy tissues. Drug-resistance, however, caused by negative regulation of cell death signaling pathways, is still a challenge. Circumvention of negative regulators of cell death pathways or development of predictive and response biomarkers is, therefore, quintessential. This review critically discusses the current state of knowledge on targeting negative regulators of cell death signaling pathways including apoptosis, ferroptosis, necroptosis, autophagy, and anoikis and evaluates the recent advances in clinical and preclinical research on biomarkers of negative regulators. It aims to provide a comprehensive platform for designing efficacious polytherapies including novel agents for restoring cell death signaling pathways or targeting alternative resistance pathways to improve the chances for antitumor responses. Overall, it is concluded that nonapoptotic cell death pathways are a potential research arena for drug discovery, development of novel biomarkers and targeted therapies.
Collapse
|
26
|
In silico studies, synthesis and anticancer activity of novel diphenyl ether-based pyridine derivatives. Mol Divers 2018; 23:541-554. [PMID: 30430400 DOI: 10.1007/s11030-018-9889-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
Abstract
A series of novel 2-amino-4-(3-hydroxy-4-phenoxyphenyl)-6-(4-substituted phenyl) nicotinonitriles were synthesized and evaluated against HepG2, A-549 and Vero cell lines. Compounds 3b (IC50 16.74 ± 0.45 µM) and 3p (IC50 10.57 ± 0.54 µM) were found to be the most active compounds against A-549 cell line among the evaluated compounds. Further 3b- and 3p-induced apoptosis was characterized by AO/EB (acridine orange/ethidium bromide) nuclear staining method and also by DNA fragmentation study. A decrease in cell viability and initiation of apoptosis was clearly evident through the morphological changes in the A-549 cells treated with 3b and 3p when stained with this method. Fragmentation of DNA into nucleosomes was observed which further confirmed the cell apoptosis in cells treated with compound 3b. Flow cytometry studies confirmed the cell cycle arrest at G2/M phase in A549 cells treated with compound 3b. Further in silico studies performed supported the in vitro anticancer activity of these compounds as depicted by dock score and binding energy values.
Collapse
|
27
|
Ooi SL, McMullen D, Golombick T, Nut D, Pak SC. Evidence-Based Review of BioBran/MGN-3 Arabinoxylan Compound as a Complementary Therapy for Conventional Cancer Treatment. Integr Cancer Ther 2018; 17:165-178. [PMID: 29037071 PMCID: PMC6041933 DOI: 10.1177/1534735417735379] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 08/06/2017] [Accepted: 09/12/2017] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Conventional cancer treatment, including surgery, chemotherapy, and radiotherapy, may not be sufficient to eradicate all malignant cells and prevent recurrence. Intensive treatment often leads to a depressed immune system, drug resistance, and toxicity, hampering the treatment outcomes. BioBran/MGN-3 Arabinoxylan is a standardized arabinoxylan concentrate which has been proposed as a plant-based immunomodulator that can restore the tumor-induced disturbance of the natural immune system, including natural killer cell activity to fight cancer, complementing conventional therapies. OBJECTIVES To comprehensively review the available evidence on the effects and efficacies of MGN-3 as a complementary therapy for conventional cancer treatment. METHODS Systematic search of journal databases and gray literature for primary studies reporting the effects of MGN-3 on cancer and cancer treatment. RESULTS Thirty full-text articles and 2 conference abstracts were included in this review. MGN-3 has been shown to possess immunomodulating anticancer effects and can work synergistically with chemotherapeutic agents, in vitro. In murine models, MGN-3 has been shown to act against carcinogenic agents, and inhibit tumor growth, either by itself or in combination with other anticancer compounds. Fourteen successful MGN-3 treated clinical cases were found. Eleven clinical studies, including 5 nonrandomized, pre-post intervention studies and 6 randomized controlled trials (RCTs) were located. Reported effects include enhanced immunoprofile, reduced side effects, improved treatment outcomes; one RCT established significantly increased survival rates. There are no reports on adverse events on MGN-3. Most of the clinical trials are small studies with short duration. CONCLUSION There is sufficient evidence suggesting MGN-3 to be an effective immunomodulator that can complement conventional cancer treatment. However, more well-designed RCTs on MGN-3 are needed to strengthen the evidence base.
Collapse
Affiliation(s)
- Soo Liang Ooi
- Centre of Complementary & Alternative Medicine, Singapore
| | - Debbie McMullen
- Charles Sturt University, Bathurst, New South Wales, Australia
| | | | - Dipl Nut
- St George Hospital, Sydney, New South Wales, Australia
| | - Sok Cheon Pak
- Charles Sturt University, Bathurst, New South Wales, Australia
| |
Collapse
|
28
|
Martinez Tyson D, Medina-Ramirez P, Vázquez-Otero C, Gwede CK, Babilonia MB, McMillan SC. Initial evaluation of the validity and reliability of the culturally adapted Spanish CaSUN (S-CaSUN). J Cancer Surviv 2018; 12:509-518. [PMID: 29623531 DOI: 10.1007/s11764-018-0689-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/13/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE There is a dearth of knowledge and limited research on the needs of Hispanic male cancer survivors (HMCSs). There is a clear need for the development of culturally and linguistically adapted needs assessment tools that are valid and reliable for use among the growing HMCS population. Thus, the purpose of this paper is to describe the field testing and psychometric evaluation of the translated and culturally adapted Spanish Cancer Survivor Unmet Needs Measure (S-CaSUN). METHODS Hispanic male cancer survivors (n = 84) completed the Spanish CaSUN (S-CaSUN), the Hospital Anxiety and Depression Scale (HADS), and the Functional Assessment of Cancer Therapy-General Population (FACT-GP). Construct validity of the S-CaSUN was assessed by correlation analysis among aforesaid measures. A test-retest procedure with 2-week delay was used to examine reproducibility with a participant subsample (n = 50). Cronbach's alpha was computed to assess internal consistency of the S-CaSUN. RESULTS Construct validity of the S-CaSUN was estimated by moderate correlation with the HADS anxiety (r = 0.55, P < 0.001) and depression scales (r = 0.60, P < 0.001) and the FACT-GP (r = - 0.62, P < 0.001). The test-retest correlation coefficient for the S-CaSUN was 0.78. Cronbach's alpha was 0.96. Field testing yielded a mean S-CaSUN score of 38.3 (SD = 26.2); all needs and positive change items were endorsed. CONCLUSION Findings from field testing and preliminary psychometric evaluation of the S-CaSUN provide initial evidence of validity and reliability of the measure and highlight the importance of going beyond translation when adapting measures to take culture, literacy, and language into consideration. IMPLICATIONS FOR CANCER SURVIVORS Reliable, culturally, and linguistically valid instruments facilitate identification of unique unmet needs of Hispanic cancer survivors that, in turn, can be addressed with evidence-based interventions. As cancer centers continue to develop survivorship programs, the S-CaSUN may be useful for a growing group of cancer survivors.
Collapse
Affiliation(s)
- Dinorah Martinez Tyson
- Department of Community and Family Health, University of South Florida, 13201 Bruce B. Downs Blvd, MDC56, Tampa, FL, 33612-3805, USA.
| | | | - Coralia Vázquez-Otero
- Department of Community and Family Health, University of South Florida, 13201 Bruce B. Downs Blvd, MDC56, Tampa, FL, 33612-3805, USA
| | - Clement K Gwede
- Health Outcomes and Behavior, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, Morsani College of Medicine, Tampa, FL, USA
| | | | | |
Collapse
|
29
|
Hashemi M, Omidi M, Muralidharan B, Smyth H, Mohagheghi MA, Mohammadi J, Milner TE. Evaluation of the Photothermal Properties of a Reduced Graphene Oxide/Arginine Nanostructure for Near-Infrared Absorption. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32607-32620. [PMID: 28841283 DOI: 10.1021/acsami.7b11291] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Strong near-infrared (NIR) absorption of reduced graphene oxide (rGO) make this material a candidate for photothermal therapy. The use of rGO has been limited by low stability in aqueous media due to the lack of surface hydrophilic groups. We report synthesis of a novel form of reduced graphene-arginine (rGO-Arg) as a nanoprobe. Introduction of Arg to the surface of rGO not only increases the stability in aqueous solutions but also increases cancer cell uptake. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) images are recorded to characterize the morphology of rGO-Arg. Fourier transform infrared (FTIR), X-ray photoelectron spectra (XPS), Raman, and UV-vis spectroscopy are utilized to analyze the physiochemical properties of rGO-Arg. Interaction of rGO-Arg with 808 nm laser light has been evaluated by measuring the absorption cross section in response to periodically modulated intensity to minimize artifacts arising from lateral thermal diffusion with a material scattering matched to a low scattering optical standard. Cell toxicity and cellular uptake by MD-MB-231 cell lines provide supporting data for the potential application of rGO-Arg for photothermal therapy. Absorption cross-section results suggest rGO-Arg is an excellent NIR absorber that is 3.2 times stronger in comparison to GO.
Collapse
Affiliation(s)
- Mohadeseh Hashemi
- Biomedical Engineering Department, Faculty of New Sciences and Technologies, The University of Tehran , Tehran 14395-1561, Iran
- Biomedical Engineering Department, The University of Texas at Austin , Austin, Texas 78712, United States
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Meisam Omidi
- Protein Research Centre, Shahid Beheshti University , GC, Velenjak, Tehran 1985717443, Iran
| | - Bharadwaj Muralidharan
- Biomedical Engineering Department, The University of Texas at Austin , Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Hugh Smyth
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Mohammad A Mohagheghi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences , Tehran 1419733141, Iran
| | - Javad Mohammadi
- Biomedical Engineering Department, Faculty of New Sciences and Technologies, The University of Tehran , Tehran 14395-1561, Iran
| | - Thomas E Milner
- Biomedical Engineering Department, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
30
|
Bagul C, Rao GK, Makani VKK, Tamboli JR, Pal-Bhadra M, Kamal A. Synthesis and biological evaluation of chalcone-linked pyrazolo[1,5- a]pyrimidines as potential anticancer agents. MEDCHEMCOMM 2017; 8:1810-1816. [PMID: 30108891 DOI: 10.1039/c7md00193b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/13/2017] [Indexed: 12/30/2022]
Abstract
A series of pyrazolo[1,5-a]pyrimidines substituted at C5 with 1-phenylprop-2-en-1-one (6a-q) and 3-phenylprop-2-en-1-one (7a-k) was synthesized and evaluated for antiproliferative activity. Among them, 6h was found to be the most active compound against the MDA-MB-231 cell line with an IC50 of 2.6 μM . The antiproliferative activity of this series of compounds ranged from 2.6 to 34.9 μM against A549 (lung cancer), MDA-MB-231 (breast cancer) and DU-145 (prostate cancer) cell lines. FACS analysis revealed that these hybrids arrest the cell cycle at the subG1 phase. Western blot analysis and an immunofluorescence assay showed the inhibition of the EGFR and STAT3 axis, which plays an important role in cell survival and apoptosis. Western blot and RT-PCR analyses that displayed an increase in apoptotic proteins such as p53, p21 and Bax and a decrease in the anti-apoptotic proteins Bcl-2 and procaspase-9 confirmed the ability of these hybrids to trigger cell death by apoptosis. Molecular docking studies described the binding of these hybrids to the ATP binding site of EGFR.
Collapse
Affiliation(s)
- Chandrakant Bagul
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad-500 037 , India
| | | | | | - Jaki R Tamboli
- Medicinal Chemistry & Pharmacology , CSIR-Indian Institute of Chemical Technology , Hyderabad 500 007 , India .
| | - Manika Pal-Bhadra
- Chemical Biology , CSIR-Indian Institute of Chemical Technology , Hyderabad 500 007 , India .
| | - Ahmed Kamal
- Department of Medicinal Chemistry , National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad-500 037 , India.,Medicinal Chemistry & Pharmacology , CSIR-Indian Institute of Chemical Technology , Hyderabad 500 007 , India .
| |
Collapse
|
31
|
Sonowal H, Pal PB, Wen JJ, Awasthi S, Ramana KV, Srivastava SK. Aldose reductase inhibitor increases doxorubicin-sensitivity of colon cancer cells and decreases cardiotoxicity. Sci Rep 2017; 7:3182. [PMID: 28600556 PMCID: PMC5466629 DOI: 10.1038/s41598-017-03284-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Anthracycline drugs such as doxorubicin (DOX) and daunorubicin remain some of the most active wide-spectrum and cost-effective drugs in cancer therapy. However, colorectal cancer (CRC) cells are inherently resistant to anthracyclines which at higher doses cause cardiotoxicity. Our recent studies indicate that aldose reductase (AR) inhibitors such as fidarestat inhibit CRC growth in vitro and in vivo. Here, we show that treatment of CRC cells with fidarestat increases the efficacy of DOX-induced death in HT-29 and SW480 cells and in nude mice xenografts. AR inhibition also results in higher intracellular accumulation of DOX and decreases the expression of drug transporter proteins MDR1, MRP1, and ABCG2. Further, fidarestat also inhibits DOX-induced increase in troponin-I and various inflammatory markers in the serum and heart and restores cardiac function in mice. These results suggest that fidarestat could be used as adjuvant therapy to enhance DOX sensitivity of CRC cells and to reduce DOX-associated cardiotoxicity.
Collapse
Affiliation(s)
- Himangshu Sonowal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX-77555, USA
| | - Pabitra B Pal
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX-77555, USA
| | - Jian-Jun Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX-77555, USA
| | - Sanjay Awasthi
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX-79430, USA
| | - Kota V Ramana
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX-77555, USA
| | - Satish K Srivastava
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX-77555, USA.
| |
Collapse
|
32
|
Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 2017; 24:21. [PMID: 28320393 PMCID: PMC5359827 DOI: 10.1186/s12929-017-0328-x] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer along with cardiovascular disease are the main causes of death in the industrialised countries around the World. Conventional cancer treatments are losing their therapeutic uses due to drug resistance, lack of tumour selectivity and solubility and as such there is a need to develop new therapeutic agents. Therapeutic peptides are a promising and a novel approach to treat many diseases including cancer. They have several advantages over proteins or antibodies: as they are (a) easy to synthesise, (b) have a high target specificity and selectivity and (c) have low toxicity. Therapeutic peptides do have some significant drawbacks related to their stability and short half-life. In this review, strategies used to overcome peptide limitations and to enhance their therapeutic effect will be compared. The use of short cell permeable peptides that interfere and inhibit protein-protein interactions will also be evaluated.
Collapse
Affiliation(s)
- Susan Marqus
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
33
|
Denèfle T, Boullet H, Herbi L, Newton C, Martinez-Torres AC, Guez A, Pramil E, Quiney C, Pourcelot M, Levasseur MD, Lardé E, Moumné R, Ogi FX, Grondin P, Merle-Beral H, Lequin O, Susin SA, Karoyan P. Thrombospondin-1 Mimetic Agonist Peptides Induce Selective Death in Tumor Cells: Design, Synthesis, and Structure-Activity Relationship Studies. J Med Chem 2016; 59:8412-21. [PMID: 27526615 DOI: 10.1021/acs.jmedchem.6b00781] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thrombospondin-1 (TSP-1) is a glycoprotein considered as a key actor within the tumor microenvironment. Its binding to CD47, a cell surface receptor, triggers programmed cell death. Previous studies allowed the identification of 4N1K decapeptide derived from the TSP-1/CD47 binding epitope. Here, we demonstrate that this peptide is able to induce selective apoptosis of various cancer cell lines while sparing normal cells. A structure-activity relationship study led to the design of the first serum stable TSP-1 mimetic agonist peptide able to trigger selective programmed cell death (PCD) of at least lung, breast, and colorectal cancer cells. Altogether, these results will be of valuable interest for further investigation in the design of potent CD47 agonist peptides, opening new perspectives for the development of original anticancer therapies.
Collapse
Affiliation(s)
- Thomas Denèfle
- Sorbonne Universités, UPMC Université Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,UPMC Université Paris 06, Laboratoire des BioMolécules, Site GSK, 25-27 Avenue du Québec, 91140 Les Ulis, France
| | - Héloise Boullet
- Sorbonne Universités, UPMC Université Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolécules, 75005 Paris, France
| | - Linda Herbi
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS, 1138, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMRS 1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Paris, France
| | - Clara Newton
- Sorbonne Universités, UPMC Université Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,UPMC Université Paris 06, Laboratoire des BioMolécules, Site GSK, 25-27 Avenue du Québec, 91140 Les Ulis, France
| | - Ana-Carolina Martinez-Torres
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS, 1138, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMRS 1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Paris, France
| | - Alexandre Guez
- Sorbonne Universités, UPMC Université Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolécules, 75005 Paris, France
| | - Elodie Pramil
- Sorbonne Universités, UPMC Université Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS, 1138, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMRS 1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Paris, France
| | - Claire Quiney
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS, 1138, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMRS 1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Paris, France
| | - Marilyne Pourcelot
- Sorbonne Universités, UPMC Université Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,UPMC Université Paris 06, Laboratoire des BioMolécules, Site GSK, 25-27 Avenue du Québec, 91140 Les Ulis, France
| | - Mikail D Levasseur
- Sorbonne Universités, UPMC Université Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,UPMC Université Paris 06, Laboratoire des BioMolécules, Site GSK, 25-27 Avenue du Québec, 91140 Les Ulis, France
| | - Eva Lardé
- Sorbonne Universités, UPMC Université Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,UPMC Université Paris 06, Laboratoire des BioMolécules, Site GSK, 25-27 Avenue du Québec, 91140 Les Ulis, France
| | - Roba Moumné
- Sorbonne Universités, UPMC Université Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolécules, 75005 Paris, France
| | | | | | - Hélène Merle-Beral
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS, 1138, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMRS 1138, Paris, France.,AP-HP, GH Pitié-Salpêtrière, Service d'Hématologie Biologique, 75013 Paris, France
| | - Olivier Lequin
- Sorbonne Universités, UPMC Université Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolécules, 75005 Paris, France
| | - Santos A Susin
- Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Centre de Recherche des Cordeliers, INSERM UMRS, 1138, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMRS 1138, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UMRS 1138, Paris, France
| | - Philippe Karoyan
- Sorbonne Universités, UPMC Université Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,Département de Chimie, Ecole Normale Supérieure, PSL Research University, UPMC Université Paris 06, CNRS, Laboratoire des Biomolécules, 75005 Paris, France.,UPMC Université Paris 06, Laboratoire des BioMolécules, Site GSK, 25-27 Avenue du Québec, 91140 Les Ulis, France
| |
Collapse
|
34
|
Williams F, Zoellner N, Hovmand PS. Understanding Global Cancer Disparities: The Role of Social Determinants from System Dynamics Perspective. TRANSDISCIPLINARY JOURNAL OF ENGINEERING & SCIENCE 2016; 7:10.22545/2016/00072. [PMID: 30792830 PMCID: PMC6380520 DOI: 10.22545/2016/00072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BACKGROUND In 2012, almost 57% of all cancer cases and 65% of cancer deaths occurred in low-and middle-income countries. If the current trend continues, the burden of cancer will increase to 22 million new cases annually by 2030, with 81% of new cases and almost 88% of mortality occurring in less developed countries. METHODS A qualitative review of the literature was conducted. This included a systematic search of eight electronic databases namely, PubMed, Academic Search Premier, CINAHL, Applied Social Sciences Index, EMBASE, SCOPUS, Cochrane and PsycINFO. The reference list of articles retrieved were also thoroughly searched. Inclusion criteria were studies that addressed global health, cancer disparities and global or economic development. RESULTS Thirty-one articles were identified that met the eligibility criteria. Results were synthesized in the form of a system dynamics causal loop diagram or map which led to identification of eight major stocks or system variables. These included, children and adult population, overall population health, pollution, quality of healthcare delivery, quality of neighborhood and built environment, social and community cohesiveness, healthy and social norms and attitudes, and literacy level. Based on this, a dynamic hypothesis of global health cancer disparities was developed. The causal loop diagram showed the role of multiple interacting feedback mechanisms as explanations for trends in global health cancer disparities and the underlying consequences. CONCLUSIONS Addressing these determinants of health requires an effective dynamic approach to improving global cancer health. Application of a systems thinking methodological approach has the potential to provide new understanding to how global development trends in combination with global health efforts to improve population health could shift cancer disparities and burden associated with the disease.
Collapse
Affiliation(s)
- Faustine Williams
- Division of Public Health Sciences, Department of Surgery, Washington University in St. Louis School of Medicine, St. Louis, USA,
- Social System Design Lab, George Warren Brown School of Social Work, Washington University in St. Louis, St. Louis, MO USA
| | - Nancy Zoellner
- Social System Design Lab, George Warren Brown School of Social Work, Washington University in St. Louis, St. Louis, MO USA
| | - Peter S Hovmand
- Social System Design Lab, George Warren Brown School of Social Work, Washington University in St. Louis, St. Louis, MO USA
| |
Collapse
|
35
|
Plaimee P, Khamphio M, Weerapreeyakul N, Barusrux S, Johns NP. Immunomodulatory effect of melatonin in SK-LU-1 human lung adenocarcinoma cells co-cultured with peripheral blood mononuclear cells. Cell Prolif 2014; 47:406-15. [PMID: 25053373 DOI: 10.1111/cpr.12119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/17/2014] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The anti-cancer potential of melatonin has been examined using a variety of experimental approaches. Melatonin immunomodulatory action was evaluated against the lung cancer cell line SK-LU-1, in co-culture with human peripheral blood mononuclear cells (PBMC). MATERIALS AND METHODS Melatonin was tested on the cell line only after 24 h incubation (direct effect), and on the co-culture system of SK-LU-1 and PBMC to investigate any indirect effect. Apoptotic induction of the cancer cells was assessed using annexin V/PI staining with flow cytometric analysis for membrane alteration. Intracellular superoxide anion (O2 (•-) ) and hydrogen peroxide (H2 O2 ) for intracellular oxidative stress and glutathione (GSH) for intracellular anti-oxidation were measured with specific fluorescence probes. DNA fractions were measured employing propidium iodide (PI) fluorescence staining. RESULTS High doses of melatonin were directly toxic to SK-LU-1 cells, while PBMC-mediated indirect effect occurred after moderate doses (1 μm). Under co-culture conditions, increases in apoptotic cell death, increase in oxidative stress by reduction of GSH and cell cycle arrest in G0 /G1 in SK-LU-1 cells, were observed as the immunomodulatory effect of melatonin. CONCLUSION Melatonin had indirect effects on lung cancer cells by enhancement of immunomodulatory effects, but further studies of mechanism(s) involved are needed.
Collapse
Affiliation(s)
- P Plaimee
- Graduate School, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand; Melatonin Research Group, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | |
Collapse
|